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MINIMAL GRAPHS OVER RIEMANNIAN SURFACES

AND HARMONIC DIFFEOMORPHISMS

LAURENT MAZET, MAGDALENA RODRÍGUEZ, AND HAROLD ROSENBERG

Abstract. We construct a parabolic entire minimal graph S over a
finite topology complete Riemannian surface Σ of curvature −1 and in-
finite area (thus of non-parabolic conformal type). The vertical projec-
tion of this graph yields a harmonic diffeomorphism from S onto Σ. The
proof uses the theory of divergence lines to construct minimal graphs.

We also generalize a theorem of R. Schoen. Let g1 and g2 be two
complete metrics on a orientable surface S with compact boundary and
suppose ∫

S2
r

K−g2dσg2 ≤ C ln(2 + r)

for some C > 0 and all r > 0. If there is a harmonic diffeomorphism
from (S, g1) to (S, g2), then (S, g1) is parabolic.

1. Introduction

Perhaps Bernstein proved the first global theorem concerning minimal
graphs: An entire minimal graph over the euclidean plane R2 is a plane. This
has had a great influence on minimal surface theory and partial differential
equations. Among the many different proofs of Bernstein’s theorem that
followed, that of Heinz [11] used harmonic diffeomorphisms. He proved
there is no harmonic diffeomorphism from the disk {x2 + y2 < 1} onto
R2 with the Euclidean metric. The vertical projection of a minimal graph
over a Riemannian manifold is a harmonic diffeomorphism onto its image.
Thus Heinz concluded that an entire minimal graph over R2 is necessarily
conformally the complex plane C. The Gauss map of the graph then defines
a holomorphic bounded function on C, hence is constant, and the graph is
a plane.

Thus the existence of minimal graphs is intimately related to the existence
(or non existence) of harmonic diffeomorphisms. Until the last decade, the
theory of minimal graphs over surfaces and harmonic diffeomorphisms be-
tween surfaces developed considerably, yet independently. Before discussing
some of these developments, we state our main results.

In this paper we will construct an entire minimal parabolic graph Σ over
any complete Riemannian surface M of sectional curvature −1, finite topol-
ogy, and infinite area. Thus we obtain a harmonic diffeomorphism of Σ
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onto M (Theorem 19). Parabolic here means the annular ends of Σ are
conformally {z ∈ C | 1 ≤ |z|}, and infinite area implies M has at least one
hyperbolic end: conformally {1 ≤ |z| < c} where c < +∞.

In [22], Schoen proved that there is no harmonic diffeomorphism from
the unit disk onto a complete surface of non negative curvature; this is a
generalization of Heinz result. We improve Schoen’s result. Let S be an
orientable surface with a compact boundary. Let g1 and g2 be two complete
Riemannian metrics on S. Assume that there is a constant C ≥ 0 such that,
for any r, ∫

S2
r

K−g2
dσg2 ≤ C ln(2 + r)

where K−g2
= max{0,−Kg2} and S2

r = {p ∈ S|dg2(p, ∂S)) < r}. If there is a
harmonic diffeomorphism u : (S, g1)→ (S, g2), then (S, g1) is parabolic.

Let us now come back to the historical background of our work.

Minimal Graphs. Almost a century before Bernstein proved his theorem,
Scherk constructed many interesting minimal graphs over domains in R2.

The best known example is the graph of ln cos(x)
cos(y) , over the square (−π/2, π/2)×

(−π/2, π/2) in R2, taking +∞ and −∞ values over opposite sides of the
square. The graph is bounded by the four vertical lines over the vertices of
the square and extends to a complete doubly periodic minimal surface in R3

by successive rotations by π about the vertical lines.
Jenkins and Serrin [12] found necessary and sufficient geometric condi-

tions on compact domains in R2 bounded by piecewise smooth arcs, to find
minimal graphs over the domain taking prescribed boundary values (perhaps
infinite) on the boundary arcs.

There have been many generalizations of their theorem to domains in
Riemannian surfaces. Of interest to us here is the theorem of Pascal Collin
and the last author [4], extending the Jenkins-Serrin theory to ideal domains
of the hyperbolic plane H2. They then used this to construct an entire
minimal graph over H2 in H2×R, conformally the complex plane C. Hence
a harmonic diffeomorphism from C onto H2. This solved in the negative a
conjecture of Schoen and Yau: there is no harmonic diffeomorphism from C
onto H2. We mention further generalizations of this theorem [16, 13, 6].

To extend the Jenkins-Serrin theorem to higher topology Riemann sur-
faces, a new idea was needed. We solve this problem in this paper with
an idea introduced in the thesis of the first author [15]: divergence lines of
sequences of minimal graphs.

Harmonic maps. Harmonic maps between surfaces have long been used to
study the Teichmüller space of a Riemann surface. Sampson, Eells, Hart-
man were among the early pioneers. They showed in [5] the existence of
a harmonic map in each homotopy class of maps from M to N , when N
has non positive sectional curvatures, and Hartman [10] proved it is unique
when the curvature is strictly negative.
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For closed hyperbolic surfaces of the same genus, Schoen and Yau [21]
proved there is a unique harmonic diffeomorphism between them homotopic
to the identity. Wolf, in [24], was able to parametrize Teichmüller space by
harmonic diffeomorphisms and described the geometry of its closure (and
other analytic properties) in terms of the measured foliations of the Hopf
differential of the harmonic diffeomorphism.

Markovic [14] extended this theory to non compact Riemann surfaces of
finite analytic type (conformally parabolic and finite topology). He studied
the complex structures of such surfaces using quasi conformal harmonic
diffeomorphisms.

Harmonic diffeomorphisms from C into domains of H2 have been ana-
lytically constructed by Au, Tam and Wan [1], Han, Tam, Treibergs and
Wan [9] and Tam and Wan [23]. They showed the image of the harmonic
map is an ideal polygon of H2 with m+ 2 vertices, precisely when the Hopf
differential is a polynomial of degree m.

M. Wolf [25] realized that harmonic maps into H2 lead to minimal graphs
and multigraphs over domains in H2. He made a construction of such sur-
faces using harmonic maps to real trees and measured foliations. This gave
many interesting examples. He showed how the measured foliations give
information on the growth of the minimal surfaces.

The main question of our study is to understand if the conformal types
of two surfaces are related if there is a harmonic diffeomorphism from one
to the other. We finish this introduction by stating a conjecture in that
direction. There is no harmonic diffeomorphism from the disk onto R2 with
a complete parabolic metric.

The paper is structured as follows. In the second section, we recall some
basic definitions about conformal type, topology and geometry of surfaces.
Section 3 is devoted to the proof of a non existence result for harmonic
diffeomorphism. In Section 4, we gather some results about the minimal
surface equation that are used in the next section to prove a Jenkins-Serrin
type result. This result is then used in Section 6 to construct a harmonic
diffeomorphism from a parabolic surface to a hyperbolic surface with infinite
area.

2. Preliminaries

In this section we recall some basic facts about conformal type of surfaces,
harmonic maps, the geometry of hyperbolic surfaces.

2.1. Conformal type. We refer to [8] for the notions introduced here. First
we recall the following definition.

Definition 1. Let (M, g) be a complete Riemannian manifold with empty
boundary. (M, g) is called parabolic if any bounded subharmonic function on
M is constant.

If ∂M is compact, (M, g) is called parabolic if any non negative bounded
subharmonic function which vanishes on ∂M vanishes everywhere.
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If (M, g) has no boundary and K ⊂M is a compact with smooth bound-

ary, it is well known that M is parabolic if and only if M \
◦
K is parabolic.

In dimension 2, the parabolicity is a conformal property. For example,
an annulus is parabolic if and only if its conformal modulus is +∞: we
recall that any annular domain with one connected compact boundary is
conformal to {1 ≤ z < c}, c ∈ (1,∞], the conformal modulus of this annular
domain in 1

2π ln(c).

2.2. Harmonic maps. A harmonic map ϕ : (M1, g1) → (M2, g2) between
two Riemannian manifolds is a critical point of the Dirichlet energy func-
tional E(ϕ) = 1

2

∫
M1
|ϕ∗g2|2g1

dσg1 where dσg1 is the volume measure. If M1

has dimension 2, this energy is conformally invariant, so being harmonic
only depends on the conformal structure of M1.

If M1 and M2 are surfaces, let us consider conformal parameters z and
w on M1 and M2 and write their metrics as g1 = λ2(z)|dz|2 and g2 =
σ2(w)|dw|2. Then a map ϕ : M1 → M2 can be written as a function w =
u(z). With these notations, the map ϕ is harmonic if and only if u satisfies
the following partial differential equation

0 = uzz̄ + 2
σw(u)

σ(u)
uzuz̄

Let S be a surface and M a Riemannian 3-manifold. An isometric im-
mersion ϕ : S → M is harmonic if and only if ϕ is minimal. In the case M
is a Riemannian product M = Σ × R and π : M → Σ denotes the vertical
projection, ϕ minimal implies that the map π ◦ ϕ : S → Σ is harmonic.

2.3. Hyperbolic surfaces. In this paper we will look at orientable surfaces
Σ with finite topology and endowed with a complete hyperbolic metric. Let
us describe the geometry of the annular ends E of Σ.

If E has finite area then outside some compact E is isometric to the
quotient of a horodisk H by a parabolic translation leaving H invariant.
The quotient of a horodisk H ′ contained in H is called a horoannulus of the
end. Such an end can be compactified by adding one point p at infinity.
These annular ends are parabolic. We call these ends hyperbolic cusp ends.

If E has infinite area, the geometry is the following. First, we have two
particular cases:

• Σ could be H2 and E is just the outside of a compact subset of H2

or
• Σ could be the quotient of H2 by a parabolic translation and E is

just the quotient of the outside of a horodisk left invariant by the
parabolic translation.

If we are not in these two particular case, the picture is the following. Let
γ be a geodesic in H2. If c is an equidistant curve c to γ, we denote Cc
the non-convex component of H2 \ c. Then there is an equidistant curve c
and a hyperbolic translation T leaving γ invariant such that, outside some
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compact, E is isometric to the quotient of Cc by T . Thus, when we will
consider such an end E, we will see E as the particular subdomain isometric
to the quotient of Cc by T , for example ∂E has constant curvature. The ideal
compactification of H2 passes to the quotient and gives a compactification
of E by adding a circle. These annular ends are non-parabolic. In the
following, we will focus on this general case. So any non parabolic end will
be seen as the quotient of some Cc by T (the other cases can be treated
similarly but are exactly the cases studied in [4, 13]).

Since each end can be compactified, the whole surface Σ can be compact-
ified by Σ

∞
. We will denote ∂∞Σ = Σ

∞ \ Σ. ∂∞Σ is made of one point
for each parabolic end and one circle for each non-parabolic end. If A is a
subset of Σ, A

∞
denotes the closure of A in Σ

∞
and ∂∞A is A

∞ ∩ ∂∞Σ .

3. A non-existence result

Our first result is a characterization ”à la Huber” of parabolicity. For a
Riemannian metric g on a surface we denote by Kg the sectional curvature
and dσg the area measure.

Proposition 2. Let (S, g) be a complete Riemannian surface with a compact
boundary. We denote Sr = {p ∈ S|dg(p, ∂S) < r} . We assume that there
is C > 0 such that for any r > 0

∫
Sr

Kgdσg ≥ −C ln(2 + r).

Then (S, g) is parabolic.

Proof. We are going to give an upper-bound for the growth of the area
|Sr| of Sr. Let `(r) denote the length of ∂Sr \ ∂S. It is known that ` is

differentiable almost everywhere and `(b) − `(a) ≤
∫ b
a `
′(u)du and `′(u) ≤

2πχ(Su) − K(u) +
∫
∂S κgds where K(u) =

∫
Su
Kgdσg and

∫
∂S κgds is the

integral of the curvature of ∂S computed with respect to the outward unit
normal (see [2] and the references therein). We denote by c this last integral.
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From the coarea formula, we have:

|Sr| =
∫ r

0
`(u)du

≤ r`(0) +

∫ r

0

∫ u

0
`′(v)dvdu

≤ r`(0) +

∫ r

0
`′(v)

∫ r

v
dudv

≤ r`(0) +

∫ r

0
(r − v)`′(v)dv

≤ r`(0) +

∫ r

0
(r − v)(2πχ(Sv) + c−K(v))dv

≤ r`(0) +

∫ r

0
(r − v)(2π + c+ C ln(2 + v))dv

≤ r`(0) + (2π + c)
r2

2
+ Cr

∫ r

0
ln(2 + v)dv

≤ r`(0) + (2π + c)
r2

2
+ Cr2 ln(2 + r)

So r
|Sr| is not integrable at +∞ which implies (S, g) is parabolic (see [8]). �

In [22], Schoen proved that there is no harmonic diffeomorphism from the
unit disk onto a complete surface of non negative curvature. The following
proposition is an improvement of this result.

Proposition 3. Let S be an orientable surface with a compact boundary.
Let g1 and g2 be two complete Riemannian metrics on S. Assume that there
is a constant C ≥ 0 such that for any r∫

S2
r

K−g2
dσg2 ≤ C ln(2 + r)

where K−g2
= max(0,−Kg2) and S2

r = {p ∈ S|dg2(p, ∂S) < r}.
If there is a harmonic diffeomorphism ϕ : (S, g1)→ (S, g2) then (S, g1) is

parabolic.

Proof. By changing the orientation on (S, g1), we can assume that ϕ pre-
serves the orientation. Let z be a local conformal complex coordinate on
(S, g1) and w be a local conformal complex coordinate on (S, g2). We denote
g1 = λ2(z)|dz|2, g2 = σ2(w)|dw|2 and ϕ by w = u(z). The Jacobian of the

map u is then J(u) = σ2(f)
λ2(z)

(|uz|2− |uz̄|2) (see [21, 22]) since u preserves the

orientation J(u) > 0 and |uz| > |uz̄|.
We then define on S the metric ĝ = σ2(u)|uz|2|dz|2; this metric is confor-

mal to g1 and does not depend on the choice of the complex coordinates z
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and w. If we compare ĝ with the pull-back metric ϕ∗g2 we have

ϕ∗g2 = σ2(u)|uzdz + uz̄dz̄|2 ≤ σ2(u)(|uz||dz|+ |uz̄||dz̄|)2

≤ σ2(u)2(|uz|2 + |uz̄|2)|dz|2

≤ σ2(u)4|uz|2|dz|2

≤ 4ĝ

Since ϕ∗g2 is complete, ĝ is complete. Let

S∧r = {p ∈ S |dĝ(p, ∂S) ≤ r}
S∗r = {p ∈ S |dϕ∗g2(p, ∂S) ≤ r}

Since ϕ∗g2 ≤ 4ĝ, we have S∧r ⊂ S∗2r.
The computation of the curvature of ĝ (see [21, 22]) gives

Kĝ =
−1

2σ2(u)|uz|2
∆ ln(σ(u)2|uz|2) = Kg2(u)

σ2(u)(|uz|2 − |uz̄|2)

σ2(u)|uz|2
= Kg2 Ĵ(ϕ)

where Ĵ(ϕ) is the jacobian of ϕ : (S, ĝ)→ (S, g2). Thus∫
S∧r

K−ĝ daĝ =

∫
S∧r

K−g2
(ϕ)Ĵ(ϕ)dσĝ

=

∫
ϕ(S∧r )

K−g2
dσg2

=

∫
S∧r

K−ϕ∗g2
dσϕ∗g2

≤
∫
S∗2r

K−ϕ∗g2
dσϕ∗g2 ≤ C ln(2r + 2)

So, by Proposition 2, (S, ĝ) is parabolic. Since ĝ is conformal to g1, (S, g1)
is parabolic. �

As a consequence we have the following corollary

Corollary 4. Let g1 and g2 be two complete metrics on an orientable finite
topology surface S with g2 hyperbolic and of finite area. If there is a harmonic
diffeomorphism ϕ : (S, g1)→ (S, g2) then (S, g1) is parabolic.

There is no harmonic diffeomorphism from A(r) = {z ∈ C |1 ≤ |z| < r}
to a hyperbolic cusp end (we recall that a hyperbolic cusp end is parabolic).

4. Preliminaries on the minimal surface equation

Let Ω be an open subset inside a Riemanniann surface Σ and u be a
function on Ω. In the following, we will use the following notations

• Gu is the graph of u in Σ× R,
• Wu is

√
1 + ‖∇u‖2,

• Xu is the vectorfield ∇u
Wu

,

• Nu is (Xu,− 1
Wu

) the downward unit normal to Gu and
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• if γ is a curve in Ω, Fu(γ) =
∫
γ Xu · ν where ν is a unit normal to γ.

Fu(γ) is called the flux across γ. Of course, Fu(γ) depends on the choice of
ν but, in the following, γ will be often a boundary component of some open
subset so ν will be always chosen as the outward pointing unit normal.

4.1. The minimal surface equation. The function u solves the minimal
surface equation if

(MSE) 0 = div

(
∇u√

1 + ‖∇u‖2

)
= divXu

This is equivalent to say that Gu is a minimal surface in Ω× R.
We are going to study the Dirichlet problem for the (MSE). This problem

has been studied by many different authors. We refer to the works of Jenkins
and Serrin [12] for R2, Nelli and the last author [17], the authors [16] for H2

and Pinheiro [19] for the the general case. We will gather here some results
whose proof can be found in these papers.

The first result is a classical compactness result.

Theorem 5. Let (un)n be a uniformly bounded sequence of solutions of
the (MSE) on an open subset Ω of Σ. There is a subsequence of (un)n that
converges to a solution u of the (MSE); the convergence is smooth on each
compact subset of Ω.

We have introduced the notation Fu(γ) for curves in Ω, actually this
notion can be extended to subarcs of ∂Ω if Ω is smooth and u solves (MSE).
Indeed, Xu is bounded and, in that case, has vanishing divergence. Actually,
we can often extend continuously the value of Xu on ∂Ω.

Lemma 6. Let Ω be an open subset in Σ and γ a geodesic arc contained in
∂Ω and u a solution of (MSE) in Ω.

• If u diverges to +∞ (resp. −∞) as one approaches γ, then Xu

extends continuously on γ with Xu = ν (resp. Xu = −ν).
• If Fu(γ) = `(γ) (resp. −`(γ)), then u diverges to +∞ (resp. −∞)

as one approaches γ.

Proof. The first statement is almost contained in Lemma 2.5 in [16] where
u → +∞ on γ implies Fu(γ) = `(γ) is proved. Actually, if u → +∞ on
γ, Proposition 28 implies that Xu is equicontinuous near γ so it extends
continuously to γ. The value of Xu on γ is then a consequence of Fu(γ) =
`(γ).

The second statement is Lemma 3.6 in [16]. �

An other result is Lemma 2.7 in [16].

Lemma 7. Let Ω be an open subset in Σ and γ a geodesic arc contained
in ∂Ω and (un)n a sequence of solutions of (MSE) in Ω which extend con-
tinuously to γ. If (un)n diverges to +∞ (resp. −∞) on γ while remaining
bounded on compact subsets of Ω then Fun(γ)→ `(γ) (resp. −`(γ)).
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4.2. Divergence lines. One important tool for our study is to understand
the limit of a sequence of solutions of (MSE). In this section, we present
the notion of divergence line that was introduced by the first author in [15]
for R2 and the authors in [16] for H2.

In the sequel, we consider a complete Riemannian surface Σ, a sequence
of open subsets (Ωn)n ⊂ Σ and a sequence (un)n of solutions of (MSE), un
being defined on Ωn. First we define the limit open subset

Ω =
⋃
n

(
interior

( ⋂
k≥n

Ωk

))
Because of the equicontinuity result given by Proposition 28, we can as-

sume that the sequence (Xun)n converges to some continuous vectorfield X
on Ω (the convergence is locally uniform). So we can define the convergence
domain of the sequence as the open subset

B = B(X) = {p ∈ Ω | ‖X‖(p) < 1}

and the divergence set as D = D(X) = Ω \ B = {p ∈ Ω | ‖X‖(p) = 1}.

Proposition 8. Let p be a point in Ω.

• If p ∈ B, let D be the connected component of B containing p. Then
un− un(p) converges on D to a solution of (MSE) (the convergence
is locally Ck for any k).
• If p ∈ D, let γ be the geodesic in Ω passing through p and orthogonal

to X(p). Then γ ⊂ D and, for any q ∈ γ, X(q) is the unit normal
to γ.

Proof. Let us first assume that p ∈ B. On D, since ‖X‖ < 1, we have
∇un → X√

1−‖X‖2
. Thus un − un(p) converges locally in C1 to a function v.

Besides un − un(p) being a solution of (MSE), Theorem 5 implies that the
convergence is locally in Ck for any k and v is a solution of (MSE).

Let us now assume p ∈ D. Since ‖X‖(p) = 1, we have Nun(p) → X(p).
There is δ > 0 such that Gun contains the geodesic disk of radius δ around
(p, un) (take δ such that 2δ ≤ d(p, ∂Ω)). Moreover, by curvature estimates
in [20], the second fundamental form of these graphs is uniformly bounded.
As a consequence, after a vertical translation by −un(p)∂t, this sequence of
geodesic disks converges to a minimal disk S of radius δ which is orthogonal
to X(p) at (p, 0). Let θ = 〈N, ∂t〉 along S, where N is the unit-normal to
S. Since S is a limit of graphs θ ≤ 0 and θ(p, 0) = 0. Moreover θ is in
the kernel of the Jacobi operator: 0 = ∆Sθ + (Ric(N,N) + ‖A‖2)θ. So by
the maximum principle, θ = 0 along S. This implies that S is contained in
some γ×R where γ is a geodesic of S. Since X is normal to S at (p, 0), γ is
normal to X at p as well. So S is a geodesic disk of radius δ in γ ×R. This
implies that, along the geodesic segment in γ of length 2δ and midpoint p,
X is the unit normal to γ. Let γ̃ denote the connected component of γ ∩Ω
containing p. It is now clear that the subset of points q in γ̃ where X(q) is
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the unit normal to γ̃ is open and closed in γ̃ so it is the whole γ̃ and the
second statement of the proposition is proved. �

The above proposition tells that on each connected component of B the
sequence (un) converges up to a vertical translation. We also see that D is
made of geodesics of Ω that we will call divergence lines of X. We notice that
since the unit normal to these geodesics is given by X, they are embedded
geodesics (perhaps periodic). The next lemma is important in order to
describe the possible divergence lines.

Lemma 9. Let γ be a divergence line, then it is a proper geodesic in Ω.

Proof. Assume that γ is not a proper geodesic. So we can consider a arc-
length parametrization of γ : R+ → Ω and a sequence (si)i in R+ with
si+1 > si + 1 and γ(si) → p ∈ Ω. Let r > 0 be such that the geodesic
disk D(p, r) ⊂ Σ is convex, is included in Ω, has area at most r and the
length of ∂D(p, r) is at most 7r. By changing the sequence (si)i, we assume
that γ(si) ∈ D(p, r/2). This implies that the geodesic segment in γ of
length r and midpoint γ(si) is included in D(p, r). We notice that D(p, r) ⊂
interior

(⋂
k≥n0

Ωk

)
for some n0.

Changing un into un − un(γ(0)), we assume un(γ(0)) = 0. We are going
to estimate the area of Gun inside D(p, r)× (−1, 1) in two ways.

First let us compute an upper-bound. Let us define Bn = {(q, t) ∈
D(p, r)× (−1, 1) |t < un(p)}. We have Gun ∩ (D(p, r)× (−1, 1)) ⊂ ∂Bn and
∂Bn \Gun has area at most the one of ∂(D(p, r) × (−1, 1)): 2r + 2 × 7r =
16r. Since Gun is area minimizing in D(p, r) × R we obtain the area of
Gun ∩ (D(p, r)× (−1, 1)) is at most 16r.

Let us now compute a lower-bound. Let U b Ω be an open subset con-

taining γ[0, s9] (we also have U ⊂ interior
(⋂

k≥n0
Ωk

)
for some n0). By

curvature estimates [20], the curvature of the graphs Gun over U is uni-
formly bounded. Let Sn be the connected component of Gun ∩ (U × (−1, 1))
containing (γ(0), 0). As in the proof of Proposition 8, the sequence (Sn)n
converges to γ̃ × (−1, 1) where γ̃ is the connected component of γ ∩ U con-
taining γ(0). γ̃ contains the geodesic segments of length r and midpoint
γ(si) (0 ≤ i ≤ 8). So the area of the limit surface inside D(p, r) × (−1, 1)
is at least 18r. This implies that the area of Gun ∩ (D(p, r)× (−1, 1)) is at
least 17r for n large. We thus have a contradiction. �

Now we are interested in arguments that prevent some geodesics from
being divergence lines. One of these tools is the following result.

Lemma 10. Let γ be a divergence line and p ∈ γ be a point. Let D+ ⊂ Ω
be a halfdisk centered at p and contained strictly on one side of γ and ν
be the outward pointing unit normal along ∂D+. We assume that D+ ⊂ B
and consider q ∈ D+. Then if X = ν (resp. X = −ν) along γ then
limun(p)− un(q) = +∞ (resp. −∞).
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Proof. Since D+ ⊂ B, we can assume that un−un(q)→ v, v being a solution
to (MSE). We have Xv = X so Xv = ν along γ. By Lemma 6, this implies
that v takes the value +∞ on γ. Let M be positive. By the continuity
of X, there is a point q′ ∈ D+ close to p such that v(q′) − v(q) ≥ M and

a curve c in D
+

from q′ to p such that c′ · X > 0. So c′ · Xun > 0 for
large n and un(p) − un(q) ≥ un(q′) − un(q). Then lim inf un(p) − un(q) ≥
lim inf un(q′)− un(q) ≥M which gives the result. �

A consequence of the above lemma is the following. Let c1 and c2 be
two connected components of B with a common divergence line in their
boundary and X pointing into c2 along it. Let pi ∈ ci be two points, then
un(p2)−un(p1)→ +∞. We state the next result only in the case where the
surface is hyperbolic.

Lemma 11. Let (γn)n be a sequence of geodesic arcs of length 2δ > 0 with
midpoints pn. Let D+

n be a geodesic half-disk with diameter γn, of radius
δ and strictly on one side of γn. We assume that (D+

n )n converges to D+

a geodesic half-disk of center p, radius δ and on one side of a geodesic arc
γ. We assume that (un)n is a sequence of solutions of (MSE) on D+

n and
Xun → X on D+. Moreover we assume one of the following possibilities

• either un takes the value +∞ (resp. −∞) along γn,
• or the metric is hyperbolic on D+

n and un is constant along γn.

In both cases, p is not the end point of some divergence line of X. Moreover,
in the first case X takes the value ν (resp. −ν) along γ.

Proof. By Proposition 28, in the first case, the sequence Xun is uniformly
equicontinuous on the halfdisk of radius δ/2. Since un takes the value +∞,
Xun = ν along γn. As a consequence, X extends continuously to γ by the
value ν. This implies that p is not the end point of some divergence line of
X.

In the second case, let us see the halfdisk D+
n as a halfdisk in H2. Since

un is constant along γn we can extend the definition of un to the whole
geodesic disk by symmetry. As above this implies that Xun is uniformly
equicontinuous on the the halfdisk of radius δ/2 and Xun is orthogonal to
γn along it. So X extends continuously to γ and is orthogonal to it. This
prevents p from being an endpoint of some divergence line of X. �

5. A Jenkins-Serrin type result

In this section, we are interested in solving the Dirichlet problem for
(MSE) on some particular domains Ω of a complete hyperbolic surface Σ.
So let us fix a a complete hyperbolic surface Σ with at least one non-parabolic
end.

5.1. Ideal domains and Jenkins-Serrin conditions. We first define the
notion of polygonal domains.
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Definition 12. A polygonal domain in Σ is a connected open subset Ω such
that ∂∞Ω is made of a finite number of points and ∂Ω is made of a finite
number of geodesic arcs.

If Ω is a polygonal domain, the geodesic arcs in the boundary are called
the edges of Ω, the end points of these edges and points in ∂∞Ω are called
the vertices of Ω. The natural orientation of ∂Ω allows us to say that the
edge γ2 is the successor of the edge γ1 if γ2 comes just after γ1 when traveling
along ∂Ω.

Let us remark that if γ ⊂ ∂Ω is a geodesic arc, it could be possible that
Ω is on both sides of γ. This implies that γ is part of two edges of Ω and,
in the following, this arc has to be counted twice.

Among polygonal domains, we consider particular ones. Let E1, . . . , Eq
be the non-parabolic ends of Σ (q ≥ 1) and pq+1, . . . , pq+n the end-points of
the cusp ends.

Definition 13. An ideal domain Ω in Σ is a polygonal domain such that

• ∂∞Ω = {pq+1, . . . , pp+n}
⋃
∪qi=1{pi1, . . . , pi2ni} where {pij}1≤j≤2ni are

an even number of points in ∂∞Ei cyclically ordered,
• the edges of Ω are geodesic lines γij, 1 ≤ i ≤ q and 1 ≤ j ≤ 2ni,

where the end points of γij are pij and pij+1 (with pi2ni+1 = pi1) and

• the edge γij is included in Ei.

(see Figure 1)

Ω

p2

p3

p1
j+1

p1
j

γ1
j

Figure 1. An ideal domain Ω in a hyperbolic surface Σ

As a consequence, the boundary of an ideal domain Ω is made of an even
number of edges. In the following, each edge will be labeled ”a” or ”b”
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with the convention : two successive edges have different labels. Since the
number of end points on ∂∞Ei is even such a labeling is possible.

Definition 14. Let Ω be an ideal domain in Σ. An inscribed polygonal
domain in Ω is a polygonal domain contained in Ω whose vertices are among
the ones of Ω.

Let us notice that the edges of such an inscribed polygonal domain are
either closed geodesics or complete geodesics. Besides, Ω is itself a polygonal
domain inscribed in Ω. Jenkins-Serrin conditions take into account the
”lengths” of boundary components of inscribed polygonal domains. So let
us explain how these conditions are defined.

Let Ω be an ideal domain in Σ and consider the vertices pij as in the

definition. For each i, j, let (H i
j(t))t≥0 be a decreasing family of horodisks

centered at pij such that d(∂H i
j(0), H i

j(t)) = t. In the cusp end with end point

pi, we also consider a decreasing family of horo-annuli (Hi(t))t≥0 such that
d(∂Hi(0), Hi(t)) = t. Moreover we assume that the horodisks H i

j(0) and the

horo-annuliHi(0) are disjoint. If t = (t11, . . . , t
1
2n1
, t21, . . . , t

q
2nq
, tq+1, . . . , tq+n) ∈

RNΩ
+ where NΩ = n+

∑q
i=1 2ni, we define

H(t) = (∪qi=1 ∪
2ni
j=1 H

i
j(t

i
j))
⋃

(∪nk=1Hq+k(tq+k))

This is the union of disjoint horodisks and horo-annuli.
Let us fix a a/b labeling on ∂Ω and choose P an inscribed polygonal

domain in Ω. The edges of P can be gathered in three classes: the ones
which are edges of Ω labeled a (we denote by AP the union of these geodesic
lines), the ones which are edges of Ω labeled b (let BP be their union), the
other ones (let CP be their union).

For t ∈ RNΩ
+ , we define AP(t) = AP \ H(t), BP(t) = BP \ H(t) and

CP(t) = CP \H(t). We also denote α(t) = `(AP(t)), β(t) = `(BP(t)) and
γ(t) = `(AP(t) ∪BP(t) ∪ CP(t)) where ` denotes the length of a curve.

On RNΩ
+ , we define a partial order by t′ ≥ t if t′−t has only non negative

components.
Let γ be an edge of P. We notice that if all the components of t are

sufficiently large then γ only intersects the horodisks or horo-annuli in H(t)
that are centered at the end points of γ. We assume this is true in the
following. Let us understand how the three above quantities evolve when
coordinates in t increase. The edges with the vertex pk as end-point are
included in CP . So increasing tk by t, leave α(t) and β(t) unchanged and
increase γ(t) by at least 2t (there are at least two edges ending at pk: it
could be one geodesic line counted twice). If pij ∈ ∂∞P, when tij increases to

tij + t, either α(t) (resp. β(t)) increases by t or stays unchanged, depending

on whether an edge in AP (resp. BP) ends at pji ; in any case γ increases by
at least 2t.

As a consequence, γ(t) − 2α(t) and γ(t) − 2β(t) is non decreasing with
t. So the Jenkins-Serrin conditions γ − 2α > 0 and γ − 2β > 0 are well
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defined for any inscribed polygon P and means that γ(t) − 2α(t) > 0 and
γ(t)− 2β(t) > 0 for sufficiently large t.

If P = Ω, the same argument proves that the condition α− β = 0 is well
defined since the value α(t)− β(t) does not depend on t for large t.

Remark 1. The above analysis has the following consequence. If γ1 and γ2

are two successive edges of P and none of them is included in AP , we see
that γ(t)−2α(t)→ +∞ as the components of t go to +∞. So the condition
γ − 2α > 0 is always satisfied for such an inscribed polygonal domain. So,
this condition can be studied only for inscribed polygonal domains P such
that a edges alternate along ∂P. For the γ − 2β condition, we can focus on
inscribed polygonal domains P such that b edges alternate along ∂P

Lemma 15. let Ω be an ideal domain in Σ. There is a number L(Ω) depend-
ing only on Ω such the following is true. Let {γi}1≤i≤L be a set of disjoint
proper geodesics in Ω which are either closed or with end-points among the
vertices of Ω. Then L ≤ L(Ω).

Proof. First, we look at closed geodesics. If such a geodesic γ bounds a
topological disk D then the Gauss-Bonnet formula gives −|D| = 2π so none
of these geodesics are homotopically trivial. If two of them bound a topolog-
ical annulus A, the Gauss-Bonnet formula gives −|A| = 0 so any two closed
geodesics are not homotopic. So there is a constant κΣ depending only on
the topology of Σ such that the number of closed geodesics in {γi}1≤i≤L is
less than κΣ.

So now we remove the closed geodesics from {γi}1≤i≤L and we consider the
connected components P of the complement of these geodesics. Applying
Gauss-Bonnet formula to Ω, we obtain −|Ω|+ (NΩ − n)π = 2πχ(Ω) (let us
recall that NΩ − n is the number of vertices of Ω on non parabolic ends).
So |Ω| = (NΩ − n)π − 2πχ(Ω). From the Gauss-Bonnet formula we also
obtain −|P| + (nP + kP)π = 2πχ(P) where P is a connected component
of Ω \ (

⋃
1≤i≤L γi), nP is the number of edges of P among the edges of

Ω and kP the number of edges among {γi}1≤i≤L. As a consequence, the
area |P| is an integer multiple of π and the number of such P is less than
|Ω|/π = NΩ − n− 2χ(Ω). Besides we have

kPπ − 2π ≤ (nP + kP)π − 2πχ(P) = |P| ≤ |Ω|;

so kP ≤ 2 + |Ω|/π = 2 +NΩ − n− 2χ(Ω). So summing over all P and using
the estimate of the number of closed geodesics we have

L ≤ κΣ + (1 +
NΩ − n

2
− χ(Ω))(NΩ − n− 2χ(Ω)).

�

5.2. A Jenkins-Serrin theorem. Let Ω be an ideal domain with a a/b
labeling of ∂Ω. We are interested in solving the following Dirichlet problem
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on Ω that we call the Jenkins-Serrin-Dirichlet problem:

(1)


div (Xu) = 0 on Ω

u = +∞ on AΩ

u = −∞ on BΩ.

Theorem 16. Let Ω be an ideal domain with a a/b labeling of ∂Ω. The
Jenkins-Serrin-Dirichlet problem has a solution if and only if α− β = 0 for
P = Ω, and

γ − 2α > 0 and γ − 2β > 0

for all other inscribed polygonal domains P. Moreover if the solution exists,
it is unique up to an additive constant.

We separate the proof of the above theorem in three parts.

5.2.1. The conditions are necessary. Let u be a solution and consider an

inscribed polygonal domain P and t ∈ RNΩ
+ with large coordinates. The

boundary of P\H(t) is made of AP(t), BP(t), CP(t) and arcs with curvature
1 contained in ∂H(t), we denote by Γt the union of these arcs. We notice
that `(Γt) goes to 0 as t→∞. Since u solves (MSE), Lemma 6 gives

0 = Fu(∂(P \H(t))) = Fu(AP(t)) + Fu(BP(t)) + Fu(CP(t)) + Fu(Γt)

= α(t)− β(t) + Fu(CP(t)) + Fu(Γt)
(2)

Since ‖Xu‖ < 1 along CP(t) and Γt, we have |Fu(Γt)| ≤ `(Γt) −−−→
t→∞

0

and, if P 6= Ω, CP(t) is nonempty then |Fu(CP(t))| < `(CP(t)) = γ(t) −
α(t) − β(t). Moreover the difference γ(t) − α(t) − β(t) − |Fu(CP(t))| is
non decreasing with t. So, if P 6= Ω, there is c > 0 such that for t large
γ(t)− α(t)− β(t)− |Fu(CP(t))| ≥ c. Using this in (2), we obtain

0 ≤ α(t)− β(t) + (γ(t)− α(t)− β(t)− c) + `(Γt)

which implies γ(t)− 2β(t) ≥ c/2 > 0 for t large enough. So γ − 2β > 0 on
P. Similar computations give γ − 2α > 0 on P. If P = Ω, taking the limit
in (2) gives limt→∞ α(t)− β(t) = 0, so α− β = 0 for P = Ω.

Remark 2. If γ is a subarc of CP and ‖Xu‖ ≤ 1− δ (δ > 0), the constant c
appearing in the above proof can be taken equal to δ`(γ).

A second remark is that if P is a polygonal domain as in Definition 12
which is contained in Ω. We can also define AP , BP and CP and look at
the γ − 2α > 0 and γ − 2β > 0 conditions. The arguments above also tell
us that these conditions are satisfied for such polygonal domains.

5.2.2. The existence part. The first step of the existence part of Theorem 16
proof is given by the following result.
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Lemma 17. Let Ω be an ideal domain with a a/b labeling of ∂Ω. For any
n, there is a solution to the following Dirichlet problem in Ω

(3)


div (Xu) = 0 on Ω

u = n on AΩ

u = −n on BΩ.

Proof. We apply the Perron method to solve this Dirichlet problem (see
Theorem 2.12 in [7] for harmonic functions). Let us recall its framework.
A continuous function w on Ω is called a subsolution of (MSE) if, for any
bounded open subset U ⊂⊂ Ω with smooth boundary and any solution v to
(MSE) on U , w ≤ v on ∂U implies w ≤ v on U .

A continuous function w on Ω is called a subsolution to (3) if it is a
subsolution to (MSE) and w ≤ n on AΩ and w ≤ −n on BΩ. Let S be the
set of all subsolutions to (3). We notice that w ≡ −n ∈ S and any w ∈ S
satisfies w ≤ n. The Perron method asserts that the function u defined on
Ω by u(p) = supw∈S w(p) solves (MSE).

The fact that u satisfies the boundary data of (3) comes from the existence
of barriers along the boundary. They can be constructed as follows. Take
a point p in ∂Ω and consider D+, a geodesic half-disk contained in Ω and
centered at p. There exists a solution v of (MSE) on D+ with boundary
data 0 on ∂D+ ∩ ∂Ω and 2n on ∂D+ ∩ Ω. Then, if p ∈ AΩ, n− v ≤ u ≤ n
on D+ since n − v is a subsolution and then u(p) = n. If p ∈ BΩ, we have
−n ≤ u ≤ v − n and u(p) = −n. �

Let (un)n be the sequence of solutions given by Lemma 17. Let us prove
that, up to a subsequence, the sequence converges to a solution of Prob-
lem (1). We assume that Xun → X and the question is to understand the
possible divergence lines of X. Each of them are proper geodesics in Ω and,
since un is locally constant along ∂Ω, their end points must be among the
vertices of Ω (Lemma 11). So divergence lines are either closed geodesics or
geodesic lines joining two vertices of Ω.

First let us assume that we have at least one divergence line (the conver-
gence domain B(X) is not the whole Ω). There are at most a finite number
of divergence lines (Lemma 15). Thus B(X) has a finite number of con-
nected components. Let us define an oriented graph G in the following way.
The vertices of G are the connected components of B(X). A divergence line
γ lies in the boundary of two connected components c1 and c2 of B(X) (may
be c1 = c2) and, along γ, X points into one of these connected components,
say c2. We then define an arrow (or oriented edge) eγ from c1 to c2. G is
then a finite oriented graph.

Lemma 18. G has no oriented cycle.

Proof. Assume eγ1 · · · eγk is an oriented cycle in G. Let ci be the initial point
of eγi ; as a cycle, the edge eγk has endpoint c1. Let qi be a point in ci. By
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Lemma 10, we have

0 = (un(q1)− un(qk)) +

k−1∑
i=1

(un(qi+1)− un(qi)) −−−→
n→∞

+∞

which gives a contradiction. �

So G has a vertex c where all adjacent arrows arrive. The component c is
an inscribed polygonal domain P in Ω. Let q ∈ P and define w on c as the
limit of un−un(q). Since B(X) 6= Ω and g has no oriented cycle, there is an
other vertex c′ in G which is joined to c by some edge eγ . As a consequence
if q′ ∈ c′, we have un(q)− un(q′) → +∞ (Lemma 10). Since un ≥ −n, this
implies un(q) + n → +∞. We have then proved that w = −∞ on BP (the
edges of P among the b-edges of Ω) and X = −ν along BP (Lemmas 6 and
7).

Let t ∈ RNΩ be large. As above, the boundary of P \ H(t) splits into
AP(t), BP(t), CP(t) and Γt. So we can compute

0 = Fun(∂(P \H(t))) = Fun(AP(t)) + Fun(BP(t)) + Fun(CP(t)) + Fun(Γt)

Taking the limit n → ∞ and using X = −ν along BP(t) and CP(t) and
‖X‖ ≤ 1 along AP(t) and Γt, we obtain

β(t) + (γ(t)− α(t)− β(t)) ≤ α(t) + `(Γt)

So making t → ∞, we get lim inft→∞ γ(t) − 2α(t) ≤ 0 which is impossible
since we assume γ − 2α > 0 for P. As a consequence, we have proved that
there is no divergence line and B(X) = Ω. Let us notice that we can do the
same argument with a vertex c where all adjacent arrows leave and obtain
a contradiction with the γ − 2β > 0 property.

Taking p ∈ Ω, we define w the limit of un − un(p) on Ω. The function w
has the right boundary values. Indeed, because of the values of un on ∂Ω,
we can be sure that either w = +∞ on AΩ or w = −∞ on BΩ (Lemmas 6
and 7). We assume w = +∞ on AΩ (the other case is similar).

For t large, we have

0 = Fw(∂(Ω \H(t))) = Fw(AΩ(t)) + Fw(BΩ(t)) + Fw(Γt)

Let us fix some t0 and assume that Fw(BΩ(t0)) ≥ −β(t0) + c for some
positive c. Then for any t ≥ t0, using Xw = ν on AΩ and ‖Xw‖ ≤ 1 on BΩ,
the above equality gives α(t)−β(t) ≤ −c+`(Γt). So α(t)−β(t) ≤ −c/2 < 0
for t large. This gives a contradiction with α = β for Ω. So Fw(BΩ(t)) =
−β(t) for large t and w = −∞ on BΩ (Lemma 6).

5.2.3. The uniqueness part. Let u and v be two solutions of (1) and assume
that u− v is not a constant. Let t be a regular value of u− v in the range
of u− v and define D = {u− v > t}, we notice that along ∂D ∩ Ω which is

non-empty, Xu − Xv points inside D. Let t ∈ RNΩ
+ be large and δ > 0 be

small. Let Dt,δ be the set of points inside D \H(t) and at distance δ from
∂Ω. The boundary of Dt,δ is made of three parts Γ1,t,δ in ∂D ∩ Ω, Γ2,t,δ in
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∂H(t) and Γ3,t,δ in equidistant curves to ∂Ω. Notice that on Γ3,t,δ, Xu−Xv

goes to 0 as δ goes to 0 since Xu = Xv on ∂Ω. So integrating div(Xu −Xv)
on Dt,δ, we obtain

0 =

∫
Γ1,t,δ

(Xu −Xv) · ν +

∫
Γ2,t,δ

(Xu −Xv) · ν +

∫
Γ3,t,δ

(Xu −Xv) · ν

As δ → 0, the last term goes to 0. So, with Γ1,t = ∂D∩ (Ω \H(t)), we have∫
Γ1,t

(Xu −Xv) · ν ≥ −2`(∂H(t) ∩ Ω)

Letting t→∞, we obtain
∫
∂D∩Ω(Xu−Xv)·ν ≥ 0 which contradicts Xu−Xv

points inside along ∂D ∩ Ω.

Remark 3. In the following, a ideal domain Ω with a a/b labeling that
satisfies the conditions of Theorem 16 will be called a Jenkins-Serrin domain.
A solution u to the Jenkins-Serrin-Dirichlet problem on Ω will be called a
Jenkins-Serrin solution.

5.3. An example. In this section, we give an example of a Jenkins-Serrin
domain Ω in Σ.

Let E1, . . . , Ep be the non parabolic ends of Σ. We recall that Ei is seen
as the quotient of some Cc by a hyperbolic translation T .

Let l be an even integer and Tl be the hyperbolic translation such that
Tl
l = T . Let p ∈ ∂∞Ei. Since Cc is invariant by Tl, Tl acts on Ei by

isometry. Let us define pij = Tl
j−1(p) for 1 ≤ j ≤ l. Let t > 0 be large and

H(t) be a horodisk at p contained in Ei. We define H i
j(t) = T j−1

l (H(t)).

There is a value tl of t such that H i
j(tl) is tangent to H i

j+1(tl). Now we

choose li even such that H i
j(tli) ⊂ Ei.

Let us consider the ideal domain Ω whose vertices are the cusp end-points
of Σ and the pij for 1 ≤ j ≤ li and 1 ≤ i ≤ q and the edges are the geodesics

joining pij to pij+1 and passing by the tangency point between H i
j(tl) and

H i
j+1(tl).

Let us fix a a/b labeling on ∂Ω, then Ω is a Jenkins-Serrin domain. In
order to verify the conditions, we choose the horodisks H i

j(tli). For this
choice of t, all the edges of Ω are contained in the horodisks so for any
inscribed polygonal domain P we have α(t) = 0 = β(t) and the condition
α = β is satisfied for P = Ω. If P 6= Ω, CP(t) 6= ∅ and then γ(t) > 0 which
gives γ − 2α > 0 and γ − 2β > 0.

6. Construction of harmonic diffeomorphisms

The aim of this section is to prove the following theorem

Theorem 19. Let Σ be an orientable complete hyperbolic surface with finite
topology. Then there is a function u defined on Σ solution of the (MSE)
whose graph in Σ× R has parabolic conformal type.
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As a consequence, there is a parabolic surface Σ′ and a harmonic diffeo-
morphism X : Σ′ → Σ.

6.1. The conformal type. The first point is that we can control the con-
formal type of the graph of a Jenkins-Serrin solution .

Proposition 20. The graph of a Jenkins-Serrin solution is parabolic.

Proof. Actually we are going to prove that each annular end is parabolic.
Let Ω and u be a Jenkins-Serrin domain and u a Jenkins-Serrin solution.

The annular ends of the graph Gu are given by the parts of Gu above the
cusp ends of Σ and the ones above non parabolic annular ends.

The annular ends of Gu above cusp ends are parabolic by Corollary 4.
So let us consider E a non parabolic end of Σ. The curve ∂E is contained

in Ω and in the homotopy class of ∂∞E in Σ
∞

. Then ∂E bounds an annular
connected component D ∈ Ω whose other boundary components are the
edges of Ω with end points in ∂∞E. Let GE denote the graph of u above
D ∪ ∂E. We are going to use that GE is area minimizing in D×R to prove
that GE has quadratic area growth. Thus the annular ends will be parabolic
(see [8]).

Let t ∈ RN+ be large such that ∂E ∩ H(t) = ∅. For r > 0, let t + r
be the NΩ-tuple with all coordinates increased by r. Let us notice that
D \ H(t + r) contains all points in D at distance less than r from ∂E.
Besides the boundary of D \ H(t + r) is made of ∂E, a finite number of
geodesic arcs whose lengths are bounded by r+a0 for some constant a0 > 0
and subarcs of horocycles whose lengths go to 0 as r → +∞.

We define M = sup∂E |u|. Let GE(r) denote the part of GE contained in

D \H(t + r)× [−M−r,M+r]. GE(r) contains all points in GE at intrinsic
distance less than r from its boundary. Let B(r) be the component of

(D \H(t + r)×[−M−r,M+r])\GE(r) contained below GE(r). Let S(r) =
∂B(r)\GE(r), S(r) is a surface in D×R with the same boundary as GE(r)
so since GE is area minimizing Area(GE(r)) ≤ Area(S(r)). To estimate the

area of S(r), we just say that S(r) ⊂ ∂(D \H(t + r) × [−M − r,M + r]).
Since D has finite area and ∂(D \H(t + r)) has linear growth, we conclude
that Area(S(r)) has quadratic growth. So GE has quadratic area growth
and is parabolic. �

Remark 4. The arguments used in [4] are different from the above ones.
They give a precise description of the asymptotic behaviour of the graph of
a Jenkins-Serrin solution.

6.2. Extension. Here we explain how a Jenkins-Serrin domain can be ”ex-
tended” to an other Jenkins-Serrin domain such that the solutions given by
Theorem 16 are close on the original domain.

Let us fix a Jenkins-Serrin domain Ω0 in Σ and let γ1, γ2 be two con-
secutive edges of Ω0 with γ1 labeled b and γ2 labeled a. The connected
component Di of Σ\γi that does not contain Ω0 is isometric to a hyperbolic
half-space.
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Let E be the annular end of Σ that contains γ1 and γ2. Let βi be the
geodesic ray contained in E which is orthogonal to γi and ∂E. Using the disk
model for H2, let P be the hyperbolic halfspace bounded by the geodesic γ
joining −1 to −i and containing the origin and let β be the geodesic joining
ei
π
4 to e−i3

π
4 . Let ϕi : P → Di be an isometry preserving the orientation

such that ϕi(γ) = γi and ϕi(β ∩ P ) = βi ∩Di.
For t ∈ [0, π/4], let Rt be the ideal rhombus in P with vertices 1, ieit, −1

and −i and R′t be the ideal rhombus with vertices e−it, i, −1 and −i. In
Σ, we define R1,t = ϕ1(Rt) and R2,t = ϕ2(R′t). We then consider the new
ideal domain Dt = Ω0 ∪ (R1,t ∪ R2,t) ∪ (γ1 ∪ γ2). The a/b labeling of ∂Ω0

induces a natural a/b labeling of ∂Dt that we consider in the following. In
order to lighten the notation, we define Ω = D0, R1 = R1,0 and R2 = R2,0

(see Figure 2).

b

a

b

b

a

a
ϕ2

Rt

R′t

ϕ1R1,t

γ2

R2,t

γ

γ

Ω0

γ1

Figure 2. The extension of the domain Ω0

Our aim in this section is to prove the following result

Proposition 21. Let Ω0 be a Jenkins-Serrin domain in Σ, p ∈ Ω0 be a
point and γ1, γ2 be two consecutive edges of Ω0 with γ1 labeled b and γ2
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labeled a. Let Dt be the ideal domain defined above. Then for t > 0 small
enough, Dt is a Jenkins-Serrin domain.

Let u be the Jenkins-Serrin solution on Ω0 and ut be the one on Dt with
u(p) = 0 = ut(p). Let K be a compact subset in Ω0 and ε be a positive
number. Then for t small enough, ‖u− ut‖C2(K) ≤ ε.

The first step consists in analyzing the Jenkins-Serrin conditions on Ω =
D0.

Lemma 22. Let P be a polygonal domain inscribed in Ω. If P is not R1,R2,
Ω \ R1 or Ω \ R2, the Jenkins-Serrin conditions are satisfied. For P = R1

or P = Ω \ R2, we have γ − 2β = 0 and, for P = R2 or P = Ω \ R1, we
have γ − 2α = 0.

Proof. Let P be a polygonal domains inscribed in Ω. Since Ω0 satisfies
the Jenkins-Serrin conditions and R1 and R2 are isometric to ideal squares,
P = R1, R2,Ω \ R1 or Ω \ R2 satisfy the stated conditions. Moreover, if
P = Ω, α− β = 0.

Assume now that P is not one of these five polygonal domains. By Re-
mark 1, we assume that the a-components alternate along ∂P (the other
case is similar). Let us first notice that, if γ2 ⊂ ∂P, then P = R2 which is
excluded and, if γ1 ⊂ ∂P, then P∩R1 = ∅. Let us introduce some notations

• A0
P = AP ∩ ∂Ω0, B0

P = BP ∩ ∂Ω0, C0
P = CP ∩ (Ω0 ∪ γ1),

• AiP = AP ∩ ∂Ri, Bi
P = BP ∩ ∂Ri, CiP = CP ∩Ri,

• di = γi ∩ P.

For t large, we then define

• αi(t) = `(AiP \ H(t)) and γi(t) = `((AiP ∪ Bi
P ∪ CiP) \ H(t)), for

i ∈ {1, 2, 3} and
• δi(t) = `(di \H(t)).

We have α(t) = α0(t) + α1(t) + α2(t) and γ(t) = γ0(t) + γ1(t) + γ2(t). So
we can compute γ(t)− 2α(t) = K0(t) +K1(t) +K2(t) where

K0(t) = γ0(t) + δ1(t) + δ2(t)− 2(α0(t) + δ2(t)),

K1(t) = γ1(t) + δ1(t)− 2(α1(t) + δ1(t)),

K2(t) = γ2(t) + δ2(t)− 2α2(t).

Actually K0(t) (resp. Ki(t)) computes γ − 2α for P ∩Ω0 (resp. P ∩Ri) in
Ω0 (resp. Ri). Since Ω0, R1 and R2 are Jenkins-Serrin domains, these three
terms are non-negative (see Section 5.2.1 and Remark 2). Moreover, since
the a-components alternate along ∂P and P is not Ω, R1, R2, Ω \ R1 or
Ω \R2, C0

P is not equal to γ1. This implies that P ∩Ω0 6= Ω0 and K0(t) > 0
for large t. Thus the condition γ − 2α > 0 is proved for P. �

The second step of the extension argument consists in proving the first
statement of Proposition 21. We notice that the family {Dt}t is a continuous
family of ideal domains in Σ : Ω = D0 is

⋃
t>0(interior

⋂
0<s<tDs).
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Lemma 23. For t > 0 small enough, Dt is a Jenkins-Serrin domain.

Proof. If P is an inscribed polygonal domain in Dt0 , we can actually define
a unique continuous family {Pt}t such that Pt is an inscribed polygonal
domain in Dt such that P = Pt0 . Assume that the a-edges alternate along
∂Pt and Pt is not Dt, R2,t or Dt \ R1,t. We have several cases to study. If
Pt ⊂ Ω0 then Pt = P0 and the condition γ − 2α > 0 is satisfied.

We notice that R1,t and R2,t are isometric through an isometry S that
send γ1 to γ2 and exchanges the labels of the edges. If R1,t ∪R2,t ⊂ Pt, we
have R1,s∪R2,s ⊂ Ps and Pt∩Ω0 = Ps∩Ω0 for any s ≤ t. The symmetry S
implies that the value of γ − 2α for Ps does not depend on s so γ − 2α > 0
on Pt.

Let us assume R2,t ⊂ Pt and R1,t ∩ Pt = ∅. A decomposition similar
to the one in Lemma 22 proof gives γ(t) − 2α(t) = K0(t) + K2(t) where
K0(t) > 0 since Pt∩Ω0 does not depend on t andK2(t) > 0 for t > 0 because
R2,t ∩ Pt = R2,t which is isometric to R′t (see Figure 3). So γ − 2α > 0 is
satisfied for Pt.

If we are not in the cases Pt ⊂ Ω0, R1,t ∪ R2,t ⊂ Pt or R2,t ⊂ Pt and
R1,t ∩ Pt = ∅, we can be sure that CPt intersects γ2 or γ1 since the a-
edges alternate. More precisely, there is a compact subset in Ω0 (close to
γ2 and γ1) that does not depend on the particular Pt such that CPt ∩ K
contains a subarc of length at least ε (ε independent of Pt). Let u0 be the
Jenkins-Serrin solution on Ω0. We have ‖Xu0‖ ≤ 1− δ (δ > 0) on K. So by
Remark 2, we have γ − 2α ≥ δε > 0 on P0. Since the value of γ − 2α on Pt
depends continuously on t, we see that γ − 2α > δε/2 for Pt for any t ≤ t0
where t0 does not depend on the particular Pt.

For P = Dt, α − β = 0 comes from the fact that Ω0 is a Jenkins-Serrin
domain and S is an isometry from R1,t to R2,t exchanging the label of the
edges.

For Pt = R2,t, the condition γ − 2α for t > 0 can be easily verified on R′t
so the same is true on Pt = R2,t (see Figure 3).

For P = Dt \ R1,t, the condition γ − 2α > 0 then follows from the fact
that Ω0 is a Jenkins-Serrin domain and the condition γ − 2α > 0 on R′t.

The same argument can be done for polygonal domains with alternating
b-edges. �

From the above result, there is a Jenkins-Serrin solution ut on Dt, we
consider the one satisfying ut(p) = 0. As t goes to 0, Dt goes to Ω and,
considering a subsequence, Xut converges to some X on Ω. The description
of X is given by the following result.

Lemma 24. X has exactly two divergence lines : the geodesic lines γ1 and
γ2. Along γ1, X points into Ω0 and along γ2, X points into R2. Moreover,
X = ν (resp. X = −ν) along the a-boundary components (resp. b-boundary
components) of ∂Ω.
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e−it

−1

γ a

i

b
a

−i

R′t

Figure 3. The ideal rhombus R′t with a choice of horodisks
proving the γ − 2α > 0 condition

Proof. First, because of the value of Xut along ∂Dt, Xut = ν (resp. Xut =
−ν) along the a-boundary components (resp. b-boundary components) of
∂Dt. As a consequence X = ν (resp. X = −ν) along the a-boundary
components (resp. b-boundary components) of ∂Ω (Lemma 11).

If X has no divergence line, then, considering a subsequence, ut converges
to u a solution of (MSE) on Ω. Because of the value of X along ∂Ω, u is
then a Jenkins-Serrin solution on Ω which is impossible since Ω is not a
Jenkins-Serrin domain. So X must have at least one divergence line.

Moreover the value of X along ∂Ω implies that the divergences lines are
either closed geodesics or proper geodesics ending at vertices of Ω.

As in the proof of Theorem 16, we introduce an oriented graph structure
G on the set of connected component of B(X). Using the same arguments,
there is an inscribed polygonal domain P in Ω which is a connected compo-
nent of B(X) where the condition γ − 2α > 0 is not satisfied. So P = R2 or
P = Ω\R1 by Lemma 22. There is also an inscribed polygonal domain P ′ in
Ω which is a connected component of B(X) where the condition γ − 2β > 0
is not satisfied. So P ′ = R1 or P ′ = Ω \R2.

This implies that at least γ1 or γ2 is a divergence line with the stated value
of X along it. Assume only γ1 is a divergence line (the same can be done
for γ2). This would imply that B(X) has only two connected components
P ′ = R1 and P = Ω \ R1. So a subsequence of ut converges to a solution u
of (MSE) on Ω \R1. Because of the value of X along ∂(Ω \R1), u would be
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a Jenkins-Serrin solution on Ω \ R1 which is impossible since Ω \ R1 is not
a Jenkins-Serrin domain by Lemma 22. γ1 and γ2 are divergence lines.

The last point consists in proving there are no other divergence lines. We
notice that γ1 and γ2 split the graph G in three connected components. If
one of these three components contains one edge, then a similar argument
will prove that Ω0, R1 or R2 is not a Jenkins-Serrin domain. �

We can now finish the proof of Proposition 21.

Proof of Proposition 21. The structure of B(X) implies that on Ω0, a subse-
quence of ut converges to v a solution of (MSE) on Ω0. Besides the value of
X on ∂Ω0 implies that v is a Jenkins-Serrin solution on Ω0. By uniqueness
of this solution and since u(p) = 0 = v(p) we have u = v on Ω. Since this
limit does not depend on the sequence, this implies that ut → u uniformly
on each compact subset of Ω0. So ‖u−ut‖C2(K) ≤ ε for t small enough. �

6.3. The construction. Using the preceding results, we are ready to prove
Theorem 19.

Proposition 25. Let Ω be a Jenkins-Serrin domain. There is an increas-
ing sequence (Ωn)n of Jenkins-Serrin domains (Ω0 = Ω) and an increasing
sequence of compact subsets (Kn)n of Ωn such the following is true. Let un
be the Jenkins-Serrin solution on Ωn and Ei be the annular ends of Σ; we
then have

• Kn ⊂ Ωn and ∪nKn = Σ,
• ‖un+1 − un‖C2(Kn) ≤ 1

2n ,

• (Kn \
◦
Kn−1) ∩ Ei is an annulus and

• the graph of un over (Kj \Kj−1)∩Ei is an annulus whose conformal
modulus is at least 1 for any n ≥ j.

Proof. Fix a point p̄ ∈ Σ \∪iEi, there is a constant d̄ > 0 such the following
is true. There are sequences Ωn, Kn and un such that

• Kn ⊂ Ωn, Kn contains {p ∈ Ωn|d(p, ∂Ωn) ≥ 1}, d(p̄, ∂Ωn) ≥ nd̄,
• ‖un+1 − un‖C2(Kn) ≤ 1

2n ,

• (Kn \
◦
Kn−1) ∩ Ei is an annulus and

• the graph of un over (Kj \Kj−1)∩Ei is an annulus whose conformal
modulus is at least 1 for any n ≥ j.

Clearly this will prove the proposition. The proof of the existence is by
induction. So assume that Ωj , Kj and uj are constructed for j ≤ n

Since Ωn is a Jenkins-Serrin domain, we can gather its edges in a finite
number of pairs {γi1, γi2} such that γi1, γi2 are consecutive edges and γi1 is
labeled b and γi2 is labeled a. Let ε be positive and apply Proposition 21
successively to the pair γi1, γi2 to add perturbed squares along these edges.
We obtain a Jenkins-Serrin domain Ωn+1 and a solution un+1 such that
‖un − un+1‖C2(Kn) ≤ ε. Choosing ε sufficiently small, we can ensure that
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‖un − un+1‖C2(Kn) ≤ 1
2n and the graph of un+1 over (Kj \

◦
Kj−1) ∩Ei is an

annulus whose conformal modulus is at least 1 for j ≤ n.
Next we can choose a compact subsetKn+1 containing {p ∈ Ωn+1|d(p, ∂Ωn+1) ≤

1} such that Kn+1\
◦
Kn is made of annuli in each annular end of Σ. Moreover,

by Proposition 20 the graph of un+1 is parabolic. So Kn+1 can be chosen

such that the graph of un+1 over the annuli of Kn+1 \
◦
Kn has conformal

modulus at least 1.
The last point we have to check is that d(p̄, ∂Ωn+1) ≥ (n + 1)d̄. For

this we just have to analyze how the distance between ∂Ei and ∂Ωn in
Ei evolves. Actually Lemma 29 (see also Figure 4) implies that, in Ei,
d(∂Ei, ∂Ωn) ≥ ndκi where κi is the curvature of ∂Ei; thus d(p̄, ∂Ωn+1) ≥
(n+ 1)d̄ if d̄ = min dκi . �

We can now prove our main theorem.

Proof of Theorem 19. Starting with the Jenkins-Serrin domain given in Sec-
tion 5.3, we apply Proposition 25 to construct Ωn, Kn and un. Since
∪nKn = Σ and ‖un − un+1‖C2(Kn) ≤ 1

2n , un converges to a solution u
of (MSE) on Σ, the convergence is smooth on any compact subsets of Σ.

Since (un) converges smoothly to u, the modulus of the graph of u on each

annular component of Ki \
◦
Ki−1 is at least 1. This implies that each annular

end of the graph of u has infinite conformal modulus and is parabolic. Thus
the graph of u is parabolic. �

Appendix A. An equicontinuity result

Let us fix some notations. If p ∈ Rn, N ∈ Sn−1 and δ > 0, we denote
by D(p,N, δ) the ball in the hyperplane passing through p and normal to
N with center p and radius δ. Then we denote by C(p,N, δ) the cylinder
{q + sN, q ∈ D(p,N, δ) and s ∈ R}. Finally if S is a hypersurface in Rn
and p ∈ S and N(p) denote the unit normal to S, we denote by S(p, δ) the
connected component of S ∩ C(p,N(p), δ) containing p.

We first begin by recalling a classical result (see for example, Lemma 2.4
in [3] or Lemma 4.1.1 in [18]).

Proposition 26. Let c and δ be positive, there is δ′ > 0 such the following
is true. Let S be a hypersurface in Rn and p ∈ S such that the second
fundamental form of S is bounded by c and dS(p, ∂S) ≥ δ. Then S(p, δ′)
is a graph over D(p,N(p), δ′). Moreover, the function v which defines this
graph satisfies v(q) ≤ 8c|p−q|2, |∇v(q)| ≤ 8c|p−q| and |∇2v| ≤ 16c for any
q ∈ D(p, δ′).

A consequence of this local description is the following result.

Proposition 27. Let U ⊂ Ω be two open subsets of Rn−1 and c, δ be
positive. Let S be a set of smooth functions on Ω such that, for any p ∈ U
and u ∈ S, the following is true
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• dGu((p, u(p)), ∂Gu) ≥ δ and
• the second fundamental form of Gu is bounded by c on the geodesic

disk of radius δ and center (p, u(p)).

Then the family {Xu : U → Rn−1, u ∈ S} is uniformly equicontinuous where
U is endowed with the geodesic metric.

Let us recall that the geodesic distance dγ between two points in U is
given by the infimum of the length of curves in U joining the two points. In
an open set, dγ induces the usual topology.

Proof. Proving Xu is uniformly equicontinuous is the same as proving Nu is
uniformly equicontinuous. So if {Nu : U → Sn−1, u ∈ S} is not uniformly
equicontinous, it means that we have two sequences (p1,n)n and (p2,n)n in
U and a sequence un in S such that dγ(p1,n, p2,n) → 0, Nun(p1,n) → N1

and Nun(p2,n) → N2 with N1 6= N2. Moreover, by changing the point
p2,n by a point along a curve of length at most dγ(p1,n, p2,n) + 1

n between
p1,n and p2,n, we can assume dSn−1(Nun(p1,n), Nun(p2,n)) ≤ π/2 and so
α = dSn−1(N1, N2) ≤ π/2. By Proposition 26, there is δ′ such that on
Gun(p1,n, δ

′) the unit normal is at distance less that α/3 from Nun(pn).
Moreover, the translate Gun(p1,n, δ

′/2) − p1,n − un(p1,n)∂xn converges (af-
ter taking a subsequence) in C1 topology to a graph over D(0, N1, δ

′/2)
along which the unit normal is at distance less than α/3 from N1. By the
same argument, Gun(p2,n, δ

′/2)−p2,n−un(p2,n)∂xn converges in C1 topology
to a graph over D(0, N2, δ

′/2) along which the unit normal is at distance
less than α/3 from N2. Since 0 < dSn−1(N1, N2) < π/2, these two limit
graphs intersect and are transverse. Thus Gun(p1,n, δ

′/2)− un(p1,n)∂xn and
Gun(p2,n, δ

′/2) − un(p2,n)∂xn must intersect and be transverse for n large.
This is impossible since at an intersection point the normals have to be
the same; indeed, these two surfaces are vertical translates of the same
graph. �

In this paper, this has the following consequence.

Proposition 28. Let U ⊂ Ω ⊂ Σ be two open subsets of a Riemannian sur-
face (U with compact closure). Let δ be positive. Let S be a set of solutions
of (MSE) on Ω such that for any p ∈ U and u ∈ S, dGu((p, u(p)), ∂Gu) ≥ δ.
Then the family {Xu : U → TΣ, u ∈ S} is equicontinuous.

Proof. Let p ∈ U and consider a local chart ϕ : V ∈ R2 → U around p.
Because of the hypothesis dGu((p, u(p)), ∂Gu) ≥ δ, curvature estimates for
stable minimal surfaces [20] apply to prove that Gu has uniformly bounded
second fundamental form near (p, u(p)) in Σ× R. This implies that, in R2,
the family {u ◦ϕ, u ∈ S} satisfies the hypotheses of Proposition 27 for some
open set W ⊂ V (ϕ−1(p) ∈W ). This implies the equicontinuity of Xu◦ϕ at
ϕ−1(p) and then the one of Xu at p. �

In the above proposition, if U ⊂⊂ Ω, the property dGu((p, u(p)), ∂Gu) ≥ δ
is satisfied, so {Xu : Ω→ TΣ} is equicontinuous.
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Appendix B. A technical lemma

In this section, we prove the following result (see Figure 4).

Lemma 29. Let κ be in (0, 1) then there is a positive constant dκ such that
the following is true. Let c be a complete curve of constant curvature κ in H2

and γ be a complete geodesic contained in the non-meanconvex side of c. Let
γ′ be the unique geodesic orthogonal to γ and c. In the halfplane bounded by
γ that does not contain c, there are two uniquely determined geodesic rays γ1

and γ2 starting from a common point in p ∈ γ′ and ending at the endpoints
of γ that are orthogonal at p. Then we have

d(c, γ1 ∪ γ2) ≥ d(c, γ) + dκ.

Proof. Let us in fact consider the foliation of H2 by curves {ct}t=∈R of
constant curvature κ and orthogonal to γ′ such that d(ct, ct′) = |t − t′|,
c = c−d(c,γ) and co is tangent to γ. There is some dκ > 0 such that cdκ is
tangent to γ1 and γ2 and contained in the quarter space bouded by γ1 and
γ2 (notice that dk only depends on κ). We then have

d(c, γ1 ∪ γ2) ≥ d(c, cdκ) = d(c, γ) + dκ.

�

c

γ

γ′

γ2

γ1

Figure 4. The geodesic rays γ1 and γ2 with R′t drawn
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