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Abstract

Information and influence spread have been attracting a lot
of attention due to the important role they play to numerous
applications. Various previous studies have been focused on
understanding the patterns during a spreading process. Most
studies have been focusing on individual-based diffusion data
and on inferring the diffusion network. In this work, we inves-
tigate the topological characteristics of individuals that are in-
fluenced and that participate in a diffusion process and present
the patterns that are detected. We furthermore compare the in-
dividuals’ characteristics between a simulated and a real world
spreading process and show the need for a more comprehensive
model in this area.

I. INTRODUCTION

Spreading of ideas is an important social phenomenon
which in recent years has been influencing areas such as
viral marketing, adoption of innovations and more gener-
ally spread of behavior and social norms. Many previous
studies have been motivated by the analogy between an
information diffusion process and that of the spreading
of an epidemic. Such models imply that a specific idea
or piece of information is diffused through the links con-
necting entities in a network and eventually impact a part
of the network.

These epidemic approaches, led to important results
concerning the identification of those entities that will
trigger an efficient information diffusion. It was specifi-
cally shown that best spreaders correspond to those iden-
tified by the k-core and K-Truss decomposition [1, 2, 3]
and not to those being highly connected or having a
bigger node centrality (e.g., degree centrality). There
exist cases where a node can have arbitrarily high de-
gree, while its neighbors are not well-connected, mak-
ing degree a not very accurate predictor of the spread-
ing properties. As the influential spreaders, identified by
the aforementioned graph degeneracy algorithms, are the
ones responsible for the greatest part of the spreading ac-
tivity, we have decided to study the topological character-
istics of the individuals taking part in a spreading process
that was triggered by such entities.

In this work we explore the centralities of the entities
that are involved in a spreading process which is trig-
gered by different groups of influential spreaders of a
network. We analyze the patterns that occur by simulat-
ing the spreading process with the SIR and SIS epidemic
models [4]. We finally compare the simulated diffusion
process with real influence, in terms of the evolution of
the centralities of the infected nodes and conclude that
there is need for a diffusion model that fits the real world
process.

Preliminaries LetG = (V,E) be an undirected graph.
Then, each node v ∈ V has a degree dv = d if it is con-
nected with d nodes in the graph. Let set D denote the
set of nodes with the highest degree in the graph. Ck is
defined to be the k-core subgraph of G if it is a maxi-
mal connected subgraph in which all nodes have degree
at least k. Then, each node v ∈ V has a core number
cv = k, if it belongs to a k-core but not to a (k+1)-core.
Let C denote the set of nodes with the maximum core
number. The K-truss decomposition extends the notion
of k-core using triangles. The K-truss subgraph of G,
denoted by TK , K ≥ 2, is defined as the largest sub-
graph where all edges belong to K − 2 triangles. An
edge e ∈ E has truss number te = K if it belongs to
TK but not to TK+1. We define the node’s truss number
tv, v ∈ V as the maximum te of its adjacent edges. Then,
T denotes the set of nodes with the maximum node truss
number. It has been shown that the maximal k-core and
K-truss subgraphs (i.e.,maximum values for k;K) over-
lap [5], with the latter being a subgraph of the former.
For that reason we finally denote as C ′ the set of nodes
belonging to the k-core excluding those that belong to
the K-truss of the graph.

II. METHODOLOGY AND EVALUATION

To simulate the spreading process, we use the
Susceptible-Infected-Recovered (SIR) and Susceptible-
Infected-Susceptible (SIS) models where the nodes can
be in one of the states that the names suggest. Initially,
we set a single node to be infected (as chosen from each
of the three groups to be compared and that are described
later) and the rest of the nodes at the susceptible state. At
each time step, the infected nodes can infect their neigh-
bors with probability β which corresponds to the infec-
tion rate and can recover from the disease or return to
the susceptible state with a probability γ for the case of
the SIR and SIS models respectively. Here we set the
parameter β close to the epidemic threshold [6] and the
parameter γ = 0.8, as used by Kitsak et al. [1].

We have performed experiments with the follow-
ing real-world networks: EMAILENRON, EPINIONS
and HIGGS TWITTER (snap.stanford.edu). All
graphs are considered undirected and unweighted (see
Table 1). We have examined the distribution of the node
degree (dv), core number (cv) and truss number (tv) of
these networks and the results for the EPINIONS dataset
are depicted in Figure 1. The plot shows the comple-
mentary cumulative distribution function of the nodes’
aforementioned centralities in log-log scale. We observe
that all three distributions are skewed, indicating that few
nodes have high centralities and the majority of them
have “low” degree and participate in “low” k-core and

snap.stanford.edu
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(a) DEGREE dv (b) CORE NUMBER cv (c) TRUSS NUMBER tv

Figure 1: Complementary cumulative distribution function of nodes’ (a) DEGREE dv , (b) CORE NUMBER cv and (c) TRUSS NUM-
BER tv of the EPINIONS dataset in log-log scale. The red line corresponds to the fitted power-law distribution.

Network Nodes Edges dmax kmax Kmax

EMAILENRON 33,696 180,811 1383 43 22
EPINIONS 75,877 405,739 3044 67 33
HIGGS 456,626 14,855,842 51386 125 72

Table 1: Network datasets used in this study.

K-truss subgraphs.
In our experiment, we compare three node centrali-

ties: (i) degree (dv), (ii) core number (cv) and (iii) truss
number (tv). Those are the centralities of the nodes that
are being infected at every time step of the process while
the epidemic was triggered from three different groups of
nodes: (a) group D, (b) group C ′ and (c) group T . For
every node of the group, we simulate the process 100
times and get the average behavior of the node. In order
to get the average behavior of all the nodes of each group,
we repeat the above for all respective nodes. The results
from the experiments are depicted in Figure 2. We are
also showing results from our previous studies [2, 3], in
Figure 3 where the average number of nodes being in-
fected at each time step during the evolution of the SIR
model is depicted. The latter is for the reader to have in
mind how many nodes have the centralities depicted in
Figure 2.

We can observe that in case of the Epinions dataset,
nodes originating from group T , achieve to influence on
average nodes with higher degree, core and truss central-
ities during the outburst of the epidemic – specifically
during the first four steps. In case of the Email-Enron
dataset, group T and C ′ seem to influence nodes with
similar centralities during the first timesteps. In both
datasets though, the superiority of the latter groups com-
pared to group D is easily recognizable during the first
period of the spreading process. After the outburst of the
epidemic (after the 6th time step), we observe in both
datasets that nodes being infected are characterized by
similar centralities for all the three compared behaviors.
It should be noted that the centralities of the nodes in-
fected during this “plateau” period are quite high consid-
ering the fact that most of the nodes of the network are
characterized by low centralities. We realize that most
of the nodes infected in all cases during such an epi-
demic are characterized by the centralities observed dur-
ing the “plateau” period. For example for the EPINIONS

dataset, from the 8th until the 14th timestep, we observe
that nodes being infected have a degree ranging from 77
to 87, a core number ranging from 29 to 31 and a truss
number ranging from 8 to 9. Finally, during the fadeout
(during the 5 last time steps), the centralities of the nodes
infected are severely decreased in all cases. Note that the
process stops when no more nodes get infected (for the
EPINIONS dataset this happens at time step 19).

The respective results while using the SIS model do
not much differ than those depicted for the SIR model.
The only difference is that, due to the SIS model’s nature,
the epidemic does not stop and the nodes that continue to
get infected are characterized by similar centralities for
all three behaviors.

Comparison to a real spreading process. In order to
explore the information spreading in a real world setting
we have used the Higgs Twitter dataset [7]. The dataset is
built by studying the diffusion (in means of tweets) of the
announcement of the Higgs boson-like particle at CERN
on the Twitter social network between the 1st and 7th of
July 2012. The interactions that were considered were
retweets, mentions and replies. Some characteristics of
the user network that was involved in the respective in-
teractions is shown in Table 1.

In order to fairly compare the specific spreading pro-
cess with the simulation models that were previously
discussed, specific assumptions have to be made[8, 9].
The spreading activity that is recorded, involves around
562,556 asynchronous timestamps during which at least
one spreading interaction is recorded. We have decided
to study the influence that is triggered from nodes be-
longing to group C (i.e., the totality of the nodes partici-
pating in the maximum k-core subgraph of the network)
as they have been proven to represent a great percentage
of the spreading activity in a network. The timestamp
where each of the respective nodes is firstly influenced
by a user of its network is considered as the first timestep
of the specific node’s spreading activity. The following
timestep is considered after 5000 consecutively recorded
timestamps. We are considering the nodes being influ-
enced during every such period by all the nodes that
were influenced during the preceding periods. We have
considered for our experiments totally ten such periods
which we will be refering to as timesteps. We are specif-
ically interested in the three centralities of those nodes
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Figure 2: Evolution of the infected nodes’ average (a) DEGREE dv , (b) CORE NUMBER cv and (c) TRUSS NUMBER tv during a
simulated spreading process using the SIR model for the EPINIONS dataset having triggered the epidemic from nodes of
sets D, C′ and T .
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Figure 3: Average number of infected nodes per step of the SIR
model having triggered an epidemic from nodes of
sets D, C′ and T for the EPINIONS dataset. We
are using as value β, a value close to the epidemic
threshold (here β=0.01) and γ= 0.8.

that are being infected during these timesteps which we
have compared with the respective centralities after run-
ning the SIR model for ten timesteps starting from the
same C nodes. As in our previous experiments, the pro-
cess is simulated 10 times for every node of the group
(due the dataset’s size) and the average behavior of the
node is calculated. The above is repeated for all the nodes
of the C set. Results from the experiments are shown in
Figure 4.

We observe that there are great differences between
the two settings. While the simulation shows that dur-
ing the first steps, nodes with high centralities are influ-
enced, real data show that the nodes that are influenced
do not differ much in terms of centralities during these
10 time steps that we study. Similar results are observed
after running the SIS model and comparing it with real
data. It has indeed been proven that epidemic models fail
to reproduce the realistic viral spreading pattern [9] in

terms of i) number of nodes being infected and ii) of the
characteristics of the diffusion trees created during the
process. We prove that the model also fails to indicate
the centrality characteristics of the nodes being infected
during the process. This can be explained by the defi-
nition of the models. First and foremost the probability
of an entity influencing a neighboring entity shouldn’t be
the same for all entity relations. Moreover, considering
the SIR model, an entity does not get “recovered” while
in a spreading process such as an information diffusion
in a Twitter network. User behavior contains more com-
plex patterns concerning the way information is dissem-
inated. Users may stop diffusing information for some
period of time but start “spreading the word” again in a
later period for indefinite reasons. This resembles the SIS
model where infected nodes can return to the susceptible
state and with a probability can start again infecting their
neighbors. But unfortunately, neither this model can be
compared with the real influence data of our study. While
the latter may be extremely hard to model, we believe
that there exist “who-influences-whom” patterns in influ-
ence data that can help towards a better definition of the
probabilities of an entity influencing a fellow neighbor.
Those patterns can be found while exploring the afore-
mentioned centralities of entities influencing their peers
between steps of the spreading process.

III. CONCLUSIONS AND DISCUSSION.

In this work, we explored the centralities of the entities
that are involved in a spreading process which is trig-
gered by different groups of influential spreaders of a
network. We obtain interesting results by simulating the
spreading process with the SIR and SIS epidemic models
that let us conclude that i) degeneracy algorithms help us
detect groups of nodes that will influence nodes with high
centralities during the outburst of the epidemic and ii)
there exists a “plateau” period during the spreading pro-
cess where a significant part of the nodes are influenced
and iii) the nodes influenced in this “plateau” period have
relatively high degree, core and truss centralities con-
sidering the respective centrality distributions of the net-
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Figure 4: Comparison of the evolution of the infected nodes’ average (a) DEGREE dv , (b) CORE NUMBER cv and (c) TRUSS

NUMBER tv , between a simulated spreading process using the SIR model and real influence data for the HIGGS-TWITTER

dataset having triggered the epidemic from nodes of set C.

work. Finally, by comparing the simulated diffusion pro-
cess with real influence, we observe that epidemic mod-
els cannot reproduce the real diffusion in terms of the
evolution of the centralities of the infected nodes. Thus
we conclude that a further research direction could be the
search for a diffusion model fitting the real world pro-
cess.
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