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Abstract. From a molecule to the brain perception, olfaction is a com-
plex phenomenon that remains to be fully understood in neuroscience. A
challenge is to establish comprehensive rules between the physicochem-
ical properties of the molecules (e.g., weight, atom counts) and specific
and small subsets of olfactory qualities (e.g., fruity, woody). This prob-
lem is particularly difficult as the current knowledge states that molecu-
lar properties only account for 30% of the identity of an odor: predictive
models are found lacking in providing universal rules. However, descrip-
tive approaches enable to elicit local hypotheses, validated by domain
experts, to understand the olfactory percept. Based on a new quality
measure tailored for multi-labeled data with skewed distributions, our
approach extracts the top-k unredundant subgroups interpreted as de-
scriptive rules description → {subset of labels}. Our experiments on
benchmark and olfaction datasets demonstrate the capabilities of our
approach with direct applications for the perfume and flavor industries.

1 Introduction

Around the turn of the century, the idea that modern, civilized human beings
might do without being affected by odorant chemicals became outdated: the
hidden, inarticulate sense associated with their perception, hitherto considered
superfluous to cognition, became a focus of study in its own right and thus the
subject of new knowledge. It was acknowledged as an object of science by Nobel
prizes (e.g., [2] awarded 2004 Nobel prize in Physiology or Medicine); but also
society as a whole was becoming more hedonistic, and hence more attentive to
the emotional effects of odors. Odors are present in our food, which is a source
of both pleasure and social bonding; they also influence our relations with others
in general and with our children in particular. The olfactory percept encoded in
odorant chemicals contribute to our emotional balance and wellbeing.

While it is generally agreed that the physicochemical characteristics of odor-
ants affect the olfactory percept, no simple and/or universal rule governing this
Structure Odor Relationship (SOR) has yet been identified. Why does this odor-
ant smell of roses and that one of lemon? Considering that the totality of the
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odorant message was encoded within the chemical structure, chemists have tried
to identify relationships between chemical properties and odors. However, it is
now quite well acknowledged that structure-odor relationships are not bijec-
tive. Very different chemicals trigger a typical “camphor” smell, while a single
molecule, the so-called “cat-ketone” odorant, elicit two totally different smells
as a function of its concentration [4]. At best, such SOR rules are obtained for a
very tiny fraction of the chemical space, emphasizing that they must be decom-
posed into sub-rules associated with given molecular topologies [5]. A simple,
universal and perfect rule does probably not exist, but instead, a combination
of several sub-rules should be put forward to encompass the complexity of SOR.

In this paper, we propose a data science approach with a view to advance
the state of the art in understanding the mechanisms of olfaction. We create
an interdisciplinary synergy between neuroscientists, chemists and data miners
to the emergence of new hypotheses. Indeed, data-mining methods can be used
to answer the SOR discovery problem, either through the building of predictive
models or through rules discovery in pattern mining. One obstacle to this is that
olfactory datasets are very complex (i.e., several thousand of dimensions, hetero-
geneous descriptors, multi-label, unbalanced classes, and non robust labelling)
and, above all a lack of data-centric methods in neuroscience suitable for this
level of complexity. The main aim of our study is to examine this issue by linking
the multiple molecular characteristics of odorant molecule to olfactory qualities
(fruity, floral, woody, etc.) using a descriptive approach (pattern mining). Indeed,
a data science challenge was recently proposed by IBM Research and Sage [12].
Results suggest difficulties in the prediction of the data for olfactory datasets in
general. The reason is that there is a strong inter- and intra-individual variability
when individuals are asked about the quality of an odor. There are several ex-
planations: geographical and cultural origins, each individual repertory of qual-
ities (linguistic), genetic differences (determining olfactory receptors), troubles
such as anosmia (see [10,3]). It appears that designing pure predictive models
remains today a challenge, because it depends on the individual’s genome, cul-
ture, etc. Most importantly, the most accurate methods generally never suggest
a descriptive understanding of the classes, while fundamental neurosciences need
descriptive hypotheses through exploratory data analysis, i.e., descriptions that
partially explain SOR. For that, we develop a descriptive approach to make the
results intelligible and actionable for the experts.

The discovery of (molecular) descriptions which distinguish a group of ob-
jects given a target (class label, i.e. odor quality(ies)) has been widely studied
in AI, data mining, machine learning, etc. Particularly, supervised descriptive
rules were formalized through subgroup discovery, emerging-pattern/contrast-
sets mining, etc. [14]. In all cases, we face a set of objects associated to de-
scriptions (which forms a partially ordered set), and these objects are related
to one or several class labels. The strength of the rule (SOR in our application)
is evaluated through a quality measure (F1-measure, accuracy, etc.). The issues
of multi-labeled datasets have been deeply studied in the state of the art [15].
However, to the best of our knowledge, most of existing methods to explore
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multi-label data are learning tasks. The existing descriptive approach known as
Exceptional Model Mining (EMM) deals with multi-label data but it only con-
siders them together, and not separately. Indeed, this method extracts subsets
of objects (e.g., odorants) which distribution on all labels (e.g., odors) is sta-
tistically different (i.e., exceptional) w.r.t. the distribution of the entire set of
objects. However, we aim to focus on subsets of few labels at a time. Moreover,
the experts expect rules highlighting which values of features result in a subset
of labels, and not only to extract relevant features for some labels as feature
selection does. Our contributions are as follows:

– We explain the main problems of existing descriptive rule discovery approaches
for dataset such as olfactory datasets, that are (i) multi-labeled with (ii) an
unbalanced label distribution (i.e., a high variance in the labels occurrences).

– For (i), we consider the enumeration of pairs consisting of a description and
a subset of labels (a variant of redescription mining [9]).

– For (ii), we propose a new measure derived from the F-score but less skewed
by imbalance distribution of labels and that can dynamically consider the
label distributions. We show this fact both theoretically and experimentally.

– We devise an algorithm which explores the search space with a beam-search
strategy. It comes with two major issues that we jointly tackle: Finding the
best cut points of numerical attributes during the exploration, also overcoming
a redundancy among the extracted patterns.

– We thoroughly demonstrate the actionability of the discovered subgroups for
neuroscientists and chemists.

The rest of the paper is organized as follows. We formally define the SOR
discovery problem in Section 2 and we show why state-of-the-art methods are
not adapted for this problem. We present our novel approach in Section 3 while
the algorithmic details are given in Section 4. We report an extensive empirical
study and demonstrate the actionability of the discovered rules in Section 5.

2 Problem formulation

In this section, we formally define our data model as well as its main character-
istics before introducing the problem of mining discriminant descriptive rules in
these new settings. Indeed, we recall after the two most general approaches that
can deal with our problem although only partially, namely subgroup discovery
[14] and redescription mining [9]. We demonstrate this fact and highlight their
weaknesses through an application example.

Definition 1 (Dataset D(O,A, C, class)). Let O and A be respectively a set of
objects (molecules) and a set of attributes (physicochemical properties). The value
domain of an attribute a ∈ A is denoted by Dom(a) where a is said numerical if
Dom(a) is embedded with an order relation, or nominal otherwise. Each object
is described by a set of labels from the nominal set Dom(C) by the function
class : O 7→ 2Dom(C) that maps the olfactory qualities to each object.
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Table 1. Toy olfactory dataset.

ID MW nAT nC Quality

1 150.19 21 11 {Fruity}
2 128.24 29 9 {Honey, Vanillin}
3 136.16 24 10 {Honey, Fruity}

ID MW nAT nC Quality

4 152.16 23 11 {Fruity}
5 151.28 27 12 {Honey, Fruity}
6 142.22 27 10 {Fruity}

Running example. Let us consider the toy olfactory dataset of Table 1 made
of O = {1, 2, 3, 4, 5, 6} the set of molecules IDS and A the set of 3 of physi-
cochemical attributes giving the molecular weight (MW ), the number of atoms
(nAT ), and the number of carbon atoms (nC). Each molecule is associated to
one or several olfactory qualities from Dom(C) = {Fruity,Honey, V anillin}.
The assignments of an odor to a molecule is made by domain experts.

Real-life olfactory datasets, instances of this model, show specific character-
istics: (i) high dimensions, (ii) multi-label, (iii) unbalanced classes, and
(iv) non-robust labeling. Indeed, (i) the number of attributes is large, up to
several thousands of physicochemical attributes and a hundred of labels ; (ii)
a molecule takes several labels and (iii) the label distribution is highly unbal-
anced, i.e., with a high variance in the frequency with which the labels occur
in the dataset. Odors like fruity (resp. powdery) are strongly over-represented
(resp. under-represented) (see Figure 1). Then, (iv) labels (odors) attached to
each molecule are given by experts based on their own vocabulary. However there
is both a high inter- and intra-individual variability concerning the perception
of odors [12], the latter involving more than 400 genes encoding molecular re-
ceptors (whose expressions differ between people). Perception is subject to the
context of the data acquisition phases (questionnaires), cultural elements, etc.

Building an original dataset. One prominent methodological lock in the field
of neuroscience concerns the absence of any large available database (>1000
molecules) combining odorant molecules described by two types of descriptors:
perceptual ones such as olfactory qualities (scent experts defining a perceptual
space of odors), and chemical attributes (chemical space). The dataset provided
by the IBM challenge [12] is a clinical one: i.e., odorant molecules were not labeled
by scent experts. To tackle this issue, the neuroscientists selected a list of 1,689
odorants molecules described by 74 olfactory qualities in a standardized atlas
[1]. They then described using Dragon 6 software (available on talete.mi.it)
all of these molecules at the physicochemical levels (each odorant molecule was
described by more than 4,000 physicochemical descriptors). As such, and to the
best of our knowledge, the present database, created by neuroscientists, is one
of the very few in the field that enable quantification and qualification of more
than 1,500 molecules at both, perceptual (neurosciences) and physicochemical
(chemistry) levels. The distribution of the 74 olfactory qualities is illustrated in
Figure 1 (filled bars).

Problem 1 (SOR Problem). Given an olfactory dataset, the aim is to characterize
and describe the relationships between the physicochemical properties of odorant
molecules and their olfactory qualities.

talete.mi.it
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A data-science approach. Answering this problem requires experts of different
domains. The odor space is related to the study of olfaction in neuroscience,
the understanding of the physicochemical space requires chemical skills, and
finally, exploring jointly these two spaces requires data analysis techniques from
computer science. In the latter, we cannot afford to use black box predictive
models as we need intelligible patterns. Second, as olfactory datasets suffer from
a poor label predictability, we cannot use global models to model the dataset
but local models, i.e. subsets of data that are specific to some labels. These
approaches are known as descriptive rule discovery methods [14], divided into two
main trends: subgroup discovery and redescription mining. We introduce these
methods and show their strengths and weaknesses to deal with our problem.

2.1 Subgroup Discovery

Subgroup Discovery (SD) has attracted a lot of attention for two decades under
several vocables and research communities (subgroups, contrast sets, emerging
patterns, etc.) [14,16]. The aim is to find groups of objects, called subgroups, for
which the distribution over the labels is statistically different from that of the
entire set of objects. A subgroup is defined (i) by its extent, i.e. the subset of
objects it covers and (ii) by its intent, a description connecting restrictions on
the attribute domains, such that the intent covers the extent. The intent can be
defined on several languages, e.g. conjunctions of attribute domain restrictions.

Definition 2 (Subgroup). The description of a subgroup is given by d =
〈f1, . . . , f|A|〉 where each fi is a restriction on the value domain of the attribute
ai ∈ A. A restriction is either a subset of a nominal attribute domain, or an
interval contained in the domain of a numerical attribute. The set of objects cov-
ered by the description d is called the support of the subgroup supp(d) ⊆ O. The
set of all subgroups forms a lattice with a specialization/generalization ordering.

Definition 3 (Quality measure). The SD approach hence relies on a quality
measure which evaluates the singularity of the subgroup within the population
regarding a target class function: the class attribute. The choice of the measure
depends on the dataset but also on the purpose of the application [8]. There are
two main kind of quality measures: the first one is used with monolabeled dataset,
e.g., the F-1 measure, the WRAcc measure, the Giny index or the entropy (the
original SD [17]) ; and the second one is used with multilabeled dataset, e.g., the
Weighted Kullback-Leibler divergence(WKL) as used in EMM [6]).

Running example. The support of the description d1 = 〈MW ≤ 151.28, 23 ≤
nAT 〉 is {2, 3, 5, 6}. For readability, we omit a restriction fi in a description if
there is no effective restriction on the attribute ai. The description d2 = 〈MW ≤
151.28, 23 ≤ nAT, 10 ≤ nC〉 is a specialization of d1 (d1 is a generalization
of d2). Moreover, considering Table 1, WKL(d1) = 4/6 × ((3/4 log2 9/10) +
(1/4 log2 3/2) + (3/4 log2 3/2)) = 0.31. The WRAcc measure of the descriptive
rule d1 → Honey is WRAcc(d1, Honey) = 4/6× (3/4− 1/2) = 0.25.
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Fig. 1. Subgroup label distributions with WKL.

The SD problem. Given a dataset D(O, A, C, class), minSupp, ϕ and k, the
objective is to extract the k best subgroups w.r.t. the measure ϕ, with a support
cardinality higher than a given minSupp.
Limits of SD addressing Problem 1. The existing methods of SD either
target only a single label at a time, or all labels together depending on the
choice of the quality measure. In our application, it is required that a subgroup
could characterize several labels at the same time. Only the WKL measure can
achieve this goal [6]. However, it suffers of the curse of dimensionality: in presence
of a large number of labels (74 odors in our experiments), the subgroups cannot
characterize a small set of odors. This is shown with real data on Figure 1:
the distribution of labels for the full dataset and for the best subgroup are
displayed: clearly, the subgroup is not characteristic of a few odors. We need
thus to consider not only all the possible subgroups, but all label subsets for
each subgroup. In other settings, this search space is actually considered by a
method called Redescription Mining [9].

2.2 Redescription Mining

Redescription mining (RM) [9] aims at finding two ways of describing a same
set of objects. For that, two datasets are given with different attributes but the
same set of object ID. The goal is to find pairs of descriptions (c, d), one in
each dataset, where supp(c) and supp(d) are similar. The similarity is given by
a Jaccard index between supp(c) and supp(d). The closer to 1 the better the
redescription. If we consider the first dataset as the chemicophysical attributes
and the second as the labels, we can apply RM to find molecular descriptions
and label sets that cover almost the same set of objects.

Running example. Let us consider the dataset of the Table 1 and the re-
description r = (dP , dQ) with dP = 〈MW ≥ 150.19 ∨ nAT = 27〉, dQ =
〈Fruity ∧ (¬Honey)〉. Thus, supp(dP ) = {1, 4, 5, 6} and supp(dQ) = {1, 4, 6}
and J(r) = 3

4 = 0.75. Note that RM allows an expressive language with nega-
tions and disjunctions for defining a description.

The RM problem. Given a dataset D(O, A, C, class), minSupp and k, the
objective is to extract the k best redescriptions w.r.t. the Jaccard Index, with a
support cardinality higher than minSupp.
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Limits of RM addressing Problem 1 RM gives us an algorithmic basis to
explore the search space composed of all pairs of subsets of objects and subsets
of labels. However, the quality measure used in RM, the Jaccard index, does not
fit exactly what Problem 1 expects. The Jaccard index is symmetric implying
the discovery of almost bijective relationships. Yet, it is widely acknowledged
that the structure-odor relationships are not bijective. Therefore, this measure
is not relevant for unbalanced datasets, which is the case of olfactory datasets.
Thus it is difficult to find descriptions related to an over-represented odor.

As a conclusion, answering Problem 1 can be achieved by exploring the search
space of redescriptions of the form (d, L), with d a description and L a subset of
labels, using any quality measure from subgroup discovery (F1-measure, WRAcc,
KWL, etc). This however, does not take into account the unbalanced classes
problem. We make this point explicit in the next section and propose a solution.

3 An adaptive quality measure

Existing discriminant descriptive rule methods cannot address Problem 1: the
SD generic framework does not explore the correct search space whereas in RM
the quality measure is not adapted for this problem. Problem 1 requires a data
mining method that simultaneously explores both the description space and the
search space of the odor labels. For that, we define local subgroups.

Definition 4 (Local subgroup). Given a dataset D(O,A, C, class), a local
subgroup (d, L) takes a description d characterizing a subset of few labels L ⊆
Dom(C) of the class attribute C with 1 ≤ |L| << |Dom(C)|. The support of a
local subgroup is the support of its description: supp(d, L) = supp(d). Note that
supp(L) = {o ∈ O | L ⊆ class(o)}.

The aim is to find out local subgroups (d, L) where the description d is char-
acteristic of the subset of few olfactory qualities L ⊆ Dom(C). For that, we
develop a SD method, that simultaneously explores this double search space.
This method relies on a adaptive quality measure that enables to evaluate the
singularity of the local subgroup (d, L) only for the subset of labels L it tar-
gets. This measure is adaptive for each local subgroup, i.e., it is automatically
adjusted according to the balance of the subset of labels in the dataset.

The original F-Score. Complete surveys help understanding how to choose
the right measure [8]. The generalized version of the WKL1 considers the labels
in the subset L ⊆ Dom(C) as independent and does not look for their co-
occurrences. The WRAcc measure is a gain measure on the precision of the
subgroup and totally ignores the recall. However, we are interested in a measure

that considers both precision (P (d, L) = |supp(d)∩supp(L)|
|supp(d)| ) and recall (R(d, L) =

|supp(d)∩supp(L)|
|supp(L)| ) of a local subgroup. The F-Score does it:

F (d, L) = (1 + β2)× P (d, L)×R(d, L)

(β2 × P (d, L)) +R(d, L)
(1)

1 The generalized version of the WKL corresponds to the WKL measure restricted to
the subset of labels L ⊆ Dom(C) of the local subgroup (d, L).
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Indeed, objects are described by both attributes and class labels, so F-score
quantifies both the precision and the recall of the support of the description
w.r.t. the support of the class labels.

The adaptive Fβ. However, olfactory datasets involve unbalanced labels, i.e.
the distribution of the labels is quite different from each other: some are over-
represented, and other are under-represented. Thus, we decided to adapt the
F-Score to unbalanced datasets considering the original constant β as a variable
of |supp(L)|: the higher |supp(L)|, the closer to zero β is (the precision in the
F-Score is fostered), and the lower |supp(L)|, the closer to one β is (the F-Score
becomes the harmonic mean of precision and recall). Formally, given two positive
real numbers xβ and lβ , we define the Fβ measure derived from Equation 1 with
β a variable of |supp(L)| as follows (see also Figure 2)

β(|supp(L)|) = 0.5×
(

1 + tanh

(
xβ − |supp(L)|

lβ

) )
(2)

Intuitively, for over-represented labels, since it is difficult to find rules with
high recall and precision, the experts prefer to foster the precision instead of the
recall: they prefer extracting several small subgroups with a high precision than
a huge local subgroup (d, L) with plenty of non-L odorants. In Figure 3 the red
odorants are over-represented in the dataset, but it is more interesting having
the different local subgroups 1, 2, 3 and 4 with high precision, rather than a
single huge local subgroup 5 which precision is much lower. For odorants that
are not over-represented, the measure considers both precision and recall: e.g.,
the local subgroup 5 is possible for the green molecules. The two real numbers
xβ and lβ are set thanks to the characteristics of the dataset. In fact, due to the

distribution δC of the classes in the dataset, fixing xβ = E(δL) and lβ =
√
σ(δL),

where E(X) and σ(X) are respectively the average and the standard deviation
of a random variable X, is sensible considering Problem 1.

The local subgroup discovery problem. Given a dataset D(O, A, C, class),
the adaptive quality measure Fβ , a minimum support threshold minSupp and an
integer k ∈ N+, the aim is to extract the k best local subgroups (d, L) w.r.t. the
quality measure Fβ with 1 ≤ |L| � |Dom(C)|, such that supp(d, L) ≥ minSupp.
Running example. Considering the dataset of Table 1, with xβ = 3 and
lβ = 1.4, let us discuss the local subgroup (d1, {Fruity}) with d1 = 〈MW ≤
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151.28, 23 ≤ nAT 〉. First, β(|supp({Fruity}|) = 0.05 since the Fruity odor
is over-represented (|supp({Fruity})| = 5). We have that Fβ(d1, {Fruity}) =
0.75 and it fosters the precision rather than the recall. Now if we consider
the local subgroup (d1, {Honey, Fruity}): since |supp({Honey, Fruity})| = 2,
β(|supp({Honey, Fruity}) = 0.81 from which it follows that Fβ(d1, {Honey,
Fruity}) = 0.41 because it considers both recall and precision.

4 Mining Local Subgroups

Exploring the search space. The search space of local subgroups is struc-
tured as the product of the lattice of subgroups and the lattice of label subsets,
hence a lattice. Let X be the set of all possible subgroups, and C the set of
labels, the search space is given by X × 2C . Each element of this lattice, called
node or local subgroup hereafter, corresponds to a local subgroup (d, L). Nodes
are ordered with a specialization/generalization relation: the most general local
subgroup corresponds to the top of the lattice and covers all objects, its set of
labels is empty (or composed with labels that occur for –all– the objects). Each
description d can be represented as a set of attribute restrictions: specializing
a description is equivalent to add attribute domain restrictions (i.e. adding an
element for nominal attributes, shrinking an interval to its nearest left or right
value for a numerical attribute, see e.g. [11]).

Due to the exceptional size of the search space, we opt for a beam-search,
starting from the most general local subgroup to the more specialized ones. This
heuristic approach is also used in EMM and RM. It tries to specialize each
local subgroup either by restricting an attribute or by extending subset of class
labels with a new label it has also to characterize as long as the Fβ score is
improved. There are at most |Dom(C)|+

∑
ai∈A |ai|(|ai|+ 1)/2 possibilities to

specialize each local subgroup: we can proceed up to |Dom(C)| extensions of
the subset of labels to characterize L and |A| extensions of the description for
which we can build up |ai|(|ai| + 1)/2 possible intervals for numeric attributes.
We choose among those only a constant number of candidates to continue the
exploration (the width of the beam: the beamWidth best subgroups w.r.t. the
quality measure). The search space is also pruned thanks to the anti-monotonic
constraint on support.

Finding the attribute split points. When extending the description of a
subgroup s = (d, L) for a numerical attribute, the beam search exploration looks
for the best cut points that optimize the Fβ score of the resulting subgroup.
Since the value domain of a numerical attribute a is finite (at most |O| different
values), a naive approach would test all the possibilities to find the lower and
the upper bounds for the interval that optimizes Fβ (O(|O|2) complexity). Our
approach, inspired by a state-of-the-art approach [7], only searches for promising

cut points. We define ri = |{o∈supp(s)|a(o)=vi,o∈supp(L)}|
|{o∈supp(s)|a(o)=vi,o/∈supp(L)}| for vi ∈ Dom(a). We say

that a value vi is a strict lower bound if ri > 1 and ri−1 ≤ 1, and a value vi is a
strict upper bound if ri > 1 and ri+1 ≤ 1. The algorithm searches for the best
cut points among the strict lower and upper bounds.
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Table 2. Characteristics of the datasets where |O| is the number of objects, |A| the
number of attributes, |C| the number of labels, M1 the average number of labels associ-
ated to an object, and M2, min, max respectively the average, minimum and maximum
number of objects associated to a label.

Dataset |O| |A| |C| M1 M2 min max

B1 7395 243 159 2.4 111.7 51 1042
D1 1689 43 74 2.88 67.26 2 570
D2 1689 243 74 2.88 67.26 2 570

However this approach can return an empty set of cut points, especially
for under-represented subsets of class labels. Experimentally, the beam search
exploration stops very quickly and only over-represented label sets can be output.
For that, we consider the maxBeginningPoints best lower bounds, i.e. value vi
such that 0 < ri ≤ 1, as possible cut points when the original method of Fayyad
et al. [7] does not return any result. By default we set maxBeginningPoints = 5.

Mining diverse significant subgroups. Generally, when a method mixes a
beam search and a top-k approach, the issue of redundancy is clearly an impor-
tant thing to deal with. The risk is to extract a set of top-k local subgroups where
several subgroups are redundant, i.e. that share same restrictions or support. For
that, we implement a process to avoid redundancy during the exploration. Before
adding a local subgroup s in the top-k resulting set, we quantify the redundant
aspect of s w.r.t. each current top-k local subgroup by comparing the restrictions
involved in its description but also the support of these restrictions. Formally,
we compute a penalty score pen(s1, s2) ∈ [0; 3] between two subgroups s1 and
s2 by adding (i) the proportion of common attributes ai involved in effective re-
strictions in both descriptions, and (ii) the values of the Jaccard index between
the intervals [l1, u1] and [l2, u2] for each common attribute in the description,
and (iii) the values of the Jaccard index between supp(s1) and supp(s2). The
algorithm only adds a new local subgroup if the penalty score with all other sub-
groups is less than the threshold maxRedundancy, and if the penalty score is
greater than maxRedundancy the algorithm keeps the subgroup with the higher
quality measure. By default, we fix maxRedundancy to 2.2.

Finally, extracted subgroups have to be statistically significant: considering
a local subgroup (d, L), the support of d and the support of L in the entire
dataset have to be statistically meaningful. If we consider these distributions as
independent, the probability that objects are included in both supports has to
be low. To measure this, we compute the p-value: we test the distribution we
face in the dataset against the null-model hypotheses.

5 Experiments

We experiment with the Bibtex dataset from the well-known Mulan2 library
for learning from multi-label datasets. The characteristics of this dataset are

2 http://mulan.sourceforge.net

http://mulan.sourceforge.net
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Fig. 4. The runtime and the number of output subgroups varying (left) the beam
width, (middle) maxRedundancy and (right) the minimal support on D1.

Fig. 5. (left) The precision and the recall of subgroups (d, L) as a function of |supp(L)|
on B1 with the value of β(|supp(L)|). The precision and the recall of the output sub-
groups (d, L) on B1 according to |supp(L)| (color scale) using F1 (middle), Fβ (right).

Fig. 6. The same experiments than those of Figures 5 but on the dataseet D1.

displayed in Table 2. The labels correspond to keywords the authors had chosen
to their Bibtex entry. This Bibtex dataset is used to validate the method on both
quantitative and qualitative sides because it does not require a deep expertise
to interpret the results. We also used two real-world olfaction datasets. These
datasets D1 and D2 have been derived from the dataset described in Section 2.
Table 2 presents the characteristics of these datasets.

Performance study. To evaluate the efficiency of our algorithm, we consider
the Bibtex dataset B1 and the two olfaction datasets D1 and D2. Experiments
were performed on a 3.10 GHz processor with 8 GB main memory running
Ubuntu 14.04.1 LTS. We vary minSupp, beamWidth and maxOutput separately
and the non-varying parameters are fixed to maxOutput = 100, beamWidth =
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15 and minSupp = 30. Surprisingly, in Figure 4 (left), the runtime seems not
to vary a lot when increasing the beam width. This is the same result when
decreasing the minimum support threshold in Figure 4 (right). This is due to
the on-the-fly discretization method that is time-consuming. In Figures 4 (left
and right), we observe that even if minSupp increases, the number of outputted
subgroups is constant whereas when beamWidth increases, the number of ex-
tracted subgroups is higher. This is due to the avoiding redundancy task: when
minSupp increases, the quality measure of the new generated local subgroups is
improved, however, they may be redundant compared to other subgroups that
are therefore removed. When beamWidth increases, the diversity is increased
so the subgroups are less redundant. Figure 4 (middle) depicts the impact of
our avoiding redundancy step. The lower maxRedundancy, the less similar the
support of subgroups, the fewer extracted subgroups.

Validating the adaptive F-measure. Our choice to discover local subgroups
(d, L) with an adaptive Fβ score is well-suited for an olfactory dataset because a
molecule is associated to a few olfactory qualities. For an experiment (the others
highlight similar remarks), we have that 60.6% of subgroups with |L| = 1, 33.8%
of subgroups with |L| = 2 and 5.6% of subgroups with |L| = 3. Figure 6 (left)
depicts the impact of the factor β(|supp(L)|. It displays for each extracted local
subgroup (d, L) the precision and the recall of the descriptive rules d → L as
a function of |supp(L)|, with the curve of the factor β(|supp(L)|). Clearly, it
works as expected: the subgroups for which β(|supp(L)|) is close to 0 foster
the precision rather than the recall, and the subgroup for which β(|supp(L)|) is
close to 1 foster both recall and precision. Figure 6 (right) shows this point in
a different way: it displays the precision and the recall of each output subgroup
(d, L). A color code highlights the size of supp(L): for over-represented labels,
the precision is fostered at the expense of the recall whereas in other cases both
precision and recall are fostered. Comparing to Figure 6 (middle) which displays
this result with the F1 score, we see that few output subgroups are relative to
over-represented labels (the same applies for the Bibtex dataset B1, see Figure 5).

Building a dataset for analyzing the olfactory percept. We worked on
our original dataset presented in Section 2. For this subsection, we derived 3
datasets by changing the following conditions. As our approach cannot handle
4, 000 molecular descriptors: we filter out correlated attributes with the Pearson
product-moment correlation coefficient. As a result, attributes with a correlation
higher than 90% (resp 60% and 30%) were removed leaving only 615 (resp. 197
and 79) attributes. We ran our algorithm on these three datasets with the com-
binations of different parameters: standard F1 score versus our adaptive measure
Fβ ; minSupp = 15 (1%) versus minSupp = 30 (2%) : and finally, we experiment
with three different thresholds for the maxRedundancy parameter (0.5, 1.5 and
2.5). All results are available at http://liris.cnrs.fr/olfamining/.

Identification of relevant physicochemical attributes. We consider the
experiment on the dataset with 79 physicochemical properties, when we use the
Fβ score, minSupp = 30, and maxRedundancy = 2.5. A relevant information
for neuroscientists and chemists concerns the physicochemical attributes that

http://liris.cnrs.fr/olfamining/
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were identified in the descriptive rules. As showed in [13], the sum of atomic
van der Waals volumes, denoted as Sv, is discriminant with regard to the he-
donism of an odor, and especially the higher Sv, the more pleasant an odor.
Moreover, the higher the rate of nitrogen atoms (N%), the less pleasant an
odor, consistent with the idea that amine groups (−NH2) are associated with
bad odors (such as cadaverine or putrescine). Based on this observation, we
find subgroups related to either the Floral or Fruity quality that are charac-
terized by a special range of values with regard to Sv and N%. For exam-
ple, s5 = 〈[27 ≤ nOHs ≤ 37] [6.095 ≤ Sv ≤ 7.871] [4 ≤ N% ≤ 8] [25 ≤ H% ≤ 28], {Floral}〉 and
s6 = 〈[1 ≤ nCsp2 ≤ 1] [2.382 ≤ TPSA(Tot) ≤ 2.483] [4 ≤ N% ≤ 10], {Fruity}〉 are output
subgroups. The quality measure of s5 is 0.91 with a precision of 0.91 and a low
recall of 0.06. For s6, its quality measure is up to 0.87, the same as its precision
and its recall is 0.05. Each of these subgroups contains in its description the
N% attribute associated to a very low percentage, and s5 also includes the Sv
attributes with a range of values that corresponds to its higher values. Note that,
due to the Fβ score, the recall of these subgroups is low because the odors Fruity
and Floral are over-represented in the dataset. In general, the quality Musk is
associated with large and heavy molecules: the molecular weight (MW ) of these
molecules is thus high. In the output subgroups, most of those associated to the
musk quality include in their description the MW attribute with high values. For
example, s7 = 〈[5 ≤ nCar ≤ 6] [3.531 ≤ Ui ≤ 3.737] [224.43 ≤MW ≤ 297.3], {Musk}〉 with a
quality measure of 0.46 (precision: 0.48, recall: 0.37) is about molecules with a
molecular weigh between 224.43 and 297.3. Moreover, when the quality Musk
is combined with the quality Animal, we still have a high molecular weight but
there are other attributes with specific range of values: s8 = 〈[3.453 ≤ Ui ≤ 3.691]

[238 ≤MW ≤ 297.3] [32 ≤ nR = Cp ≤ 87] [1 ≤ nCsp2 ≤ 6], {Musk, Animal}〉. This latter
topological attribute is consistent with the presence of double bonds (or so-
called sp2 carbon atoms) within most musky chemical structure, that provides
them with a certain hydrophilicity.

Providing relevant knowledge to solve a theoretical issue in the neu-
roscience of chemo-sensation. We consider the experiment on the dataset
with 615 physicochemical properties, when we use the Fβ score, minSupp = 15,
and maxRedundancy = 0.5. Another important information brought by these
findings to experts lies in the fact the SOR issue should be viewed and ex-
plored through a “multiple description” approach rather than “one rule for one
quality” approach (i.e., bijection). Indeed, a number of odor qualities were de-
scribed by very specific rules. For example, 44% of the molecules described as
camphor can be described by 3 rules physicochemical rules, with a very low rate
of false positives (0.06%; molecules being described by the physicochemical rule,
but not described perceptively as camphor). Similar patterns were observed for
other qualities: e.g., mint (3 descriptive rules; 32% of the molecules described as
mint; 0.06% of false positives), ethereal (3; 35%; 0%), gassy (3; 36%; 0.36%),
citrus (3; 42%; 0.24%), waxy (3; 43%; 0%), pineapple (3; 48%; 0%), medicinal
(3; 49%; 0.30%), honey (4; 54%; 0.06%), sour (3; 56%; 0.36%). Focusing on
these qualities, this confirms, as stated above, that a universal rule cannot be
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Fig. 7. Size of the support of three groups involving the camphor odor.

defined for a given odorant property, in line with the extreme subtlety of our
perception of smells. For example, looking in more details on the produced rules
for Camphor (see Figure 7), it appears that one rule is mostly using topological
descriptors, while the second rather uses chemical descriptors. The third rule
has a combination of these two to fulfill the model.

Perspectives in neurosciences and chemistry. The present findings provide
two important contributions to the field of neurosciences and chemo-sensation.
First, although the SOR issue seems to be illusory for some odor qualities, our
approach suggests that there exist descriptive rules for some qualities, and they
also highlight the relevance of some physicochemical descriptors (Sv, MW , etc.).
Second, the present model confirms the lack of bijective (one-to-one) relationship
between the odorant and the odor spaces and emphasizes that several sub-rules
should be taken into account when producing structure-odor relationships. From
these findings, experts in neurosciences and chemistry may generate the follow-
ing new and innovative hypotheses in the field: (i) explaining inter-individual
variability in terms of both behavioral and cognitive aspects of odor perception,
(ii) explaining stability in odor-evoked neural responses and (iii) correlating the
multiple molecular properties of odors to their perceptual qualities.

6 Conclusion

Motivated by a problem in neuroscience and olfaction, we proposed an original
subgroup discovery approach to mine descriptive rules characterizing specifically
subsets of class labels, as well as an adaptive quality measure to be able to char-
acterize both under- and over- represented label subsets. We implemented its
algorithmic counterpart and experimented it with real olfactory datasets. The
powerful interpretability of the results and the information they bring, can im-
prove the knowledge about the complex phenomenon of olfaction. Applying such
structure/odor model in a dedicated olfactory data-analytics platform will im-
prove understanding of the effects of molecular structure on the perception of
odorant objects (foods, desserts, perfumes, flavors), enabling product formula-
tion to be optimized with respect to consumers’ needs and expectations.
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