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Benoit Loisel
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Abstract

The purpose of this paper is to link anisotropy properties of an algebraic
group together with compactness issues in the topological group of its rational
points. We find equivalent conditions on a smooth affine algebraic group scheme
over a non-Archimedean local field for the associated rational points to admit
maximal compact subgroups. We use the structure theory of pseudo-reductive
groups provided, whatever the characteristic, by Conrad, Gabber and Prasad.
We also investigate thoroughly maximal pro-p subgroups in the semisimple case,
using Bruhat-Tits theory.
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1 Introduction
Given a base field k and an affine smooth k-group denoted by G, we get an

abstract group called the group of rational points, denoted by G(k). When k is a
topological field, this group inherits a topology from the field. It makes sense to
link some algebraic properties of an algebraic k-groupG and topological properties
of its rational points G(k). In this article, we consider a non-Archimedean local
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field k, hence the topological group G(k) will be totally disconnected and locally
compact. Thus, one can investigate the compact, equivalently profinite, subgroups
of G(k). In the following, we denote by ω the discrete valuation, Ok the ring of
integers, m its maximal ideal, $ a uniformizer, and κ = Ok/m the residue field.

1.1 Existence of maximal compact subgroups
From the algebraic k-group G, we deduce the topological group G(k) thanks

to the topology of the base field k. We would like to get a correspondence between
algebraic properties of G and topological properties of G(k). A theorem of Bruhat
and Tits makes a link between anisotropy and compactness [BrTi84, 5.1.27] for
reductive groups. Another link between algebra and topology is Godement’s
compactness criterion for arithmetic quotients of non-Archimedean Lie groups,
recently extended to positive characteristic by Conrad [Con12, A5]. In the first
part, we obtain further results for a general algebraic group over a local field;
more precisely, we provide a purely algebraic condition on the k-group G for G(k)

to admit maximal compact subgroups. The fact that this condition is non-trivial
is roughly explained by the following:
1.1.1 Examples. Consider the additive group Ga,k. Inside the topological group
(k,+), the subgroups $nOk, where n ∈ N form a basis of compact open neigh-
bourhoods of the neutral element 0. However, k is not compact and does not
admit a maximal compact subgroup, since k is the union

⋃
n∈Z$

nOk of compact
subgroups. Moreover, (k,+) cannot be compactly generated.

On the opposite, consider the multiplicative group Gm,k. The topological
group k× has a unique maximal compact subgroup: O×k . Since k is assumed
to be discretely valued by ω : k× → Z, the topological group k× is compactly
generated by O×k and an element x ∈ k× such that ω(x) = 1.

In general, maximal compact subgroups of a reductive group are parametrised
by its enlarged Bruhat-Tits building [Tit79, 3.2] (the building in [Tit79] corre-
sponds to the enlarged building [BrTi84, 4.2.6]; see [Rou77, II.2] for more details
with bounded subgroups).

In fact, the additive group is the prototype of an algebraic group which does
not have a maximal compact subgroup in its rational points. More precisely:

1.1.2 Theorem. Let k be a non-Archimedean local field and G a connected alge-
braic k-group. The topological group G(k) admits a maximal compact subgroup if,
and only if, G does not contain a non-trivial connected unipotent k-split normal
k-subgroup.

Under these conditions, G(k) is, moreover, compactly generated.

We will go back to the notion of splitness for unipotent groups; it corresponds
to the existence of a filtration with subgroups isomorphic to Ga. In characteristic
zero, all unipotent groups are split and, in fact, the above algebraic condition
amounts to requiring that G be reductive. In this case, the theorem appears in
[PlR94, §3.3]. Here, our theorem covers all cases and the proof, using Bruhat-Tits
theory and pseudo-reductive groups, is uniform whatever the characteristic of the
local field.

1.2 Conjugacy and description of maximal pro-p sub-
groups

Once we know that an algebraic group G admits maximal profinite subgroups
(which are exactly maximal compact subgroups), we would like to describe them
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more precisely. In the case of a semisimple k-group G, we can deal with integral
models of G and the action of G(k) on its Bruhat-Tits building X(G, k). Un-
fortunately, there are, in general, several conjugacy classes of maximal profinite
subgroups (in the simply connected case, they correspond to the different types
of vertices). However, the maximal pro-p subgroups appear, in turn, to take the
role of p-Sylow subgroups, as the following states:

1.2.1 Theorem. Let k be a non-Archimedean local field of residue characteristic
p. Let G be a semisimple k-group. Then, G(k) admits maximal pro-p subgroups
and they are pairwise conjugated.

Thanks to geometry of the building, given a suitable integral model G of
G, we can describe one of the maximal pro-p subgroups as π−1(P ) where
π : G(Ok) � G(κ) comes from the reduction morphism and P is a p-Sylow sub-
group of the finite group G(κ).

The choice of the integral model will be specified in Theorem 1.5.3.

1.3 Algebraic groups over imperfect fields
As already mentioned, we have to use the notion of a pseudo-reductive group.

This notion was first introduced by Borel and Tits in [BoTi78] but was deeply
studied only recently, by Conrad, Gabber and Prasad in [CGP15].

If k is any field, the unipotent radical of a smooth affine algebraic k-group
G, denoted by Ru,k(Gk), can fail to descend to a k-subgroup of G when k is
imperfect. It has a minimal field of definition which is a finite purely inseparable
finite extension of the base field k [CGP15, 1.1.9]. Hence, we have to replace
the unipotent radical Ru(G)k by the unipotent k-radical, denoted by Ru,k(G)

and defined as the maximal smooth connected unipotent normal k-subgroup of
G. However, thanks to the following short exact sequence of algebraic k-groups:

1→Ru,k(G)→ G→ G/Ru,k(G)→ 1

we can understand better the algebraic k-group G. Of course, when k is perfect,
this is exactly the reductive quotient of G.

Let G be a smooth connected affine k-group. One says that G is pseudo-
reductive if Ru,k(G) is trivial. Over perfect fields, it corresponds to reductivity,
but it is far from true in general. We have to face this difficulty because for a
local field k of characteristic p, we have [k : kp] = p.

Thanks to the main structural theorem of Conrad, Gabber and Prasad
[CGP15, 5.1.1], we have a deeper understanding of pseudo-reductive groups.
Hence, there is some hope to generalise results on reductive groups to pseudo-
reductive groups and, by dévissage, to obtain general results on arbitrary con-
nected algebraic groups. Typically, this notion enabled B. Conrad to obtain a
Godement compactness criterion in terms of anisotropy for general groups over
any local field (note that, until recently, standard references [Mar91] quote this
criterion only for reductive groups in positive characteristic, while it was now
known to be true without any reductivity condition in characteristic 0).

Thanks to the structure theory of unipotent groups provided by Tits [CGP15,
B.2], we have notions of “splitness”, “isotropy” and “anisotropy” for unipotent
groups. The most intriguing one is anisotropy, defined as follows.

Let U be a smooth affine unipotent k-group. One says that U is k-wound if
there are no nonconstant k-morphisms to U from the affine k-line (where U and
A1 are seen as k-schemes), or equivalently if there is no nontrivial action of Gm on
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U . Over a perfect base field, such a group has to be trivial; hence, this definition
makes sense only for imperfect fields.

We recall the following definition of Bruhat and Tits [BrTi84, 1.1.12], initially
introduced in a note of Borel and Tits [BoTi78].

1.3.1 Definition. Let G be a smooth connected affine k-group. One says that
G is quasi-reductive if Ru,k(G) is k-wound.

1.3.2 Remark. Because there is no nontrivial action of Gm on Ru,k(G), no addi-
tional root appears, which preserves symmetries of the set of roots. Hence, it is
possible to define a root system of a quasi-reductive group [CGP15, 3.2].

Unless stated otherwise, we assume that (from the least to the most general
definition) a semisimple, reductive, pseudo-reductive or quasi-reductive k-group
is connected by definition.

In Theorem 1.1.2, the algebraic k-group verifying the equivalent conditions
are exactly the quasi-reductive ones.

By the same way as in the reductive case [Pra82, BTR theorem], there is a
correspondence between compactness and anisotropy for unipotent groups, given
by Oesterlé [Oes84, VI.1]: assume that k is a imperfect local field, then U is
k-wound if, and only if, U(k) is compact.

1.4 The case of a topological base field
From now on, k is a local field of residual characteristic p.
If U is a connected k-split unipotent k-group, we will build, in Lemma 2.4.1

by analogy with the case of Ga seen in Example 1.1.1, an exhaustion of the non-
compact group U(k) by (increasing) compact open subgroups. If an algebraic
k-group G contains such a U as a normal k-subgroup, then we will cover, in
Proposition 2.4.2, the closed normal subgroup U(k) by compact open subgroups
of G(k). Hence, such a G cannot admit a maximal compact subgroup because
such a subgroup would have to contain U(k) as a closed subgroup.

Conversely, it is well-known that if G is a semisimple k-group, then G(k) has
a maximal compact subgroup. Hence, we would like to prove the same fact for
any quasi-reductive k-group. It is natural to exploit properness and finiteness
properties of long exact sequences in Galois cohomology attached to some group
extensions, but these properties are not satisfied in general. In fact, first Galois
cohomology pointed sets of relevant normal subgroups of G often fail to be finite
in positive characteristic (e.g. #H1(k, ZG) = ∞ when char(k) = p > 0 and
G = SLp ; see also [CGP15, 11.3.3] for an example of a unipotent group).

Therefore cohomological methods are not sufficient to conclude. We are using
topological properties of rational points. One of them is the following:

1.4.1 Definition. A topological group G is called Noetherian if it satisfies the
ascending chain condition on open subgroups; this means that any sequence of
increasing open subgroups of G is eventually constant.

1.4.2 Example. (1) The discrete abelian group (Z,+) is Noetherian since any
subgroup of Z is an ideal of the Noetherian ring Z.

(2) By Example 1.1.1, the additive group of a non-Archimedean local field is
not a Noetherian group since it has an infinite strictly increasing sequence of open
subgroups, namely ($−nOk)n∈N.

Because the additive topological group (k,+) (seen as the group of rational
points of the additive group Ga) admits no maximal compact subgroup, there is no
hope for a non-k-wound unipotent group U to have a maximal compact subgroup
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inside its rational points. Together with Oesterlé’s previously mentioned result,
this is the heuristics leading to:

1.4.3 Theorem. Let k be a non-Archimedean local field with residue character-
istic p and G be a smooth affine k-group. The following are equivalent:

(i) The identity component G0 of G is a quasi-reductive k-group,

(ii) G(k) is Noetherian,

(iii) G(k) admits a maximal compact subgroup,

(iv) G(k) admits a maximal pro-p subgroup.

Moreover, under the above equivalent conditions:
(1) Every pro-p (resp. compact) subgroup of G(k) is contained in a maximal

pro-p (resp. compact) subgroup of G(k).
(2) Every maximal pro-p (resp. compact) subgroup of G(k) is open.

1.4.4 Corollary. If G is a quasi-reductive k-group, then G(k) is compactly gen-
erated.

Proof of corollary. By [CM13, Lemma 3.22] a locally compact group G is Noethe-
rian if, and only if, any open subgroup of G is compactly generated.

This theorem and its corollary are well-known in the case of a p-adic field
k (in that case of char(k) = 0, quasi-reductivity implies reductivity because all
unipotent groups are split) as a proposition of Platonov and Rapinchuk [PlR94,
3.3 Proposition 3.15] and a theorem of Borel and Tits [BoTi65, 13.4]. In nonzero
characteristic it is necessary to consider the notion of quasi-reductivity in the
statement of the result.

For a reductive group G defined over a p-adic field, we know moreover that a
compact open subgroup is contained in finitely many compact subgroups [PlR94,
Proposition 3.16 (1)]. We don’t know if this statement is still true for a quasi-
reductive group over a local field of positive characteristic. In fact, when G(k)

acts properly on a locally finite affine building, there is a correspondence between
its compact open subgroups and the non-empty bounded subsets of the Bruhat-
Tits building. In the quasi-reductive case, we have a spherical Tits system by
[CGP15, C.2.20] but the existence of an affine Tits system is not yet proven.

1.5 Use of buildings and integral models
Though Theorem 1.4.3 gives a good criterion for the existence of maximal

compact subgroups, the proof is not constructive in the sense that we do not have
any detail about these subgroups. Nevertheless, in the case of a semisimple k-
group G, denote by X(G, k) its Bruhat-Tits building. In Proposition 2.2.6, we get
a good description of maximal compact subgroups as stabilizers of some points
for the continuous action of G(k) on its Bruhat-Tits building.

As stated in Theorem 1.4.3, for a semisimple k-group G, the topological group
G(k) has maximal pro-p subgroups. These groups are a kind of generalisation of
Sylow subgroups for a finite group: in the profinite situation, a profinite group has
maximal pro-p subgroups and they are pairwise conjugated [Ser94, 1.4 Prop. 3].
By our second main theorem 1.2.1, we know that the (usually non-compact) group
G(k) has maximal pro-p subgroups and that they are pairwise conjugated. The
use of Bruhat-Tits buildings and, in particular, of Euclidean buildings associated
to pairs (G, k) allows us to be more precise: we give a useful description of maximal
pro-p subgroups by use of a valued root groups datum in the simply-connected
case. Thanks to this, in a further work [Loi16], we compute the Frattini subgroup
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of a maximal pro-p subgroup. There will be a somewhat analogous computation
as in [PrR84] where Prasad and Raghunathan compute the commutator subgroup
of a parahoric subgroup.

1.5.1 Theorem. Let k be a non-Archimedean local field and G a connected
semisimple k-group. If P is a subgroup of G(k), then P is a maximal pro-p
subgroup of G(k) if, and only if, there exists an alcove c ⊂ X(G, k) such that P
is a maximal pro-p subgroup of the stabilizer of c.

Moreover, such an alcove c is uniquely determined by P and the set of fixed
points by P in X(G, k) is contained in the simplicial closure cl(c) of c.

In particular, there is a natural surjective map from the maximal pro-p sub-
groups of G(k) to the alcoves of X(G, k). When G is simply connected, this map
is a bijection.

The first part of this theorem is a direct consequence of Proposition 3.1.4 and
conjugation of p-Sylow subgroups in profinite groups since the stabilizer of an
alcove is a profinite group by Lemma 2.2.2(3). To get a deeper description of
maximal pro-p subgroups, integral models and their reductions are useful.

1.5.2 Notation. Let Ω ⊂ A be a non-empty bounded subset where A denotes
the standard apartment of the Bruhat-Tits building X(G, k). Denote by GΩ the
corresponding smooth connected affine Ok-model of G (denoted by G◦Ω in [BrTi84]
and by GΩ in [Lan96]: they are the same Ok-model of G, up to isomorphism,
because they satisfy the same universal property). Denote by G†Ω the (possibly
non-connected) smooth affine Ok-model defined at [BrTi84, 4.6.18] for the quasi-
split case and, by descent, at [BrTi84, 5.1.8] for the general case.

Recall that if Ω satisfies a suitable notion of convexity as a subset of a polysim-
plicial structure (denote by cl(Ω) the simplicial closure defined in [BrTi72, 7.1.2],
we assume here that Ω = cl(Ω)) and G is semisimple, then G†Ω(Ok) is the stabi-
lizer of Ω in G(k) [BrTi84, 4.6.29, 5.1.31]. The group GΩ(Ok) fixes Ω pointwise
and, when G is simply-connected we have GΩ = G†Ω [BrTi84, 5.2.9]. In partic-
ular, a simply-connected semisimple k-group acts on its Bruhat-Tits building by
type-preserving isometries.

In part 3.2, we will use Ok-models (where Ok denotes the ring of integers of
k) to get the following description:

1.5.3 Theorem. Let k be a non-Archimedean local field and G a connected simply
connected semisimple k-group.

A maximal pro-p subgroup of G(k) is conjugated to

P+
c = ker

(
Gc(Ok) � G

red
c (κ)

)
where c ⊂ A denotes an alcove of the standard apartment, κ denotes the residue
field of k and G

red
c denotes the reductive quotient of the special fiber of the integral

model associated to c.

This morphism Gc(Ok) � G
red
c (κ) and its kernel appear in several references

like [PrY02] or [Tit79].
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2 Maximal compact subgroups

2.1 Extensions of topological groups
As we consider topological groups, we require that any morphism between

such groups be continuous. Recall that the morphism deduced from an algebraic
morphism is always continuous for the k-topology.

Noetherian groups

Firstly, let us recall some properties of Noetherian groups (Definition 1.4.1).

2.1.1 Proposition.

(1) Any open subgroup of a Noetherian group is Noetherian.

(2) A compact group is Noetherian.

(3) Let ϕ : G → Q a strict (continuous) morphism between topological groups
with open image (e.g. ϕ is an open morphism). If Q and kerϕ are Noethe-
rian, then so is G.

(4) Any extension of Noetherian groups is a Noetherian group.

(5) The multiplicative group k× of a non-Archimedean local field k is Noetherian.

(6) Let ψ : H → G a (continuous) morphism between topological groups. If H
is Noetherian and ψ(H) is a finite-index normal subgroup of G, then G is
Noetherian.

Proof. (1) is obvious.
(2) is clear since an open subgroup of a compact group has finite index.
(3) Since Im(ϕ) is open in Q, the subgroup ϕ(G) is Noetherian by (1). Since

ϕ is a strict morphism, we may and do assume that ϕ is the quotient map
G→ G/H ' ϕ(G) where H = kerϕ. Let (Un)n an increasing sequence of open
subgroups of G. Since H is Noetherian, the sequence (Un ∩ H)n is eventu-
ally constant, say from N1 ∈ N. Moreover, the sequence ϕ(Un) ' UnH/H is
eventually constant, say from N2 ≥ N1, since ϕ(Un) is open in the Noetherian
group ϕ(G) ' G/H. We compute ϕ(Un) ' Un/(Un ∩ H) ' Un/(UN1 ∩ H) '
UN2/(UN1 ∩H) for all n ≥ N2. Hence Un = UN2 for all n ≥ N2.

(4) By definition, an extension of topological groups is an exact sequence

1→ H
j→ G

π→ Q→ 1

of continuous morphisms which are open on their image. Applying (3) to π, if H
and Q are Noetherian, then so is G.

(5) is a consequence of (2) and (4) since k× is an extension of the compact
subgroup O×k by the Noetherian discrete group ω(k×) ' Z.

(6) Let (Un)n an increasing sequence of open subgroups of G. Since H is
Noetherian, the sequence of open subgroups ψ−1(Un) is eventually constant, and
so is the sequence Vn = ψ(ψ−1(Un)) = Un ∩ ψ(H). The sequence of indices [Un :

Vn] = [Un : Un ∩ ψ(H)] is a sequence of integers bounded by the finite index [G :

ψ(H)]. Moreover, since Un is an increasing sequence and Vn is eventually constant,
the sequence [Un : Vn] is eventually increasing, hence eventually constant. As a
consequence, the increasing sequence (Un)n is eventually constant.

2.1.2 Remark. A motivation to consider the Noetherian property on topological
groups is that one can easily prove the existence of maximal subgroups with a
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given property (P ), as soon as we know the existence of some open subgroup
satisfying the desired property (P ) (like in proof of 2.4.4).

As an example, a Noetherian group with a strict open subgroup has maximal
strict open subgroups, and any strict open subgroup is contained in, at least, one
of them.

Morphisms of k-scheme and an exact sequence

Secondly, let us recall some properties of algebraic morphisms between topo-
logical groups of rational points.

2.1.3 Lemma. Let k be a non-Archimedean local field. Let G be a smooth affine
algebraic k-group and H a normal closed k-subgroup of G.

(a) There exists a faithfully flat quotient homomorphism π : G→ G/H where
G/H is a smooth k-group. Moreover, when H is smooth, π is smooth.

Consider the following exact sequence :

1→ H
j→ G

π→ G/H → 1

(b) The exact sequence (2.1.3) induces an exact sequence of topological groups

1→ H(k)
jk→ G(k)

πk→ (G/H)(k)

and jk is a homeomorphism onto its image. Moreover, if H is smooth, then the
continuous morphism πk is open.

Proof. (a) The quotient morphism exists and is faithfully flat by [SGA3, Exp.
VI A Thm 3.2 (iv)]. Hence, the k-group G/H is smooth [DG70, II.§5 2.2]. If,
moreover H is smooth, by [DG70, II.§5 5.3 and II.§5 2.2], the morphism π is
smooth.

(b) Morphism between k-schemes of finite type are continuous for the k-
topology, and jk is a homeomorphism onto its image by definition of the k-
topology. Since π is smooth, the continuous morphism πk is open by [GGMB14,
lemma 3.1.2 and proposition 3.1.4].

Existence of a pro-p open subgroup

By the Remark 2.1.2, we need and recall the following lemma:

2.1.4 Lemma. Let k be a non-Archimedean local field of residual characteristic
p. Let G be a smooth affine k-group. Then G(k) contains a pro-p open subgroup.

Proof. Given a closed immersion G → GLn,k (such an immersion exists
[DG70, II.5.5.2]), the topological group G(k) can be seen as a closed subgroup
G(k) ⊂ GLn(k) endowed with the usual topology. Hence, it is sufficient to prove
that GLn(k) contains a pro-p open subgroup U , since U ∩ G(k) will be a pro-p
open subgroup of G(k).

The group H = GLn(Ok) is profinite since it is a totally disconnected compact
group. For d ∈ N∗, define

Hd = GLn(md) =
{
g ∈ GLn(Ok) , g − id ∈ mdKMn(Ok)

}
The Hd are normal compact open subgroups of GLn(Ok), and form a basis

of open neighbourhoods of id ∈ H. Moreover, they are pro-p groups in the same
way as [DDMS99, 5.1] for GLn(Zp).
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Claim: H1 = lim←−dH1/Hd is a pro-p-group.
For any x ∈ Hd, write x = id + y where y ∈ mdMn(Ok). Hence

xp = id + py +
∑p
k=2

(
k
p

)
yk. If k ≥ 2, then yk ∈ md+1

K Mn(Ok) because d ≥ 1. If
char(k) = p, then py = 0. Else, char(k) = 0 and p ∈ m. Hence py ∈ md+1Mn(Ok),
so Hd/Hd+1 is a p-group.

2.2 Compact and open subgroups of a semisimple
group

In this section, we assume that G is an affine smooth (connected) semisim-
ple k-group where k is a non-Archimedean local field. In Proposition 2.2.6, we
describe maximal compact subgroups as stabilizers of, uniquely defined, points
of the building. This is still true if we only assume that G is reductive. We do
not assume, in general, that G is simply connected and some consequences of this
additional assumption will be given. Such a group G(k) acts continuously and
strongly transitively on its affine Bruhat-Tits building (with a type-preserving
action when G is, moreover, simply connected). We denote by A the standard
apartment, by c a chosen alcove in A and by G+ the subgroup of G(k) consisting
of the type-preserving elements.

Define B = StabG(k)(c) the setwise stabilizer of c and B+ = StabG+(c)

the pointwise stabilizer of c. Define N = StabG(k)(A) the setwise stabilizer
of A in G(k) and N+ = StabG+(A) the setwise stabilizer of A in G+. Thus,
(B,N) is a generalised BN-pair of G(k) (see [Gar97, 5.5 and 14.7] for de-
tails). Define T = B ∩N and T+ = B+ ∩N+, and put W+ = N+/T+. The
set Θ = T/T+ is finite [Gar97, 5.5] and we have a Bruhat decomposition
G(k) =

⊔
t∈Θ , w∈W+

B+twB+. Define the following bornology on G(k) by:

2.2.1 Proposition-definition (from [Gar97, 14.7]). A subsetH ⊂ G(k) is called
bounded if H satisfies the following equivalent properties:

(i) H is contained in a finite union of double cosets B+twB+, where t ∈ Θ and
w ∈W+,

(ii) there exists a point x ∈ X(G, k) such that H · x ⊂ X(G, k) is bounded,

(iii) for any bounded subset Y ⊂ X(G), the subset H ·Y = {h ·y , h ∈ H and y ∈
Y } ⊂ X(G, k) is bounded.

Given an embedding G(k)→ GLn(k), there is a natural definition of bounded
subsets, provided by the canonical metric on GLn(k). One can note that both
definitions coincide.

2.2.2 Lemma. Under the above assumptions and notations:

(1) The topological group N acts properly on A.

(2) For any non-empty subset Ω ⊂ A, the pointwise stabilizer of Ω in G(k) is
compact.

(3) For any non-empty bounded subset Ω ⊂ X(G, k), the setwise stabilizer of Ω

in G(k) is compact.

Proof. (1) We use the same notation as [Lan96, §1]. In particular, we con-
sider the group W = N(k)/Z(k)b, the group vW = N(k)/Z(k) and the group
Λ = Z(k)/Z(k)b. Denote by π : N(k)→W the quotient morphism of topological
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groups and by V = X∗(S)⊗ZR the R-vector space generated by the cocharacters.
Consider the following commutative diagram [Lan96, 1.6]:

0 // Λ //

ν1

��

W
pr //

ν

��

vW //

j

��

1

0 // V // Aff(A)
pr // GL(V ) // 1

from which we deduce a group action of N on the affine space A [Lan96, 1.8], given
by the group homomorphism ν : N(k) → Aff(A) = ν ◦ π. Let x ∈ A. The stabi-
lizer of x in Aff(A) = V o GL(V ) is the set {y 7→ g(y)− g(x) + x , g ∈ GL(V )}.
Since the above diagram is commutative, the stabilizer of x in ν(W ) is the fi-
nite set Fx = {y 7→ g(y)− g(x) + x , g ∈ j(vW )}. As a consequence, the stabiliser
ν−1(Fx) of x in N is compact because, when G is semisimple, the kernel of ν is
the compact subgroup Z(k)b [Lan96, 1.2 (ii)].

(2) Using [Lan96, 12.4] notations, denote Px = 〈Ux, Nx〉. The continuous map
µ : Nx × UxZ(k)b → Px given by multiplication is a surjective homomorphism
[Lan96, 12.6 (ii)]. By (1), the group Nx is compact and the group UxZ(k)b
is compact [Lan96, 12.12 (i)], therefore Px is compact. Hence, the pointwise
stabilizer of Ω written PΩ =

⋂
x∈Ω Px [Lan96, 13.3(i) and 12.8] is compact.

(3) If x ∈ X(G, k), then there exists g ∈ G(k) such that g · x ∈ A and it gives
StabG(k)(x) = g−1Pg·xg. This does not depend on the choice of such a g ∈ G(k).
Consider Ω ⊂ X(G, k) a non-empty subset. The pointwise stabiliser of Ω, denoted
by G(k)Ω, is an intersection of subgroups of G(k) of the form g−1Pg·xg ; so, it is
compact by (2). The group G(k)Ω is also the kernel of the action of the setwise
stabilizer of Ω, denoted by StabG(k)(Ω), on the finite polysimplicial sub-complex
of X(G, k) induced by the bounded subset Ω (it is finite because X(G, k) is locally
finite). In particular, the quotient group StabG(k)(Ω)/G(k)Ω is finite. The group
G(k)Ω is compact, and so is StabG(k)(Ω).

As a consequence of this lemma, bounded subsets are closely linked to compact
subsets.

2.2.3 Lemma. Under the above assumptions and notations:

(1) Every bounded subset of G(k) is relatively compact.

(2) A subset of G(k) is compact if, and only if, it is closed and bounded.

(3) Every maximal bounded subgroup of G(k) is a maximal compact subgroup.

Proof. Recall that B+ = Pc is compact by Lemma 2.2.2 and open in G(k) by
[Lan96, 12.12 (ii)]. Hence, every double coset B+twB+ is a compact open subset
of G(k).

(1) If H ⊂ G(k) is bounded, then by Definition 2.2.1(i) H is contained in a
finite union of double cosets, and this union is a compact subset.

(2) If H is a compact subset of G(k), then H is closed in G(k). The open
cover of H by double cosets has a finite subcovering. By Definition 2.2.1(i), H is
bounded. Conversely, a bounded subset is compact when it is closed, by (1).

(3) If H is a maximal bounded subgroup, then H is a closed subgroup. It is
bounded by Definition 2.2.1(ii) and contains H. Hence, maximality of H implies
H = H is a maximal compact subgroup, because every compact subgroup is
bounded according to (2).

Recall that a metric space is said to be CAT(0) if it is geodesic (any two points
are connected by a continuous path parametrized by distance) and if any geodesic
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triangle is at least as thin as in the Euclidean plane (for the same edge lengths).
This notion is developed in the book of Bridson and Haefliger [BH99]. The latter
condition is a non-positive curvature one (called also (NC) in [Bro89, §VI.3B]),
which can also be formulated by requiring the parallelogram inequality [AB08,
Prop. 11.4]. We use the following fixed-point theorem to describe compact open
subgroups thanks to the metric space X(G, k).

2.2.4 Theorem (Bruhat-Tits fixed point theorem [Bro89, VI.4]). Let H acting
isometrically on a complete CAT(0) metric space (M,d). If M has a H-stable
non-empty bounded subset, then H fixes a point in M .

The following corollary is a immediate consequence of the fixed point theorem
and the Definition 2.2.1(iii).

2.2.5 Corollary. If H is a bounded subgroup of G(k), then H fixes a point of
X(G, k).

Let us give a proof of the following proposition:

2.2.6 Proposition. Let k be a non-Archimedean local field and G a semisimple
k-group. Let P be a subgroup of G(k). The following are equivalent:

(i) the subgroup P is a maximal compact subgroup of G(k),

(ii) the subgroup P fixes a unique point x ∈ X(G, k) and P = StabG(k)(x).

Moreover, if G is simply connected, such an x is a vertex in the simplicial
complex X(G, k).

Proof. (i)⇒ (ii) If P is a maximal bounded subgroup, then, by Corollary 2.2.5,
P fixes a point x ∈ X(G, k). Hence, P is a subgroup of StabG(k)(x) which is a
bounded subgroup by 2.2.2(3). We get P = StabG(k)(x) because of the maximality
assumption on P .

We have to show that the maximality of P implies that StabG(k)(x) does not
fix any other point of X(G, k). Let A be an apartment containing x. Denote
by H the set of walls in A and d(x) the number of walls in A containing x. Let
us prove by decreasing induction on d(x) that the maximal bounded subgroup
StabG(k)(x) has a unique fixed point in A.

By transitivity, there exists an element g ∈ G(k) such that g · A = A. Hence,
we have to show that gStabG(k)(x)g−1 = Pg·x fixes a unique point of A. We can
and do assume that x ∈ A and g = 1.

Denote by Φ = Φ(G,S) the relative root system of G. Consider the maximal
case for d(x) : the point x is a special vertex of A and then d(x) = dmax =
1
2
Card(Φ). For every affine root a + l such that the associated wall contains x,

the set of points of A fixed by the root group Ua,x is exactly a half-apartment
[Lan96, 13.3 (ii)]. Hence for every relative root a ∈ Φ, the set of points in A fixed
by Ua,x and U−a,x is the wall associated to a + l and −a − l. The set of fixed
points by Px in A is {x} because x is a special vertex and P contains Ua,x for
every relative root a ∈ Φ [Lan96, § 10].

Now assume that d < dmax. By contradiction, assume that Px fixes another
point y ∈ A. The action being isometric and [x, y] being metrically characterized
[AB08, Prop. 11.5], Px fixes the line segment [x, y]. If [x, y] cross a wall, we
get a point z ∈ A fixed by Px such that d(z) > d(x). By induction, Pz has a
unique fixed point, so Pz contains strictly Px and this contradicts the maximality
of Px. Hence, y and x are on the same facet F . If F 6= {x} and x 6= y, since
the action is continuous and preserves the polysimplicial structure, the group Px
fixes F ∩ (x, y). Hence P fixes a point z ∈ F \ F . We get again d(z) > d(x) and
this will contradict the maximality of Px.
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(ii)⇒ (i) Conversely, let x ∈ X(G, k) be such that the group P = StabG(k)(x)

has a unique fixed point. If P ′ is a bounded subgroup containing P , and
y ∈ X(G, k) a point fixed by P ′, then P fixes y and y = x because of unique-
ness. Hence P ′ ⊂ StabG(k)(x) = P .

Moreover, if G is simply connected, the stabilizer of a facet fixes it pointwise
[BrTi84, 5.2.9]. Because of the above equivalence, a maximal bounded subgroup
is exactly the stabilizer of a vertex of X(G, k).

2.2.7 Remark. By uniqueness of the fixed point, we get an injective map from
the set of maximal bounded subgroups of G(k) to the set of points in X(G, k).
Denote by X(G)max the image of this map. It is easy to remark that X(G, k)max

contains the vertices of the polysimplicial complex X(G, k).
Moreover, it is easy to see that every x ∈ X(G, k)max is the isobarycentre of

its facet F , because the stabilizer in G(k) of x acts by isometries on F and x is
the only fixed point. Be careful that the converse is not true: the stabilizer of the
isobarycentre of a facet is not a maximal bounded subgroup in general.
2.2.8 Remark. Using the proof of Proposition 2.2.6, it is not hard to see that a
compact subgroup H ⊂ G(k) is always contained in a maximal one. Consider
a fixed point x ∈ X(G, k) by H of maximal degree d(x) (this does not depends
on the choice of an apartment). Hence, H is contained in StabG(k)(x). Claim:
StabG(k)(x) is a maximal compact subgroup. By contradiction, if StabG(k)(x) is
not, then it fixes a second point y, and then one can find a fixed point on the line
(x, y) of higher degree: this contradicts the maximality of d(x).

Now, we need further investigation on compact open subgroups to prove
Noetherianity for absolutely simple semisimple groups.

2.2.9 Lemma. Let U be a compact subgroup of G(k) and denote by Ω = X(G, k)U

the non-empty subset of points fixed by U . If U is open, then Ω is a bounded
(therefore compact) subset of X(G, k).

Proof. By contradiction, assume that Ω is not bounded. Let x0 ∈ Ω. Since Ω

is not bounded, one can choose a sequence xn ∈ Ω such that d(xn, x0) ≥ n. Let
X(G, k) be a compactification of X(G, k), defined in [RTW10]. Let x ∈ X(G, k)

be a limit point of (xn)n (it exists because X(G, k) is a compact space by

[RTW10, 3.34]). Because
X(G, k) → R

y 7→ d(x0, y)
is continuous, x 6∈ X(G, k).

By [RTW10, 4.20 (i)], there exists a maximal k-split torus S′ such that
x0, x ∈ A(S′, k), and one can assume that S′ = S.

The group U is open in the subgroup StabG(k)(x0), which is compact by 2.2.2.
Hence, for every relative root a ∈ Φ, the intersection Ua(k) ∩ U has finite index
in the subgroup Ua,x0 . Hence, U contains Ua,la for some la ∈ [fx0(a),+∞[.

Because G(k) acts continuously on X(G, k), the point x ∈ X(G, k) is
fixed by U . Because x 6∈ A(S, k), there exists a root a ∈ Φ such that
Ua,x = StabG(k)(x) ∩ Ua(k) = {1} by description of this stabilizer [RTW10, 4.14].
But Ua,x ⊃ U ∩ Ua(k) ⊃ Ua,la , and we get a contradiction.

2.2.10 Proposition. Every compact open subgroup of G(k) is contained in
finitely many compact (open) subgroups of G(k).

Proof. Consider a compact open subgroup U ⊂ G(k). By Lemma 2.2.9, the
set Ω = X(G)U is non-empty and bounded. By Remark 2.2.8, U is contained
in a maximal compact subgroup. Since X(G, k) is locally finite (because k is
a local field), by remark 2.2.7 U is contained in finitely many maximal compact
subgroups. Since U is open, it has finite index in any maximal compact subgroup.
Hence, the set of compact subgroups containing U is finite.
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We now obtain the first step of the main theorem 1.4.3 by the following:

2.2.11 Proposition. Let k be a non-Archimedean local field and G be an almost
k-simple, semisimple group. Then G(k) is Noetherian.

Proof. Let (Un)n∈N an increasing sequence of open subgroups of G(k). Denote by
G(k)+ the normal subgroup of G(k) generated by rational points of the unipotent
radical of minimal parabolic k-subgroups of G [BoTi73, 6.2].

Let us start with statements on open subgroups of G(k). Consider an open
subgroup U of G(k).

Claim: If U ∩G(k)+ is bounded, then U is compact.
Indeed, assume U ∩ G(k)+ is bounded. Since U is open, it is closed. The

group G(k)+ is closed according to [BoTi73, 6.14]. Thus, U ∩G(k)+ is compact
by 2.2.3(2). By [BoTi73, 6.14], the quotient group G(k)/G(k)+ is compact. Hence
UG(k)+/G(k)+ is a compact open subgroup ofG(k)/G(k)+. The natural bijective
continuous homomorphism U/(U ∩G(k)+)→ UG(k)+/G(k)+ is open and hence
a homeomorphism, so U/(U ∩G(k)+) is compact. It follows that U is compact.

Claim: If U is not bounded, then U contains G(k)+

Indeed, if U is not bounded, then it is not compact. Hence U ∩ G(k)+ is a
non-bounded open subgroup of G(k)+ by the previous claim. By a theorem of
Prasad, attributed to Tits [Pra82, Theorem (T)], we get U ∩ G(k)+ = G(k)+.
Hence U ⊃ G(k)+.

Let us now finish the proof by distinguishing two cases.
First case: Un is bounded (hence compact) for all n ∈ N.
By Proposition 2.2.10, U0 is contained in finitely many compact subgroups.

Hence, the increasing sequence of compact open subgroups (Un)n∈N is eventually
constant.

Second case: UN is not bounded for some N ∈ N.
Hence, for all n ≥ N , the group Un is not bounded and contains G(k)+. The

open subgroup UN/G(k)+ of the compact group G(k)/G(k)+ has finite index.
Hence, the sequence (Un)n∈N is eventually constant.

2.3 Quasi-reductive groups

The case of a commutative quasi-reductive group

2.3.1 Proposition. Let k be a non-Archimedean local field. If C is a smooth
connected commutative quasi-reductive k-group, then C(k) is Noetherian.

Proof. This proof follows the beginning of the proof of [Con12, 4.1.5].
Let S be the maximal k-split torus of C (it is unique by k-rational conjugacy

[CGP15, C.2.3]). Consider the smooth quotient of algebraic k-groups:

1 −→ S
j−→ C

π−→ C/S −→ 1

Claim: The connected smooth abelian k-group C/S does not contains any
subgroup isomorphic to Ga or Gm.

Applying [SGA3, Exp. XVII 6.1.1(A)(ii)] to the preimage in C of a subgroup
isomorphic to Ga (see [Con12, 4.1.4] for a more direct proof), we get a contradic-
tion with quasi-reductiveness of C. Applying [Bor91, 8.14 Cor.] to the preimage
in C of a subgroup isomorphic to Gm, we get a contradiction with maximality of
S.

By Lemma 2.1.3(b) and Hilbert 90 theorem, we get a short exact sequence of
topological groups:

1 −→ S(k)
jk−→ C(k)

πk−→
(
C/S

)
(k) −→ 1
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where πk is a surjective open morphism.
By [Con12, A.5.7], the topological group

(
C/S

)
(k) is compact, hence it is

Noetherian by Proposition 2.1.1(2) (In this commutative case, we also have a
direct proof considering the smooth quotient of C/S by its maximal k-torus,
which is anisotropic). By Proposition 2.1.1(4) and (5), the topological group
S(k) ' (k×)n (where n = dimS) is Noetherian. Applying Proposition 2.1.1(3) to
πk, the topological group C(k) is Noetherian.

The case of a pseudo-reductive group

Thanks to [CGP15], we have structure theorems on pseudo-reductive groups,
well summarized in [Con12, §2]. In particular, there is a lot of flexibility in
the choice of a (generalised) standard presentation, so that we can reduce the
question of Noetherianity from pseudo-reductive groups to semisimple groups and
commutative quasi-reductive groups.

2.3.2 Lemma. Let k be a non-Archimedean local field and k′ a nonzero finite
reduced k-algebra, and write k′ =

∏
i∈I k

′
i where k′i/k are extensions of local fields

of finite degree (but possibly non-separable). Let G′ be a smooth connected k′-group
and denote by G′i its fiber over the factor field k′i. Consider the smooth connected
k-group G = Rk′/k(G′). If each fiber G′i is either an absolutely simple semisimple
k′i-group or a basic exotic pseudo-reductive k′i-group, then the topological group
G(k) is Noetherian.

Proof. Write Rk′/k(G′) =
∏
i∈I Rk′i/k(G′i) [CGP15, A.5.1]. There is a topological

isomorphism Rk′/k(G′)(k) '
∏
i∈I G

′
i(k
′
i). If each factor G′i(k′i) is Noetherian,

then so is G(k) by Proposition 2.1.1(4).
From now on, assume that k′/k is a finite extension of local fields. It is

sufficient to show that G′(k′) is Noetherian.
If G′ is an absolutely simple semisimple k′-group, then by Proposition 2.2.11

the topological group G′(k′) is Noetherian.
Otherwise, G′ is a basic exotic pseudo-reductive k′-group (see [CGP15, 7.2]

or [Con12, 2.3.1] for a convenient definition). Hence we are in the case of a field
with char(k′) ∈ {2, 3}. Then, by [CGP15, 7.3.3, 7.3.5], G(k′) is topologically
isomorphic to G(k′) where G is an absolutely simple semisimple k′-group. Hence,
G(k′) is Noetherian again by Proposition 2.2.11.

2.3.3 Proposition. Let k be a non-Archimedean local field and G a pseudo-
reductive group. Then G(k) is Noetherian.

Proof. This proof almost follows the proof of [Con12, 4.1.9], based on structure
theorem of pseudo-reductive groups over a local field. Let us recall the main steps
of this proof.

If k is any field of characteristic p 6= 2, 3, then a pseudo-reductive k-group is
always standard according to [CGP15, 5.1.1].

If k is a local field of characteristic p ∈ {2, 3}, then we are in the convenient
case of a base field k with [k : kp] = p. Hence, by theorem [CGP15, 10.2.1], G is
the direct product G1×G2 of a generalised standard pseudo-reductive k-group G1

and a totally non-reduced pseudo-reductive k-group G2. Moreover, the k-group
G2 is always trivial when p 6= 2.

First step: Assume G2 is not trivial (hence char(k) = 2). By [CGP15, 9.9.4],
the topological group H(k), deduced from a basic non-reduced pseudo-simple k-
group H (see definition [CGP15, 10.1.2]) is topologically isomorphic to Sp2n(K)

for some n and an extension of local fields K/k. By Proposition 2.2.11, Sp2n(K)
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is Noetherian, hence so is H(k). By [CGP15, 10.1.4], the totally non-reduced k-
group G2 is isomorphic to a Weil restriction Rk′/k(G′2) where k′ is a nonzero finite
reduced k-algebra and fibers of G′2 are basic non-reduced pseudo-simple k-groups.
By Lemma 2.3.2, G2(k) is Noetherian.

Second step: From now on, we can assume that G = G1 is a generalised
standard pseudo-reductive k-group, together with a generalised standard presen-
tation (G′, k′/k, T ′, C) and C′ = ZG′(T ′) where k′ is a nonzero finite reduced
k-algebra, T ′ is a maximal k′-torus of G′ and C is a Cartan k-subgroup of G.
Write k′ =

∏
i∈I k

′
i where k′i/k are finite extensions of local fields. By definition

of a generalised standard presentation, G′ is a k′-group whose fibers, denoted by
G′i, are absolutely simple simply connected semisimple or basic exotic pseudo-
reductive. Hence, by Lemma 2.3.2, the topological group Rk′/k(G′)(k), which is
topologically isomorphic to

∏
i∈I G

′
i(k
′
i), is Noetherian. Moreover, by Proposi-

tions 2.3.1 and 2.1.1(4), the topological group
(
Rk′/k(H ′)oC

)
(k) is Noetherian.

Third step : under the above notations H1
(
k,Rk′/k(C′)

)
is finite : this is

exactly a part of the proof of [Con12, 4.1.9]. By [Con12, 4.1.6], there is a natural
group homomorphism H1

(
k,Rk′/k(C′)

)
'
∏
i∈I H

1
(
k′i, C

′
i

)
. If G′i is semisimple,

the cartan subgroup C′i is a torus and H1
(
k′i, C

′
i

)
is finite by [Con12, 4.1.7].

Otherwise G′i is a basic exotic pseudo-reductive group. There is a quotient map
on an absolutely simple semisimple group G′i → G′i carrying C′i onto a cartan
subgroup (a torus) C′i of G′i. Over a separable closure k′is the injective map of
rational points C′i(k′is) → C′i(k

′
is) becomes bijective. By [Con12, 4.1.6], there is

a isomorphism H1(k′i, C
′
i) ' H1(k′i, C

′
i) and the second one is finite by [Con12,

4.1.7] again, since C′i((k′i)s) is Galois-equivariantly identified with (k′i)s-points of
a k′i-torus in such cases.

By definition of a generalised standard presentation, we have a group isomor-
phism:

G '
(
Rk′/k(H ′) o C

)
/Rk′/k(C′)

According to the proof of [Con12, 4.1.9], the continuous morphism between
topological groups πk :

(
Rk′/k(H ′)oC

)
(k)→ G(k) is open with a normal image

which has finite index [Con12, 4.1.9 (4.1.2)]. Hence, by 2.1.1(6) applied to this
morphism πk, the group G(k) is Noetherian.

General case

2.3.4 Proposition. Let k be a non-Archimedean local field and G be a quasi-
reductive group. Then G(k) is Noetherian.

Proof. Consider the pseudo-reductive quotient of G :

1 −→ Ru,k(G) −→ G
π−→ G/Ru,k(G) −→ 1

By Lemma 2.1.3(b) one has the following exact sequence of topological groups:

1 −→ Ru,k(G)(k) −→ G
πk−→
(
G/Ru,k(G)

)
(k)

where the homomorphism πk is open because Ru,k(G) is smooth.
Applying [Oes84, VI.1] to the k-wound unipotent group Ru,k(G), the topolog-

ical group Ru,k(G)(k) is compact, hence it is Noetherian by Proposition 2.1.1(2).
Applying Proposition 2.3.3 to the pseudo-reductive k-group G/Ru,k(G), we get
that the topological group

(
G/Ru,k(G)

)
(k) is Noetherian. Hence, by Proposition

2.1.1(3), the topological group G(k) is Noetherian.
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2.4 Proof of the equivalence theorem
Now, there are no extra difficulties to prove Theorem 1.4.3 giving an equiva-

lence between an algebraic property and topological ones. We prove successively
(iii) or (iv)⇒ (i)⇒ (ii)⇒ (iii) and (iv).

Let us prove (iii) or (iv)⇒ (i).

2.4.1 Lemma. Let k be a non-Archimedean local field. If U is a smooth connected
affine unipotent k-group, then U(k) is the union of an increasing sequence, indexed
by Z, of pro-p open subgroups (Un)n∈Z whose intersection is trivial.

Moreover, when U is not k-wound, one can assume that Un is strictly increas-
ing.

Proof. Denote by $ a uniformizer of Ok and, for all n ∈ Z, denote
mn = $nOk ⊂ k. Denote by Um the smooth connected unipotent k-split k-
group of upper triangular unipotent matrices. For n ∈ Z, define

Pn =

(xi,j)1≤i,j≤m ,

xi,j = 0 if i > j

xi,j = 1 if i = j

xi,j ∈ mn(i−j) if i < j

 ⊂ Um(k)

The sequence (Pn)n∈Z is an increasing sequence of groups whose inter-
section is trivial and union is equal to Um(k). For all n, the subgroup
Pn of Um(k) is open since it contains the open neighbourhood of identity(

1 + m|n|(m−1)Mm(k)
)
∩ Um(k). And it is a pro-p-group since every Pn+1 is

a normal subgroup of Pn such that the quotient Pn/Pn+1 is a p-group.
By [Bor91, 15.5(ii)], there is a closed immersion U → Um for some m ∈

N. Define Un = Pn ∩ U(k). The sequence of subgroups (Un)n∈Z is increasing,
the intersection

⋂
n∈Z

Un is trivial and the union is
⋃
n∈Z

Un = U(k), because the

same holds for (Pn) and Um(k). Every Un is a pro-p subgroup of U(k) because
U(k) ⊂ Um(k) is closed, and it is an open subgroup of U(k) because Pn is open
in Um(k).

Now, assume that U is not k-wound. Since U(k) is not compact by [Oes84,
VI.1], every Un is distinct from U(k). Moreover, Un is never trivial because it is
open in U(k). Hence, one can extract a strictly increasing sequence

(
U ′$(n)

)
n∈Z

with the same properties as before.

2.4.2 Proposition. Let k be a non-Archimedean local field and G a smooth
connected affine k-group. Assume that the topological group G(k) contains either
a maximal pro-p subgroup, or a maximal compact subgroup. Then, G0 is a quasi-
reductive k-group.

Proof. Denote by U = Ru,k(G0) the unipotent k-radical of G and byH a maximal
compact or pro-p subgroup of G(k). By contradiction, let us prove that U is k-
wound.

If it is not, denote by ZU the maximal smooth central k-subgroup of U (it
exists, built as the maximal smooth closed k-subgroup [CGP15, C.4.2] of the
center of U). By proposition [CGP15, B.3.2], the closed k-subgroup ZU contains
a closed k-subgroup k-isomorphic to Ga, hence ZU is a non-trivial non-k-wound
k-group. By [Oes84, VI.1], the topological group ZU (k) is not compact.

Since ZU (k) is a characteristic subgroup of the normal subgroup U(k) of G(k),
it is normalised by H. By Lemma 2.4.1, ZU (k) is covered by an increasing
sequence indexed by Z of pro-p open subgroups (Zn)n∈Z. For all n ∈ Z, de-
fine the subset Cn =

⋃
h∈H

hZnh
−1 of ZU (k) normalised by H. The subset Cn
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is compact as the image of the compact set H × Zn by the continuous map
(g, h) 7→ ghg−1. Since (Cn ∩ Zm)m∈Z is an open covering of Cn by an increas-
ing sequence, there exists some mn ∈ Z such that Cn ⊂ Zmn . Define Pn to be
the closure in G(k) of the subgroup generated by Cn. It is a closed subgroup
of the pro-p group Zmn , hence it is a pro-p group normalised by H. Hence, the
subgroup Hn · H of G(k), directly generated by H and Hn, is a pro-p group
(as the image of a semi-direct product of pro-p groups Hn o H by the surjec-
tive morphism Hn oH → Hn ·H induced by multiplication [RZ10, 2.2.1(e)] and
[Ser94, 1.4 Prop.4(b)]) containing H. Hence, Hn ⊂ H by maximality of H as
a compact or pro-p subgroup of G(k). As a consequence H contains the union⋃
n∈Z

Hn =
⋃
n∈Z

⋃
h∈H

hZnh
−1 =

⋃
h∈H

h

(⋃
n∈Z

Zn

)
h−1 =

⋃
h∈H

hZU (k)h−1 = ZU (k).

Since ZU (k) is a non-compact closed subgroup of H, we get a contradiction with
compactness of H.

Let us prove (i)⇒ (ii).

2.4.3 Proposition. Let k be a non-Archimedean local field and G a smooth affine
k-group. If G0 is a quasi-reductive k-group, then G(k) is Noetherian.

Proof. The identity component G0 of G is a smooth normal k-subgroup of G
[DG70, II.§5 1.1 and 2.1], and the quotient F = G/G0 is a (smooth) finite k-
group [DG70, II.§5 1.10].

By Lemma 2.1.3(b), we have an exact sequence of topological groups

1→ G0(k)→ G(k)
πk→ F (k)

where πk is an open morphism.
By Proposition 2.3.4, the topological group G0(k) is Noetherian and F (k) is

Noetherian because it is finite. As a consequence, by Proposition 2.1.1(3), the
topological group G(k) is Noetherian.

To conclude, let us finish the proof by showing that (ii)⇒ (iii) and (iv).

2.4.4 Proposition. Let k be a non-Archimedean local field and G a smooth affine
k-group. If G(k) is Noetherian, then G(k) admits a maximal compact subgroup
and a maximal pro-p subgroup.

Proof. By contradiction, assume than G(k) does not contains a maximal pro-p
(resp. compact) subgroup.

By induction, it is possible to define a strictly increasing sequence of pro-p
(resp. compact) open subgroups. Basis of the induction is given by Lemma 2.1.4.
Induction step: since G(k) does not admit a maximal pro-p (resp. compact)
subgroup, given a pro-p (resp. compact) open subgroup Un, there exists a pro-p
(resp. compact) subgroup Un+1 containing Un strictly. The group Un+1 is open
since it contains Un.

Such a sequence cannot exist sinceG(k) is Noetherian: there is a contradiction.

Let us now prove the second part of Theorem 1.4.3

2.4.5 Lemma. Let k be a non-Archimedean local field and G a smooth affine
k-group. If P is a pro-p (resp. compact) subgroup of G(k), then P is contained
in a pro-p (resp. compact) open subgroup of G(k).
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Proof. Denote by U the pro-p open subgroup of G(k) given by Lemma 2.1.4. The
index [P : U ∩ P ] is finite since P is compact and U ∩ P is open in P . Hence,
the set {x−1Ux , x ∈ P} is finite. Define U0 =

⋂
x∈P x

−1Ux. It is an open
pro-p subgroup of G(k) normalised by P . Hence the group P0 = P · U0 is an
open subgroup of G(k). It is compact as the image of P × U0 by the continuous
multiplication map G(k)×G(k)→ G(k). When, moreover, P is pro-p, the group
P0 is pro-p as the image of the pro-p group P nU0 by the surjective multiplication
homomorphism P n U0 → P · U0.

Proof of second part of Theorem 1.4.3. Using the same construction by induction
as in proof of 2.4.4, statements (1) and (2) are a direct result from Noetherianity
and Lemma 2.4.5.

3 Maximal pro-p subgroups of a semisimple
group

Failure to compactness of maximal bounded subgroups in the group of ratio-
nal points of a non-semisimple k-group involves extra difficulties to use profinite
subgroups results. As an example of bad behaviour of non-semisimple groups, the
maximal pro-p subgroup ofGm(k) = k× is not finitely generated when k = Fq((t)).
From now on, we reduce our study to the case of a semisimple k-group G and we
only consider smooth affine k-groups, that we will call algebraic k-group.

The conjugacy theorem 1.2.1 is the generalisation to arbitrary characteristic
of [PlR94, Theorem 3.10], which Platonov and Rapinchuk prove in characteristic
0 and attribute to Matsumoto. The proof is given in part 3.1, using Bruhat-Tits
buildings instead of maximal orders.

Furthermore, as we obtained a description of maximal profinite subgroups of
G(k) in Proposition 2.2.6, Theorem 1.5.1 establishes an analogous description of
maximal pro-p subgroups. It is proven in part 3.3. In practice, description by
integral models established in Theorem 1.5.3 are more convenient; it is proven in
part 3.2.

3.1 Proof of the conjugacy theorem
Let us first investigate the case of an algebraic group defined over a finite field.

This case corresponds to special fibers of integral Ok-models (these models are
useful in order to make a description of profinite subgroups).

3.1.1 Lemma. Let k be a finite field of characteristic p. Let H be a connected
algebraic k-group. Thus, H has Borel subgroups defined over k (Lang’s theorem).
The p-Sylow subgroups of the finite group H(k) are exactly the groups Bu(k) where
B is a Borel subgroup of H defined over k and Bu is the unipotent radical of B.

Moreover, the map B 7→ Bu(k) is a bijection between the set of Borel k-
subgroups of H and the set of p-Sylow subgroups of H(k).

Proof. Denote by q the cardinal of k. Let P be a p-Sylow subgroup of H(k). Let
g ∈ P and g = gs ·gu the Jordan decomposition of g. Since H is affine, there exists
an integer n ∈ N∗ and a faithful linear representation ρ : H ↪→ GLn,k [Bor91, 5.1]
such that ρ(gs) = ρ(g)s. Hence, the order of this element divides (q − 1)n, so it
is prime to p. As a consequence g = gu. Hence P consists in unipotent elements
of H(k). Since k is perfect and H is connected, by [BoTi71, 3.7], there exists a
Borel k-subgroup B such that P is contained in the group of rational points of
the unipotent radical of B, denoted by Bu(k). Since k is perfect, Bu is k-split.
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Hence, Bu(k) is a p-group. Since P is a p-Sylow subgroup of H(k), so P = Bu(k)

by maximality.
Since the Borel subgroups are H(k)-conjugated [Bor91, 16.6], and since the

p-Sylow subgroups of the finite group H(k) are H(k)-conjugated, we obtain a
surjective map Ψ : B 7→ Bu(k) between Borel k-subgroups of H and p-Sylow
subgroups of H(k). Let us show that it is a bijective map.

Fix B a Borel k-subgroup of H and S a maximal k-split torus of B, hence
of H. Define T = ZH(S), it is a maximal torus of H defined over k since an
algebraic group over a finite field is quasi-split. Since k is perfect, the unipotent
radical of B is k-split [BrTi84, 1.1.11]. The k-group B has a Levi decomposition
B = T ·Bu [CGP15, C.2.4].

On the one hand, since H(k) acts by conjugation on the set of Borel k-
subgroups of H, the number of Borel k-subgroups is equal to the cardinal of
H(k)/NH(k)(B). By a theorem due to Chevalley [Bor91, 11.16], a Borel subgroup
of H is equal to its normalizer, hence NH(k)(B) = B(k). On the other hand, since
H(k) acts by conjugation on the set of its p-Sylow subgroups, the number of its
p-Sylow subgroups is equal to the cardinal of H(k)/NH(k)(Bu(k)).

Hence, it suffices to show NH(k)(Bu(k)) = B(k). Denote by N = NH(S)

the nomalizer of S in H. Since N normalises T , we get that N(k) normalises
T (k). Since B(k) = T (k)Bu(k) = Bu(k)T (k), by [CGP15, C.2.8], we get G(k) =

Bu(k)N(k)Bu(k). Let g ∈ NH(k)(Bu(k)) ⊂ H(k). Write g = unu′ with u, u′ ∈
Bu(k) and n ∈ N(k). By contradiction, suppose that n 6∈ T (k). Thus the Weyl
group kW = N(k)/T (k) is not trivial, hence the group H is not solvable and
admits opposite root subgroups [Spr98, 7.1.3, 7.1.5 and 7.2], which are k-split
since k is perfect [Bor91, 15.5 (ii)]. Hence there exists u ∈ Bu(k) such that
n−1un 6∈ Bu(k). This contradicts n ∈ NH(k)(Bu(k)). Hence NH(k)(Bu(k)) ⊂
B(k).

As a consequence, the equality NH(k)(Bu(k)) = NH(k)(B) = B(k) completes
the proof.

3.1.2 Remark. The bijective correspondence between Borel k-subgroups of H and
p-Sylow subgroups of H(k) is useless in what follows. We only need to know that
the number of Borel k-subgroups is prime to p (that is also a consequence of
Bruhat decomposition).

More precisely, from this proof we get that the normalizer of a p-Sylow sub-
group of H(k) is exactly B(k). Over a local field instead of a finite field, this
will be generalised by Proposition 3.3.3 with a simple connectedness assumption:
normalizers of a maximal pro-p subgroups are exactly Iwahori subgroups.

When a p-group acts on a finite set of cardinal prime to p, orbit-stabilizer
theorem gives the existence of a fixed point. This statement can be generalised
to the action of a pro-p group.

3.1.3 Lemma. Let p be a prime and X a finite set of cardinal prime to p. If G
is a pro-p group acting continuously on X, then G fixes an element of X.

Proof. For all x ∈ X, denote by Gx the stabilizer of x. Since X is finite, Gx is
open. Let H = GX =

⋂
x∈X Gx be the subgroup of G fixing X pointwise. Then

H is a normal open subgroup of G. Hence G/H is a p-group acting on X. By the
orbit-stabilizer theorem, G/H fixes an element x ∈ X. Hence G fixes x.

Since a profinite subgroup is compact, by Bruhat-Tits fixed point theorem,
such a subgroup of G(k) fixes a point x0 ∈ X(G, k). Since the action of G(k)

preserves the structure of the simplicial complex, we get an action on the star of
x0, that means an action on the set of facets whose closure contains x0. Showing
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that the subset of alcoves of this set is a finite set of cardinal prime to p, we will
get the following:

3.1.4 Proposition. A pro-p subgroup of G(k) setwise stabilises an alcove of
X(G, k).

Proof. Let U be a pro-p subgroup of G(k). By Proposition 2.2.6, there exists
a point y ∈ X(G, k) such that StabG(k)(y) is a maximal compact subgroup of
G(k) containing U . Consider the (non-empty) set Cy of alcoves of X(G, k) whose
closure contains y. Be careful that we forget the Euclidean structure provided by
X(G, k) and we only look at Cy as a discrete set.

Denote by F the facet of X(G, k) containing y. By conjugation, assume that
F ⊂ A. Define the star of F , denoted by X(G, k)F , as the set of facets F ′ of
X(G, k) such that F ⊂ F ′. We endow this set with the partial order F ′ ≤ F ′′ ⇔
F ′ ⊂ F ′′. Denote by GF the connected integral model of G associated to F (see
definition in chapters [BrTi84, 4.6 and 5.1]). Denote by κ the residue field of k
and consider PF the set of κ-parabolic subgroups of GF ordered by the inverse of
the inclusion. There is an isomorphism of ordered sets between X(G)F and PF
[BrTi84, 4.6.32 et 5.1.32 (i)] such that maximal simplices ofX(G)F are exactly the
elements of Cy, and the minimal parabolic κ-subgroups of GF correspond to them
bijectively. By Lang’s theorem [Bor91, 16.6], the minimal parabolic κ-subgroups
of GF are exactly its Borel κ-subgroups. By Lemma 3.1.1, we obtain a bijection
between Cy and the set of p-Sylow subgroups of GF (κ).

Since G(k) preserves the poly-simplicial structure of X(G, k) and U fixes
y, the group U acts on Cy. For all c, c′ ∈ Cy, by continuity of the action
G(k)×X(G, k)→ X(G, k), the subset {g ∈ U , g · c = c′} is closed in U . As
a consequence, U acts continuously on the finite set Cy, whose cardinal is congru-
ent to 1 modulo p. By Lemma 3.1.3, U fixes an alcove c ∈ Cy, hence U setwise
stabilises it in X(G, k).

We now can give a proof of conjugation of maximal pro-p subgroup theorem.

Proof of Theorem 1.2.1. Let U,U ′ be two maximal pro-p subgroups of G(k). Let
c, c′ be alcoves stabilized by the action of U and U ′ respectively (they exist by
Proposition 3.1.4). Since G(k) acts transitively on the set of alcoves of X(G, k),
there exists an element g ∈ G(k) such that g · c′ = c. Hence gU ′g−1 sta-
bilises c. As a consequence, U and gU ′g−1 are two maximal pro-p subgroups
of P = StabG(k)(c) which is compact by Lemma 2.2.2(3). Hence, U et gU ′g−1

are two p-Sylow subgroups of the profinite group P . By conjugation of p-Sylow
subgroups theorem [Ser94, 1.4 Prop. 3], U and gU ′g−1 are conjugated in P , so U
and U ′ are conjugated in G(k).

We now need to use root groups and integral models to prove the uniqueness
of the alcove setwise stabilized by a given maximal pro-p subgroup. Theorem
1.5.1 will be proven in part 3.3.

3.2 Integral models
In the proof of Proposition 3.1.4, integral models were used; here, we will make

a more systematic use of them.
Let Ω a non-empty bounded subset of the standard apartment A. Denote by

πκ : G†Ω(Ok)→ G†Ω(κ) the canonical reduction map. Denote by GΩ =
(
G†Ω

)
κ
the

special fiber. Denote by
(
GΩ

)◦ the identity component of the κ-group GΩ, and by
Ru(G

◦
Ω) its unipotent radical, defined over κ because κ is perfect [BoTi65, 0.7].
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Denote by G
red
Ω = GΩ/Ru(GΩ) the quotient κ-group (possibly non-connected

since GΩ may be not connected). The root system of its identity component is
the set ΦΩ of roots a ∈ Φ, where Φ denotes the relative root system of G, such
that the root a seen as an affine map is constant over Ω and has values in the set
Γ′a [Lan96, 10.36]. Note that, when Ω contains an alcove, no root of Φ is constant
on Ω since an alcove of A is open in A, hence ΦΩ is empty.

Denote by πq : GΩ → G
red
Ω the quotient κ-morphism of algebraic κ-groups,

and, by notation abuse, πq : G†Ω(κ) → G
red
Ω (κ) the homomorphism of abstract

groups deduced from πq. It will be clear from the context which of these two
morphisms will be considered.

3.2.1 Notation. Identifying the abstract groups G†Ω(κ) = GΩ(κ), we can define
the composite morphism πΩ = πq ◦ πκ. Denote by P+

Ω the kernel of πΩ.
More specifically, if F is a facet of the building X(G, k), by transitivity, there

exists an element g ∈ G(k) such that g · F ⊂ A. Denote P+
F = g−1P+

g·F g. This
group does not depend on the choice of such a g.

The goal is to show that, when G is simply connected, P+
F is a maximal pro-p

subgroup of the profinite (by Lemma 2.2.2(3)) subgroup StabG(k)(F ). Note that
with this notation, it is not required that the facet F be contained in the standard
apartment A.

3.2.2 Lemma. The morphism πκ is a surjective group homomorphism and its
kernel kerπκ is a pro-p group.

Proof. Surjectivity of πκ is a consequence of smoothness of the Ok-model G†Ω
[BLR90, 2.3 Prop. 5].

The smooth affine Ok-group of finite type G†Ω has a faithful linear repre-
sentation, that means a closed immersion, ρ : G†Ω → GLn,Ok for which it cor-
responds a surjective Hopf Ok-algebras homomorphism ϕ : A � B where A
and B denote respectively the Ok-Hopf algebras of GLn,Ok and G†Ω. Denote
by π̃κ : GLn,Ok (Ok) → GLn,Ok (κ) the canonical surjective homomorphism (de-
fined as πκ above). Hence kerπκ = {f : B → Ok, f ⊗ 1 = ε ⊗ 1} and
ker π̃κ = {f : A → Ok, f ⊗ 1 = ε̃ ⊗ 1} where ε (resp. ε̃) is the co-unit of B
(resp. A).

On Ok points, we have ker π̃κ = GLn(m), according to notation of the proof
of Lemma 2.1.4. Since ε̃ = ϕ∗ε, we have the following commutative diagram:

0 // kerπκ
⊂ //

� _

���
�
� G†Ω(Ok)

πκ // //
� _

ρOk

��

G†Ω(κ) //
� _

ρκ

��

1

0 // ker π̃κ
⊂ // GLn(Ok)

π̃κ // // GLn(κ) // 1

Hence kerπκ is isomorphic to a closed subgroup of ker π̃κ, so it is a pro-p
group.

3.2.3 Proposition. The group P+
Ω is a normal pro-p subgroup of G†Ω(Ok).

Proof. By Lemma 2.1.3(b), we have kerπq = Ru(GΩ)(κ), hence it is a p-group
as a group of rational points of a unipotent κ-group. The following sequence of
group homomorphism 1 −→ kerπκ

⊆−→ ker(πq ◦ πκ)
πκ−→ kerπq

πq−→ 1 is exact.
Indeed, check that πκ(kerπq ◦ πκ) = kerπq.

If g ∈ πκ(kerπq ◦ πκ), then there exists h ∈ kerπq ◦ πκ such that g = πκ(h).
hence πq(g) = πq ◦ πκ(h) = 1, and so g ∈ kerπq.
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Conversely, if g ∈ kerπq, by surjectivity of πκ (given by Lemma 3.2.2), there
exists h ∈ GΩ(Ok) such that πκ(h) = g. Hence πq ◦ πκ(h) = πq(g) = 1, and so
h ∈ ker(πq ◦ πκ). Hence g ∈ πκ(ker(πq ◦ πκ)).

As a consequence, P+
Ω = kerπΩ is a pro-p group.

3.2.4 Lemma. Let k be a finite field of characteristic p. If H is a reductive
k-group, then H(k) does not have a non-trivial normal p-subgroup.

Proof. Let P be a normal p-subgroup of H(k). It is a subgroup of a p-Sylow
subgroup of H(k). By Lemma 3.1.1, there exists a Borel k-subgroup B such that
P ⊂ Ru(B)(k).

Let S be a maximal k-split torus of H. Denote T = ZH(S), it is a maximal
torus of H defined over k and contained in B. Let n ∈ NH(T )(k) such that B and
nBn−1 are opposite Borel k-subgroups. Hence, B∩nBn−1 = T [Bor91, 14.1] is a
torus. We have nPn−1 = P because P is normal in H(k). Hence, P is a subgroup
of T (k) and #T (k) is prime to p. As a consequence P ⊂ T (k) is trivial.

To obtain results about maximality of kerπΩ, we require that πΩ is surjective.

3.2.5 Lemma. The morphism of abstract groups πΩ is surjective.
In particular, if Q is a p-Sylow subgroup of G

red
Ω (κ), then π−1

Ω (Q) is a maximal
pro-p subgroup of G†Ω(Ok).

Proof. A finite field is perfect, hence by [Ser94, III.2.1 Prop. 6] applied to the con-
nected (κ-split) unipotent κ-group U = Ru(Gκ), we have H1(κ, U) = 0. Hence by
[Ser94, I.5.5 Prop.38] the morphism of abstract groups πq is surjective. According
to Lemma 3.2.2, the composite morphism πΩ is surjective.

By Proposition 3.2.3, the surjective morphism πΩ has a pro-p kernel. Hence,
for every p-subgroup Q of Gred

Ω (κ), the group π−1
Ω (Q) is pro-p (as an extension of

such groups). Hence, if Q is a p-Sylow subgroup, then π−1
Ω (Q) is a maximal pro-p

subgroup.

3.2.6 Proposition. If GΩ is connected, then the kernel P+
Ω is a maximal normal

pro-p subgroup of G†Ω(Ok).

Proof. Let P̃ be a normal pro-p subgroup of GΩ(Ok) containing P+
Ω . By [Ser94,

I.1.4 Prop.4], its image by the surjective morphism πΩ (see Lemma 3.2.5) is a
normal p-subgroup of Gred

Ω (κ).
When GΩ is connected, the quotient G

red
Ω is a connected reductive κ-group.

Hence, by Lemma 3.2.4, π(P̃ ) is trivial and P̃ = P+
Ω .

Under simple connectedness assumption

From now on, assume that the semisimple k-group G is simply connected.
Hence G†Ω = GΩ [BrTi84, 4.6.32 and 5.1.31].

3.2.7 Proposition. Assume Ω = c ⊂ A is an alcove and G is simply connected.
Then P+

Ω is a maximal pro-p subgroup of GΩ(Ok).

First, recall the following fact, given by Tits [Tit79, 3.5.2]:

3.2.8 Lemma. Under above assumptions and notations, the algebraic κ-group
GΩ is connected.

Proof of Proposition 3.2.7. Since Ω is an alcove, the root system of GΩ/Ru(GΩ) is
empty [BrTi84, 4.6.12(i), 5.1.31]. By Lemma 3.2.8, Gred

Ω is a connected reductive
quasi-split κ-group with a trivial root system. Hence, it is a κ-torus and so,
does not have a non-trivial p-subgroup. Hence, for every pro-p subgroup P of
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G†Ω(Ok) = GΩ(Ok), the image πΩ(P ) by the surjective morphism πΩ (Lemma
3.2.5) is a p-group [Ser94, 1.4 Prop.4], hence trivial. As a consequence, the kernel
P+

Ω is the (unique) maximal pro-p subgroup of GΩ(Ok).

Now, one can give a proof of Theorem 1.5.3.

Proof of Theorem 1.5.3. Let P a maximal pro-p subgroup. By Proposition 3.1.4,
we have P ⊂ StabG(k)(c). Let c0 ⊂ A. By strong transitivity of G(k) on the
building X(G, k), there exists g ∈ G(k) such that gc0 = c. Hence, g−1Pg is a
maximal pro-p subgroup of Gc0(Ok). By Proposition 3.2.7, we have P = gP+

c0g
−1.

Valued root group datum in the quasi-split simply connected case

To conclude in the simply connected case, let us interpret this group in terms
of a valued root group datum. This could be a bit tricky in the general case
and, in the two next propositions, we assume that G is, moreover, a quasi-split
semisimple k-group. In a further work [Loi16], we compute the Frattini subgroup
of a maximal pro-p-subgroup by the explicit decomposition of Proposition 3.2.9.

Denote by S the maximal k-split torus chosen in the construction of the build-
ing and by T = ZG(S) the associated maximal k-torus. Denote by T (k)b the
(unique) maximal profinite subgroup of T (k) and by T (k)+

b its (unique) maximal
pro-p subgroup.

3.2.9 Proposition. The group P+
c admits the following directly generated product

structure:

P+
c =

 ∏
a∈Φ+

nd

U−a,fc(−a)

 · T (k)+
b ·

 ∏
a∈Φ+

nd

Ua,fc(a)


where Φnd denotes the non-divisible roots of the relative k-root system Φ(G,S).

In particular, T (k)+
b = P+

c ∩ T (k)b.

Proof. By the simple connectedness assumption, proposition [Lan96, 3.5] gives
T(Ok) = T (k)b where T denotes the integral model of T defined in [Lan96, §3].

Since c is an alcove, for any relative root a ∈ Φ, we have fc(a) + fc(−a) > 0.
By computation in [Lan96, 5.9, 5.12, 6.5] and axioms of a valued root group
datum, the directly generated product U−Φ+,c(Ok) ·T(Ok) ·UΦ+,c(Ok) is a group,
hence it is equal to Gc(Ok) by [BrTi84, 4.6.6].

In the proof of Proposition 3.2.7, we have seen that G
red
c (κ) does not have

a non-trivial p-subgroup. Hence U±Φ+,c(Ok) ⊂ kerπc = P+
c since the image of

a pro-p group by a surjective continuous morphism is a pro-p group. Thus, we
obtain the equality (3.2.9).

By quasi-splitness and simple connectedness, the maximal k-torus T is an
induced torus [BrTi84, 4.4.16], generated by coroots, and we can be more precise
about the above description by root group datum:

3.2.10 Proposition. There is the following isomorphism of topological groups:∏
a∈∆ â

∨ :
∏
a∈∆(1 + mla) → T (k)+

b

(ta)a∈∆ 7→
∏
a∈∆ â

∨(ta)
(1)

where â = 2a if 2a ∈ Φ, and â = a otherwise; La denotes the minimal field of
definition of the root a (defined in [BrTi84, 4.1.3]) and mLa denotes the maximal
ideal of its ring of integers.

23



Proof. Since G is a simply connected quasi-split semisimple k-group, by [BrTi84,
4.4.16], T is an induced torus and, more precisely, there is the following isomor-
phism

∏
a∈∆ â

∨ :
∏
a∈∆ RLa/K(Gm,La) ' T , where ∆ denotes a basis of the

relative root system Φ. By uniqueness, up to isomorphism, of the Ok-model,
T is Ok-isomorphic to

∏
a∈∆ ROLa/Ok (Gm,OLa ). Hence, there is a natural iso-

morphism
∏
a∈∆O

×
La
' T(Ok) = T (k)b of topological abelian groups, and the

maximal pro-p subgroup is isomorphic to the direct product
∏
a∈∆(1 +mLa).

3.3 Description using the action on a building
We now can derive the useful description of a maximal pro-p subgroup of

G(k), as a pro-p-Sylow of the setwise stabilizer of a suitable alcove. To prove
Theorem 1.5.1, it suffices to show that every maximal pro-p subgroup of G(k) can
be realised as such a group.

Proof of Theorem 1.5.1. Let P be a maximal pro-p subgroup of G(k). By Propo-
sition 3.1.4, there exists an alcove c such that P setwise stabilizes c. By strong
transitivity, we can and do assume that c ⊂ A. In particular, P is a maximal
pro-p subgroup of G†c(Ok).

Firstly, we show the uniqueness of such an alcove c. By Lemma 2.2.2, the
topological group G†c(Ok) is compact, hence profinite. By Sylow theorem for
profinite groups [Ser94, 1.4 Prop.3 et 4 (a)], there exists g0 ∈ G†c(Ok) such that
P contains g0P

+
c g
−1
0 = P+

c . It suffices to show that P+
c does not stabilises any

alcove of X(G, k) different from c.
For all a ∈ Φ, the image by πc of the root group Ua,c(Ok) is trivial because

Ua,c is a root group of Gredc [Lan96, 10.34], hence trivial because c is an alcove
[Lan96, 10.36]. Hence P+

c contains the subgroup Uc of G(k) generated by Ua,c for
every a ∈ Φ. The group P+

c acts on the set of all facets of X(G, k) not contained
in cl(c) since it setwise stabilizes cl(c) and preserves the simplicial structure of
X(G, k). Let F be such a facet. Let A′ be an apartment containing c and F . Let
A′′ be an apartment containing c but not F . Since the group Uc acts transitively
on the set of apartments containing c [Lan96, 13.7], there exists u ∈ Uc ⊂ P+

c

such that u ·A′ = A′′. Hence P+
c does not stabilize F .

Conversely, let c be an alcove of X(G) and P be a maximal pro-p subgroup
of StabG(k)(c). Let P ′ be a maximal pro-p subgroup of G(k) containing P . Such
a P ′ exists by Lemma 2.4.5 and Proposition 2.2.10. Let c′ be the unique alcove
stabilized by P ′, hence by P . Since P contains P+

c according to Lemma 3.2.5,
it does not stabilize any facet of X(G, k) out from cl(c). Hence c = c′ and
P ′ is a maximal pro-p subgroup of StabG(k)(c). By maximality of P , we have
P ′ = P .

3.3.1 Corollary. If G is a simply connected semisimple k-group, then P is a
maximal pro-p subgroup of G(k) if, and only if, there exists an alcove c of X(G, k)

such that P = P+
c . Moreover, such an alcove c is uniquely determinated by P

and the set of fixed points by P in X(G, k) is exactly the simplicial closure cl(c).

Proof. The first part is a consequence of Proposition 3.2.7 and of the first part of
Theorem 1.5.3.

When G is simply connected, the stabilizer of an alcove is also its pointwise
stabilizer [BrTi84, 5.2.9]. This and Theorem 1.5.3 gives the second part.

Iwahori subgroups in the simply connected case

Recall the following definitions [BrTi84, 5.2]
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3.3.2 Definition.
(1) Given a facet F of X(G, k), call connected pointwise stabilizer of F

the subgroup GF (Ok) of G(k).
(2) A subgroup of G(k) is called a parahoric (resp. Iwahori) subgroup if,

and only if, it is the connected pointwise stabilizer of a facet (reps. an alcove) of
X(G, k).

To conclude this study of pro-p subgroups, the following well-known proposi-
tion is a kind of generalisation of Lemma 3.1.1.

3.3.3 Proposition. Assume that G is simply connected. A subgroup of G(k) is
an Iwahori subgroup if, and only if, it is the normalizer in G(k) of a maximal
pro-p subgroup of G(k).

Proof. Let c be an alcove of A, let g ∈ G(k) an element and H the stabilizer
of g · c. Since the semisimple k-group G is simply connected, the stabilizer H
is in fact an Iwahori subgroup [BrTi84, 5.2.9]. By Proposition 3.2.3, gP+

c g
−1 is

a normal pro-p subgroup of H. Hence H ⊂ NG(k)(gP
+
c g
−1). For every element

h ∈ NG(k)(gP
+
c g
−1), every u ∈ P+

c and x ∈ c, one has h−1uh · x = x because
gP+

c g
−1 fixes g · c pointwise. Hence h · x is a point in X(G, k) fixed by P+

c , so
h · x ∈ c since it cannot be contained on the boundary of c. Since the action
of G(k) preserves the simplicial structure of X(G, k), the element h stabilises c.
Hence NG(k)(gP

+
c g
−1) = H. By Theorem 1.5.3, it gives the first implication.

Conversely, let U be a maximal pro-p subgroup ofG(k). DefineH = NG(k)(U).
Denote by c be the unique alcove fixed by U given by Theorem 1.5.1. By unique-
ness of c, the subgroup H stabilises c. By Proposition 3.2.7 (and conjugation), U
is a normal subgroup of StabG(k)(c). Hence H = NG(k)(U) = StabG(k)(c) is an
Iwahori subgroup of G(k).

3.3.4 Corollary. Iwahori subgroups of G(k) are G(k)-conjugated.

Proof. This is [Tit79, 3.7]. It is immediate by Theorem 1.2.1 and Proposition
3.3.3.

An interest of Proposition 3.3.3 is to have an “intrinsic” definition (from the
group theory point of view, in other words a description not using the action
on the Bruhat-Tits building) of Iwahori subgroups in good cases (e.g. a simply
connected group over a local field). This provides a quick way to describe the
affine Tits system in purely group-theoretic terms.
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