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Abstract

The purpose of this paper is to link anisotropy properties of an algebraic

group together with compactness issues in the topological group of its rational

points. We find equivalent conditions on a smooth affine algebraic group

scheme over a non-Archimedean local field for the associated rational points

to admit maximal compact subgroups. We use the structure theory of pseudo-

reductive groups provided, whatever the characteristic, by Conrad, Gabber

and Prasad. We also investigate thoroughly maximal pro-p subgroups in the

semisimple case, using Bruhat-Tits theory.
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1 Introduction

Given a base field k and an affine smooth k-group denoted by G, we get an
abstract group called the group of rational points, denoted by G(k). When k is a
topological field, this group inherits a topology from the field. It makes sense to
link some algebraic properties of an algebraic k-group G and topological properties
of its rational points G(k). In this article, we consider a non-Archimedean local
field k, hence the topological group G(k) will be totally disconnected and locally
compact. Thus, one can investigate the compact, equivalently profinite, subgroups
of G(k). In the following, we denote by ω the discrete valuation, Ok the ring of
integers, m its maximal ideal, ̟ a uniformizer, and κ = Ok/m the residue field.

1.1 Existence of maximal compact subgroups

From the algebraic k-group G, we deduce the topological group G(k) thanks to
the topology of the base field k. We would like to get a correspondence between
algebraic properties of G and topological properties of G(k). A theorem of Bruhat
and Tits makes a link between anisotropy and compactness [BrTi84, 5.1.27] for
reductive groups. Another link between algebra and topology is Godement’s com-
pactness criterion for arithmetic quotients of non-Archimedean Lie groups, recently
extended to positive characteristic by Conrad [Con12, A5]. In the first part, we
obtain further results for a general algebraic group over a local field; more pre-
cisely, we provide a purely algebraic condition on the k-group G for G(k) to admit
maximal compact subgroups. The fact that this condition is non-trivial is roughly
explained by the following:

1.1.1 Examples. Consider the additive group Ga,k. Inside the topological group
(k,+), the subgroups ̟nOk, where n ∈ N form a basis of compact open neighbour-
hoods of the neutral element 0. However, k is not compact and does not admit a
maximal compact subgroup, since k is the union

⋃
n∈Z̟

nOk of compact subgroups.
Moreover, (k,+) cannot be compactly generated.

On the opposite, consider the multiplicative group Gm,k. The topological group
k× has a unique maximal compact subgroup: O×

k . Since k is assumed to be dis-
cretely valued by ω : k× → Z, the topological group k× is compactly generated by
O×

k and an element x ∈ k× such that ω(x) = 1.

In general, maximal compact subgroups of a reductive group are parametrised by
its enlarged Bruhat-Tits building [Tit79, 3.2] (the building in [Tit79] corresponds
to the enlarged building [BrTi84, 4.2.6]; see [Rou77, II.2] for more details with
bounded subgroups).

In fact, the additive group is the prototype of an algebraic group which does
not have a maximal compact subgroup in its rational points. More precisely:

1.1.2 Theorem. Let k be a non-Archimedean local field and G a connected algebraic
k-group. The topological group G(k) admits a maximal compact subgroup if, and
only if, G does not contain a non-trivial connected unipotent k-split normal k-
subgroup.

Under these conditions, G(k) is, moreover, compactly generated.
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We will go back to the notion of splitness for unipotent groups; it corresponds to
the existence of a filtration with subgroups isomorphic to Ga. In characteristic zero,
all unipotent groups are split and, in fact, the above algebraic condition amounts to
requiring that G be reductive. In this case, the theorem appears in [PlR94, §3.3].
Here, our theorem covers all cases and the proof, using Bruhat-Tits theory and
pseudo-reductive groups, is uniform whatever the characteristic of the local field.

1.2 Conjugacy and description of maximal pro-p subgroups

Once we know that an algebraic group G admits maximal profinite subgroups
(which are exactly maximal compact subgroups), we would like to describe them
more precisely. In the case of a semisimple k-group G, we can deal with integral
models of G and the action of G(k) on its Bruhat-Tits building X(G, k). Un-
fortunately, there are, in general, several conjugacy classes of maximal profinite
subgroups (in the simply connected case, they correspond to the different types of
vertices). However, the maximal pro-p subgroups appear, in turn, to take the role
of p-Sylow subgroups, as the following states:

1.2.1 Theorem. Let k be a non-Archimedean local field of residue characteristic p.
Let G be a semisimple k-group. Then, G(k) admits maximal pro-p subgroups and
they are pairwise conjugated.

Thanks to geometry of the building, given a suitable integral model G of G, we
can describe one of the maximal pro-p subgroups as π−1(P ) where π : G(Ok) ։ G(κ)

comes from the reduction morphism and P is a p-Sylow subgroup of the finite group
G(κ).

The choice of the integral model will be specified in Theorem 1.5.3.

1.3 Algebraic groups over imperfect fields

As already mentioned, we have to use the notion of a pseudo-reductive group.
This notion was first introduced by Borel and Tits in [BoTi78] but was deeply
studied only recently, by Conrad, Gabber and Prasad in [CGP15].

If k is any field, the unipotent radical of a smooth affine algebraic k-group G,
denoted by Ru,k(Gk), can fail to descend to a k-subgroup of G when k is imperfect.
It has a minimal field of definition which is a finite purely inseparable finite extension
of the base field k [CGP15, 1.1.9]. Hence, we have to replace the unipotent radical
Ru(G)k by the unipotent k-radical, denoted by Ru,k(G) and defined as the maximal
smooth connected unipotent normal k-subgroup of G. However, thanks to the
following short exact sequence of algebraic k-groups:

1→Ru,k(G)→ G→ G/Ru,k(G)→ 1

we can understand better the algebraic k-group G. Of course, when k is perfect,
this is exactly the reductive quotient of G.

Let G be a smooth connected affine k-group. One says that G is pseudo-

reductive if Ru,k(G) is trivial. Over perfect fields, it corresponds to reductivity,
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but it is far from true in general. We have to face this difficulty because for a local
field k of characteristic p, we have [k : kp] = p.

Thanks to the main structural theorem of Conrad, Gabber and Prasad [CGP15,
5.1.1], we have a deeper understanding of pseudo-reductive groups. Hence, there
is some hope to generalise results on reductive groups to pseudo-reductive groups
and, by dévissage, to obtain general results on arbitrary connected algebraic groups.
Typically, this notion enabled B. Conrad to obtain a Godement compactness crite-
rion in terms of anisotropy for general groups over any local field (note that, until
recently, standard references [Mar91] quote this criterion only for reductive groups
in positive characteristic, while it was now known to be true without any reductivity
condition in characteristic 0).

Thanks to the structure theory of unipotent groups provided by Tits [CGP15,
B.2], we have notions of “splitness”, “isotropy” and “anisotropy” for unipotent groups.
The most intriguing one is anisotropy, defined as follows.

Let U be a smooth affine unipotent k-group. One says that U is k-wound if
there are no nonconstant k-morphisms to U from the affine k-line (where U and
A
1 are seen as k-schemes), or equivalently if there is no nontrivial action of Gm on

U . Over a perfect base field, such a group has to be trivial; hence, this definition
makes sense only for imperfect fields.

We recall the following definition of Bruhat and Tits [BrTi84, 1.1.12], initially
introduced in a note of Borel and Tits [BoTi78].

1.3.1 Definition. Let G be a smooth connected affine k-group. One says that G
is quasi-reductive if Ru,k(G) is k-wound.

1.3.2 Remark. Because there is no nontrivial action of Gm onRu,k(G), no additional
root appears, which preserves symmetries of the set of roots. Hence, it is possible
to define a root system of a quasi-reductive group [CGP15, 3.2].

Unless stated otherwise, we assume that (from the least to the most general
definition) a semisimple, reductive, pseudo-reductive or quasi-reductive k-group is
connected by definition.

In Theorem 1.1.2, the algebraic k-group verifying the equivalent conditions are
exactly the quasi-reductive ones.

By the same way as in the reductive case [Pra82, BTR theorem], there is a
correspondence between compactness and anisotropy for unipotent groups, given
by Oesterlé [Oes84, VI.1]: assume that k is a imperfect local field, then U is k-
wound if, and only if, U(k) is compact.

1.4 The case of a topological base field

From now on, k is a local field of residual characteristic p.
If U is a connected k-split unipotent k-group, we will build, in Lemma 2.4.1

by analogy with the case of Ga seen in Example 1.1.1, an exhaustion of the non-
compact group U(k) by (increasing) compact open subgroups. If an algebraic k-
group G contains such a U as a normal k-subgroup, then we will cover, in Propo-
sition 2.4.2, the closed normal subgroup U(k) by compact open subgroups of G(k).

4



Hence, such a G cannot admit a maximal compact subgroup because such a sub-
group would have to contain U(k) as a closed subgroup.

Conversely, it is well-known that if G is a semisimple k-group, then G(k) has a
maximal compact subgroup. Hence, we would like to prove the same fact for any
quasi-reductive k-group. It is natural to exploit properness and finiteness properties
of long exact sequences in Galois cohomology attached to some group extensions,
but these properties are not satisfied in general. In fact, first Galois cohomology
pointed sets of relevant normal subgroups of G often fail to be finite in positive
characteristic (e.g. #H1(k, ZG) =∞ when char(k) = p > 0 and G = SLp ; see also
[CGP15, 11.3.3] for an example of a unipotent group).

Therefore cohomological methods are not sufficient to conclude. We are using
topological properties of rational points. One of them is the following:

1.4.1 Definition. A topological group G is called Noetherian if it satisfies the
ascending chain condition on open subgroups; this means that any sequence of
increasing open subgroups of G is eventually constant.

1.4.2 Example. (1) The discrete abelian group (Z,+) is Noetherian since any sub-
group of Z is an ideal of the Noetherian ring Z.

(2) By Example 1.1.1, the additive group of a non-Archimedean local field is
not a Noetherian group since it has an infinite strictly increasing sequence of open
subgroups, namely (̟−nOk)n∈N.

Because the additive topological group (k,+) (seen as the group of rational
points of the additive group Ga) admits no maximal compact subgroup, there is no
hope for a non-k-wound unipotent group U to have a maximal compact subgroup
inside its rational points. Together with Oesterlé’s previously mentioned result, this
is the heuristics leading to:

1.4.3 Theorem. Let k be a non-Archimedean local field with residue characteristic
p and G be a smooth affine k-group. The following are equivalent:

(i) The identity component G0 of G is a quasi-reductive k-group,

(ii) G(k) is Noetherian,

(iii) G(k) admits a maximal compact subgroup,

(iv) G(k) admits a maximal pro-p subgroup.

Moreover, under the above equivalent conditions:
(1) Every pro-p (resp. compact) subgroup of G(k) is contained in a maximal

pro-p (resp. compact) subgroup of G(k).
(2) Every maximal pro-p (resp. compact) subgroup of G(k) is open.

1.4.4 Corollary. If G is a quasi-reductive k-group, then G(k) is compactly gener-
ated.

Proof of corollary. By [CM13, Lemma 3.22] a locally compact group G is Noethe-
rian if, and only if, any open subgroup of G is compactly generated.
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This theorem and its corollary are well-known in the case of a p-adic field k (in
that case of char(k) = 0, quasi-reductivity implies reductivity because all unipotent
groups are split) as a proposition of Platonov and Rapinchuk [PlR94, 3.3 Proposi-
tion 3.15] and a theorem of Borel and Tits [BoTi65, 13.4]. In nonzero characteristic
it is necessary to consider the notion of quasi-reductivity in the statement of the
result.

For a reductive group G defined over a p-adic field, we know moreover that a
compact open subgroup is contained in finitely many compact subgroups [PlR94,
Proposition 3.16 (1)]. We don’t know if this statement is still true for a quasi-
reductive group over a local field of positive characteristic. In fact, when G(k) acts
properly on a locally finite affine building, there is a correspondence between its
compact open subgroups and the non-empty bounded subsets of the Bruhat-Tits
building. In the quasi-reductive case, we have a spherical Tits system by [CGP15,
C.2.20] but the existence of an affine Tits system is not yet proven.

1.5 Use of buildings and integral models

Though Theorem 1.4.3 gives a good criterion for the existence of maximal com-
pact subgroups, the proof is not constructive in the sense that we do not have any
detail about these subgroups. Nevertheless, in the case of a semisimple k-group G,
denote by X(G, k) its Bruhat-Tits building. In Proposition 2.2.6, we get a good
description of maximal compact subgroups as stabilizers of some points for the
continuous action of G(k) on its Bruhat-Tits building.

As stated in Theorem 1.4.3, for a semisimple k-group G, the topological group
G(k) has maximal pro-p subgroups. These groups are a kind of generalisation of
Sylow subgroups for a finite group: in the profinite situation, a profinite group has
maximal pro-p subgroups and they are pairwise conjugated [Ser94, 1.4 Prop. 3].
By our second main theorem 1.2.1, we know that the (usually non-compact) group
G(k) has maximal pro-p subgroups and that they are pairwise conjugated. The use
of Bruhat-Tits buildings and, in particular, of Euclidean buildings associated to
pairs (G, k) allows us to be more precise: we give a useful description of maximal
pro-p subgroups by use of a valued root groups datum in the simply-connected case.
Thanks to this, in a further work [Loi16], we compute the Frattini subgroup of a
maximal pro-p subgroup. There will be a somewhat analogous computation as in
[PrR84] where Prasad and Raghunathan compute the commutator subgroup of a
parahoric subgroup.

1.5.1 Theorem. Let k be a non-Archimedean local field and G a connected
semisimple k-group. If P is a subgroup of G(k), then P is a maximal pro-p subgroup
of G(k) if, and only if, there exists an alcove c ⊂ X(G, k) such that P is a maximal
pro-p subgroup of the stabilizer of c.

Moreover, such an alcove c is uniquely determined by P and the set of fixed
points by P in X(G, k) is contained in the simplicial closure cl(c) of c.

In particular, there is a natural surjective map from the maximal pro-p subgroups
of G(k) to the alcoves of X(G, k). When G is simply connected, this map is a
bijection.
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The first part of this theorem is a direct consequence of Proposition 3.1.4 and
conjugation of p-Sylow subgroups in profinite groups since the stabilizer of an alcove
is a profinite group by Lemma 2.2.2(3). To get a deeper description of maximal
pro-p subgroups, integral models and their reductions are useful.

1.5.2 Notation. Let Ω ⊂ A be a non-empty bounded subset where A denotes
the standard apartment of the Bruhat-Tits building X(G, k). Denote by GΩ the
corresponding smooth connected affine Ok-model of G (denoted by G◦

Ω in [BrTi84]
and by GΩ in [Lan96]: they are the same Ok-model of G, up to isomorphism,
because they satisfy the same universal property). Denote by G

†
Ω the (possibly

non-connected) smooth affine Ok-model defined at [BrTi84, 4.6.18] for the quasi-
split case and, by descent, at [BrTi84, 5.1.8] for the general case.

Recall that if Ω satisfies a suitable notion of convexity as a subset of a polysim-
plicial structure (denote by cl(Ω) the simplicial closure defined in [BrTi72, 7.1.2], we
assume here that Ω = cl(Ω)) and G is semisimple, then G

†
Ω(Ok) is the stabilizer of

Ω in G(k) [BrTi84, 4.6.29, 5.1.31]. The group GΩ(Ok) fixes Ω pointwise and, when
G is simply-connected we have GΩ = G

†
Ω [BrTi84, 5.2.9]. In particular, a simply-

connected semisimple k-group acts on its Bruhat-Tits building by type-preserving
isometries.

In part 3.2, we will use Ok-models (where Ok denotes the ring of integers of k)
to get the following description:

1.5.3 Theorem. Let k be a non-Archimedean local field and G a connected simply
connected semisimple k-group.

A maximal pro-p subgroup of G(k) is conjugated to

P+
c

= ker
(
Gc(Ok) ։ G

red
c

(κ)
)

where c ⊂ A denotes an alcove of the standard apartment, κ denotes the residue
field of k and G

red
c

denotes the reductive quotient of the special fiber of the integral
model associated to c.

This morphism Gc(Ok) ։ G
red
c

(κ) and its kernel appear in several references
like [PrY02] or [Tit79].

2 Maximal compact subgroups

2.1 Extensions of topological groups

As we consider topological groups, we require that any morphism between such
groups be continuous. Recall that the morphism deduced from an algebraic mor-
phism is always continuous for the k-topology.

Noetherian groups

Firstly, let us recall some properties of Noetherian groups (Definition 1.4.1).

2.1.1 Proposition. (1) Any open subgroup of a Noetherian group is Noetherian.
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(2) A compact group is Noetherian.

(3) Let ϕ : G→ Q a strict (continuous) morphism between topological groups with
open image (e.g. ϕ is an open morphism). If Q and kerϕ are Noetherian,
then so is G.

(4) Any extension of Noetherian groups is a Noetherian group.

(5) The multiplicative group k× of a non-Archimedean local field k is Noetherian.

(6) Let ψ : H → G a (continuous) morphism between topological groups. If H
is Noetherian and ψ(H) is a finite-index normal subgroup of G, then G is
Noetherian.

Proof. (1) is obvious.
(2) is clear since an open subgroup of a compact group has finite index.
(3) Since Im(ϕ) is open in Q, the subgroup ϕ(G) is Noetherian by (1). Since ϕ is

a strict morphism, we may and do assume that ϕ is the quotient map G→ G/H ≃

ϕ(G) where H = kerϕ. Let (Un)n an increasing sequence of open subgroups of G.
Since H is Noetherian, the sequence (Un ∩ H)n is eventually constant, say from
N1 ∈ N. Moreover, the sequence ϕ(Un) ≃ UnH/H is eventually constant, say from
N2 ≥ N1, since ϕ(Un) is open in the Noetherian group ϕ(G) ≃ G/H. We compute
ϕ(Un) ≃ Un/(Un ∩H) ≃ Un/(UN1

∩H) ≃ UN2
/(UN1

∩H) for all n ≥ N2. Hence
Un = UN2

for all n ≥ N2.
(4) By definition, an extension of topological groups is an exact sequence

1→ H
j
→ G

π
→ Q→ 1

of continuous morphisms which are open on their image. Applying (3) to π, if H
and Q are Noetherian, then so is G.

(5) is a consequence of (2) and (4) since k× is an extension of the compact
subgroup O×

k by the Noetherian discrete group ω(k×) ≃ Z.
(6) Let (Un)n an increasing sequence of open subgroups of G. Since H is

Noetherian, the sequence of open subgroups ψ−1(Un) is eventually constant, and
so is the sequence Vn = ψ(ψ−1(Un)) = Un ∩ ψ(H). The sequence of indices
[Un : Vn] = [Un : Un ∩ ψ(H)] is a sequence of integers bounded by the finite index
[G : ψ(H)]. Moreover, since Un is an increasing sequence and Vn is eventually
constant, the sequence [Un : Vn] is eventually increasing, hence eventually constant.
As a consequence, the increasing sequence (Un)n is eventually constant.

2.1.2 Remark. A motivation to consider the Noetherian property on topological
groups is that one can easily prove the existence of maximal subgroups with a given
property (P ), as soon as we know the existence of some open subgroup satisfying
the desired property (P ) (like in proof of 2.4.4).

As an example, a Noetherian group with a strict open subgroup has maximal
strict open subgroups, and any strict open subgroup is contained in, at least, one
of them.
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Morphisms of k-scheme and an exact sequence

Secondly, let us recall some properties of algebraic morphisms between topolog-
ical groups of rational points.

2.1.3 Lemma. Let k be a non-Archimedean local field. Let G be a smooth affine
algebraic k-group and H a normal closed k-subgroup of G.

(a) There exists a faithfully flat quotient homomorphism π : G → G/H where
G/H is a smooth k-group. Moreover, when H is smooth, π is smooth.

Consider the following exact sequence :

1→ H
j
→ G

π
→ G/H → 1

(b) The exact sequence (2.1.3) induces an exact sequence of topological groups

1→ H(k)
jk→ G(k)

πk→ (G/H)(k)

Moreover, if H is smooth, then the continuous morphism πk is open, and jk is a
homeomorphism onto its image.

Proof. (a) The quotient morphism exists and is faithfully flat by [SGA3, Exp. VI A
Thm 3.2 (iv)]. Hence, the k-group G/H is smooth [DG70, II.§5 2.2]. If, moreover
H is smooth, by [DG70, II.§5 5.3 and II.§5 2.2], the morphism π is smooth.

(b) Morphism between k-schemes of finite type are continuous for the k-
topology, and jk is a homeomorphism onto its image by definition of the k-topology.
Since π is smooth, the continuous morphism πk is open by [GGMB14, lemma 3.1.2
and proposition 3.1.4].

Existence of a pro-p open subgroup

By the Remark 2.1.2, we need and recall the following lemma:

2.1.4 Lemma. Let k be a non-Archimedean local field of residual characteristic p.
Let G be a smooth affine k-group. Then G(k) contains a pro-p open subgroup.

Proof. Given a closed immersion G → GLn,k (such an immersion exists [DG70,
II.5.5.2]), the topological group G(k) can be seen as a closed subgroup G(k) ⊂

GLn(k) endowed with the usual topology. Hence, it is sufficient to prove that
GLn(k) contains a pro-p open subgroup U , since U ∩ G(k) will be a pro-p open
subgroup of G(k).

The group H = GLn(Ok) is profinite since it is a totally disconnected compact
group. For d ∈ N∗, define

Hd = GLn(m
d) =

{
g ∈ GLn(Ok) , g − id ∈ m

d
KMn(Ok)

}

The Hd are normal compact open subgroups of GLn(Ok), and form a basis of
open neighbourhoods of id ∈ H. Moreover, they are pro-p groups in the same way
as [DDMS99, 5.1] for GLn(Zp).
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Claim: H1 = lim←−d
H1/Hd is a pro-p-group.

For any x ∈ Hd, write x = id + y where y ∈ mdMn(Ok). Hence xp = id + py +∑p
k=2

(
k
p

)
yk. If k ≥ 2, then yk ∈ m

d+1
K Mn(Ok) because d ≥ 1. If char(k) = p, then

py = 0. Else, char(k) = 0 and p ∈ m. Hence py ∈ md+1Mn(Ok), so Hd/Hd+1 is a
p-group.

2.2 Compact and open subgroups of a semisimple group

In this section, we assume that G is an affine smooth (connected) semisimple
k-group where k is a non-Archimedean local field. In Proposition 2.2.6, we describe
maximal compact subgroups as stabilizers of, uniquely defined, points of the build-
ing. This is still true if we only assume that G is reductive. We do not assume,
in general, that G is simply connected and some consequences of this additional
assumption will be given. Such a group G(k) acts continuously and strongly tran-
sitively on its affine Bruhat-Tits building (with a type-preserving action when G is,
moreover, simply connected). We denote by A the standard apartment, by c a cho-
sen alcove in A and by G+ the subgroup of G(k) consisting of the type-preserving
elements.

Define B = StabG(k)(c) the setwise stabilizer of c and B+ = StabG+(c) the
pointwise stabilizer of c. Define N = StabG(k)(A) the setwise stabilizer of A in
G(k) and N+ = StabG+(A) the setwise stabilizer of A in G+. Thus, (B,N) is a
generalised BN-pair of G(k) (see [Gar97, 5.5 and 14.7] for details). Define T = B∩N

and T+ = B+ ∩N+, and put W+ = N+/T+. The set Θ = T/T+ is finite [Gar97,
5.5] and we have a Bruhat decomposition G(k) =

⊔

t∈Θ , w∈W+

B+twB+. Define the

following bornology on G(k) by:

2.2.1 Proposition-definition ([Gar97, 14.7]). A subset H ⊂ G(k) is called
bounded if H satisfies the following equivalent properties:

(i) H is contained in a finite union of double cosets B+twB+, where t ∈ Θ and
w ∈W+,

(ii) there exists a point x ∈ X(G, k) such that H · x ⊂ X(G, k) is bounded,

(iii) for any bounded subset Y ⊂ X(G), the subset H ·Y = {h · y , h ∈ H and y ∈
Y } ⊂ X(G, k) is bounded.

2.2.2 Lemma. Under the above assumptions and notations:

(1) The topological group N acts properly on A.

(2) For any non-empty subset Ω ⊂ A, the pointwise stabilizer of Ω in G(k) is
compact.

(3) For any non-empty bounded subset Ω ⊂ X(G, k), the setwise stabilizer of Ω

in G(k) is compact.
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Proof. (1) We use the same notation as [Lan96, §1]. In particular, we consider
the group W = N(k)/Z(k)b, the group vW = N(k)/Z(k) and the group Λ =

Z(k)/Z(k)b. Denote by π : N(k) → W the quotient morphism of topological
groups and by V = X∗(S)⊗Z R the R-vector space generated by the cocharacters.
Consider the following commutative diagram [Lan96, 1.6]:

0 // Λ //

ν1
��

W
pr

//

ν
��

vW //

j
��

1

0 // V // Aff(A)
pr

// GL(V ) // 1

from which we deduce a group action of N on the affine space A [Lan96, 1.8], given
by the group homomorphism ν : N(k)→ Aff(A) = ν ◦π. Let x ∈ A. The stabilizer
of x in Aff(A) = V ⋊ GL(V ) is the set {y 7→ g(y)− g(x) + x , g ∈ GL(V )}. Since
the above diagram is commutative, the stabilizer of x in ν(W ) is the finite set
Fx = {y 7→ g(y)− g(x) + x , g ∈ j(vW )}. As a consequence, the stabiliser ν−1(Fx)

of x in N is compact because, when G is semisimple, the kernel of ν is the compact
subgroup Z(k)b [Lan96, 1.2 (ii)].

(2) Using [Lan96, 12.4] notations, denote Px = 〈Ux, Nx〉. The continuous map
µ : Nx × UxZ(k)b → Px given by multiplication is a surjective homomorphism
[Lan96, 12.6 (ii)]. By (1), the group Nx is compact and the group UxZ(k)b is
compact [Lan96, 12.12 (i)], therefore Px is compact. Hence, the pointwise stabilizer
of Ω written PΩ =

⋂
x∈Ω Px [Lan96, 13.3(i) and 12.8] is compact.

(3) If x ∈ X(G, k), then there exists g ∈ G(k) such that g · x ∈ A and it gives
StabG(k)(x) = g−1Pg·xg. This does not depend on the choice of such a g ∈ G(k).
Consider Ω ⊂ X(G, k) a non-empty subset. The pointwise stabiliser of Ω, denoted
by G(k)Ω, is an intersection of subgroups of G(k) of the form g−1Pg·xg ; so, it is
compact by (2). The group G(k)Ω is also the kernel of the action of the setwise
stabilizer of Ω, denoted by StabG(k)(Ω), on the finite polysimplicial sub-complex of
X(G, k) induced by the bounded subset Ω (it is finite because X(G, k) is locally
finite). In particular, the quotient group StabG(k)(Ω)/G(k)Ω is finite. The group
G(k)Ω is compact, and so is StabG(k)(Ω).

As a consequence of this lemma, bounded subsets are closely linked to compact
subsets.

2.2.3 Lemma. Under the above assumptions and notations:

(1) Every bounded subset of G(k) is relatively compact.

(2) A subset of G(k) is compact if, and only if, it is closed and bounded.

(3) Every maximal bounded subgroup of G(k) is a maximal compact subgroup.

Proof. Recall that B+ = Pc is compact by Lemma 2.2.2 and open in G(k) by
[Lan96, 12.12 (ii)]. Hence, every double coset B+twB+ is a compact open subset
of G(k).
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(1) If H ⊂ G(k) is bounded, then by Definition 2.2.1(i) H is contained in a
finite union of double cosets, and this union is a compact subset.

(2) If H is a compact subset of G(k), then H is closed in G(k). The open
cover of H by double cosets has a finite subcovering. By Definition 2.2.1(i), H is
bounded. Conversely, a bounded subset is compact when it is closed, by (1).

(3) If H is a maximal bounded subgroup, then H is a closed subgroup. It
is bounded by Definition 2.2.1(ii) and contains H. Hence, maximality of H im-
plies H = H is a maximal compact subgroup, because every compact subgroup is
bounded according to (2).

Recall that a metric space is said to be CAT(0) if it is geodesic (any two points
are connected by a continuous path parametrized by distance) and if any geodesic
triangle is at least as thin as in the Euclidean plane (for the same edge lengths).
This notion is developed in the book of Bridson and Haefliger [BH99]. The latter
condition is a non-positive curvature one (called also (NC) in [Bro89, §VI.3B]),
which can also be formulated by requiring the parallelogram inequality [AB08,
Prop. 11.4]. We use the following fixed-point theorem to describe compact open
subgroups thanks to the metric space X(G, k).

2.2.4 Theorem (Bruhat-Tits fixed point theorem [Bro89, VI.4]). Let H acting
isometrically on a complete CAT(0) metric space (M,d). If M has a H-stable
non-empty bounded subset, then H fixes a point in M .

The following corollary is a immediate consequence of the fixed point theorem
and the Definition 2.2.1(iii).

2.2.5 Corollary. If H is a bounded subgroup of G(k), then H fixes a point of
X(G, k).

Let us give a proof of the following proposition:

2.2.6 Proposition. Let k be a non-Archimedean local field and G a semisimple
k-group. Let P be a subgroup of G(k). The following are equivalent:

(i) the subgroup P is a maximal compact subgroup of G(k),

(ii) the subgroup P is the stabilizer of a point x ∈ X(G, k), and if P fixes a point
y ∈ X(G, k), then y = x.

Moreover, if G is simply connected, such an x is a vertex in the simplicial
complex X(G, k).

Proof. (i) ⇒ (ii) If P is a maximal bounded subgroup, then, by Corollary 2.2.5,
P fixes a point x ∈ X(G, k). Hence, P is a subgroup of StabG(k)(x) which is a
bounded subgroup by 2.2.2(3). We get P = StabG(k)(x) because of the maximality
assumption on P .

We have to show that the maximality of P implies that StabG(k)(x) does not
fix any other point of X(G, k). Let A be an apartment containing x. Denote by H
the set of walls in A and d(x) the number of walls in A containing x. Let us prove
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by decreasing induction on d(x) that the maximal bounded subgroup StabG(k)(x)

has a unique fixed point in A.
By transitivity, there exists an element g ∈ G(k) such that g · A = A. Hence,

we have to show that gStabG(k)(x)g
−1 = Pg·x fixes a unique point of A. We can

and do assume that x ∈ A and g = 1.
Denote by Φ = Φ(G,S) the relative root system of G. Consider the maximal

case for d(x) : the point x is a special vertex of A and then d(x) = dmax = 1
2Card(Φ).

For every affine root a+ l such that the associated wall contains x, the set of points
of A fixed by the root group Ua,x is exactly a half-apartment [Lan96, 13.3 (ii)].
Hence for every relative root a ∈ Φ, the set of points in A fixed by Ua,x and U−a,x

is the wall associated to a + l and −a − l. The set of fixed points by Px in A is
{x} because x is a special vertex and P contains Ua,x for every relative root a ∈ Φ

[Lan96, § 10].
Now assume that d < dmax. By contradiction, assume that Px fixes another

point y ∈ A. The action being isometric and [x, y] being metrically characterized
[AB08, Prop. 11.5], Px fixes the line segment [x, y]. If [x, y] cross a wall, we get
a point z ∈ A fixed by Px such that d(z) > d(x). By induction, Pz has a unique
fixed point, so Pz contains strictly Px and this contradicts the maximality of Px.
Hence, y and x are on the same facet F . If F 6= {x} and x 6= y, since the action is
continuous and preserves the polysimplicial structure, the group Px fixes F ∩ (x, y).
Hence P fixes a point z ∈ F \F . We get again d(z) > d(x) and this will contradict
the maximality of Px.

(ii)⇒ (i) Conversely, let x ∈ X(G, k) be such that the group P = StabG(k)(x)

has a unique fixed point. If P ′ is a bounded subgroup containing P , and y ∈ X(G, k)

a point fixed by P ′, then P fixes y and y = x because of uniqueness. Hence
P ′ ⊂ StabG(k)(x) = P .

Moreover, if G is simply connected, the stabilizer of a facet fixes it pointwise
[BrTi84, 5.2.9]. Because of the above equivalence, a maximal bounded subgroup is
exactly the stabilizer of a vertex of X(G, k).

2.2.7 Remark. By uniqueness of the fixed point, we get an injective map from the
set of maximal bounded subgroups of G(k) to the set of points in X(G, k). Denote
by X(G)max the image of this map. It is easy to remark that X(G, k)max contains
the vertices of the polysimplicial complex X(G, k).

Moreover, it is easy to see that every x ∈ X(G, k)max is the isobarycentre of
its facet F , because the stabilizer in G(k) of x acts by isometries on F and x is
the only fixed point. Be careful that the converse is not true: the stabilizer of the
isobarycentre of a facet is not a maximal bounded subgroup in general.

2.2.8 Remark. Using the proof of Proposition 2.2.6, it is not hard to see that a
compact subgroup H ⊂ G(k) is always contained in a maximal one. Consider a
fixed point x ∈ X(G, k) by H of maximal degree d(x) (this does not depends on the
choice of an apartment). Hence, H is contained in StabG(k)(x). Claim: StabG(k)(x)

is a maximal compact subgroup. By contradiction, if StabG(k)(x) is not, then it
fixes a second point y, and then one can find a fixed point on the line (x, y) of
higher degree: this contradicts the maximality of d(x).
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Now, we need further investigation on compact open subgroups to prove Noethe-
rianity for absolutely simple semisimple groups.

2.2.9 Lemma. Let U be a compact subgroup of G(k) and denote by Ω = X(G, k)U

the non-empty subset of points fixed by U . If U is open, then Ω is a bounded subset
of X(G, k).

Proof. By contradiction, assume that Ω is not bounded. Let x0 ∈ Ω. Since Ω is not
bounded, one can choose a sequence xn ∈ Ω such that d(xn, x0) ≥ n. Let X(G, k)

be a compactification of X(G, k), defined in [RTW10]. Let x ∈ X(G, k) be a limit
point of (xn)n (it exists because X(G, k) is a compact space by [RTW10, 3.34]).

Because
X(G, k) → R

y 7→ d(x0, y)
is continuous, x 6∈ X(G, k). By [RTW10, 4.20

(i)], there exists a maximal k-split torus S′ such that x0, x ∈ A(S′, k), and one can
assume that S′ = S.

The group U is open in the subgroup StabG(k)(x0), which is compact by 2.2.2.
Hence, for every relative root a ∈ Φ, the intersection Ua(k) ∩ U has finite index in
the subgroup Ua,x0

. Hence, U contains Ua,la for some la ∈ [fx0
(a),+∞[.

Because G(k) acts continuously on X(G, k), the point x ∈ X(G, k) is fixed by
U . Because x 6∈ A(S, k), there exists a root a ∈ Φ such that Ua,x = StabG(k)(x) ∩

Ua(k) = {1} by description of this stabilizer [RTW10, 4.14]. But Ua,x ⊃ U∩Ua(k) ⊃

Ua,la , and we get a contradiction.

2.2.10 Proposition. Every compact open subgroup of G(k) is contained in finitely
many compact (open) subgroups of G(k).

Proof. Consider a compact open subgroup U ⊂ G(k). By Lemma 2.2.9, the set
Ω = X(G)U is non-empty and bounded. By Remark 2.2.8, U is contained in
a maximal compact subgroup. Since X(G, k) is locally finite (because k is a local
field), by remark 2.2.7 U is contained in finitely many maximal compact subgroups.
Since U is open, it has finite index in any maximal compact subgroup. Hence, the
set of compact subgroups containing U is finite.

We now obtain the first step of the main theorem 1.4.3 by the following:

2.2.11 Proposition. Let k be a non-Archimedean local field and G be an almost
k-simple, semisimple group. Then G(k) is Noetherian.

Proof. Let (Un)n∈N an increasing sequence of open subgroups of G(k). Denote by
G(k)+ the normal subgroup of G(k) generated by rational points of the unipotent
radical of minimal parabolic k-subgroups of G [BoTi73, 6.2].

Let us start with statements on open subgroups of G(k). Consider an open
subgroup U of G(k).

Claim: If U ∩G(k)+ is bounded, then U is compact.
Indeed, assume U ∩ G(k)+ is bounded. Since U is open, it is closed. The

group G(k)+ is closed according to [BoTi73, 6.14]. Thus, U ∩ G(k)+ is compact
by 2.2.3(2). By [BoTi73, 6.14], the quotient group G(k)/G(k)+ is compact. Hence
UG(k)+/G(k)+ is a compact open subgroup of G(k)/G(k)+ . The natural bijective
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continuous homomorphism U/(U ∩G(k)+)→ UG(k)+/G(k)+ is open and hence a
homeomorphism, so U/(U ∩G(k)+) is compact. It follows that U is compact.

Claim: If U is not bounded, then U contains G(k)+

Indeed, a non-bounded open subgroup is not compact. Hence, U ∩ G(k)+ is
a non-bounded subgroup of G(k)+. By a theorem of Prasad, attributed to Tits
[Pra82, Theorem (T)], we get U ⊃ G(k)+.

Let us now finish the proof by distinguishing two cases.
First case: Un is bounded (hence compact) for all n ∈ N.
By Proposition 2.2.10, U0 is contained in finitely many compact subgroups.

Hence, the increasing sequence of compact open subgroups (Un)n∈N is eventually
constant.

Second case: UN is not bounded for some N ∈ N.
Hence, for all n ≥ N , the group Un is not bounded and contains G(k)+. The

open subgroup UN/G(k)
+ of the compact group G(k)/G(k)+ has finite index.

Hence, the sequence (Un)n∈N is eventually constant.

2.3 Quasi-reductive groups

The case of a commutative quasi-reductive group

2.3.1 Proposition. Let k be a non-Archimedean local field. If C is a smooth
connected commutative quasi-reductive k-group, then C(k) is Noetherian.

Proof. This proof follows the beginning of the proof of [Con12, 4.1.5].
Let S be the maximal k-split torus of C (it is unique by k-rational conjugacy

[CGP15, C.2.3]). Consider the smooth quotient of algebraic k-groups:

1 −→ S
j
−→ C

π
−→ C/S −→ 1

Claim: The connected smooth abelian k-group C/S does not contains any
subgroup isomorphic to Ga or Gm.

Applying [SGA3, Exp. XVII 6.1.1(A)(ii)] to the preimage in C of a subgroup
isomorphic to Ga (see [Con12, 4.1.4] for a more direct proof), we get a contradiction
with quasi-reductiveness of C. Applying [Bor91, 8.14 Cor.] to the preimage in C

of a subgroup isomorphic to Gm, we get a contradiction with maximality of S.
By Lemma 2.1.3(b) and Hilbert 90 theorem, we get a short exact sequence of

topological groups:

1 −→ S(k)
jk−→ C(k)

πk−→
(
C/S

)
(k) −→ 1

where πk is a surjective open morphism.
By [Con12, A.5.7], the topological group

(
C/S

)
(k) is compact, hence it is

Noetherian by Proposition 2.1.1(2) (In this commutative case, we also have a direct
proof considering the smooth quotient of C/S by its maximal k-torus, which is
anisotropic). By Proposition 2.1.1(4) and (5), the topological group S(k) ≃ (k×)n

(where n = dimS) is Noetherian. Applying Proposition 2.1.1(3) to πk, the topo-
logical group C(k) is Noetherian.
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The case of a pseudo-reductive group

Thanks to [CGP15], we have structure theorems on pseudo-reductive groups,
well summarized in [Con12, §2]. In particular, there is a lot of flexibility in the
choice of a (generalised) standard presentation, so that we can reduce the question of
Noetherianity from pseudo-reductive groups to semisimple groups and commutative
quasi-reductive groups.

2.3.2 Lemma. Let k be a non-Archimedean local field and k′ a nonzero finite
reduced k-algebra, and write k′ =

∏
i∈I k

′
i where k′i/k are extensions of local fields

of finite degree (but possibly non-separable). Let G′ be a smooth connected k′-group
and denote by G′

i its fiber over the factor field k′i. Consider the smooth connected
k-group G = Rk′/k(G

′). If each fiber G′
i is either an absolutely simple semisimple

k′i-group or a basic exotic pseudo-reductive k′i-group, then the topological group G(k)
is Noetherian.

Proof. Write Rk′/k(G
′) =

∏
i∈I Rk′i/k

(G′
i) [CGP15, A.5.1]. There is a topological

isomorphism Rk′/k(G
′)(k) ≃

∏
i∈I G

′
i(k

′
i). If each factor G′

i(k
′
i) is Noetherian, then

so is G(k) by Proposition 2.1.1(4).
From now on, assume that k′/k is a finite extension of local fields. It is sufficient

to show that G′(k′) is Noetherian.
If G′ is an absolutely simple semisimple k′-group, then by Proposition 2.2.11

the topological group G′(k′) is Noetherian.
Otherwise, G′ is a basic exotic pseudo-reductive k′-group (see [CGP15, 7.2] or

[Con12, 2.3.1] for a convenient definition). Hence we are in the case of a field with
char(k′) ∈ {2, 3}. Then, by [CGP15, 7.3.3, 7.3.5], G(k′) is topologically isomorphic
to G(k′) where G is an absolutely simple semisimple k′-group. Hence, G(k′) is
Noetherian again by Proposition 2.2.11.

2.3.3 Proposition. Let k be a non-Archimedean local field and G a pseudo-
reductive group. Then G(k) is Noetherian.

Proof. This proof almost follows the proof of [Con12, 4.1.9], based on structure
theorem of pseudo-reductive groups over a local field. Let us recall the main steps
of this proof.

If k is any field of characteristic p 6= 2, 3, then a pseudo-reductive k-group is
always standard according to [CGP15, 5.1.1].

If k is a local field of characteristic p ∈ {2, 3}, then we are in the convenient
case of a base field k with [k : kp] = p. Hence, by theorem [CGP15, 10.2.1], G is
the direct product G1 ×G2 of a generalised standard pseudo-reductive k-group G1

and a totally non-reduced pseudo-reductive k-group G2. Moreover, the k-group G2

is always trivial when p 6= 2.
First step: Assume G2 is not trivial (hence char(k) = 2). By [CGP15, 9.9.4],

the topological group H(k), deduced from a basic non-reduced pseudo-simple k-
group H (see definition [CGP15, 10.1.2]) is topologically isomorphic to Sp2n(K)

for some n and an extension of local fields K/k. By Proposition 2.2.11, Sp2n(K)

is Noetherian, hence so is H(k). By [CGP15, 10.1.4], the totally non-reduced k-
group G2 is isomorphic to a Weil restriction Rk′/k(G

′
2) where k′ is a nonzero finite
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reduced k-algebra and fibers of G′
2 are basic non-reduced pseudo-simple k-groups.

By Lemma 2.3.2, G2(k) is Noetherian.
Second step: From now on, we can assume that G = G1 is a generalised stan-

dard pseudo-reductive k-group, together with a generalised standard presentation
(G′, k′/k, T ′, C) and C ′ = ZG′(T ′) where k′ is a nonzero finite reduced k-algebra, T ′

is a maximal k′-torus of G′ and C is a Cartan k-subgroup of G. Write k′ =
∏

i∈I k
′
i

where k′i/k are finite extensions of local fields. By definition of a generalised stan-
dard presentation, G′ is a k′-group whose fibers, denoted by G′

i, are absolutely
simple simply connected semisimple or basic exotic pseudo-reductive. Hence, by
Lemma 2.3.2, the topological group Rk′/k(G

′)(k), which is topologically isomorphic
to
∏

i∈I G
′
i(k

′
i), is Noetherian. Moreover, by Propositions 2.3.1 and 2.1.1(4), the

topological group
(
Rk′/k(H

′)⋊ C
)
(k) is Noetherian.

By definition of a standard presentation, G ≃
(
Rk′/k(H

′) ⋊ C
)
/Rk′/k(C

′).

According to the proof of [Con12, 4.1.9] (since H1
(
k,Rk′/k(C

′)
)

is finite), the con-

tinuous morphism between topological groups πk :
(
Rk′/k(H

′)⋊ C
)
(k) → G(k) is

open with a normal image which has finite index [Con12, 4.1.9 (4.1.2)]. Hence, by
2.1.1(6) applied to this morphism πk, the group G(k) is Noetherian.

General case

2.3.4 Proposition. Let k be a non-Archimedean local field and G be a quasi-
reductive group. Then G(k) is Noetherian.

Proof. Consider the pseudo-reductive quotient of G :

1 −→ Ru,k(G) −→ G
π
−→ G/Ru,k(G) −→ 1

By Lemma 2.1.3(b) one has the following exact sequence of topological groups:

1 −→ Ru,k(G)(k) −→ G
πk−→
(
G/Ru,k(G)

)
(k)

where the homomorphism πk is open because Ru,k(G) is smooth.
Applying [Oes84, VI.1] to the k-wound unipotent group Ru,k(G), the topolog-

ical group Ru,k(G)(k) is compact, hence it is Noetherian by Proposition 2.1.1(2).
Applying Proposition 2.3.3 to the pseudo-reductive k-group G/Ru,k(G), we get
that the topological group

(
G/Ru,k(G)

)
(k) is Noetherian. Hence, by Proposition

2.1.1(3), the topological group G(k) is Noetherian.

2.4 Proof of the equivalence theorem

Now, there are no extra difficulties to prove Theorem 1.4.3 giving an equiva-
lence between an algebraic property and topological ones. We prove successively
(iii) or (iv)⇒ (i)⇒ (ii)⇒ (iii) and (iv).

Let us prove (iii) or (iv)⇒ (i).
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2.4.1 Lemma. Let k be a non-Archimedean local field. If U is a smooth connected
affine unipotent k-group, then U(k) is the union of an increasing sequence, indexed
by Z, of pro-p open subgroups (Un)n∈Z whose intersection is trivial.

Moreover, when U is not k-wound, one can assume that Un is strictly increasing.

Proof. Denote by ̟ a uniformizer of Ok and, for all n ∈ Z, denote mn = ̟nOk ⊂ k.
Denote by Um the smooth connected unipotent k-split k-group of upper triangular
unipotent matrices. For n ∈ Z, define

Pn =




(xi,j)1≤i,j≤m ,

xi,j = 0 if i > j

xi,j = 1 if i = j

xi,j ∈ mn(i−j) if i < j




⊂ Um(k)

The sequence (Pn)n∈Z is an increasing sequence of groups whose intersection is
trivial and union is equal to Um(k). For all n, the subgroup Pn of Um(k) is open

since it contains the open neighbourhood of identity
(
1+m|n|(m−1)Mm(k)

)
∩Um(k).

And it is a pro-p-group since every Pn+1 is a normal subgroup of Pn such that the
quotient Pn/Pn+1 is a p-group.

By [Bor91, 15.5(ii)], there is a closed immersion U → Um for some m ∈ N.
Define Un = Pn ∩ U(k). The sequence of subgroups (Un)n∈Z is increasing, the
intersection

⋂

n∈Z

Un is trivial and the union is
⋃

n∈Z

Un = U(k), because the same holds

for (Pn) and Um(k). Every Un is a pro-p subgroup of U(k) because U(k) ⊂ Um(k)

is closed, and it is an open subgroup of U(k) because Pn is open in Um(k).
Now, assume that U is not k-wound. Since U(k) is not compact by [Oes84,

VI.1], every Un is distinct from U(k). Moreover, Un is never trivial because it is
open in U(k). Hence, one can extract a strictly increasing sequence

(
U ′
̟(n)

)
n∈Z

with the same properties as before.

2.4.2 Proposition. Let k be a non-Archimedean local field and G a smooth con-
nected affine k-group. Assume that the topological group G(k) contains either a
maximal pro-p subgroup, or a maximal compact subgroup. Then, G0 is a quasi-
reductive k-group.

Proof. Denote by U = Ru,k(G
0) the unipotent k-radical of G and by H a maximal

compact or pro-p subgroup of G(k). By contradiction, let us prove that U is k-
wound.

If it is not, denote by ZU the maximal smooth central k-subgroup of U (it
exists, built as the maximal smooth closed k-subgroup [CGP15, C.4.2] of the center
of U). By proposition [CGP15, B.3.2], the closed k-subgroup ZU contains a closed
k-subgroup k-isomorphic to Ga, hence ZU is a non-trivial non-k-wound k-group.
By [Oes84, VI.1], the topological group ZU(k) is not compact.

Since ZU (k) is a characteristic subgroup of the normal subgroup U(k) of G(k),
it is normalised by H. By Lemma 2.4.1, ZU (k) is covered by an increasing se-
quence indexed by Z of pro-p open subgroups (Zn)n∈Z. For all n ∈ Z, de-
fine the subset Cn =

⋃

h∈H

hZnh
−1 of ZU (k) normalised by H. The subset Cn

is compact as the image of the compact set H × Zn by the continuous map
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(g, h) 7→ ghg−1. Since (Cn ∩ Zm)m∈Z is an open covering of Cn by an increas-
ing sequence, there exists some mn ∈ Z such that Cn ⊂ Zmn . Define Pn to be
the closure in G(k) of the subgroup generated by Cn. It is a closed subgroup of
the pro-p group Zmn , hence it is a pro-p group normalised by H. Hence, the
subgroup Hn · H of G(k), directly generated by H and Hn, is a pro-p group
(as the image of a semi-direct product of pro-p groups Hn ⋊ H by the surjec-
tive morphism Hn ⋊ H → Hn · H induced by multiplication [RZ10, 2.2.1(e)] and
[Ser94, 1.4 Prop.4(b)]) containing H. Hence, Hn ⊂ H by maximality of H as
a compact or pro-p subgroup of G(k). As a consequence H contains the union
⋃

n∈Z

Hn =
⋃

n∈Z

⋃

h∈H

hZnh
−1 =

⋃

h∈H

h

(
⋃

n∈Z

Zn

)
h−1 =

⋃

h∈H

hZU (k)h
−1 = ZU (k).

Since ZU (k) is a non-compact closed subgroup of H, we get a contradiction with
compactness of H.

Let us prove (i)⇒ (ii).

2.4.3 Proposition. Let k be a non-Archimedean local field and G a smooth affine
k-group. If G0 is a quasi-reductive k-group, then G(k) is Noetherian.

Proof. The identity component G0 of G is a smooth normal k-subgroup of G [DG70,
II.§5 1.1 and 2.1], and the quotient F = G/G0 is a (smooth) finite k-group [DG70,
II.§5 1.10].

By Lemma 2.1.3(b), we have an exact sequence of topological groups

1→ G0(k)→ G(k)
πk→ F (k)

where πk is an open morphism.
By Proposition 2.3.4, the topological group G0(k) is Noetherian and F (k) is

Noetherian because it is finite. As a consequence, by Proposition 2.1.1(3), the
topological group G(k) is Noetherian.

To conclude, let us finish the proof by showing that (ii)⇒ (iii) and (iv).

2.4.4 Proposition. Let k be a non-Archimedean local field and G a smooth affine
k-group. If G(k) is Noetherian, then G(k) admits a maximal compact subgroup and
a maximal pro-p subgroup.

Proof. By contradiction, assume than G(k) does not contains a maximal pro-p
(resp. compact) subgroup.

By induction, it is possible to define a strictly increasing sequence of pro-p
(resp. compact) open subgroups. Basis of the induction is given by Lemma 2.1.4.
Induction step: since G(k) does not admit a maximal pro-p (resp. compact) sub-
group, given a pro-p (resp. compact) open subgroup Un, there exists a pro-p (resp.
compact) subgroup Un+1 containing Un strictly. The group Un+1 is open since it
contains Un.

Such a sequence cannot exist since G(k) is Noetherian: there is a contradiction.

Let us now prove the second part of Theorem 1.4.3
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2.4.5 Lemma. Let k be a non-Archimedean local field and G a smooth affine k-
group. If P is a pro-p (resp. compact) subgroup of G(k), then P is contained in a
pro-p (resp. compact) open subgroup of G(k).

Proof. Denote by U the pro-p open subgroup of G(k) given by Lemma 2.1.4. The
index [P : U ∩P ] is finite since P is compact and U ∩P is open in P . Hence, the set
{x−1Ux , x ∈ P} is finite. Define U0 =

⋂
x∈P x

−1Ux. It is an open pro-p subgroup
of G(k) normalised by P . Hence the group P0 = P · U0 is an open subgroup of
G(k). It is compact as the image of P × U0 by the continuous multiplication map
G(k) × G(k) → G(k). When, moreover, P is pro-p, the group P0 is pro-p as the
image of the pro-p group P ⋉ U0 by the surjective multiplication homomorphism
P ⋉ U0 → P · U0.

Proof of second part of Theorem 1.4.3. Using the same construction by induction
as in proof of 2.4.4, statements (1) and (2) are a direct result from Noetherianity
and Lemma 2.4.5.

3 Maximal pro-p subgroups of a semisimple group

Failure to compactness of maximal bounded subgroups in the group of ratio-
nal points of a non-semisimple k-group involves extra difficulties to use profinite
subgroups results. As an example of bad behaviour of non-semisimple groups, the
maximal pro-p subgroup of Gm(k) = k× is not finitely generated when k = Fq((t)).
From now on, we reduce our study to the case of a semisimple k-group G and we
only consider smooth affine k-groups, that we will call algebraic k-group.

The conjugacy theorem 1.2.1 is the generalisation to arbitrary characteristic of
[PlR94, Theorem 3.10], which Platonov and Rapinchuk prove in characteristic 0

and attribute to Matsumoto. The proof is given in part 3.1, using Bruhat-Tits
buildings instead of maximal orders.

Furthermore, as we obtained a description of maximal profinite subgroups of
G(k) in Proposition 2.2.6, Theorem 1.5.1 establishes an analogous description of
maximal pro-p subgroups. It is proven in part 3.3. In practice, description by
integral models established in Theorem 1.5.3 are more convenient; it is proven in
part 3.2.

3.1 Proof of the conjugacy theorem

Let us first investigate the case of an algebraic group defined over a finite field.
This case corresponds to special fibers of integral Ok-models (these models are
useful in order to make a description of profinite subgroups).

3.1.1 Lemma. Let k be a finite field of characteristic p. Let H be a connected
algebraic k-group. Thus, H has Borel subgroups defined over k (Lang’s theorem).
The p-Sylow subgroups of the finite group H(k) are exactly the groups Bu(k) where
B is a Borel subgroup of H defined over k and Bu is the unipotent radical of B.

Moreover, the map B 7→ Bu(k) is a bijection between the set of Borel k-subgroups
of H and the set of p-Sylow subgroups of H(k).
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Proof. Denote by q the cardinal of k. Let P be a p-Sylow subgroup of H(k). Let
g ∈ P and g = gs · gu the Jordan decomposition of g. Since H is affine, there exists
an integer n ∈ N

∗ and a faithful linear representation ρ : H →֒ GLn,k [Bor91, 5.1]
such that ρ(gs) = ρ(g)s. Hence, the order of this element divides (q − 1)n, so it
is prime to p. As a consequence g = gu. Hence P consists in unipotent elements
of H(k). Since k is perfect and H is connected, by [BoTi71, 3.7], there exists a
Borel k-subgroup B such that P is contained in the group of rational points of the
unipotent radical of B, denoted by Bu(k). Since k is perfect, Bu is k-split. Hence,
Bu(k) is a p-group. Since P is a p-Sylow subgroup of H(k), so P = Bu(k) by
maximality.

Since the Borel subgroups are H(k)-conjugated [Bor91, 16.6], and since the
p-Sylow subgroups of the finite group H(k) are H(k)-conjugated, we obtain a sur-
jective map Ψ : B 7→ Bu(k) between Borel k-subgroups of H and p-Sylow subgroups
of H(k). Let us show that it is a bijective map.

Fix B a Borel k-subgroup of H and S a maximal k-split torus of B, hence of
H. Define T = ZH(S), it is a maximal torus of H defined over k since an algebraic
group over a finite field is quasi-split. Since k is perfect, the unipotent radical of
B is k-split [BrTi84, 1.1.11]. The k-group B has a Levi decomposition B = T ·Bu

[CGP15, C.2.4].
On the one hand, since H(k) acts by conjugation on the set of Borel k-subgroups

of H, the number of Borel k-subgroups is equal to the cardinal of H(k)/NH(k)(B).
By a theorem due to Chevalley [Bor91, 11.16], a Borel subgroup of H is equal to
its normalizer, hence NH(k)(B) = B(k). On the other hand, since H(k) acts by
conjugation on the set of its p-Sylow subgroups, the number of its p-Sylow subgroups
is equal to the cardinal of H(k)/NH(k)(Bu(k)).

Hence, it suffices to show NH(k)(Bu(k)) = B(k). Denote by N = NH(S)

the nomalizer of S in H. Since N normalises T , we get that N(k) normalises
T (k). Since B(k) = T (k)Bu(k) = Bu(k)T (k), by [CGP15, C.2.8], we get G(k) =
Bu(k)N(k)Bu(k). Let g ∈ NH(k)(Bu(k)) ⊂ H(k). Write g = unu′ with u, u′ ∈

Bu(k) and n ∈ N(k). By contradiction, suppose that n 6∈ T (k). Thus the Weyl
group kW = N(k)/T (k) is not trivial, hence the group H is not solvable and admits
opposite root subgroups [Spr98, 7.1.3, 7.1.5 and 7.2], which are k-split since k is
perfect [Bor91, 15.5 (ii)]. Hence there exists u ∈ Bu(k) such that n−1un 6∈ Bu(k).
This contradicts n ∈ NH(k)(Bu(k)). Hence NH(k)(Bu(k)) ⊂ B(k).

As a consequence, the equality NH(k)(Bu(k)) = NH(k)(B) = B(k) completes
the proof.

3.1.2 Remark. The bijective correspondence between Borel k-subgroups of H and
p-Sylow subgroups of H(k) is useless in what follows. We only need to know that
the number of Borel k-subgroups is prime to p (that is also a consequence of Bruhat
decomposition).

More precisely, from this proof we get that the normalizer of a p-Sylow subgroup
of H(k) is exactly B(k). Over a local field instead of a finite field, this will be gen-
eralised by Proposition 3.3.3 with a simple connectedness assumption: normalizers
of a maximal pro-p subgroups are exactly Iwahori subgroups.
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When a p-group acts on a finite set of cardinal prime to p, orbit-stabilizer
theorem gives the existence of a fixed point. This statement can be generalised to
the action of a pro-p group.

3.1.3 Lemma. Let p be a prime and X a finite set of cardinal prime to p. If G is
a pro-p group acting continuously on X, then G fixes an element of X.

Proof. For all x ∈ X, denote by Gx the stabilizer of x. Since X is finite, Gx is
open. Let H = GX =

⋂
x∈X Gx be the subgroup of G fixing X pointwise. Then

H is a normal open subgroup of G. Hence G/H is a p-group acting on X. By the
orbit-stabilizer theorem, G/H fixes an element x ∈ X. Hence G fixes x.

Since a profinite subgroup is compact, by Bruhat-Tits fixed point theorem, such
a subgroup of G(k) fixes a point x0 ∈ X(G, k). Since the action of G(k) preserves
the structure of the simplicial complex, we get an action on the star of x0, that
means an action on the set of facets whose closure contains x0. Showing that the
subset of alcoves of this set is a finite set of cardinal prime to p, we will get the
following:

3.1.4 Proposition. A pro-p subgroup of G(k) setwise stabilises an alcove of
X(G, k).

Proof. Let U be a pro-p subgroup of G(k). By Proposition 2.2.6, there exists a
point y ∈ X(G, k) such that StabG(k)(y) is a maximal compact subgroup of G(k)
containing U . Consider the (non-empty) set Cy of alcoves of X(G, k) whose closure
contains y. Be careful that we forget the Euclidean structure provided by X(G, k)

and we only look at Cy as a discrete set.
Denote by F the facet of X(G, k) containing y. By conjugation, assume that

F ⊂ A. Define the star of F , denoted by X(G, k)F , as the set of facets F ′ of X(G, k)

such that F ⊂ F ′. We endow this set with the partial order F ′ ≤ F ′′ ⇔ F ′ ⊂ F ′′.
Denote by GF the connected integral model of G associated to F (see definition
in chapters [BrTi84, 4.6 and 5.1]). Denote by κ the residue field of k and consider
PF the set of κ-parabolic subgroups of GF ordered by the inverse of the inclusion.
There is an isomorphism of ordered sets between X(G)F and PF [BrTi84, 4.6.32
et 5.1.32 (i)] such that maximal simplices of X(G)F are exactly the elements of Cy,
and the minimal parabolic κ-subgroups of GF correspond to them bijectively. By
Lang’s theorem [Bor91, 16.6], the minimal parabolic κ-subgroups of GF are exactly
its Borel κ-subgroups. By Lemma 3.1.1, we obtain a bijection between Cy and the
set of p-Sylow subgroups of GF (κ).

Since G(k) preserves the poly-simplicial structure of X(G, k) and U fixes y, the
group U acts on Cy. For all c, c′ ∈ Cy, by continuity of the action G(k)×X(G, k) →

X(G, k), the subset {g ∈ U , g · c = c
′} is closed in U . As a consequence, U acts

continuously on the finite set Cy, whose cardinal is congruent to 1 modulo p. By
Lemma 3.1.3, U fixes an alcove c ∈ Cy, hence U setwise stabilises it in X(G, k).

We now can give a proof of conjugation of maximal pro-p subgroup theorem.
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Proof of Theorem 1.2.1. Let U,U ′ be two maximal pro-p subgroups of G(k). Let
c, c′ be alcoves stabilized by the action of U and U ′ respectively (they exist by
Proposition 3.1.4). Since G(k) acts transitively on the set of alcoves of X(G, k),
there exists an element g ∈ G(k) such that g · c′ = c. Hence gU ′g−1 stabilises
c. As a consequence, U and gU ′g−1 are two maximal pro-p subgroups of P =

StabG(k)(c) which is compact by Lemma 2.2.2(3). Hence, U et gU ′g−1 are two
p-Sylow subgroups of the profinite group P . By conjugation of p-Sylow subgroups
theorem [Ser94, 1.4 Prop. 3], U and gU ′g−1 are conjugated in P , so U and U ′ are
conjugated in G(k).

We now need to use root groups and integral models to prove the uniqueness
of the alcove setwise stabilized by a given maximal pro-p subgroup. Theorem 1.5.1
will be proven in part 3.3.

3.2 Integral models

In the proof of Proposition 3.1.4, integral models were used; here, we will make
a more systematic use of them.

Let Ω a non-empty bounded subset of the standard apartment A. Denote by
πκ : G†

Ω(Ok) → G
†
Ω(κ) the canonical reduction map. Denote by GΩ =

(
G

†
Ω

)
κ

the

special fiber. Denote by
(
GΩ

)◦
the identity component of the κ-group GΩ, and

by Ru(G
◦
Ω) its unipotent radical, defined over κ because κ is perfect [BoTi65, 0.7].

Denote by G
red
Ω = GΩ/Ru(GΩ) the quotient κ-group (possibly non-connected since

GΩ may be not connected). The root system of its identity component is the set
ΦΩ of roots a ∈ Φ, where Φ denotes the relative root system of G, such that the
root a seen as an affine map is constant over Ω and has values in the set Γ′

a [Lan96,
10.36]. Note that, when Ω contains an alcove, no root of Φ is constant on Ω since
an alcove of A is open in A, hence ΦΩ is empty.

Denote by πq : GΩ → G
red
Ω the quotient κ-morphism of algebraic κ-groups, and,

by notation abuse, πq : G†
Ω(κ) → G

red
Ω (κ) the homomorphism of abstract groups

deduced from πq. It will be clear from the context which of these two morphisms
will be considered.

3.2.1 Notation. Identifying the abstract groups G
†
Ω(κ) = GΩ(κ), we can define

the composite morphism πΩ = πq ◦ πκ. Denote by P+
Ω the kernel of πΩ.

More specifically, if F is a facet of the building X(G, k), by transitivity, there
exists an element g ∈ G(k) such that g · F ⊂ A. Denote P+

F = g−1P+
g·F g. This

group does not depend on the choice of such a g.

The goal is to show that, when G is simply connected, P+
F is a maximal pro-p

subgroup of the profinite (by Lemma 2.2.2(3)) subgroup StabG(k)(F ). Note that
with this notation, it is not required that the facet F be contained in the standard
apartment A.

3.2.2 Lemma. The morphism πκ is a surjective group homomorphism and its
kernel ker πκ is a pro-p group.
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Proof. Surjectivity of πκ is a consequence of smoothness of the Ok-model G
†
Ω

[BLR90, 2.3 Prop. 5].
The smooth affineOk-group of finite type G†

Ω has a faithful linear representation,
that means a closed immersion, ρ : G

†
Ω → GLn,Ok

for which it corresponds a
surjective Hopf Ok-algebras homomorphism ϕ : A ։ B where A and B denote
respectively the Ok-Hopf algebras of GLn,Ok

and G
†
Ω. Denote by π̃κ : GLn,Ok

(Ok)→

GLn,Ok
(κ) the canonical surjective homomorphism (defined as πκ above). Hence

ker πκ = {f : B → Ok, f ⊗ 1 = ε ⊗ 1} and ker π̃κ = {f : A → Ok, f ⊗ 1 = ε̃ ⊗ 1}

where ε (resp. ε̃) is the co-unit of B (resp. A).
On Ok points, we have ker π̃κ = GLn(m), according to notation of the proof of

Lemma 2.1.4. Since ε̃ = ϕ∗ε, we have the following commutative diagram:

0 // ker πκ
⊂

//
� _

��
�

�

�

G
†
Ω(Ok)

πκ
// //

� _

ρOk

��

G
†
Ω(κ)

//
� _

ρκ

��

1

0 // ker π̃κ
⊂

// GLn(Ok)
π̃κ

// // GLn(κ) // 1

Hence ker πκ is isomorphic to a closed subgroup of ker π̃κ, so it is a pro-p group.

3.2.3 Proposition. The group P+
Ω is a normal pro-p subgroup of G†

Ω(Ok).

Proof. By Lemma 2.1.3(b), we have ker πq = Ru(GΩ)(κ), hence it is a p-group as
a group of rational points of a unipotent κ-group. The following sequence of group

homomorphism 1 −→ ker πκ
⊆
−→ ker(πq ◦ πκ)

πκ−→ ker πq
πq
−→ 1 is exact. Indeed,

check that πκ(ker πq ◦ πκ) = ker πq.
If g ∈ πκ(ker πq ◦ πκ), then there exists h ∈ ker πq ◦ πκ such that g = πκ(h).

hence πq(g) = πq ◦ πκ(h) = 1, and so g ∈ kerπq.
Conversely, if g ∈ ker πq, by surjectivity of πκ (given by Lemma 3.2.2), there

exists h ∈ GΩ(Ok) such that πκ(h) = g. Hence πq ◦ πκ(h) = πq(g) = 1, and so
h ∈ ker(πq ◦ πκ). Hence g ∈ πκ(ker(πq ◦ πκ)).

As a consequence, P+
Ω = ker πΩ is a pro-p group.

3.2.4 Lemma. Let k be a finite field of characteristic p. If H is a reductive k-group,
then H(k) does not have a non-trivial normal p-subgroup.

Proof. Let P be a normal p-subgroup of H(k). It is a subgroup of a p-Sylow
subgroup of H(k). By Lemma 3.1.1, there exists a Borel k-subgroup B such that
P ⊂ Ru(B)(k).

Let S be a maximal k-split torus of H. Denote T = ZH(S), it is a maximal
torus of H defined over k and contained in B. Let n ∈ NH(T )(k) such that B and
nBn−1 are opposite Borel k-subgroups. Hence, B ∩ nBn−1 = T [Bor91, 14.1] is a
torus. We have nPn−1 = P because P is normal in H(k). Hence, P is a subgroup
of T (k) and #T (k) is prime to p. As a consequence P ⊂ T (k) is trivial.

To obtain results about maximality of ker πΩ, we require that πΩ is surjective.

24



3.2.5 Lemma. The morphism of abstract groups πΩ is surjective.
In particular, if Q is a p-Sylow subgroup of G

red
Ω (κ), then π−1

Ω (Q) is a maximal
pro-p subgroup of G†

Ω(Ok).

Proof. A finite field is perfect, hence by [Ser94, III.2.1 Prop. 6] applied to the
connected (κ-split) unipotent κ-group U = Ru(Gκ), we have H1(κ,U) = 0. Hence
by [Ser94, I.5.5 Prop.38] the morphism of abstract groups πq is surjective. According
to Lemma 3.2.2, the composite morphism πΩ is surjective.

By Proposition 3.2.3, the surjective morphism πΩ has a pro-p kernel. Hence,
for every p-subgroup Q of G

red
Ω (κ), the group π−1

Ω (Q) is pro-p (as an extension of
such groups). Hence, if Q is a p-Sylow subgroup, then π−1

Ω (Q) is a maximal pro-p
subgroup.

3.2.6 Proposition. If GΩ is connected, then the kernel P+
Ω is a maximal normal

pro-p subgroup of G†
Ω(Ok).

Proof. Let P̃ be a normal pro-p subgroup of GΩ(Ok) containing P+
Ω . By [Ser94,

I.1.4 Prop.4], its image by the surjective morphism πΩ (see Lemma 3.2.5) is a normal

p-subgroup of G
red
Ω (κ).

When GΩ is connected, the quotient G
red
Ω is a connected reductive κ-group.

Hence, by Lemma 3.2.4, π(P̃ ) is trivial and P̃ = P+
Ω .

Under simple connectedness assumption

From now on, assume that the semisimple k-group G is simply connected. Hence
G

†
Ω = GΩ [BrTi84, 4.6.32 and 5.1.31].

3.2.7 Proposition. Assume Ω = c ⊂ A is an alcove and G is simply connected.
Then P+

Ω is a maximal pro-p subgroup of GΩ(Ok).

First, recall the following fact, given by Tits [Tit79, 3.5.2]:

3.2.8 Lemma. Under above assumptions and notations, the algebraic κ-group GΩ

is connected.

Proof of Proposition 3.2.7. Since Ω is an alcove, the root system of GΩ/Ru(GΩ) is

empty [BrTi84, 4.6.12(i), 5.1.31]. By Lemma 3.2.8, G
red
Ω is a connected reductive

quasi-split κ-group with a trivial root system. Hence, it is a κ-torus and so, does
not have a non-trivial p-subgroup. Hence, for every pro-p subgroup P of G†

Ω(Ok) =

GΩ(Ok), the image πΩ(P ) by the surjective morphism πΩ (Lemma 3.2.5) is a p-
group [Ser94, 1.4 Prop.4], hence trivial. As a consequence, the kernel P+

Ω is the
(unique) maximal pro-p subgroup of GΩ(Ok).

Now, one can give a proof of Theorem 1.5.3.

Proof of Theorem 1.5.3. Let P a maximal pro-p subgroup. By Proposition 3.1.4, we
have P ⊂ StabG(k)(c). Let c0 ⊂ A. By strong transitivity of G(k) on the building
X(G, k), there exists g ∈ G(k) such that gc0 = c. Hence, g−1Pg is a maximal
pro-p subgroup of Gc0

(Ok). By Proposition 3.2.7, we have P = gP+
c0
g−1.
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Valued root group datum in the quasi-split simply connected case

To conclude in the simply connected case, let us interpret this group in terms
of a valued root group datum. This could be a bit tricky in the general case and, in
the two next propositions, we assume that G is, moreover, a quasi-split semisimple
k-group. In a further work [Loi16], we compute the Frattini subgroup of a maximal
pro-p-subgroup by the explicit decomposition of Proposition 3.2.9.

Denote by S the maximal k-split torus chosen in the construction of the build-
ing and by T = ZG(S) the associated maximal k-torus. Denote by T (k)b the
(unique) maximal profinite subgroup of T (k) and by T (k)+b its (unique) maximal
pro-p subgroup.

3.2.9 Proposition. The group P+
c

admits the following directly generated product
structure:

P+
c

=



∏

a∈Φ+

nd

U−a,fc(−a)


 · T (k)+b ·



∏

a∈Φ+

nd

Ua,fc(a)




where Φnd denotes the non-divisible roots of the relative k-root system Φ(G,S).
In particular, T (k)+b = P+

c
∩ T (k)b.

Proof. By the simple connectedness assumption, proposition [Lan96, 3.5] gives
T(Ok) = T (k)b where T denotes the integral model of T defined in [Lan96, §3].

Since c is an alcove, for any relative root a ∈ Φ, we have fc(a) + fc(−a) > 0.
By computation in [Lan96, 5.9, 5.12, 6.5] and axioms of a valued root group datum,
the directly generated product U−Φ+,c(Ok) · T(Ok) · UΦ+,c(Ok) is a group, hence it
is equal to Gc(Ok) by [BrTi84, 4.6.6].

In the proof of Proposition 3.2.7, we have seen that G
red
c

(κ) does not have a
non-trivial p-subgroup. Hence U±Φ+,c(Ok) ⊂ ker πc = P+

c
since the image of a

pro-p group by a surjective continuous morphism is a pro-p group. Thus, we obtain
the equality (3.2.9).

By quasi-splitness and simple connectedness, the maximal k-torus T is an in-
duced torus [BrTi84, 4.4.16], generated by coroots, and we can be more precise
about the above description by root group datum:

3.2.10 Proposition. There is the following isomorphism of topological groups:

∏
a∈∆ â

∨ :
∏

a∈∆(1 +mla) → T (k)+b
(ta)a∈∆ 7→

∏
a∈∆ â

∨(ta)
(1)

where â = 2a if 2a ∈ Φ, and â = a otherwise; La denotes the minimal field of
definition of the root a (defined in [BrTi84, 4.1.3]) and mLa denotes the maximal
ideal of its ring of integers.

Proof. Since G is a simply connected quasi-split semisimple k-group, by [BrTi84,
4.4.16], T is an induced torus and, more precisely, there is the following isomorphism∏

a∈∆ â
∨ :
∏

a∈∆RLa/K(Gm,La) ≃ T , where ∆ denotes a basis of the relative root
system Φ. By uniqueness, up to isomorphism, of the Ok-model, T is Ok-isomorphic
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to
∏

a∈∆ROLa/Ok
(Gm,OLa

). Hence, there is a natural isomorphism
∏

a∈∆O
×
La
≃

T(Ok) = T (k)b of topological abelian groups, and the maximal pro-p subgroup is
isomorphic to the direct product

∏
a∈∆(1 +mLa).

3.3 Description using the action on a building

We now can derive the useful description of a maximal pro-p subgroup of G(k),
as a pro-p-Sylow of the setwise stabilizer of a suitable alcove. To prove Theorem
1.5.1, it suffices to show that every maximal pro-p subgroup of G(k) can be realised
as such a group.

Proof of Theorem 1.5.1. Let P be a maximal pro-p subgroup of G(k). By Propo-
sition 3.1.4, there exists an alcove c such that P setwise stabilizes c. By strong
transitivity, we can and do assume that c ⊂ A. In particular, P is a maximal pro-p
subgroup of G†

c(Ok).
Firstly, we show the uniqueness of such an alcove c. By Lemma 2.2.2, the topo-

logical group G
†
c(Ok) is compact, hence profinite. By Sylow theorem for profinite

groups [Ser94, 1.4 Prop.3 et 4 (a)], there exists g0 ∈ G
†
c(Ok) such that P con-

tains g0P+
c
g−1
0 = P+

c
. It suffices to show that P+

c
does not stabilises any alcove of

X(G, k) different from c.
For all a ∈ Φ, the image by πc of the root group Ua,c(Ok) is trivial because Ua,c

is a root group of G
red
c

[Lan96, 10.34], hence trivial because c is an alcove [Lan96,
10.36]. Hence P+

c
contains the subgroup Uc of G(k) generated by Ua,c for every

a ∈ Φ. The group P+
c

acts on the set of all facets of X(G, k) not contained in cl(c)
since it setwise stabilizes cl(c) and preserves the simplicial structure of X(G, k).
Let F be such a facet. Let A′ be an apartment containing c and F . Let A′′ be
an apartment containing c but not F . Since the group Uc acts transitively on the
set of apartments containing c [Lan96, 13.7], there exists u ∈ Uc ⊂ P+

c
such that

u ·A′ = A′′. Hence P+
c

does not stabilize F .
Conversely, let c be an alcove of X(G) and P be a maximal pro-p subgroup

of StabG(k)(c). Let P ′ be a maximal pro-p subgroup of G(k) containing P . Such
a P ′ exists by Lemma 2.4.5 and Proposition 2.2.10. Let c

′ be the unique alcove
stabilized by P ′, hence by P . Since P contains P+

c
according to Lemma 3.2.5, it

does not stabilize any facet of X(G, k) out from cl(c). Hence c = c
′ and P ′ is a

maximal pro-p subgroup of StabG(k)(c). By maximality of P , we have P ′ = P .

3.3.1 Corollary. If G is a simply connected semisimple k-group, then P is a max-
imal pro-p subgroup of G(k) if, and only if, there exists an alcove c of X(G, k) such
that P = P+

c
. Moreover, such an alcove c is uniquely determinated by P and the

set of fixed points by P in X(G, k) is exactly the simplicial closure cl(c).

Proof. The first part is a consequence of Proposition 3.2.7 and of the first part of
Theorem 1.5.3.

When G is simply connected, the stabilizer of an alcove is also its pointwise
stabilizer [BrTi84, 5.2.9]. This and Theorem 1.5.3 gives the second part.
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Iwahori subgroups in the simply connected case

Recall the following definitions [BrTi84, 5.2]

3.3.2 Definition.

(1) Given a facet F of X(G, k), call connected pointwise stabilizer of F the
subgroup GF (Ok) of G(k).

(2) A subgroup of G(k) is called a parahoric (resp. Iwahori) subgroup if,
and only if, it is the connected pointwise stabilizer of a facet (reps. an alcove) of
X(G, k).

To conclude this study of pro-p subgroups, the following well-known proposition
is a kind of generalisation of Lemma 3.1.1.

3.3.3 Proposition. Assume that G is simply connected. A subgroup of G(k) is an
Iwahori subgroup if, and only if, it is the normalizer in G(k) of a maximal pro-p
subgroup of G(k).

Proof. Let c be an alcove of A, let g ∈ G(k) an element and H the stabilizer
of g · c. Since the semisimple k-group G is simply connected, the stabilizer H
is in fact an Iwahori subgroup [BrTi84, 5.2.9]. By Proposition 3.2.3, gP+

c
g−1 is

a normal pro-p subgroup of H. Hence H ⊂ NG(k)(gP
+
c
g−1). For every element

h ∈ NG(k)(gP
+
c
g−1), every u ∈ P+

c
and x ∈ c, one has h−1uh · x = x because

gP+
c
g−1 fixes g · c pointwise. Hence h · x is a point in X(G, k) fixed by P+

c
, so

h · x ∈ c since it cannot be contained on the boundary of c. Since the action of
G(k) preserves the simplicial structure of X(G, k), the element h stabilises c. Hence
NG(k)(gP

+
c
g−1) = H. By Theorem 1.5.3, it gives the first implication.

Conversely, let U be a maximal pro-p subgroup of G(k). Define H = NG(k)(U).
Denote by c be the unique alcove fixed by U given by Theorem 1.5.1. By uniqueness
of c, the subgroup H stabilises c. By Proposition 3.2.7 (and conjugation), U is a
normal subgroup of StabG(k)(c). Hence H = NG(k)(U) = StabG(k)(c) is an Iwahori
subgroup of G(k).

3.3.4 Corollary. Iwahori subgroups of G(k) are G(k)-conjugated.

Proof. This is [Tit79, 3.7]. It is immediate by Theorem 1.2.1 and Proposition
3.3.3.

An interest of Proposition 3.3.3 is to have an “intrinsic” definition (from the
group theory point of view, in other words a description not using the action on the
Bruhat-Tits building) of Iwahori subgroups in good cases (e.g. a simply connected
group over a local field). This provides a quick way to describe the affine Tits
system in purely group-theoretic terms.
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