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Abstract

The purpose of this paper is to link anisotropy properties of an algebraic

group together with compactness issues in the topological group of its rational

points. We find equivalent conditions on a smooth affine algebraic group

scheme over a non-Archimedean local field for the associated rational points

to admit maximal compact subgroups. We use the structure theory of pseudo-

reductive groups provided, whatever the characteristic, by Conrad, Gabber

and Prasad. We also investigate thoroughly maximal pro-p subgroups in the

semisimple case, using Bruhat-Tits theory.
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1 Introduction

Given a base field k and an affine algebraic k-group denoted by G, we get an
abstract group called the group of rational points, denoted by G(k). By the term
algebraic k-group, we mean in this paper that G is a group scheme defined over
k of finite type. Unless stated otherwise, all algebraic k-groups will be assumed
to be smooth and affine, but not necessarily connected, that is to say a linear
algebraic group in the terminology of [Bo91] for instance. When k is a topological
field, this group inherits a topology from the field. It is a natural problem to link
some algebraic properties of an algebraic k-group G and topological properties of its
rational points G(k). In this article, we consider a non-Archimedean local field k,
hence the topological group G(k) will be totally disconnected and locally compact.
Thus, one can investigate the compact, equivalently profinite, subgroups of G(k).
In the following, we denote by ω the discrete valuation, Ok the ring of integers, m
its maximal ideal, ̟ a uniformizer, and κ = Ok/m the residue field. We denote by
k an algebraic closure of k.

1.1 Existence of maximal compact subgroups

Starting from the algebraic k-groupG, one is led to consider the group of rational
points G(k) endowed with the topology induced by that of the base field k. We
would like to get a correspondence between algebraic properties of G and topological
properties of G(k). A theorem of Bruhat and Tits makes a link between anisotropy
and compactness [BrT84, 5.1.27] for reductive groups. Another link between algebra
and topology is Godement’s compactness criterion for arithmetic quotients of non-
Archimedean Lie groups, recently extended to positive characteristic by Conrad
[Con12, A5]. In the first part, we obtain further results for a general algebraic
group over a local field; more precisely, we provide a purely algebraic condition on
the k-group G for G(k) to admit maximal compact subgroups. The fact that this
condition is non-trivial is roughly explained by the following:

1.1.1 Examples. Consider the additive group Ga,k. Inside the topological group
(k,+), the subgroups ̟nOk, where n ∈ N form a basis of compact open neighbour-
hoods of the neutral element 0. However, k is not compact and does not admit a
maximal compact subgroup, since k is the union

⋃
n∈Z̟

nOk of compact subgroups.
Moreover, (k,+) is not compactly generated.

On the opposite, consider the multiplicative group Gm,k. The topological group
k× has a unique maximal compact subgroup: O×

k . Since k is assumed to be dis-
cretely valued by ω : k× → Z, the topological group k× is compactly generated by
O×
k and an element x ∈ k× such that ω(x) = 1.

In general, maximal compact subgroups of a reductive group are parametrised by
its enlarged Bruhat-Tits building [Tit79, 3.2] (the building in [Tit79] corresponds to
the enlarged building [BrT84, 4.2.6]; see [Rou77, II.2] for more details with bounded
subgroups).

In fact, the additive group is the prototype of an algebraic group which does
not have a maximal compact subgroup in its rational points. More precisely:
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1.1.2 Theorem. Let k be a non-Archimedean local field and G a connected algebraic
k-group. The topological group G(k) admits a maximal compact subgroup if, and
only if, G does not contain a non-trivial connected unipotent k-split normal k-
subgroup.

Under these conditions, G(k) is, moreover, compactly generated.

We will go back to the notion of splitness for unipotent groups; it corresponds to
the existence of a filtration with subgroups isomorphic to Ga. In characteristic zero,
all unipotent groups are split and, in fact, the above algebraic condition amounts to
requiring that G be reductive. In this case, the theorem appears in [PlR94, §3.3].
Here, our theorem covers all cases and the proof, using Bruhat-Tits theory and
pseudo-reductive groups, is uniform whatever the characteristic of the local field.

1.2 Conjugacy and description of maximal pro-p subgroups

Once we know that an algebraic group G admits maximal profinite subgroups
(which are exactly maximal compact subgroups), we would like to describe them
more precisely. In the case of a semisimple k-group G, we can use the integral
models of G and the action of G(k) on its Bruhat-Tits building X(G, k). There are,
in general, several conjugacy classes of maximal profinite subgroups (in the simply
connected case, they correspond to the different types of vertices). However, the
maximal pro-p subgroups appear, in turn, to take the role of p-Sylow subgroups, as
the following states:

1.2.1 Theorem. Let k be a non-Archimedean local field of residue characteristic p.
Let G be a semisimple k-group. Then, G(k) admits maximal pro-p subgroups and
they are pairwise conjugate.

These maximal pro-p subgroups will be described, in Theorem 1.5.3, thanks to
some well-chosen integral models.

1.3 Algebraic groups over imperfect fields

As already mentioned, we have to use the notion of a pseudo-reductive group.
This notion was first introduced by Borel and Tits in [BoT78] but was deeply
studied only recently, by Conrad, Gabber and Prasad in [CGP15].

If k is any field, the unipotent radical of a smooth affine algebraic k-group G,
denoted by Ru,k(Gk), can fail to descend to a k-subgroup of G when k is imperfect.
It has a minimal field of definition which is a finite purely inseparable finite exten-
sion of the base field k [CGP15, 1.1.9]. Hence, we have to replace the unipotent
radical Ru,k(Gk) by the unipotent k-radical, denoted by Ru,k(G) and defined as the
maximal smooth connected unipotent normal k-subgroup of G. However, thanks
to the following short exact sequence of algebraic k-groups:

1→Ru,k(G)→ G→ G/Ru,k(G)→ 1

we can understand better the algebraic k-group G. Of course, when k is perfect,
this is exactly the maximal reductive quotient of G.
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Let G be a smooth connected algebraic k-group. One says that G is pseudo-

reductive if Ru,k(G) is trivial. Over perfect fields, it corresponds to reductivity,
but it is far from true in general. We have to face this difficulty because for a local
field k of characteristic p, we have [k : kp] = p.

1.3.1 Example. If k′/k is a purely inseparable finite extension, the commutative
group Rk′/k(Gm,k) is pseudo-reductive. Its unipotent radical Ru,k(Gk) descent
to a k′-group and is non-trivial since the quotient Rk′/k(Gm,k)/Gm,k is unipotent
[CGP15, 1.1.3]. Therefore, it is not reductive.

Thanks to the main structural theorem of Conrad, Gabber and Prasad [CGP15,
5.1.1], we have a deeper understanding of pseudo-reductive groups. Hence, there
is some hope to generalise results on reductive groups to pseudo-reductive groups
and, by considering successive quotients, to obtain general results on arbitrary
connected algebraic groups. Typically, this notion enabled B. Conrad to obtain
a Godement compactness criterion in terms of anisotropy for general groups over
any local field (note that, until recently, standard references [Mar91] quote this
criterion for general groups in characteristic 0 but only for reductive groups in
positive characteristic, while it is now known to be true even for non-reductive
groups in positive characteristic).

Thanks to the structure theory of unipotent groups provided by Tits [CGP15,
B.2], we have notions of “splitness”, “isotropy” and “anisotropy” for unipotent groups.
The most intriguing one is anisotropy, defined as follows.

Let U be a smooth affine unipotent k-group. One says that U is k-wound if
there are no non constant k-morphisms to U from the affine k-line (where U and
A1 are seen as k-schemes), or equivalently if there is no nontrivial action of Gm on
U . Over a perfect base field, such a group has to be trivial; hence, this definition
makes sense only for imperfect fields.

We recall the following definition of Bruhat and Tits [BrT84, 1.1.12], initially
introduced in a note of Borel and Tits [BoT78].

1.3.2 Definition. Let G be a smooth connected algebraic k-group. One says that
G is quasi-reductive if Ru,k(G) is k-wound.

1.3.3 Remark. Unless stated otherwise, we assume that a semisimple, reductive,
pseudo-reductive or quasi-reductive k-group is connected by definition. Note that
we have the containments:

{semisimple} ⊂ {reductive} ⊂ {pseudo-reductive} ⊂ {quasi-reductive}

In Theorem 1.1.2, the algebraic k-group verifying the equivalent conditions are
exactly the quasi-reductive ones.

In the same way as in the reductive case [PrT82, BTR theorem], there is a
correspondence between compactness and anisotropy for unipotent groups, given
by Oesterlé [Oes84, VI.1]: assume that k is an imperfect local field, then U is
k-wound if, and only if, U(k) is compact.
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1.4 The case of a topological base field

From now on, k is a local field of residual characteristic p.
If a totally disconnected locally compact group has a maximal compact sub-

group, then its locally elliptic radical is compact (see Lemma 2.4.2). If U is a
non-trivial connected k-split unipotent k-group, we will build, in Lemma 2.4.3 by
analogy with the case of Ga seen in Example 1.1.1, an exhaustion of the non-
compact group U(k) by (increasing) compact open subgroups. Using Proposition
2.4.4, we deduce that if an algebraic k-group G contains such a U as a normal
k-subgroup, then the elliptic radical of G(k) is not compact since it contains U(k)

as a normal subgroup. Thus, G(k) cannot have a maximal compact subgroup.
Conversely, it is well-known that if G is a semisimple k-group, then G(k) has a

maximal compact subgroup. Hence, we would like to prove the same fact for any
quasi-reductive k-group. It is natural to exploit properness and finiteness properties
of long exact sequences in Galois cohomology attached to some group extensions,
but these properties are not satisfied in general. In fact, the first Galois cohomology
pointed sets of relevant normal subgroups of G often fail to be finite in positive
characteristic (e.g. #H1(k, ZG) =∞ when char(k) = p > 0 and G = SLp; see also
[CGP15, 11.3.3] for an example of a unipotent group).

Therefore cohomological methods are not sufficient to conclude. We are using
topological properties of rational points. One of them is the following:

1.4.1 Definition. A topological group G is called Noetherian if it satisfies the
ascending chain condition on open subgroups; this means that any increasing se-
quence of open subgroups of G is eventually constant.

1.4.2 Example. (1) The discrete abelian group (Z,+) is Noetherian since any sub-
group of Z is an ideal of the Noetherian ring Z.

(2) By Example 1.1.1, the additive group of a non-Archimedean local field is
not a Noetherian group since it has an infinite strictly increasing sequence of open
subgroups, namely (̟−nOk)n∈N.

Because the additive topological group (k,+) (seen as the group of rational
points of the additive group Ga) admits no maximal compact subgroup, there is no
hope for a non-k-wound unipotent group U to have a maximal compact subgroup
inside its rational points. Together with Oesterlé’s previously mentioned result, this
is the heuristics leading to:

1.4.3 Theorem. Let k be a non-Archimedean local field with residue characteristic
p and G be a smooth affine algebraic k-group. The following are equivalent:

(i) The identity component G0 of G is a quasi-reductive k-group,

(ii) G(k) is Noetherian,

(iii) G(k) admits a maximal compact subgroup,

(iv) G(k) admits a maximal pro-p subgroup.
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Moreover, under the above equivalent conditions:
(1) Every pro-p (resp. compact) subgroup of G(k) is contained in a maximal

pro-p (resp. compact) subgroup of G(k).
(2) Every maximal pro-p (resp. compact) subgroup of G(k) is open.

1.4.4 Corollary. If G is a quasi-reductive k-group, then G(k) is compactly gener-
ated.

Proof of corollary. By [CM13, Lemma 3.22] a locally compact group G is Noethe-
rian if, and only if, any open subgroup of G is compactly generated.

This theorem and its corollary are well-known in the case of a p-adic field k (in
that case of char(k) = 0, quasi-reductivity implies reductivity because all unipotent
groups are split) as a proposition of Platonov and Rapinchuk [PlR94, 3.3 Proposi-
tion 3.15] and a theorem of Borel and Tits [BoT65, 13.4]. In nonzero characteristic
it is necessary to consider the notion of quasi-reductivity in the statement of the
result.

For a reductive group G defined over a p-adic field, we know moreover that a
compact open subgroup is contained in finitely many compact subgroups [PlR94,
Proposition 3.16 (1)]. We don’t know if this statement is still true for a quasi-
reductive group over a local field of positive characteristic. In fact, when G(k) acts
properly on a locally finite affine building, there is a correspondence between its
compact open subgroups and the non-empty bounded subsets of the Bruhat-Tits
building. In the quasi-reductive case, we have a spherical Tits system by [CGP15,
C.2.20] but the existence of an affine Tits system is not yet proven.

1.4.5 Example. Let k′/k be a purely inseparable finite extension of local fields and
G′ = GLn,k′. Let Z ≃ Gm,k be the k-split torus canonically contained in the center
ZG′ of G′. Consider the k-group G = Rk′/k(G

′)/Z. It is not pseudo-reductive since
it contains the central unipotent k-subgroup Rk′/k(ZG′)/Z. In particular, it is not
the group of rational points of any reductive group. By Hilbert 90 theorem and
Lemma 2.1.3, the quotient morphism provides an isomorphism of topological groups
G(k) ≃ G′(k′)/Z(k). Since G′ and Z are reductive groups, there rational points are
Noetherian groups by Theorem 1.4.3. By Proposition 2.1.1 (6), the group G(k) is
Noetherian as the image of a Noetherian group by a continuous map. By Theorem
1.4.3, we deduce that G is quasi-reductive.

Standard presentations of pseudo-reductive group provides much more informa-
tion on the structure of these groups and the proof of Theorem 1.4.3 does not use
all the aspects of that tool. Once we know that the rational points of a pseudo-
reductive group admits a maximal compact subgroup, locally elliptic subgroups (see
Definition 2.4.1) appear in turn to be relevant. We obtain the following result on
the topological structure of rational points of a quasi-reductive group:

1.4.6 Theorem. Let G be a connected quasi-reductive group over a non-
Archimedean local field k. Any open subgroup V of the group of rational points
G(k) admits a chain of closed normal subgroups 1 6 QV 6 SV 6 V such that QV
is compact, the quotient SV /QV is the internal direct product of finitely many non-
compact, topologically simple, compactly generated locally compact groups that are
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each isomorphic to the quotient of rational points of a simply connected isotropic
simple algebraic group over a local field (of the same characteristic and residue
characteristic as k) by its center, and the quotient V/SV is compactly generated
and virtually abelian.

Moreover, if G is pseudo-reductive and V = G(k), the compact group QV is the
locally elliptic radical of G(k).

1.5 Use of buildings and integral models

Though Theorem 1.4.3 gives a good criterion for the existence of maximal com-
pact subgroups, the proof is not constructive in the sense that we do not have any
detail about these subgroups. Nevertheless, in the case of a semisimple k-group G,
denote by X(G, k) its Bruhat-Tits building. In Proposition 2.2.6, we get a good
description of maximal compact subgroups as stabilizers of some points for the
continuous action of G(k) on its Bruhat-Tits building.

As stated in Theorem 1.4.3, for a semisimple k-group G, the topological group
G(k) has maximal pro-p subgroups. These groups are a kind of generalisation of
Sylow subgroups for a finite group: in the profinite situation, a profinite group has
maximal pro-p subgroups and they are pairwise conjugate [Ser94, 1.4 Prop. 3].
By our second main theorem 1.2.1, we know that the (usually non-compact) group
G(k) has maximal pro-p subgroups and that they are pairwise conjugate. The use
of Bruhat-Tits buildings and, in particular, of Euclidean buildings associated to
pairs (G, k) allows us to be more precise: we give a useful description of maximal
pro-p subgroups by use of a valued root groups datum in the simply-connected
case. Thanks to this, in a further work [Loi], we compute the Frattini subgroup of
a maximal pro-p subgroup. There will be a somewhat analogous computation as
in [PrR84] where Prasad and Raghunathan compute the commutator subgroup of
a parahoric subgroup.

1.5.1 Theorem. Let k be a non-Archimedean local field and G a connected
semisimple k-group. If P is a subgroup of G(k), then P is a maximal pro-p subgroup
of G(k) if, and only if, there exists an alcove c ⊂ X(G, k) such that P is a maximal
pro-p subgroup of the stabilizer of c.

Moreover, such an alcove c is uniquely determined by P and the set of fixed
points by P in X(G, k) is contained in the simplicial closure cl(c) of c.

In particular, there is a natural surjective map from the maximal pro-p subgroups
of G(k) to the alcoves of X(G, k). When G is simply connected, this map is a
bijection.

The first part of this theorem is a direct consequence of Proposition 3.1.4 and
conjugation of p-Sylow subgroups in profinite groups since the stabilizer of an alcove
is a profinite group by Lemma 2.2.2(2). To get a deeper description of maximal
pro-p subgroups, integral models and their reductions are useful.

1.5.2 Notation. Let Ω ⊂ A be a non-empty bounded subset where A denotes
the standard apartment of the Bruhat-Tits building X(G, k). Denote by GΩ the
corresponding smooth connected affine Ok-model of G (denoted by G◦

Ω in [BrT84]
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and by GΩ in [Lan96]: they are the same Ok-model of G, up to isomorphism,
because they satisfy the same universal property). Denote by G

†
Ω the (possibly

non-connected) smooth affine Ok-model defined in [BrT84, 4.6.18] for the quasi-
split case and, by descent, in [BrT84, 5.1.8] for the general case.

Recall that if Ω satisfies a suitable notion of convexity as a subset of a polysim-
plicial structure (denote by cl(Ω) the simplicial closure defined in [BrT72, 7.1.2], we
assume here that Ω = cl(Ω)) and G is semisimple, then G

†
Ω(Ok) is the stabilizer of

Ω in G(k) [BrT84, 4.6.29, 5.1.31]. The group GΩ(Ok) fixes Ω pointwise and, when
G is simply-connected we have GΩ = G

†
Ω [BrT84, 5.2.9]. In particular, a simply-

connected semisimple k-group acts on its Bruhat-Tits building by type-preserving
isometries.

In part 3.2, we will use Ok-models (where Ok denotes the ring of integers of k)
to get the following description:

1.5.3 Theorem. Let k be a non-Archimedean local field and G a connected simply
connected semisimple k-group.

A maximal pro-p subgroup of G(k) is conjugate to

P+
c

= ker
(
Gc(Ok) ։ G

red
c

(κ)
)

where c ⊂ A denotes an alcove of the standard apartment, κ denotes the residue
field of k and G

red
c

denotes the reductive quotient of the special fiber of the integral
model associated to c.

This morphism Gc(Ok) ։ G
red
c

(κ) and its kernel appear in several references
like [Tit79].
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2 Maximal compact subgroups

2.1 Extensions of topological groups

As we consider topological groups, we require that any morphism between such
groups be continuous. Recall that the morphism deduced from an algebraic mor-
phism is always continuous for the k-topology.
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Noetherian groups

Firstly, let us recall some properties of Noetherian groups (Definition 1.4.1).

2.1.1 Proposition.

(1) Any open subgroup of a Noetherian group is Noetherian.

(2) A compact group is Noetherian.

(3) Let ϕ : G→ Q a strict (continuous) morphism between topological groups with
open image (e.g. ϕ is an open morphism). If Q and kerϕ are Noetherian,
then so is G.

(4) Any extension of Noetherian groups is a Noetherian group.

(5) The multiplicative group k× of a non-Archimedean local field k is Noetherian.

(6) Let ψ : H → G a (continuous) morphism between topological groups. If H
is Noetherian and ψ(H) is a finite-index normal subgroup of G, then G is
Noetherian.

Proof. (1) is obvious.
(2) is clear since an open subgroup of a compact group has finite index.
(3) Since Im(ϕ) is open in Q, the subgroup ϕ(G) is Noetherian by (1). Since

ϕ is a strict morphism, we may and do assume that ϕ is the quotient map
G→ G/H ≃ ϕ(G) where H = kerϕ. Let (Un)n an increasing sequence of open sub-
groups of G. Since H is Noetherian, the sequence (Un∩H)n is eventually constant,
say from N1 ∈ N. Moreover, the sequence ϕ(Un) ≃ UnH/H is eventually constant,
say from N2 ≥ N1, since ϕ(Un) is open in the Noetherian group ϕ(G) ≃ G/H . We
compute ϕ(Un) ≃ Un/(Un ∩H) ≃ Un/(UN1

∩H) ≃ UN2
/(UN1

∩H) for all n ≥ N2.
Hence Un = UN2

for all n ≥ N2.
(4) By definition, an extension of topological groups is an exact sequence

1→ H
j→ G

π→ Q→ 1

of continuous morphisms which are open on their image. Applying (3) to π, if H
and Q are Noetherian, then so is G.

(5) is a consequence of (2) and (4) since k× is an extension of the compact
subgroup O×

k by the Noetherian discrete group ω(k×) ≃ Z.
(6) Let (Un)n an increasing sequence of open subgroups of G. Since H is

Noetherian, the sequence of open subgroups ψ−1(Un) is eventually constant, and
so is the sequence Vn = ψ(ψ−1(Un)) = Un ∩ ψ(H). The sequence of indices
[Un : Vn] = [Un : Un ∩ ψ(H)] is a sequence of integers bounded by the finite index
[G : ψ(H)]. Moreover, since Un is an increasing sequence and Vn is eventually
constant, the sequence [Un : Vn] is eventually increasing, hence eventually constant.
As a consequence, the increasing sequence (Un)n is eventually constant.

9



2.1.2 Remark. A motivation to consider the Noetherian property on topological
groups is that one can easily prove the existence of maximal subgroups with a given
property (P ), as soon as we know the existence of some open subgroup satisfying
the desired property (P ) (like in proof of 2.4.6).

As an example, a Noetherian group with a proper open subgroup has maximal
proper open subgroups, and any proper open subgroup is contained in, at least, one
of them.

Morphisms of k-scheme and an exact sequence

Secondly, let us recall some properties of algebraic morphisms between topolog-
ical groups of rational points.

2.1.3 Lemma. Let k be a non-Archimedean local field. Let G be a smooth affine
algebraic k-group and H a normal closed k-subgroup of G.

(a) There exists a faithfully flat quotient homomorphism π : G → G/H where
G/H is a smooth k-group. Moreover, when H is smooth, π is smooth.

(b) The following exact sequence:

1→ H
j→ G

π→ G/H → 1

induces an exact sequence of topological groups:

1→ H(k)
jk→ G(k)

πk→ (G/H)(k)

and jk is a homeomorphism onto its image. Moreover, if H is smooth, then the
continuous morphism πk is open.

Proof. (a) The quotient morphism exists and is faithfully flat by [SGA3, Exp. VI A
Thm 3.2 (iv)]. Hence, the k-group G/H is smooth [DG70, II.§5 2.2]. If, moreover
H is smooth, by [DG70, II.§5 5.3 and II.§5 2.2], the morphism π is smooth.

(b) Morphism between k-schemes of finite type are continuous for the k-
topology, and jk is a homeomorphism onto its image by definition of the k-topology.
Since π is smooth, the continuous morphism πk is open by [GGMB14, lemma 3.1.2
and proposition 3.1.4].

Existence of a pro-p open subgroup

By the Remark 2.1.2, we need and recall the following lemma:

2.1.4 Lemma. Let k be a non-Archimedean local field of residual characteristic
p. Let G be a smooth affine algebraic k-group. Then G(k) contains a pro-p open
subgroup.

Proof. Given a closed immersion G → GLn,k (such an immersion exists
[DG70, II.5.5.2]), the topological group G(k) can be seen as a closed subgroup
G(k) ⊂ GLn(k) endowed with the usual topology. Hence, it is sufficient to prove
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that GLn(k) contains a pro-p open subgroup U , since U ∩ G(k) will be a pro-p
open subgroup of G(k).

The group H = GLn(Ok) is profinite since it is a totally disconnected compact
group. For d ∈ N∗, define

Hd = GLn(m
d) =

{
g ∈ GLn(Ok) , g − id ∈ m

d
KMn(Ok)

}

The Hd are normal compact open subgroups of GLn(Ok), and form a basis of
open neighbourhoods of id ∈ H. Moreover, they are pro-p groups in the same way
as [DDMS99, 5.1] for GLn(Zp).

Claim: H1 = lim←−dH1/Hd is a pro-p-group.
For any x ∈ Hd, write x = id + y where y ∈ mdMn(Ok). Hence xp = id + py +∑p
k=2

(p
k

)
yk. If k ≥ 2, then yk ∈ m

d+1
K Mn(Ok) because d ≥ 1. If char(k) = p, then

py = 0. Else, char(k) = 0 and p ∈ m. Hence py ∈ md+1Mn(Ok), so Hd/Hd+1 is a
p-group.

2.2 Compact and open subgroups of a semisimple group

In this section, we assume that G is an affine smooth connected semisimple
k-group where k is a non-Archimedean local field. In Proposition 2.2.6, we describe
maximal compact subgroups as stabilizers of, uniquely defined, points of the build-
ing. This is still true if we only assume that G is reductive. We do not assume,
in general, that G is simply connected and some consequences of this additional
assumption will be given. Such a group G(k) acts continuously and strongly tran-
sitively on its affine Bruhat-Tits building (with a type-preserving action when G is,
moreover, simply connected). We denote by A the standard apartment, by c a cho-
sen alcove in A and by G+ the subgroup of G(k) consisting of the type-preserving
elements.

Define B = StabG(k)(c) the setwise stabilizer of c and B+ = StabG+(c) the
pointwise stabilizer of c. Define N = StabG(k)(A) the setwise stabilizer of A in G(k)
and N+ = StabG+(A) the setwise stabilizer of A in G+. Thus, (B,N) is a gener-
alised BN-pair of G(k) (see [Gar97, 5.5 and 14.7] for details). Define T = B ∩N
and T+ = B+ ∩N+, and put W+ = N+/T+. The set Θ = T/T+ is finite [Gar97,
5.5] and we have a Bruhat decomposition G(k) =

⊔

t∈Θ , w∈W+

B+twB+. Define the

following bornology on G(k) by:

2.2.1 Proposition-definition (from [Gar97, 14.7]). A subset H ⊂ G(k) is called
bounded if H satisfies the following equivalent properties:

(i) H is contained in a finite union of double cosets B+twB+, where t ∈ Θ and
w ∈W+,

(ii) there exists a point x ∈ X(G, k) such that H · x ⊂ X(G, k) is bounded,

(iii) for any bounded subset Y ⊂ X(G), the subset H ·Y = {h · y , h ∈ H and y ∈
Y } ⊂ X(G, k) is bounded.
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Given an embedding G(k) → GLn(k), there is a natural definition of bounded
subsets, provided by the canonical metric on GLn(k). One can note that both
definitions coincide.

2.2.2 Lemma. Under the above assumptions and notations:

(1) For any non-empty subset Ω ⊂ A, the pointwise stabilizer of Ω in G(k) is
compact.

(2) For any non-empty bounded subset Ω ⊂ X(G, k), the setwise stabilizer of Ω

in G(k) is compact.

Proof. Since G is semisimple, we know by [Tit79, 2.2] that G(k) acts properly on
X(G, k) that is locally finite.

(1) In particular, the stabilizer Px of a point x ∈ A is compact (by construction).
Hence, the pointwise stabilizer of Ω written PΩ =

⋂
x∈Ω Px [Lan96, 13.3(i) and 12.8]

is compact.
(2) If x ∈ X(G, k), then there exists g ∈ G(k) such that g · x ∈ A and it gives

StabG(k)(x) = g−1Pg·xg. This does not depend on the choice of such a g ∈ G(k).
Consider Ω ⊂ X(G, k) a non-empty subset bounded subset. It is finite as cellular
complex since X(G, k) is locally finite). By (2), the pointwise stabilizer of Ω is
compact. Since Ω is finite, its setwise stabilizer is compact.

As a consequence of this lemma, bounded subsets are closely linked to compact
subsets.

2.2.3 Lemma. Under the above assumptions and notations:

(1) Every bounded subset of G(k) is relatively compact.

(2) A subset of G(k) is compact if, and only if, it is closed and bounded.

(3) Every maximal bounded subgroup of G(k) is a maximal compact subgroup.

Proof. Recall that B+ = Pc is compact by Lemma 2.2.2 and open in G(k) by
[Lan96, 12.12 (ii)]. Hence, every double coset B+twB+ is a compact open subset
of G(k).

(1) If H ⊂ G(k) is bounded, then by Definition 2.2.1(i) H is contained in a
finite union of double cosets, and this union is a compact subset.

(2) If H is a compact subset of G(k), then H is closed in G(k). The open
cover of H by double cosets has a finite subcovering. By Definition 2.2.1(i), H is
bounded. Conversely, a bounded subset is compact when it is closed, by (1).

(3) If H is a maximal bounded subgroup, then H is a closed subgroup. It
is bounded by Definition 2.2.1(ii) and contains H. Hence, maximality of H im-
plies H = H is a maximal compact subgroup, because every compact subgroup is
bounded according to (2).

Recall that a metric space is said to be CAT(0) if it is geodesic (any two points
are connected by a continuous path parametrized by distance) and if any geodesic
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triangle is at least as thin as in the Euclidean plane (for the same edge lengths).
This notion is developed in the book of Bridson and Haefliger [BH99]. The latter
condition is a non-positive curvature one (called also (NC) in [Bro89, §VI.3B]),
which can also be formulated by requiring the parallelogram inequality [AB08,
Prop. 11.4]. We use the following fixed-point theorem to describe compact open
subgroups thanks to the metric space X(G, k).

2.2.4 Theorem (Bruhat-Tits fixed point theorem [Bro89, VI.4]). Let H be a group
acting isometrically on a complete CAT(0) metric space (M,d). If M has a H-stable
non-empty bounded subset, then H fixes a point in M .

The following corollary is a immediate consequence of the fixed point theorem
and the Definition 2.2.1(iii).

2.2.5 Corollary. If H is a bounded subgroup of G(k), then H fixes a point of
X(G, k).

Let us give a proof of the following proposition:

2.2.6 Proposition. Let k be a non-Archimedean local field and G a semisimple
k-group. Let P be a subgroup of G(k). The following are equivalent:

(i) the subgroup P is a maximal compact subgroup of G(k),

(ii) the subgroup P fixes a unique point x ∈ X(G, k) and P = StabG(k)(x).

Moreover, if G is simply connected, such an x is a vertex in the simplicial
complex X(G, k).

Proof. (i) ⇒ (ii) If P is a maximal bounded subgroup, then, by Corollary 2.2.5,
P fixes a point x ∈ X(G, k). Hence, P is a subgroup of StabG(k)(x) which is a
bounded subgroup by 2.2.2(2). We get P = StabG(k)(x) because of the maximality
assumption on P .

We have to show that the maximality of P implies that StabG(k)(x) does not
fix any other point of X(G, k). Let A be an apartment containing x. Denote by H
the set of walls in A. Let us prove that the maximal bounded subgroup StabG(k)(x)

has a unique fixed point in A.
By transitivity, there exists an element g ∈ G(k) such that g · A = A. Hence,

we have to show that gStabG(k)(x)g
−1 = Pg·x fixes a unique point of A. We can

and do assume that x ∈ A and g = 1.
Denote by F the facet containing x. By contradiction, assume that Px fixes

another point y ∈ A. Then we have Px ⊂ Py and this should be an equality by
maximality of Px. If y 6∈ F , then there exists a wall H ∈ H such that y ∈ H

and x 6∈ H. Consider the affine root a+ l such that the associated half-apartment
D(a, l), with boundary H, does not contain x. The set of points of A fixed by
the root group Ua,l is exactly the half-apartment D(a, l) [Lan96, 13.3 (ii)]. The
root group Ua,l fixes y but not x, and is contained in Py. Therefore, the inclusion
Px ⊂ Py is not an equality and we get a contradiction. Hence, y and x have to
be on the same facet F . The action being isometric and [x, y] being metrically
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characterized [AB08, Prop. 11.5], Px fixes the line segment [x, y]. If x 6= y, since
the action is continuous and preserves the polysimplicial structure, the group Px
fixes F ∩ (x, y). Hence P fixes a point z ∈ F \ F . We obtain a contradiction by
considering the fixed point z 6∈ F .

(ii)⇒ (i) Conversely, let x ∈ X(G, k) be such that the group P = StabG(k)(x)

has a unique fixed point. If P ′ is a bounded subgroup containing P , and y ∈ X(G, k)

a point fixed by P ′, then P fixes y and y = x because of uniqueness. Hence
P ′ ⊂ StabG(k)(x) = P .

Moreover, if G is simply connected, the stabilizer of a facet fixes it pointwise
[BrT84, 5.2.9]. Because of the above equivalence, a maximal bounded subgroup is
exactly the stabilizer of a vertex of X(G, k).

2.2.7 Remark. By uniqueness of the fixed point, we get an injective map from the
set of maximal bounded subgroups of G(k) to the set of points in X(G, k). Denote
by X(G)max the image of this map. It is easy to remark that X(G, k)max contains
the vertices of the polysimplicial complex X(G, k).

Moreover, it is easy to see that every x ∈ X(G, k)max is the center of mass of
its facet F , because the stabilizer in G(k) of x acts by isometries on F and x is the
only fixed point. We emphasize that the converse is not true: the stabilizer of the
center of mass of a facet is not a maximal bounded subgroup in general. Indeed,
the case of simply connected groups provides a counter-example by considering the
center of mass of a facet that is not a vertex by Proposition 2.2.6.

2.2.8 Remark. Using the proof of Proposition 2.2.6, it is not hard to see that a
compact subgroup H ⊂ G(k) is always contained in a maximal one. Consider a
fixed point x ∈ X(G, k) by H of maximal degree d(x) (this does not depends on
the choice of an apartment). Hence, H is contained in StabG(k)(x).

Claim: StabG(k)(x) is a maximal compact subgroup.
By contradiction, if StabG(k)(x) is not, then it fixes a second point y, and then

one can find a fixed point on the line (x, y) of higher degree: this contradicts the
maximality of d(x).

Now, we need further investigation on compact open subgroups to prove Noethe-
rianity for absolutely simple semisimple groups.

2.2.9 Lemma. Let U be a compact subgroup of G(k) and denote by Ω = X(G, k)U

the non-empty subset of points fixed by U . If U is open, then Ω is a bounded
(therefore compact) subset of X(G, k).

Proof. By contradiction, assume that Ω is not bounded. Let x0 ∈ Ω. Since Ω is not
bounded, one can choose a sequence xn ∈ Ω such that d(xn, x0) ≥ n. Let X(G, k)

be a compactification of X(G, k), defined in [RTW10]. Let x ∈ X(G, k) be a limit
point of (xn)n (it exists because X(G, k) is a compact space by [RTW10, 3.34]).

Because
X(G, k) → R

y 7→ d(x0, y)
is continuous, x 6∈ X(G, k). By [RTW10, 4.20

(i)], there exists a maximal k-split torus S′ such that x0, x ∈ A(S′, k), and one can
assume that S′ = S.
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The group U is open in the subgroup StabG(k)(x0), which is compact by 2.2.2.
Hence, for every relative root a ∈ Φ, the intersection Ua(k) ∩ U has finite index in
the subgroup Ua,x0 . Hence, U contains Ua,la for some la ∈ [fx0(a),+∞[.

Because G(k) acts continuously on X(G, k), the point x ∈ X(G, k) is fixed
by U . With the notations of [RTW10, §4.1], since x 6∈ A(S, k), it belongs
to a stratum B(Qss, k) for some proper k-parabolic subgroup Q. By [RTW10,
4.12(ii)], we know that Stab tG(x)(k) is Zariski-dense in Q. Since Q is a proper
k-parabolic subgroup, there exists a root a ∈ Φ(G,S) such that Ua ∩Q = 1. Hence
Ua,x = StabG(k)(x) ∩ Ua(k) = {1}. But Ua,x ⊃ U ∩ Ua(k) ⊃ Ua,la , and we get a
contradiction.

Let us give another proof using the visual boundary of the building instead of
a compactification.

Proof. If X(G, k) is a single point, the lemma is obvious. Assume that X(G, k) is
not a single point. For any minimal k-parabolic subgroup P of G, we know that
its unipotent radical Ru(P ) is defined over k [Bo91, 20.5] and directly spanned by
some root groups [Bo91, 21.11]. By [Lan96, 13.3], we know that any element of a
root group fixes an half apartment, therefore its action on the building preserves the
type of facets. Let G(k)+ be the subgroup of G(k) generated by the rational points
subgroups Ru(P )(k) of the unipotent radical of minimal parabolic subgroups of G.
Then the action of G(k)+ on the Bruhat-Tits building X(G, k) preserves the types
of facets.

Let S be a maximal k-split torus and let AS = A(G,S, k) be the apartment
defined from S. Because G(k) acts strongly transitively on X(G, k) and N =

NG(S)(k) is the stabilizer of AS [Lan96, 13.8], we know that N acts transitively on
the set of alcoves of AS . Because N acts on AS through a group homomorphism
N → V ⋊ W ⊂ Aff(AS) [Lan96, 1.8], one can consider the subgroup N ′ of N
consisting in elements that preserve the type of faces. One can show that N ′ acts
transitively on the set of alcoves of AS because any element of the spherical Weyl
group (corresponding to the Weyl group of a special vertex) can be lift in N [Lan96,
12.1(ii)]. Consider the subgroup H of G(k) generated by all those N ′ and G(k)+.
Then H acts on X(G, k) by type-preserving isometries. We claim that H acts
strongly transitively on X(G, k). Indeed, on the one hand, H acts transitively on
the set of alcoves contained in a given apartment and, on the other hand, by [BrT84,
5.1.31], we know thatH acts transitively on the set of apartments containing a given
alcove.

Denote by ∂X(G, k) the visual boundary of X(G, k) (as defined in [Gar97, 16.9]
or [AB08, 11.9]). Since H acts strongly transitively on X(G, k) by type-preserving
isometries, we know by [Gar97, 17.1] that H acts strongly transitively by type-
preserving isomorphisms on ∂X(G, k). Moreover, by [Gar97, 17.2], we know that
∂X(G, k) is a spherical building whose Weyl group W is that of a special vertex
of X(G, k). In particular, there is a spherical Tits system (H,B,N, S) of type W
where B denotes the stabilizer in H of a chamber at infinity. Let D ⊂ X(G, k) be
a sector so that the face [D] of D at infinity is the chamber fixed by B. Let S be
a maximal k-split torus of G such that D ⊂ AS . Then, there is a choice of positive
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roots Φ+ ⊂ Φ(G,S) such that ∀a ∈ Φ+, we have Ua,D 6= {1} and U−a,D = 1.
Moreover, for any u ∈ Ua(k), there is a subsector of D fixed by u. Hence Ua(k)
fixes the chamber at infinity [D]. By [Bo91, 21.11], we know that the group U+

generated by the Ua(k) is the group of rational points of the unipotent radical of a
minimal k-parabolic subgroup of G. By construction, we have that B ⊃ U+.

Let ξ ∈ ∂X(G, k) be any point of the visual boundary of the building and
denote by Pξ the stabilizer in H of ξ. By [Gar97, 5.6], we know that Pξ is a strict
parabolic subgroup of the Tits system (H,B,N,R1) and, in particular, Pξ contains
a conjugate of B, therefore of U+. We also know by [Bo91, 21.15] that G(k) admits
a Tits system (G(k), P (k),NG(S)(k), R2) where S is a maximal k-split torus and P
is a minimal k-parabolic subgroup with Levi factor ZG(S). Up to conjugacy [Bo91,
20.9], we can assume that U+ is the group of rational points of the unipotent radical
of P . By [Bou81, IV.2.7 Remark 1 of Theorem 5] applied to G′ = G(k)+ = G1,
H = 1 and B = P (k), we obtain the existence of Tits system (G(k)+, U+, N ′, R′

2)

so that Pξ ∩ G(k)+ is a parabolic subgroup of this Tits system since it contains
a conjugate of U+. Moreover, Pξ ∩ G(k)+ 6= G(k)+ since G(k)+ does not fix any
point of X(G, k). As a consequence, Pξ is contained in the rational points of a strict
k-parabolic subgroup of G. In particular, up to conjugacy, there is a root a ∈ Φ

such that Ua(k) ∩ Pξ = 1 that is not open in Ua(k) ⊂ H. Hence Pξ is not an open
subgroup of H.

By contradiction, assume that Ω is not bounded. Then Ω contains a geodesic
ray consisting on points fixed by U . By definition of ∂X(G, k), this ray defines a
point ξ ∈ ∂X(G, k). Such a point ξ is fixed by U ∩ H since U fixes the geodesic
ray. Hence, the stabilizer Pξ of ξ in H contains U ∩H, thus it is open in H. This
is a contradiction.

2.2.10 Proposition. Every compact open subgroup of G(k) is contained in finitely
many compact (open) subgroups of G(k).

Proof. Consider a compact open subgroup U ⊂ G(k). By Lemma 2.2.9, the set
Ω = X(G)U is non-empty and bounded. By Remark 2.2.8, U is contained in
a maximal compact subgroup. Since X(G, k) is locally finite (because k is a local
field), by Remark 2.2.7 U is contained in finitely many maximal compact subgroups.
Since U is open, it has finite index in any maximal compact subgroup. Hence, the
set of compact subgroups containing U is finite.

We now obtain the first step of the main theorem 1.4.3 by the following:

2.2.11 Proposition. Let k be a non-Archimedean local field and G be an almost
k-simple, semisimple group. Then G(k) is Noetherian.

Proof. Let (Un)n∈N an increasing sequence of open subgroups of G(k). Denote by
G(k)+ the normal subgroup of G(k) generated by rational points of the unipotent
radical of minimal parabolic k-subgroups of G [BoT73, 6.2].

Let us start with statements on open subgroups of G(k). Consider an open
subgroup U of G(k).

Claim: If U ∩G(k)+ is bounded, then U is compact.

16



Indeed, assume U ∩ G(k)+ is bounded. Since U is open, it is closed. The
group G(k)+ is closed according to [BoT73, 6.14]. Thus, U ∩ G(k)+ is compact
by 2.2.3(2). By [BoT73, 6.14], the quotient group G(k)/G(k)+ is compact. Hence
UG(k)+/G(k)+ is a compact open subgroup of G(k)/G(k)+ . The natural bijective
continuous homomorphism U/(U ∩G(k)+)→ UG(k)+/G(k)+ is open and hence a
homeomorphism, so U/(U ∩G(k)+) is compact. It follows that U is compact.

Claim: If U is not bounded, then U contains G(k)+

Indeed, if U is not bounded, then it is not compact. Hence U ∩ G(k)+ is a
non-bounded open subgroup of G(k)+ by the previous claim. By a theorem of
Prasad, attributed to Tits [PrT82, Theorem (T)], we get U ∩ G(k)+ = G(k)+.
Hence U ⊃ G(k)+.

Let us now finish the proof by distinguishing two cases.
First case: Un is bounded (hence compact) for all n ∈ N.
By Proposition 2.2.10, U0 is contained in finitely many compact subgroups.

Hence, the increasing sequence of compact open subgroups (Un)n∈N is eventually
constant.

Second case: UN is not bounded for some N ∈ N.
Hence, for all n ≥ N , the group Un is not bounded and contains G(k)+. The

open subgroup UN/G(k)
+ of the compact group G(k)/G(k)+ has finite index.

Hence, the sequence (Un)n∈N is eventually constant.

2.3 Quasi-reductive groups

The case of a commutative quasi-reductive group

2.3.1 Proposition. Let k be a non-Archimedean local field. If C is a smooth
connected commutative quasi-reductive k-group, then C(k) is Noetherian.

Proof. This proof follows the beginning of the proof of [Con12, 4.1.5].
Let S be the maximal k-split torus of C (it is unique by k-rational conjugacy

[CGP15, C.2.3]). Consider the smooth quotient of algebraic k-groups:

1 −→ S
j−→ C

π−→ C/S −→ 1

Claim: The connected smooth abelian k-group C/S does not contains any
subgroup isomorphic to Ga or Gm.

Applying [SGA3, Exp. XVII 6.1.1(A)(ii)] to the preimage in C of a subgroup
isomorphic to Ga (see [Con12, 4.1.4] for a more direct proof), we get a contradiction
with quasi-reductiveness of C. Applying [Bo91, 8.14 Cor.] to the preimage in C of
a subgroup isomorphic to Gm, we get a contradiction with maximality of S.

By Lemma 2.1.3(b) and Hilbert 90 theorem, we get a short exact sequence of
topological groups:

1 −→ S(k)
jk−→ C(k)

πk−→
(
C/S

)
(k) −→ 1

where πk is a surjective open morphism.
By [Con12, A.5.7], the topological group

(
C/S

)
(k) is compact, hence it is

Noetherian by Proposition 2.1.1(2) (In this commutative case, we also have a direct
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proof considering the smooth quotient of C/S by its maximal k-torus, which is
anisotropic). By Proposition 2.1.1(4) and (5), the topological group S(k) ≃ (k×)n

(where n = dimS) is Noetherian. Applying Proposition 2.1.1(3) to πk, the topo-
logical group C(k) is Noetherian.

The case of a pseudo-reductive group

Thanks to [CGP15], we have structure theorems on pseudo-reductive groups,
well summarized in [Con12, §2]. In particular, there is a lot of flexibility in the
choice of a (generalised) standard presentation, so that we can reduce the question of
Noetherianity from pseudo-reductive groups to semisimple groups and commutative
quasi-reductive groups.

2.3.2 Lemma. Let k be a non-Archimedean local field and k′ a nonzero finite
reduced k-algebra, and write k′ =

∏
i∈I k

′
i where k′i/k are extensions of local fields

of finite degree (but possibly non-separable). Let G′ be a smooth connected k′-group
and denote by G′

i its fiber over the factor field k′i. Consider the smooth connected
k-group G = Rk′/k(G

′). If each fiber G′
i is either an absolutely simple semisimple

k′i-group or a basic exotic pseudo-reductive k′i-group, then the topological group G(k)
is Noetherian.

Proof. Write Rk′/k(G
′) =

∏
i∈I Rk′i/k(G

′
i) [CGP15, A.5.1]. There is a topological

isomorphism Rk′/k(G
′)(k) ≃∏

i∈I G
′
i(k

′
i). If each factor G′

i(k
′
i) is Noetherian, then

so is G(k) by Proposition 2.1.1(4).
From now on, assume that k′/k is a finite extension of local fields. It is sufficient

to show that G′(k′) is Noetherian.
If G′ is an absolutely simple semisimple k′-group, then by Proposition 2.2.11

the topological group G′(k′) is Noetherian.
Otherwise, G′ is a basic exotic pseudo-reductive k′-group (see [CGP15, 7.2] or

[Con12, 2.3.1] for a convenient definition). Hence we are in the case of a field with
char(k′) ∈ {2, 3}. Then, by [CGP15, 7.3.3, 7.3.5], G(k′) is topologically isomorphic
to G(k′) where G is an absolutely simple semisimple k′-group. Hence, G(k′) is
Noetherian again by Proposition 2.2.11.

2.3.3 Proposition. Let k be a non-Archimedean local field and G a pseudo-
reductive group. Then G(k) is Noetherian.

Proof. This proof almost follows the proof of [Con12, 4.1.9], based on structure
theorem of pseudo-reductive groups over a local field. Let us recall the main steps
of this proof.

If k is any field of characteristic p 6= 2, 3, then a pseudo-reductive k-group is
always standard according to [CGP15, 5.1.1].

If k is a local field of characteristic p ∈ {2, 3}, then we are in the convenient
case of a base field k with [k : kp] = p. Hence, by theorem [CGP15, 10.2.1], G is
the direct product G1 ×G2 of a generalised standard pseudo-reductive k-group G1

and a totally non-reduced pseudo-reductive k-group G2. Moreover, the k-group G2

is always trivial when p 6= 2.
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First step: Assume G2 is not trivial (hence char(k) = 2). By [CGP15, 9.9.4],
the topological group H(k), deduced from a basic non-reduced pseudo-simple k-
group H (see definition [CGP15, 10.1.2]) is topologically isomorphic to Sp2n(K)

for some n and an extension of local fields K/k. By Proposition 2.2.11, Sp2n(K)

is Noetherian, hence so is H(k). By [CGP15, 10.1.4], the totally non-reduced k-
group G2 is isomorphic to a Weil restriction Rk′/k(G

′
2) where k′ is a nonzero finite

reduced k-algebra and fibers of G′
2 are basic non-reduced pseudo-simple k-groups.

By Lemma 2.3.2, G2(k) is Noetherian.
Second step: From now on, we can assume that G = G1 is a generalised stan-

dard pseudo-reductive k-group, together with a generalised standard presentation
(G′, k′/k, T ′, C) and C ′ = ZG′(T ′) where k′ is a nonzero finite reduced k-algebra, T ′

is a maximal k′-torus of G′ and C is a Cartan k-subgroup of G. Write k′ =
∏
i∈I k

′
i

where k′i/k are finite extensions of local fields. By definition of a generalised stan-
dard presentation, G′ is a k′-group whose fibers, denoted by G′

i, are absolutely
simple simply connected semisimple or basic exotic pseudo-reductive. Hence, by
Lemma 2.3.2, the topological group Rk′/k(G

′)(k), which is topologically isomorphic
to

∏
i∈I G

′
i(k

′
i), is Noetherian. Moreover, by Propositions 2.3.1 and 2.1.1(4), the

topological group
(
Rk′/k(G

′)⋊ C
)
(k) is Noetherian.

Third step : under the above notations H1
(
k,Rk′/k(C

′)
)

is finite : this is
exactly a part of the proof of [Con12, 4.1.9]. By [Con12, 4.1.6], there is a natural
group homomorphism H1

(
k,Rk′/k(C

′)
)
≃ ∏

i∈I H
1
(
k′i, C

′
i

)
. If G′

i is semisimple,
the cartan subgroup C ′

i is a torus and H1
(
k′i, C

′
i

)
is finite by [Con12, 4.1.7]. Oth-

erwise G′
i is a basic exotic pseudo-reductive group. There is a quotient map on an

absolutely simple semisimple group G′
i → G′

i carrying C ′
i onto a cartan subgroup (a

torus) C ′
i of G′

i. Over a separable closure (k′i)s the injective map of rational points
C ′
i((k

′
i)s)→ C ′

i((k
′
i)s) becomes bijective. By [Con12, 4.1.6], there is an isomorphism

H1(k′i, C
′
i) ≃ H1(k′i, C

′
i) and the second one is finite by [Con12, 4.1.7] again, since

C ′
i((k

′
i)s) is Galois-equivariantly identified with (k′i)s-points of a k′i-torus in such

cases.
By definition of a generalised standard presentation [CGP15, 10.1.9], we have a

group isomorphism:
G ≃

(
Rk′/k(G

′)⋊ C
)
/Rk′/k(C

′)

where Rk′/k(C
′) is realized as a central subgroup of Rk′/k(G

′)⋊ C.
Thus, by [Ser94, I.5.6 Cor. 2], we have an exact sequence of group homomor-

phisms:

1→ Rk′/k(C
′)(k)→

(
Rk′/k(G

′)⋊C
)
(k)

πk→ G(k)
δ→ H1(k,Rk′/k(C

′))

Thus, as in [Con12, 4.1.9 (4.1.2)], the continuous morphism between topological

groups πk :
(
Rk′/k(G

′) ⋊ C
)
(k) → G(k) is open with a normal image which has

finite index since the group H1(k,Rk′/k(C
′)) is finite. Hence, by 2.1.1(6) applied

to this morphism πk, the group G(k) is Noetherian.

2.3.4 Remark. In this proof, the strategy was to reduce the problem from rational
points of pseudo-reductive groups to an open subgroup of a quotient of rational
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points of reductive groups. There exist pseudo-reductive groups whose rational
points are not that of some reductive group. For instance, consider k′/k a finite

extension of local fields of characteristic p. The group G =
Rk′/k(SLp,k′ )

Rk′/k(µp)
is pseudo-

reductive according to [CGP15, 1.3.4]. One can show [CGP15, 1.4.7] that G is not a
k-isogenous quotient of a k-group of the form RK/k(H) where K is a nonzero finite
reduced k-algebra and H is a K group whose fibers over Spec(K) are connected
reductive groups.

General case

2.3.5 Proposition. Let k be a non-Archimedean local field and G be a quasi-
reductive group. Then G(k) is Noetherian.

Proof. Consider the pseudo-reductive quotient of G :

1 −→ Ru,k(G) −→ G
π−→ G/Ru,k(G) −→ 1

By Lemma 2.1.3(b) one has the following exact sequence of topological groups:

1 −→ Ru,k(G)(k) −→ G(k)
πk−→

(
G/Ru,k(G)

)
(k)

where the homomorphism πk is open because Ru,k(G) is smooth.
Applying [Oes84, VI.1] to the k-wound unipotent group Ru,k(G), the topolog-

ical group Ru,k(G)(k) is compact, hence it is Noetherian by Proposition 2.1.1(2).
Applying Proposition 2.3.3 to the pseudo-reductive k-group G/Ru,k(G), we get
that the topological group

(
G/Ru,k(G)

)
(k) is Noetherian. Hence, by Proposition

2.1.1(3), the topological group G(k) is Noetherian.

2.4 Proof of the equivalence theorem

Now, there are no extra difficulties to prove Theorem 1.4.3 giving an equiva-
lence between an algebraic property and topological ones. We prove successively
(iii) or (iv)⇒ (i)⇒ (ii)⇒ (iii) and (iv).

Let us prove (iii) or (iv)⇒ (i).
Because this step focuses on the topological properties of the unipotent radical,

let us introduce a purely topological group theoretic definition close to this algebraic
group notion.

2.4.1 Definition. A locally compact group G is locally elliptic if every compact
subset of G is contained in a compact open subgroup of G.

2.4.2 Lemma. Let G be a totally disconnected locally compact group. Let R be a
closed locally elliptic normal subgroup of G.

1. If G admits a maximal compact subgroup, then R is compact.

2. If G admits a maximal pro-p subgroup and if every compact subgroup of R is
pro-p, then R is pro-p.
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Proof. Let U be a compact subgroup of G. It is locally elliptic. Then R · U is a
closed subgroup of G. Since U and R are locally elliptic, so is the group R · U
[CH16, 4.D.6 (2)]. Let V be a compact relatively open subgroup of R. Since R · U
is locally elliptic, there exists a compact subgroup W of R ·U containing U and V .

(1) If U is a maximal compact subgroup of G, we get U = W and therefore
V ⊂ U .

(2) Assume that every compact subgroup of R is pro-p, therefore V is pro-p.
The pro-p group U normalizes the group W ∩ R, which is pro-p being a compact
subgroup of R. Hence, the group W = (W ∩R) · U is a pro-p group (as the image
of a semi-direct product of pro-p groups (W ∩ R)⋊ U by the surjective morphism
(W ∩ R) ⋊ U → (W ∩ R) · U ⊂ G induced by multiplication [RZ10, 2.2.1(e)] and
[Ser94, 1.4 Prop.4(b)]). If U is a maximal pro-p subgroup of G, we get U =W and
therefore V ⊂ U .

Since R is locally elliptic, it is the union of its compact subgroups. We deduce
in both cases that R is a closed subgroup of U , therefore it is compact. Moreover
R is pro-p when U is pro-p.

In particular, this will be applied to the locally elliptic radical [CH16, 4.D.7 (7)]
of a topological group. Now, we go back to algebraic groups.

2.4.3 Lemma. Let k be a non-Archimedean local field. If U is a smooth connected
affine unipotent k-group, then U(k) is the union of an increasing sequence, indexed
by Z, of pro-p open subgroups (Un)n∈Z whose intersection is trivial.

Moreover, when U is not k-wound, one can assume that Un is strictly increasing.

Proof. Denote by ̟ a uniformizer of Ok and, for all n ∈ Z, denote mn = ̟nOk ⊂ k.
Denote by Um the smooth connected unipotent k-split k-group of upper triangular
unipotent matrices. For n ∈ Z, define

Pn =




(xi,j)1≤i,j≤m ,

xi,j = 0 if i > j

xi,j = 1 if i = j

xi,j ∈ mn(i−j) if i < j




⊂ Um(k)

The sequence (Pn)n∈Z is an increasing sequence of groups whose inter-
section is trivial and union is equal to Um(k). For all n, the subgroup
Pn of Um(k) is open since it contains the open neighbourhood of identity(
1 +m|n|(m−1)Mm(k)

)
∩ Um(k). And it is a pro-p-group since every Pn+1 is a

normal subgroup of Pn such that the quotient Pn/Pn+1 is a p-group.
By [Bo91, 15.5(ii)], there is a closed immersion U → Um for some m ∈ N. Define

Un = Pn ∩U(k). The sequence of subgroups (Un)n∈Z is increasing, the intersection⋂

n∈Z
Un is trivial and the union is

⋃

n∈Z
Un = U(k), because the same holds for (Pn)

and Um(k). Every Un is a pro-p subgroup of U(k) because U(k) ⊂ Um(k) is closed,
and it is an open subgroup of U(k) because Pn is open in Um(k).

Now, assume that U is not k-wound. Since U(k) is not compact by [Oes84,
VI.1], every Un is distinct from U(k). Moreover, Un is never trivial because it is
open in U(k). Hence, one can extract a strictly increasing sequence

(
U ′
̟(n)

)
n∈Z

with the same properties as before.
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In particular, this lemma tells us that unipotent groups over local fields are
locally elliptic. More precisely:

2.4.4 Proposition. Let k be a non-Archimedean local field of residual characteristic
p and G be a smooth connected affine k-group.

1. The rational points Ru,k(G0)(k) of the unipotent k-radical of G is a closed
locally elliptic normal subgroup of G(k) of which any compact subgroup is
pro-p.

2. Assume that the topological group G(k) contains either a maximal pro-p sub-
group, or a maximal compact subgroup. Then, G0 is a quasi-reductive k-group.

Proof. (1) Denote by U = Ru,k(G0) the unipotent k-radical of G. By Lemma 2.4.3
and Lemma [Cap09, 2.3], we get that every compact subset of U(k) is contained in
some pro-p open subgroup. In particular, U(k) is locally elliptic and any compact
subgroup of U(k) is pro-p as closed subgroup of a pro-p group.

(2) By Lemma 2.4.2, we get that U(k) is compact. Hence, by [Oes84, VI.1], the
topological group U is k-wound. In other words, the connected algebraic group G◦

is quasi-reductive.

Let us prove (i)⇒ (ii).

2.4.5 Proposition. Let k be a non-Archimedean local field and G a smooth affine
k-group. If G0 is a quasi-reductive k-group, then G(k) is Noetherian.

Proof. The identity component G0 of G is a smooth normal k-subgroup of G [DG70,
II.§5 1.1 and 2.1], and the quotient F = G/G0 is a (smooth) finite k-group [DG70,
II.§5 1.10].

By Lemma 2.1.3(b), we have an exact sequence of topological groups

1→ G0(k)→ G(k)
πk→ F (k)

where πk is an open morphism.
By Proposition 2.3.5, the topological group G0(k) is Noetherian and F (k) is

Noetherian because it is finite. As a consequence, by Proposition 2.1.1(3), the
topological group G(k) is Noetherian.

To conclude, let us finish the proof by showing that (ii)⇒ (iii) and (iv).

2.4.6 Proposition. Let G be a Noetherian totally disconnected locally compact
group. It admits a maximal compact subgroup. Moreover, if G admits an open
pro-p subgroup, then it admits a maximal pro-p subgroup.

Proof. By contradiction, assume than G does not contains a maximal pro-p (resp.
compact) subgroup.

By induction, it is possible to define a strictly increasing sequence of pro-p (resp.
compact) open subgroups. Basis of the induction is given by the existence of an
open pro-p (resp. compact) subgroup. Induction step: since G does not admit
a maximal pro-p (resp. compact) subgroup, given a pro-p (resp. compact) open
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subgroup Un, there exists a pro-p (resp. compact) subgroup Un+1 containing Un
strictly. The group Un+1 is open since it contains Un.

Such a sequence cannot exist since G is Noetherian: there is a contradiction.

In particular, by applying Lemma 2.1.4 and Proposition 2.4.6 to a smooth affine
algebraic group G over a non-Archimedean local field k whose the group of rational
points G(k) is Noetherian, we get the implications (ii)⇒ (iii) and (iv) of Theorem
1.4.3.

Let us now prove the second part of Theorem 1.4.3.

2.4.7 Lemma. Let G be a totally disconnected locally compact group. Every com-
pact subgroup of G is contained in an open compact subgroup of G. Moreover, if G
contains a open pro-p subgroup U , then every pro-p subgroup of G is contained in
some open pro-p subgroup of G.

Proof. Let P be a compact subgroup of G and U be an open compact subgroup
of G. The index [P : U ∩ P ] is finite since P is compact and U ∩ P is open in P .
Hence, the set {x−1Ux , x ∈ P} is finite. Define U0 =

⋂
x∈P x

−1Ux. It is an open
compact subgroup of G normalised by P , and it is pro-p when U is pro-p. Hence
the group P0 = P · U0 is an open subgroup of G. It is compact as the image of
P ×U0 by the continuous multiplication map G×G→ G. When, moreover, P and
U are pro-p, the group P0 is pro-p as the image of the pro-p group P ⋉ U0 by the
surjective multiplication homomorphism P ⋉ U0 → P · U0.

Proof of second part of Theorem 1.4.3. By Lemma 2.1.4 applied to G(k), we can
apply Lemma 2.4.7 to G(k). Using the same construction by induction as in proof
of 2.4.6, statements (1) and (2) are a direct result from Noetherianity and Lemma
2.4.7.

2.5 Topological structure of pseudo-reductive groups over a local

field

In order to prove the existence of a maximal compact subgroup of a pseudo-
reductive group over a local field, the standard presentation of these latter was used.
This presentation actually provides a finer way to describe the structure of pseudo-
reductive groups. Through standard presentations, a pseudo-reductive group can
be described as a quotient of some semi-direct product by a normal subgroup. We
begin by describing the structure of the rational points of such a subgroup, as
follows:

2.5.1 Lemma. If G is a generalized standard pseudo-reductive k-group arising
from a generalised standard presentation (G′, k′/k, T ′, C). Then Rk′/k(G

′)(k) is
topologically isomorphic to a direct product of groups that are each isomorphic to
the rational points of a simply connected absolutely simple algebraic group over a
local field of the same characteristic and residue characteristic as k.
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Proof. Write k′ =
∏
i∈I k

′
i where k′i/k are finite extensions of local fields and denote

by G′
i the fibers of G′ → Spec(k′) that are simply connected groups by definition

[CGP15, 10.1.9]. The group Rk′/k(G
′) is topologically isomorphic to

∏
iG

′
i(k

′
i). If

G′
i is a simply connected basic exotic pseudo-reductive k′i-group, then by [CGP15,

7.3.3 (2)] there is a topological isomorphism fi from G′
i(k

′
i) to a group G′

i(k
′
i)

where G′
i is simply connected by [CGP15, 7.1.5] and an absolutely simple k′i-group

according to [CGP15, 7.3.5]. If G′
i is absolutely pseudo-simple in characteristic

char(k′i) = 2 with a non-reduced root system, then Proposition [CGP15, 9.9.4(2)]
provides a field Ki and a topological isomorphism fi : G

′
i(k

′
i) → Sp2n(Ki). Oth-

erwise, it means that G′
i is simply connected and absolutely simple [CP16, 10.2.1]

and one take fi to be the identity map. Thus, one gets the suitable topological
isomorphism

∏
i fi.

Thanks to the generalized standard presentation (with suitable assumptions in
characteristic 2, satisfied by the local fields) it is possible to identify a pseudo-
reductive group with a quotient of a suitable semi-direct product by a central
subgroup whose H1 is finite. Of course, one cannot identify the rational points
of this quotient to the quotient of the rational points of these algebraic groups.
Nevertheless, we will be able to use the topological properties of the restriction to
the rational points of the quotient map of algebraic groups in order to define quo-
tient maps of topological groups by some well-chosen subgroups. In this case, we
do a quotient by the locally elliptic radical which is a topologically characteristic
subgroup. The established existence of maximal compact subgroups of the ratio-
nal points of a pseudo-reductive group will allow us to reduce questions of local
ellipticity to questions of compactness of groups.

2.5.2 Proposition. Let G be a connected pseudo-reductive group over a non-
Archimedean local field k. The group of rational points G(k) admits a chain of
closed normal subgroups 1 6 Q 6 S 6 G(k) such that Q is the locally elliptic
radical of G(k), therefore a compact group, the quotient S/Q is the internal direct
product of finitely many non-compact, topologically simple, compactly generated lo-
cally compact groups that are each isomorphic to the quotient of a simply connected
isotropic simple algebraic group over a local field (of the same characteristic and
residue characteristic as k) by its center, and the quotient G(k)/S is compactly
generated and virtually abelian.

We prove this proposition by the following steps: firstly, we study the rational
points of the factor Rk′/k(G

′) appearing in the standard presentation and its locally
elliptic radical ; secondly, we compare this locally elliptic radical to that of the
semi-direct product appearing in the standard presentation ; finally, we pass to the
quotient in the standard presentation.

Proof. Given a locally compact group H, denote by Rad(H) its locally elliptic
radical, that is a topologically characteristic subgroup, therefore a normal subgroup
of H.

By Theorem 1.4.3, the group G(k) has a maximal compact subgroup. Thus, its
locally elliptic radical Q = Rad

(
G(k)

)
is compact by Lemma 2.4.2.
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Assume firstly that G = G1 is a generalized standard pseudo-reductive group
arising from a generalised standard presentation (G′, k′/k, T ′, C). Recall that there
is a subgroup C ′ = ZG′(T ′) of G′ such that Rk′/k(C

′) is a Cartan subgroup of
Rk′/k(G

′), together with two k-group homomorphisms (ϕ,ψ) providing a factor-

ization Rk′/k(C
′)

ϕ−→ C
ψ−→ ZRk′/k(G

′),Rk′/k(C
′) where ZRk′/k(G

′),Rk′/k(C
′) is some

subgroup of the group of k-automorphisms of Rk′/k(G
′) that restricts to the iden-

tity of Rk′/k(C
′). This defines the semi-direct product Rk′/k(G

′) ⋊ψ C and the
commutative subgroup Rk′/k(C

′) is realized in this semi-direct product as a central
subgroup through the anti-diagonal embedding (ι, ϕ) : Rk′/k(C

′)→ Rk′/k(G
′)⋊ψ C

mapping c′ 7→
(
(c′)−1, ϕ(c′)

)
.

According to Lemma 2.5.1, the group G′(k′) is topologically isomorphic to a
direct product X =

∏
i∈I G̃i(ki) where ki/k is a finite extension of local fields and

G̃i is a simply connected ki-simple group. For i ∈ I, denote by Xi = G̃i(ki) and by
G̃i(ki)

+ the subgroup of G̃i(ki) generated by all the unipotent elements of G̃i(ki)
which are contained in the unipotent radical of some ki-parabolic subgroup of G̃i.
Denote by J the subset of elements j ∈ I such that G̃j is kj-isotropic. Since G̃j is
a kj-isotropic reductive group, its rational points Xj is not a solvable group. On
the one hand, for any j ∈ J , since the extension kj/k is finite and G̃j is simply
connected, the Kneser-Tits problem [PrR85, §2] for non-Archimedean local fields
says that G̃j(kj) = G̃j(kj)

+. Moreover, by [Tit64, Main Theorem] the quotient of
G̃j(kj)

+ by its (abstract) center Z
(
G̃j(kj)

)
is a non-solvable simple group. It is

non-compact by [PrT82, Theorem BTR] because Z
(
G̃j(kj)

)
is finite. For j ∈ J ,

denote by X̂j = Z
(
Gj(kj)

)
. On the opposite, for j′ ∈ I \ J , the group G̃j′ is

kj′-anisotropic. Hence, G̃j′(kj′) is compact by [PrT82, Theorem BTR]. Denote
X̂j′ = G̃j′(kj′).

We have Rad(X) = Rad
(∏

i∈I G̃i(ki)
)
=

∏
i∈I X̂i. Indeed, the normal sub-

group
∏
i∈I X̂i of X is compact and, therefore, closed and locally elliptic so that it

is contained in Rad(X). Conversely, for any i ∈ I, the quotient Xi/X̂i is either a
trivial group or a non-compact simple group, so that the projection of the normal
compact subgroup Rad

(
X
)

of X on the j-th factor is compact, therefore contained
in X̂j .

Now, the semi-direct product G′(k′) ⋊ψ C(k) arising from the standard pre-
sentation of G is topologically isomorphic to a semi-direct product denoted by
Y = X⋊ψk

C(k). Since Rk′/k(G
′)⋊ψ C is a pseudo-reductive k-group, the group Y

has a maximal compact subgroup by Theorem 1.4.3, hence the locally elliptic radical
Rad(Y ) is compact by Lemma 2.4.2. Thus, since X ∩Rad(Y ) is a normal compact
subgroup of X, it is locally elliptic and therefore contained in Rad(X). Conversely,
since Rad(X) is a topologically characteristic subgroup of X that is a closed normal
subgroup of Y , we deduce that Rad(X) is a locally elliptic closed normal subgroup
of Y . Thus Rad(X) ⊂ Rad(Y ) and therefore Rad(X) = X ∩ Rad(Y ).

Denote by D(H) the (abstract) derived subgroup of an abstract or topological
group H. Let q : Y → Y/Rad(Y ) be the quotient map. Then Z = q(X) is isomor-
phic to X/X ∩ Rad(Y ). Since we have seen that X/X ∩ Rad(Y ) = X/Rad(X) =∏
j∈J Xj/Z(Xj) is the direct product of non-commutative simple groups, it fol-

lows that Z is a perfect group. Since Y/X is commutative, the derived group
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D(q(Y )) = D
(
Y/Rad(Y )

)
is a subgroup of Z = q(X). Because Z is perfect, we

also have that Z = D(q(X)) ⊂ D(q(Y )) so that D
(
Y/Rad(Y )

)
is isomorphic to∏

j∈J Xj/Z(Xj).
Now, consider the exact sequence deduced from that of a generalised standard

presentation, given by [Ser94, I.5.6 Cor. 2], of group homomorphisms:

1→ Rk′/k(C
′)(k)→

(
Rk′/k(G

′)⋊C
)
(k)

πk→ G(k)
δ→ H1(k,Rk′/k(C

′))

and identify Y with
(
Rk′/k(G

′)⋊C
)
(k) up to a topological isomorphism. Since the

locally elliptic radical is topologically characteristic and since πk has open, therefore
closed, normal image by Lemma 2.1.3, it follows that πk(Rad(Y )) is a topological
characteristic subgroup of the image of πk, therefore a closed normal locally elliptic
subgroup of G(k). Thus πk(Rad(Y )) is contained in Q = Rad(G(k)). Hence πk
induces a continuous homomorphism with finite index open normal image

πk : Y/Rad(Y )→ G(k)/Q

so that we have the following commutative diagram of continuous group homomor-
phisms:

X � � //

��
��

φ

++❲
❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲ Y
πk

//

��
��

G(k)

��
��

X/Rad(X) �
�

// Y/Rad(Y )
πk

// G(k)/Q

According to [BG17, Cor 5.2], for i ∈ I, every continuous homomorphism φ of
the group Xi = G̃i(ki) to a locally compact group has closed image and it induces
a homeomorphism Xi/ ker(φ) → φ(Xi). We apply it to πk, πk and the continuous
homomorphism φ obtained by composition:

X ։ X/Rad(X) →֒ Y/Rad(Y )
πk−→ G(k)/Q.

For j ∈ J , the image of Xj ⊂ Y in G(k) by πk is non-trivial because Xj is non-
solvable and the kernel of πk is a central subgroup of Y . Thus, the closed subgroup
πk(Xj) of G(k) is homeomorphic to Xj/Xj ∩ ker πk with Xj ∩ kerπk ⊂ Z(Xj) that
is a closed non-compact subgroup of G(k), therefore not contained in Q. Hence the
simple group φ(Xj) = πk(Xj/Z(Xj)) is non-trivial, thus topologically isomorphic
to Xj/Z(Xj).

Claim: the homomorphism πk induces a topological isomorphism
X/Rad(X)

≃−→ φ(X) and φ(X) is the internal direct product of simple groups
φ(Xj) for j ∈ J .
We have shown that πk is a continuous open homomorphism and that
φ(Xj) = πk (Xj/Xj ∩ Rad(X)) is topologically isomorphic to Xj/Z(Xj). Since
φ(X) = πk (X/Rad(X)), generated by the φ(Xj) is a closed subgroup of G(k)/Q,
it suffices to prove that kerπk ∩ X/Rad(X) is trivial so that πk realizes a topo-
logical isomorphism between X/Rad(X) and φ(X). Let x ∈ X such that the
coset [x] ∈ X/Rad(X) of x with respect to Rad(X) is in the kernel of πk. Then
πk([x]) = [πk(x)] = Q so that x ∈ P = π−1

k (Q) ∩ X that is a closed normal
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subgroup of X. If we show that P is compact therefore locally elliptic, then it is a
subgroup of Rad(X) and we are done.

Consider the restriction πk|X of the homomorphism πk to the subgroup X⋊{1}
so that P = πk|X−1(Q). We prove that πk|X : X ⋊ {1} → πk(X) is a proper map.
By [BG17, 3.3], we know that X, being a direct product of rational points of
connected semisimple groups over local fields, is quasi-semisimple (see definition
[BG17, 3.2]). Thus, by [BG17, 5.1], the group homomorphism πk|X induces a
topological isomorphism X/X ∩ kerπk → πk(X). To conclude that πk|X is proper,
it suffices to show that (X ⋊ {1}) ∩ kerπk is compact. The exact sequence of
the standard presentation gives us that kerπ is the image of the anti-diagonal
embedding of Rk′/k(C

′) into Rk′/k(G
′)⋊ψ C through (ι, ϕ). Then

kerπk|X = (ker π) (k) ∩ (X ⋊ {1})
=

{
c ∈ Rk′/k(C ′)(k),

(
c−1, ϕ(c)

)
∈ X ⋊ψ {1}

}

= kerϕ(k)

But, according to [CGP15, 10.1.10], we know that kerϕ is a central subgroup of
Rk′/k(G

′). Thus ker πk|X is finite.
Let S be the subgroup of G(k) containing Q such that S/Q = φ(X). Being

an internal direct product of closed subgroups, S/Q is also a closed subgroup of

G(k)/Q. Since φ(X) = πk
(
X/Rad(X)

)
= D

(
πk

(
X/Rad(X)

))
is a characteristic

subgroup of πk
(
Y/Rad(Y )

)
that is an open normal subgroup of G(k)/Q, it follows

that S/Q is a closed normal subgroup of G(k)/Q topologically isomorphic to an
internal direct product of simple groups of the form

∏
j∈J Xj/Z(Xj).

Since
(
G(k)/Q

)/
im(πk) is finite and im(πk)

/(
S/Q

)
is abelian by construction,

it follows that G(k)/S is virtually abelian.
If k is any field of characteristic p 6= 2, 3, then a pseudo-reductive k-group is

always standard according to [CGP15, 5.1.1]. Because k is a local field of charac-
teristic p ∈ {2, 3}, we are in the case of a base field k with [k : kp] = p. Hence, by
theorem [CGP15, 10.2.1], G is the direct product G1×G2 of a generalised standard
pseudo-reductive k-group G1 and a totally non-reduced pseudo-reductive k-group
G2. Moreover, the k-group G2 is always trivial when p 6= 2.

From now on, assume that G2 is not trivial (hence char(k) = 2) and let S1 =

S and Q1 = Q. By [CGP15, 9.9.4], the topological group H(k), deduced from
a basic non-reduced pseudo-simple k-group H (see definition [CGP15, 10.1.2]) is
topologically isomorphic to Sp2n(K) for some n and an extension of local fields
K/k. By [CGP15, 10.1.4], the totally non-reduced k-group G2 is isomorphic to a
Weil restriction Rk′/k(G

′
2) where k′ is a nonzero finite reduced k-algebra and fibers

of G′
2 are basic non-reduced pseudo-simple k-groups. Thus set S2 = G2(k) and

Q2 = Rad(G2(k)). Then S1 × S2 and Q1 ×Q2 satisfy the conditions.

From this, we deduce an analogous statement for any open subgroup of rational
points of a connected quasi-reductive group (see Theorem 1.4.6). The only difference
is that Q might a priori differ from the locally elliptic radical of G(k).
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2.5.3 Remark. Now, assume that G is a connected quasi-reductive k-group and
consider the following exact sequence

1 −→ U −→ G
π−→ Gp−red −→ 1

where U = Ru,k(G) is the unipotent k-radical of G and Gp−red = G/U is pseudo-
reductive. If this sequence is split, then one can find a closed k-subgroup L of G
isomorphic to Gp−red such that G is isomorphic to U ⋊ L. Then, because U(k) is
compact by [Oes84, VI.1], one can easily check that Rad(G(k)) = U(k)⋊Rad(L(k)).
Let Q,S be the closed normal subgroups of L(k) as in Proposition 2.5.2. Then, by
considering Q = Rad(G(k)) = U(k) ⋊ Q and S = U(k) ⋊ S, one has G(k)/S ≃
L(k)/S and S/Q ≃ S/Q so that the statement the Theorem extends immediately
to such a group G.

In general, there is no reason for the existence of such a subgroup L. For
instance, if the pseudo-reductive quotient is in fact reductive, there are known
example in positive characteristic of groups without Levi k-subgroups (see [CGP15,
A.6]. In characteristic 0, one know that there are Levi factors, but in that case U = 1

because quasi-reductive groups are in fact reductive.

Using the pseudo-reductive quotient, one can provide a generalization to quasi-
reductive groups as follows:

Proof of Theorem 1.4.6. The above exact sequence providing the pseudo-reductive
quotient of G induces, by Lemma 2.1.3(b), the following exact sequence of topolog-
ical groups:

1 −→ U(k) −→ G(k)
πk−→ Gp−red(k)

where the homomorphism πk is open because U is smooth. Let V be any open
subgroup of G(k). Let H be the image of V through πk in Gp−red(k) that is an
open, therefore closed, subgroup of Gp−red(k). Because the homomorphism πk is
continuous and open, it induces a topological isomorphism πk : V/V ∩ U(k)→ H.

Let S,Q be closed normal subgroup of Gp−red(k) given by Proposition 2.5.2.
We define the closed subgroup SH = S ∩ H. Since S is a normal subgroup of
Gp−red(k) and H is an open subgroup of Gp−red(k), we have an isomorphism of
locally compact groups HS/S ≃ H/SH . Since Gp−red(k)/S is compactly generated
and virtually abelian, so is its open subgroup HS/S, and hence also is the quotient
group H/SH .

Let πQ : S → S/Q be the quotient morphism. We claim that πQ(SH) ≃ (S ∩
H)/(Q∩H) has a compact normal subgroup, such that the corresponding quotient
group is the internal direct product of finitely many non-compact, topologically
simple, compactly generated locally compact groups that are each isomorphic to
the quotient of rational points of some simply connected isotropic simple algebraic
group over a local field by its center. Indeed, we know by Proposition 2.5.2 that the
quotient S/Q is an internal direct product of simple groups Ti = G̃i(ki)/Z

(
G̃i(ki)

)

for 1 6 i 6 ℓ of the required form. Since SH is an open subgroup of S, we have
that πQ(SH) is open in S/Q = T1 × · · · × Tℓ. In particular πQ(SH) contains a
subgroup of the form U1 × · · · × Uℓ where Ui is an open subgroup of Ti. For any
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1 6 i 6 ℓ, because G̃i is simply connected and ki is a non-Archimedean local field,
the Kneser-Tits problem [PrR85, §2] says that G̃i(ki) = G̃i(ki)

+. By a theorem
of Prasad (that the latter attributes to Tits) [PrT82, Theorem (T)], we know that
every proper open subgroup of Ti is compact. Let pri : S/Q → Ti be the natural
projection morphism on the i-th factor Ti of S/Q and T ′

i = pri (πQ(SH)). Since
T ′
i is open in Ti, we have that either T ′

i is compact or T ′
i = Ti. Let I ⊂ {1, . . . , ℓ}

be the set of those indices i such that T ′
i is compact, and let I be its complement.

Let TI =
(∏

i∈I Ti
)

and TI =
(∏

i∈I Ti
)

so that S/Q = TI × TI . Then we have∏
i∈I Ui ⊂ TI ∩πQ(SH) ⊂

∏
i∈I T

′
i . It follows that the intersection TI ∩πQ(SH) is a

compact normal subgroup of πQ(SH). On the other hand, for i ∈ I, we know that
Ti ∩ πQ(SH) is open in Ti, and is a normal subgroup of πQ(SH). By applying the
canonical projection pri, we deduce that Ti ∩ πQ(SH) is an open normal subgroup
of T ′

i . By definition of I, we have T ′
i = Ti and, because Ti is topologically simple,

we deduce that Ti ∩ πQ(SH) = Ti. It follows that TI ⊂ πQ(SH).
Finally, we define QH as the inverse image in H of πQ(SH) ∩ TI through πQ.

Since Q is compact, the quotient morphism πQ is proper. Since πQ(SH) ∩ TI is
a compact normal subgroup of πQ(SH), we deduce that QH is a compact normal
subgroup of H.

We claim that SH/QH is isomorphic to TI . Indeed, let prI be the natural
projection map S/Q→ TI and f = prI ◦πQ : SH → TI . Then

ker f = π−1
Q

(
ker prI

)
∩H = π−1

Q (TI) ∩H
= π−1

Q (TI ∩ πQ (SH)) ∩H since TI ⊂ πQ (SH)

= QH by definition.

Thus the surjective map f induces an isomorphism SH/QH ≃ TI .
Define QV = V ∩ π−1

k (QH) and SV = V ∩ π−1
k (SH) that are closed normal

subgroup of V . Because U(k) is compact according to [Oes84, VI.1], and so is
U(k) ∩ V , the topological homomorphism πk : V → H is proper. Thus QV is
compact. By construction, we also have the topological isomorphisms SV /QV ≃
SH/QH and V/SV ≃ H/SH that are of the required form.

2.5.4 Remark. If we only assume that the connected component of G is quasi-
reductive, then we would think that G(k)/SV is still virtually abelian. In fact, since
G◦ is a Zariski-closed normal k-subgroup of G of finite index, one get that G◦(k)
is a closed normal subgroup of G(k). But, because SV may not be a topologically
characteristic subgroup of G◦(k), the subgroup SV may not be normal in G(k).

3 Maximal pro-p subgroups of a semisimple group

In the group of rational points of a non-semisimple k-group, the fact that maxi-
mal bounded subgroups need not be compact may be an obstruction to the use
of profinite group theory. As an example of bad behaviour of non-semisimple
groups, the maximal pro-p subgroup of Gm(k) = k× is not finitely generated when
k = Fq((t)). From now on, we reduce our study to the case of a semisimple k-group
G and we only consider smooth affine k-groups, that we will call algebraic k-group.
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The conjugacy theorem 1.2.1 is the generalisation to arbitrary characteristic of
[PlR94, Theorem 3.10], which Platonov and Rapinchuk prove in characteristic 0

and attribute to Matsumoto. The proof is given in part 3.1, using Bruhat-Tits
buildings instead of maximal orders.

Furthermore, as we obtained a description of maximal profinite subgroups of
G(k) in Proposition 2.2.6, Theorem 1.5.1 establishes an analogous description of
maximal pro-p subgroups. It is proven in part 3.3. In practice, the description by
integral models established in Theorem 1.5.3 is more convenient; it is proven in part
3.2.

3.1 Proof of the conjugacy theorem

Let us first investigate the case of an algebraic group defined over a finite field.
This case corresponds to special fibers of integral Ok-models (these models are
useful in order to make a description of profinite subgroups).

3.1.1 Lemma. Let k be a finite field of characteristic p. Let H be a connected
algebraic k-group. The p-Sylow subgroups of the finite group H(k) are exactly the
groups Bu(k) where B is a Borel subgroup1 of H defined over k and Bu is the
unipotent radical of B.

Moreover, the normalizer in G of a p-Sylow subgroup is a Borel subgroup of G
and the map B 7→ Bu(k) is a bijection between the set of Borel k-subgroups of H
and the set of p-Sylow subgroups of H(k).

Proof. Denote by q the cardinal of k. Let P be a p-Sylow subgroup of H(k). Let
g ∈ P and g = gs · gu the Jordan decomposition of g. Since H is affine, there exists
an integer n ∈ N∗ and a faithful linear representation ρ : H →֒ GLn,k [Bo91, 5.1]
such that ρ(gs) = ρ(g)s. Hence, the order of this element divides (q − 1)n, so it
is prime to p. As a consequence g = gu. Hence P consists in unipotent elements
of H(k). Since k is perfect and H is connected, by [BoT71, 3.7], there exists a
Borel k-subgroup B such that P is contained in the group of rational points of the
unipotent radical of B, denoted by Bu(k). Since k is perfect, Bu is k-split [BrT84,
1.1.11]. Hence, Bu(k) is a p-group. Since P is a p-Sylow subgroup of H(k), we have
P = Bu(k) by maximality.

Since the Borel subgroups are H(k)-conjugate [Bo91, 16.6], and since the p-
Sylow subgroups of the finite group H(k) are H(k)-conjugate, we obtain a surjective
map Ψ : B 7→ Bu(k) between Borel k-subgroups of H and p-Sylow subgroups of
H(k). Let us show that it is a bijective map.

Fix B a Borel k-subgroup of H and S a maximal k-split torus of B, hence of
H. Define T = ZH(S), it is a maximal torus of H defined over k since an algebraic
group over a finite field is quasi-split. Since k is perfect, the unipotent radical of B
is k-split. The k-group B has a Levi decomposition B = T ·Bu [CGP15, C.2.4].

On the one hand, since H(k) acts by conjugation on the set of Borel k-subgroups
of H, the number of Borel k-subgroups is equal to the cardinal of H(k)/NH(k)(B).

1By a theorem due to Lang [Bo91, 16.6], we know that a linear algebraic group H defined over

a finite field κ admits Borel subgroups themselves defined over κ.
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By a theorem due to Chevalley [Bo91, 11.16], a Borel subgroup of H is equal to
its normalizer, hence NH(k)(B) = B(k). On the other hand, since H(k) acts by
conjugation on the set of its p-Sylow subgroups, the number of its p-Sylow subgroups
is equal to the cardinal of H(k)/NH(k)(Bu(k)).

Hence, it suffices to show NH(k)(Bu(k)) = B(k). Denote by N = NH(S)
the normalizer of S in H. Since N normalises T , we get that N(k) normalises
T (k). Since B(k) = T (k)Bu(k) = Bu(k)T (k), by [CGP15, C.2.8], we get
G(k) = Bu(k)N(k)Bu(k). Let g ∈ NH(k)(Bu(k)) ⊂ H(k). Write g = unu′ with
u, u′ ∈ Bu(k) and n ∈ N(k). If B = nBn−1, we have n ∈ NH(B)(k) = B(k).
Hence g ∈ B(k). By contradiction, suppose that n 6∈ T (k) and B 6= nBn−1. Thus
the Weyl group kW = N(k)/T (k) is not trivial, hence the group H is not solvable
and admits opposite root subgroups [Spr98, 7.1.3, 7.1.5 and 7.2], which are k-split
since k is perfect [Bo91, 15.5 (ii)]. Since B and nBn−1 are non equal Borel sub-
group with the same maximal torus T , there exist a root α ∈ Φ(B,T ) = such that
n · α 6∈ Φ(B,T ). Let v ∈ Uα(k) be a non-trivial element. Since Un·α ∩ B = {1},
we have n−1vn 6∈ B(k). This contradicts n = u−1gu′−1 ∈ NH(k)(Bu(k)). Hence
NH(k)(Bu(k)) ⊂ B(k).

Moreover, since the k-group NH(Bu(k)) contains B, it is a parabolic subgroup
of H. Since it does not contain opposite root subgroups, it is a minimal parabolic
subgroup, hence a Borel subgroup of H.

As a consequence, the equality NH(k)(Bu(k)) = NH(k)(B) = B(k) completes
the proof.

3.1.2 Remark. The bijective correspondence between Borel k-subgroups of H and
p-Sylow subgroups of H(k) is useless in what follows. We only need to know that
the number of Borel k-subgroups is prime to p (that is also a consequence of Bruhat
decomposition).

Over a local field instead of a finite field, the fact that the normalizer of a p-
Sylow subgroup of H(k) is exactly B(k) will be generalised by Proposition 3.3.4
with a simple connectedness assumption: normalizers of a maximal pro-p subgroups
are exactly Iwahori subgroups.

When a p-group acts on a finite set of cardinal prime to p, orbit-stabilizer
theorem gives the existence of a fixed point. This statement can be generalised to
the action of a pro-p group.

3.1.3 Lemma. Let p be a prime and X a finite set of cardinal prime to p. If G is
a pro-p group acting continuously on X, then G fixes an element of X.

Proof. For all x ∈ X, denote by Gx the stabilizer of x. Since X is finite, Gx is
open. Let H = GX =

⋂
x∈X Gx be the subgroup of G fixing X pointwise. Then

H is a normal open subgroup of G. Hence G/H is a p-group acting on X. By the
orbit-stabilizer theorem, G/H fixes an element x ∈ X. Hence G fixes x.

Since a profinite subgroup is compact, by the Bruhat-Tits fixed point theorem,
such a subgroup of G(k) fixes a point x0 ∈ X(G, k). Since the action of G(k)
preserves the structure of the simplicial complex, we get an action on the star of
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x0, that means an action on the set of facets whose closure contains x0. Showing
that the subset of alcoves of this set is a finite set of cardinal prime to p, we will
get the following:

3.1.4 Proposition. A pro-p subgroup of G(k) setwise stabilises an alcove of
X(G, k).

Proof. Let U be a pro-p subgroup of G(k). By Proposition 2.2.6, there exists a
point y ∈ X(G, k) such that StabG(k)(y) is a maximal compact subgroup of G(k)
containing U . Consider the (non-empty) set Cy of alcoves of X(G, k) whose closure
contains y. Be careful that we forget the Euclidean structure provided by X(G, k)

and we only look at Cy as a discrete set.
Denote by F the facet2 of X(G, k) containing y. By conjugation, assume that

F ⊂ A. Define the star of F , denoted by X(G, k)F , as the set of facets F ′ of X(G, k)

such that F ⊂ F ′. We endow this set with the partial order F ′ ≤ F ′′ ⇔ F ′ ⊂ F ′′.
Denote by GF the connected integral model of G associated to F (see definition
in chapters [BrT84, 4.6 and 5.1]). Denote by κ the residue field of k and consider
PF the set of κ-parabolic subgroups of GF ordered by the inverse of the inclusion.
There is an isomorphism of ordered sets between X(G)F and PF [BrT84, 4.6.32 et
5.1.32 (i)] such that maximal simplices of X(G)F are exactly the elements of Cy,
and the minimal parabolic κ-subgroups of GF correspond to them bijectively. By
Lang’s theorem [Bo91, 16.6], the minimal parabolic κ-subgroups of GF are exactly
its Borel κ-subgroups. By Lemma 3.1.1, we obtain a bijection between Cy and the
set of p-Sylow subgroups of GF (κ).

Since G(k) preserves the poly-simplicial structure of X(G, k) and U fixes y, the
group U acts on Cy. For all c, c′ ∈ Cy, by continuity of the action G(k)×X(G, k) →
X(G, k), the subset {g ∈ U , g · c = c′} is closed in U . As a consequence, U
acts continuously on the finite set Cy, whose cardinal is congruent to 1 modulo
p. By Lemma 3.1.3, U fixes an alcove c ∈ Cy, hence U setwise stabilises it in
X(G, k).

We provide an example of a pro-p subgroup that stabilizes setwise an alcove but
not pointwise.

3.1.5 Example. Let p = 3 and G = PGL3,Q3
. The affine building of G is of type Ã2.

Take the maximal torus S = T =







x 0 0

0 y 0

0 0 1


 , x, y ∈ Gm,Q3





of G. The element

t =



3 0 0

0 1 0

0 0 1


 ∈ T acts on T by a translation “of step 2

3(2α
∨+β∨)” where α, β are

the simple roots : indeed, it is the class of the element



32/3 0 0

0 3−1/3 0

0 0 3−1/3


 ∈

2Here, we consider the definition in which the facets form a partition of the building X(G, k),

so that any point is contained in a unique facet. Alternatively, we could consider that facets are

closed polysimplices and then F would be defined as the smallest facet of X(G, k) containing y.
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SL3,Q3(
3
√
3) over the field Q3(

3
√
3), that is a translation of step 1 permuting cyclicly

the types of vertices. Let x be a vertex. There exists an alcove c containing both
x and t · x. There are two elements n1, n2 ∈ N = NG(T )(Q3) both acting on the
standard apartment as reflections so that t · c = n2n1 · c. One get an element
g = n−1

1 n−1
2 t ∈ N(Q3) that acts on the standard apartment as the rotation of

center the circumcenter y of c and of order 3. Thus, the subgroup of PGL3(Q3)

generated by g and the maximal pro-p subgroup of the stabilizer of y is pro-p and
stabilizes exactly the alcove c, but it does not fix it.

Note that a similar construction is also possible with PGL2(Q2).

We now can give a proof of conjugation of maximal pro-p subgroup theorem.

Proof of Theorem 1.2.1. Let U,U ′ be two maximal pro-p subgroups of G(k). Let
c, c′ be alcoves stabilized by the action of U and U ′ respectively (they exist by
Proposition 3.1.4). Since G(k) acts transitively on the set of alcoves of X(G, k),
there exists an element g ∈ G(k) such that g ·c′ = c. Hence gU ′g−1 stabilises c. As
a consequence, U and gU ′g−1 are two maximal pro-p subgroups of P = StabG(k)(c)

which is compact by Lemma 2.2.2(2). Hence, U and gU ′g−1 are two p-Sylow sub-
groups of the profinite group P . Since any two p-Sylow subgroups of a profinite
group are conjugate [Ser94, 1.4 Prop. 3], U and gU ′g−1 are conjugate in P , so U
and U ′ are conjugate in G(k).

We now need to use root groups and integral models to prove the uniqueness
of the alcove setwise stabilized by a given maximal pro-p subgroup. Theorem 1.5.1
will be proven in part 3.3.

3.2 Integral models

In the proof of Proposition 3.1.4, integral models were used; here, we will make
a more systematic use of them.

Let Ω a non-empty bounded subset of the standard apartment A. Denote by
πκ : G†

Ω(Ok) → G
†
Ω(κ) the canonical reduction map. Denote by GΩ =

(
G

†
Ω

)
κ

the

special fiber. Denote by
(
GΩ

)◦
the identity component of the κ-group GΩ, and

by Ru(G
◦
Ω) its unipotent radical, defined over κ because κ is perfect [BoT65, 0.7].

Denote by G
red
Ω = GΩ/Ru(GΩ) the quotient κ-group (possibly non-connected since

GΩ may be not connected). The root system of its identity component is the set
ΦΩ of roots a ∈ Φ, where Φ denotes the relative root system of G, such that the
root a seen as an affine map is constant over Ω and has values in the set Γ′

a [Lan96,
10.36]. Note that, when Ω contains an alcove, no root of Φ is constant on Ω since
an alcove of A is open in A, hence ΦΩ is empty.

Denote by πq : GΩ → G
red
Ω the quotient κ-morphism of algebraic κ-groups, and,

by notation abuse, πq : G†
Ω(κ) → G

red
Ω (κ) the homomorphism of abstract groups

deduced from πq. It will be clear from the context which of these two morphisms
will be considered.

3.2.1 Notation. Identifying the abstract groups G
†
Ω(κ) = GΩ(κ), we can define

the composite morphism πΩ = πq ◦ πκ. Denote by P+
Ω the kernel of πΩ.
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More specifically, if F is a facet of the building X(G, k), by transitivity, there
exists an element g ∈ G(k) such that g · F ⊂ A. Denote P+

F = g−1P+
g·F g. This

group does not depend on the choice of such a g.

The goal is to show that, when G is simply connected, P+
F is a maximal pro-p

subgroup of the profinite (by Lemma 2.2.2(2)) subgroup StabG(k)(F ). Note that
with this notation, it is not required that the facet F be contained in the standard
apartment A.

3.2.2 Lemma. The morphism πκ is a surjective group homomorphism and its
kernel ker πκ is a pro-p group.

Proof. Surjectivity of πκ is a consequence of smoothness of the Ok-model G
†
Ω

[BLR90, 2.3 Prop. 5].
The smooth affineOk-group of finite type G†

Ω has a faithful linear representation,
that means a closed immersion, ρ : G

†
Ω → GLn,Ok

for which it corresponds a
surjective Hopf Ok-algebras homomorphism ϕ : A ։ B where A and B denote
respectively the Ok-Hopf algebras of GLn,Ok

and G
†
Ω. Denote by π̃κ : GLn,Ok

(Ok)→
GLn,Ok

(κ) the canonical surjective homomorphism (defined as πκ above). Hence
ker πκ = {f : B → Ok, f ⊗ 1 = ε ⊗ 1} and ker π̃κ = {f : A → Ok, f ⊗ 1 = ε̃ ⊗ 1}
where ε (resp. ε̃) is the co-unit of B (resp. A).

On Ok points, we have ker π̃κ = GLn(m), according to the notation of the proof
of Lemma 2.1.4. Since ε̃ = ϕ∗ε, we have the following commutative diagram:

0 // ker πκ
⊂

//
� _

��
✤

✤

✤

G
†
Ω(Ok)

πκ
// //

� _

ρOk

��

G
†
Ω(κ)

//
� _

ρκ

��

1

0 // ker π̃κ
⊂

// GLn(Ok)
π̃κ

// // GLn(κ) // 1

Hence ker πκ is isomorphic to a closed subgroup of ker π̃κ, so it is a pro-p group.

3.2.3 Proposition. The group P+
Ω is a normal pro-p subgroup of G†

Ω(Ok).

Proof. By Lemma 2.1.3(b), we have ker πq = Ru(GΩ)(κ), hence it is a p-group as
a group of rational points of a unipotent κ-group. The following sequence of group

homomorphism 1 −→ ker πκ
⊆−→ ker(πq ◦ πκ) πκ−→ ker πq

πq−→ 1 is exact. Indeed,
check that πκ(ker πq ◦ πκ) = ker πq.

If g ∈ πκ(ker πq ◦ πκ), then there exists h ∈ ker πq ◦ πκ such that g = πκ(h).
hence πq(g) = πq ◦ πκ(h) = 1, and so g ∈ kerπq.

Conversely, if g ∈ ker πq, by surjectivity of πκ (given by Lemma 3.2.2), there
exists h ∈ GΩ(Ok) such that πκ(h) = g. Hence πq ◦ πκ(h) = πq(g) = 1, and so
h ∈ ker(πq ◦ πκ). Hence g ∈ πκ(ker(πq ◦ πκ)).

As a consequence, P+
Ω = ker πΩ is a pro-p group.

3.2.4 Lemma. Let k be a finite field of characteristic p. If H is a reductive k-group,
then H(k) does not have a non-trivial normal p-subgroup.

34



Proof. Let P be a normal p-subgroup of H(k). It is a subgroup of a p-Sylow
subgroup of H(k). By Lemma 3.1.1, there exists a Borel k-subgroup B such that
P ⊂ Ru(B)(k).

Let S be a maximal k-split torus of H. Denote T = ZH(S), it is a maximal
torus of H defined over k and contained in B. Let n ∈ NH(T )(k) such that B and
nBn−1 are opposite Borel k-subgroups. Hence, B ∩ nBn−1 = T [Bo91, 14.1] is a
torus. We have nPn−1 = P because P is normal in H(k). Hence, P is a subgroup
of T (k) and #T (k) is prime to p. As a consequence P ⊂ T (k) is trivial.

To obtain results about the maximality of ker πΩ, we require that πΩ is surjec-
tive.

3.2.5 Lemma. The morphism of abstract groups πΩ is surjective.
In particular, if Q is a p-Sylow subgroup of G

red
Ω (κ), then π−1

Ω (Q) is a maximal
pro-p subgroup of G†

Ω(Ok).

Proof. A finite field is perfect, hence by [Ser94, III.2.1 Prop. 6] applied to the
connected (κ-split) unipotent κ-group U = Ru(Gκ), we have H1(κ,U) = 0. Hence
by [Ser94, I.5.5 Prop.38] the morphism of abstract groups πq is surjective. According
to Lemma 3.2.2, the composite morphism πΩ is surjective.

By Proposition 3.2.3, the surjective morphism πΩ has a pro-p kernel. Hence,
for every p-subgroup Q of G

red
Ω (κ), the group π−1

Ω (Q) is pro-p (as an extension of
such groups). Hence, if Q is a p-Sylow subgroup, then π−1

Ω (Q) is a maximal pro-p
subgroup.

3.2.6 Proposition. If GΩ is connected, then the kernel P+
Ω is a maximal normal

pro-p subgroup of G†
Ω(Ok).

Proof. Let P̃ be a normal pro-p subgroup of GΩ(Ok) containing P+
Ω . By [Ser94,

I.1.4 Prop.4], its image by the surjective morphism πΩ (see Lemma 3.2.5) is a normal

p-subgroup of G
red
Ω (κ).

When GΩ is connected, the quotient G
red
Ω is a connected reductive κ-group.

Hence, by Lemma 3.2.4, π(P̃ ) is trivial and P̃ = P+
Ω .

Under simple connectedness assumption

From now on, assume that the semisimple k-group G is simply connected. Hence
G

†
Ω = GΩ [BrT84, 4.6.32 and 5.1.31].

3.2.7 Proposition. Assume Ω = c ⊂ A is an alcove and G is simply connected.
Then P+

Ω is a maximal pro-p subgroup of GΩ(Ok).

First, recall the following fact, given by Tits [Tit79, 3.5.2]:

3.2.8 Lemma. Under above assumptions and notations, the algebraic κ-group GΩ

is connected.

Proof of Proposition 3.2.7. Since Ω is an alcove, the root system of GΩ/Ru(GΩ) is

empty [BrT84, 4.6.12(i), 5.1.31]. By Lemma 3.2.8, G
red
Ω is a connected reductive
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quasi-split κ-group with a trivial root system. Hence, it is a κ-torus and so, does
not have a non-trivial p-subgroup. Hence, for every pro-p subgroup P of G†

Ω(Ok) =
GΩ(Ok), the image πΩ(P ) by the surjective morphism πΩ (Lemma 3.2.5) is a p-
group [Ser94, 1.4 Prop.4], hence trivial. As a consequence, the kernel P+

Ω is the
(unique) maximal pro-p subgroup of GΩ(Ok).

Now, one can give a proof of Theorem 1.5.3.

Proof of Theorem 1.5.3. Let P a maximal pro-p subgroup. By Proposition 3.1.4, we
have P ⊂ StabG(k)(c). Let c0 ⊂ A. By strong transitivity of G(k) on the building
X(G, k), there exists g ∈ G(k) such that gc0 = c. Hence, g−1Pg is a maximal
pro-p subgroup of Gc0

(Ok). By Proposition 3.2.7, we have P = gP+
c0
g−1.

Valued root group datum in the quasi-split simply connected case

To conclude in the simply connected case, let us interpret this group in terms
of a valued root group datum. This could be a bit tricky in the general case and, in
the two next propositions, we assume that G is, moreover, a quasi-split semisimple
k-group. In a further work [Loi], we compute the Frattini subgroup of a maximal
pro-p-subgroup by the explicit decomposition of Proposition 3.2.9.

3.2.9 Proposition. Let G be a quasi-split simply connected semisimple group de-
fined over a local field k of residual characteristic p. Let S be a maximal k-split
torus, T = ZG(S) be the associated maximal k-torus and c be an alcove of the
apartment associated to T . Let P+

c
be the maximal pro-p subgroup of G(k) that

fixes c. The group P+
c

admits the following directly generated product structure:

P+
c

=




∏

a∈Φ+

nd

U−a,fc(−a)


 · T (k)+b ·




∏

a∈Φ+

nd

Ua,fc(a)




where T (k)+b is the (unique) maximal pro-p subgroup of T (k) and Φnd denotes the
non-divisible roots of the relative k-root system Φ(G,S).

In particular, T (k)+b = P+
c
∩ T (k)b where T (K)b is the maximal compact sub-

group of T (k).

Proof. By the simple connectedness assumption, Proposition 3.5 of [Lan96] gives
T(Ok) = T (k)b where T denotes the integral model of T defined in [Lan96, §3].
By definition of the integral models [BrT84, 4.3.2 and 4.3.5], for any root a ∈ Φ,
we have Ua,c(Ok) = Ua,c and, if 2a ∈ Φ, we have U2a,c ⊂ Ua,c. Therefore, we

have U−Φ+,c(Ok) =
(∏

a∈Φ+

nd

U−a,fc(−a)
)

and UΦ+,c(Ok) =
(∏

a∈Φ+

nd

Ua,fc(a)

)
by

[BrT84, 4.6.3].
By [BrT84, 4.6.7], we have Gc(Ok) = UΦ+,c(Ok) · UΦ−,c(Ok) · Nc where

Nc = {g ∈ NG(S)(k) , ∀x ∈ c g · x = x}. By [BrT72, 6.4.9 (iv)], Nc is the group
generated by the Na,c = Nc ∩ 〈U−a,c, Ua,c〉 for a ∈ Φ. Since c is an alcove, for any
relative root a ∈ Φ, we have fc(a) + fc(−a) > 0. Hence, by [Lan96, 8.6 (i)], we
have Na,c ⊂ T (k)b . Since Nc contains T (k)b, we have the equality Nc = T (k)b.
Thus, we have Gc(Ok) = UΦ−,c(Ok) · T(Ok) · UΦ+,c(Ok).
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In the proof of Proposition 3.2.7, we have seen that G
red
c

(κ) does not have a
non-trivial p-subgroup. Hence U±Φ+,c(Ok) ⊂ ker πc = P+

c
since the image of a

pro-p group by a surjective continuous morphism is a pro-p group. Thus, we obtain
the equality.

By quasi-splitness and simple connectedness, the maximal k-torus T is an in-
duced torus [BrT84, 4.4.16], generated by coroots, and we can be more precise
about the above description by root group datum:

3.2.10 Proposition. Let G be a quasi-split simply connected semisimple group
defined over a local field k of residual characteristic p. Let S be a maximal k-split
torus and T = ZG(S) be the associated maximal k-torus. Let ∆ be a basis of the
relative root system Φ = Φ(G,S). There is the following isomorphism of topological
groups: ∏

a∈∆ â
∨ :

∏
a∈∆(1 +mla) → T (k)+b
(ta)a∈∆ 7→ ∏

a∈∆ â
∨(ta)

(1)

where â = 2a if 2a ∈ Φ, and â = a otherwise; La denotes the minimal field of
definition of the root a (defined in [BrT84, 4.1.3]) and mLa denotes the maximal
ideal of its ring of integers.

Proof. Since G is a simply connected quasi-split semisimple k-group, by [BrT84,
4.4.16], T is an induced torus and, more precisely, there is the following isomorphism∏
a∈∆ â

∨ :
∏
a∈∆RLa/K(Gm,La) ≃ T , where ∆ denotes a basis of the relative root

system Φ. By uniqueness, up to isomorphism, of the Ok-model, T is Ok-isomorphic
to

∏
a∈∆ROLa/Ok

(Gm,OLa
). Hence, there is a natural isomorphism

∏
a∈∆O×

La
≃

T(Ok) = T (k)b of topological abelian groups, and the maximal pro-p subgroup is
isomorphic to the direct product

∏
a∈∆(1 +mLa).

3.3 Description using the action on a building

We now can derive the useful description of a maximal pro-p subgroup of G(k),
as a pro-p-Sylow of the setwise stabilizer of a suitable alcove. To prove Theorem
1.5.1, it suffices to show that every maximal pro-p subgroup of G(k) can be realised
as such a group.

Proof of Theorem 1.5.1. Let P be a maximal pro-p subgroup of G(k). By Propo-
sition 3.1.4, there exists an alcove c such that P setwise stabilizes c. By strong
transitivity, we can and do assume that c ⊂ A. In particular, P is a maximal pro-p
subgroup of G†

c(Ok).
Firstly, we show the uniqueness of such an alcove c. By Lemma 2.2.2, the topo-

logical group G
†
c(Ok) is compact, hence profinite. By Sylow theorem for profinite

groups [Ser94, 1.4 Prop.3 et 4 (a)], there exists g0 ∈ G
†
c(Ok) such that P con-

tains g0P+
c
g−1
0 = P+

c
. It suffices to show that P+

c
does not stabilises any alcove of

X(G, k) different from c.
For all a ∈ Φ, the image by πc of the root group Ua,c(Ok) is trivial because Ua,c

is a root group of G
red
c

[Lan96, 10.34], hence trivial because c is an alcove [Lan96,
10.36]. Hence P+

c
contains the subgroup Uc of G(k) generated by Ua,c for every
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a ∈ Φ. The group P+
c

acts on the set of all facets of X(G, k) not contained in cl(c)
since it setwise stabilizes cl(c) and preserves the simplicial structure of X(G, k).
Let F be such a facet. Let A′ be an apartment containing c and F . Let A′′ be
an apartment containing c but not F . Since the group Uc acts transitively on the
set of apartments containing c [Lan96, 13.7], there exists u ∈ Uc ⊂ P+

c
such that

u ·A′ = A′′. Hence P+
c

does not stabilize F .
Conversely, let c be an alcove of X(G) and P be a maximal pro-p subgroup of

StabG(k)(c). Let P ′ be a maximal pro-p subgroup of G(k) containing P . Such a P ′

exists by Lemma 2.4.7 and Proposition 2.2.10. Let c′ be the unique alcove stabilized
by P ′, hence by P . Since P contains P+

c
according to Lemma 3.2.5, it does not

stabilize any facet of X(G, k) out from cl(c). Hence c = c′ and P ′ is a maximal
pro-p subgroup of StabG(k)(c). By maximality of P , we have P ′ = P .

3.3.1 Corollary. If G is a simply connected semisimple k-group, then P is a max-
imal pro-p subgroup of G(k) if, and only if, there exists an alcove c of X(G, k) such
that P = P+

c
. Moreover, such an alcove c is uniquely determined by P and the set

of fixed points by P in X(G, k) is exactly the simplicial closure cl(c).

Proof. The first part is a consequence of Proposition 3.2.7 and of the first part of
Theorem 1.5.3.

When G is simply connected, the stabilizer of an alcove is also its pointwise
stabilizer [BrT84, 5.2.9]. This and Theorem 1.5.3 gives the second part.

3.3.2 Remark. If p does not divide the order of the group of automorphisms of an
alcove, then a maximal pro-p subgroup has to fix the alcove c that it stabilizes.
Therefore, it can be written P = P+

c
.

The example 3.1.5 provides a counter-example for an adjoint semisimple group.

Iwahori subgroups in the simply connected case

Recall the following definitions [BrT84, 5.2]

3.3.3 Definition.

(1) Given a facet F of X(G, k), call connected pointwise stabilizer of F the
subgroup GF (Ok) of G(k).

(2) A subgroup of G(k) is called a parahoric (resp. Iwahori) subgroup if,
and only if, it is the connected pointwise stabilizer of a facet (reps. an alcove) of
X(G, k).

To conclude this study of pro-p subgroups, the following proposition, given by
[PlR94, §3.4], is a kind of generalisation of Lemma 3.1.1.

3.3.4 Proposition. Assume that G is simply connected. A subgroup of G(k) is an
Iwahori subgroup if, and only if, it is the normalizer in G(k) of a maximal pro-p
subgroup of G(k).

Proof. Let c be an alcove of A, let g ∈ G(k) an element and H the stabilizer
of g · c. Since the semisimple k-group G is simply connected, the stabilizer H
is in fact an Iwahori subgroup [BrT84, 5.2.9]. By Proposition 3.2.3, gP+

c
g−1 is
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a normal pro-p subgroup of H. Hence H ⊂ NG(k)(gP
+
c
g−1). For every element

h ∈ NG(k)(gP
+
c
g−1), every u ∈ P+

c
and x ∈ c, one has h−1uh · x = x because

gP+
c
g−1 fixes g · c pointwise. Hence h · x is a point in X(G, k) fixed by P+

c
, so

h · x ∈ c since it cannot be contained on the boundary of c. Since the action of
G(k) preserves the simplicial structure of X(G, k), the element h stabilises c. Hence
NG(k)(gP

+
c
g−1) = H. By Theorem 1.5.3, it gives the first implication.

Conversely, let U be a maximal pro-p subgroup of G(k). Define H = NG(k)(U).
Denote by c be the unique alcove fixed by U given by Theorem 1.5.1. By uniqueness
of c, the subgroup H stabilises c. By Proposition 3.2.7 (and conjugation), U is a
normal subgroup of StabG(k)(c). Hence H = NG(k)(U) = StabG(k)(c) is an Iwahori
subgroup of G(k).

3.3.5 Corollary. Iwahori subgroups of G(k) are G(k)-conjugate.

Proof. This is [Tit79, 3.7]. It is immediate by Theorem 1.2.1 and Proposition
3.3.4.

An interest of Proposition 3.3.4 is to have an “intrinsic” definition (from the
group theory point of view, in other words a description not using the action on the
Bruhat-Tits building) of Iwahori subgroups in good cases (e.g. a simply connected
group over a local field). This provides a quick way to describe the affine Tits
system in purely group-theoretic terms.
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