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Abstract

This paper extends recent results by the first author and T. Pock (ICG, TU Graz,

Austria) on the acceleration of alternating minimization techniques for quadratic plus nons-

mooth objectives depending on two variables. We discuss here the strongly convex situation,

and how “fast” methods can be derived by adapting the overrelaxation strategy of Nesterov

for projected gradient descent. We also investigate slightly more general alternating descent

methods, where several descent steps in each variable are alternatively performed.

1 Introduction

This paper addresses the acceleration of alternating minimizations or descent methods for elemen-

tary problems which involve two variables coupled by a quadratic penalization. Such problems

arise for instance in the computation of the proximity operators of sums of simple functions, for

which in some setting (as we illustrate in an experimental section) it might be beneficial to per-

form such a splitting which decomposes the problem into tiny parallel subproblems, rather than

tackle the global problem by an accelerated descent or primal-dual algorithm such as [19, 3, 9, 10].

The present paper is a follow-up of [11] where this issue was already investigated, and a

few contexts where acceleration was possible were investigated. In this paper, we extend these

results in two directions: first, we consider strongly convex objectives and show how one can

obtain nearly optimal linear convergence rates (in the sense of the lower bounds of [18, 19]) in

the framework of alternating minimizations or descent. The case of minimizations is particular, as

it can also be reduced into a forward-backward splitting method applied to auxiliary functions

and we could just refer to [19, 12] where a rate analysis is performed, however it is roughly

equivalent to perform an analysis adapted to the alternating minimizations algorithm.
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As far as alternating descent methods are concerned, on the other hand, the problem does

not boil down to a more standard structure, and the analysis is quite tedious (except if only

one step of descent is performed at each step, as was studied in [11]). We perform this analysis

in details, it leads however to algorithms which in theory would require to keep in memory

a lot of intermediate states. We check experimentally that one can overlook these issues in

implementations and still obtain good convergence properties. This is something we are unable

to explain at this time.

Let us introduce now more precisely our problem and how it can be numerically tackled.

1.1 The problem

We aim at solving convex minimization problems of the form

min
x∈X
y∈Y

E(x, y) := f(x) + g(y) +
1

2
‖Ax+By‖2 (1)

where f : X → R and g : Y → R are two convex lower-semicontinuous (lsc) functions, and

A : X → Z, B : Y → Z two bounded linear operators. In the whole paper, X ,Y,Z should

be thought as finite dimensional Euclidean spaces, although the proofs carry on easily to the

Hilbertian setting. These problem naturally arise in the computation of the ‘proximity operator’

of functions of the form z 7→ f(Kz):

min
x

f(Kz) +
1

2τ
‖z − z0‖2

(given a point z0 and τ > 0), when f can be in turn split into two functions f1(K1z) + f2(K2z).

Examples will be provided in Section 6. The idea of Dykstra’s algorithm [5] (see also [13,

Ex 10.11]) is to perform alternating minimizations on a dual problem: one writes (assuming

formally that the min/max can be exchanged, which is generally true under quite mild assump-

tions)

min
z

f1(K1z) + f2(K2z) +
1

2τ
‖z − z0‖2

= min
z

sup
x1,x2

〈x1,K1z〉+ 〈x2,K2z〉 − f∗
1 (x1)− f∗

2 (x2) +
1

2τ
‖z − z0‖2

= max
x1,x2

inf
z
〈K∗

1x1 +K∗
2x2, z〉+

1

2τ
‖z − z0‖2 − f∗

1 (x1)− f∗
2 (x2)

= max
x1,x2

〈K∗
1x1 +K∗

2x2, z0〉 − f∗
1 (x1)− f∗

2 (x2)−
τ

2
‖K∗

1x1 +K∗
2x2‖2,

which leads to a problem in the form (1). Then, one can simply alternatively minimize the

problem with respect to x1 and then x2, provided the computations are tractable. Although it

can be found in some cases, and for some geometries, that this method is efficient [16], in general

its convergence rate can be quite poor [4, 2]. In [11], it is observed that alternating minimization

schemes on (1) can be accelerated using a FISTA-type overrelaxation [3] (see also [20] where a

similar observation has been recently made). It is observed as well that this is still true is the

exact minimizations are replaced with one step of a proximal-type descent for each variable. Of
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course, one should notice that such a problem is of the form smooth+nonsmooth minimization (in

the variable (x, y)), so it is obvious that it can be tackled with accelerated first order method as

in [19, 3], and the techniques studied in [11] and in this note will certainly not improve standard

ones by an order of magnitude – the constants are only slightly improved, see Table 1. The real

speedup we can hope lies mostly in the fact that, in some applications, we can split our problems

into subproblems which are in turn split into many independent small dimensional problems,

which one can hope to solve (almost) exactly, and in parallel.

In practice, it can be observed experimentally that performing several steps of descent in

each variable (before turning to the other variable) improves the performances (which is to be

expected, as it gets closer to performing an exact minimization). One of the goals of this paper

is to try to give a theoretical explanation to this observation. Another goal is to extend the

analysis in [11] to strongly convex objectives, showing again that one can obtain a descent rate

similar to the rate of a standard accelerated method [19]. As an application, we show how to

implement fast parallel solvers for the proximity operator of the Total Variation, with or without

regularization, for grey and color images.

This paper is divided as follows: In the next section we introduce the general type of updates

we are considering, consisting in one or several minimization steps of the objective with respect to

one variable, the other being frozen. We derive various sufficient descent rules for this technique,

depending on the properties of the functions.

Then in Section 3 we discuss the acceleration of alternating minimizations in the strongly con-

vex case. Since alternating minimizations are a variant of Forward-Backward splitting methods,

it is clear that one can expect good convergence rates by adapting standard methods [3, 19, 12].

This is what we establish in Theorem 1, extending a result of [11] in the non strongly convex

case.

In the following two sections, we try to extend this result to alternating descent with several

descent steps. We first discuss the non strongly convex case (Sec. 4.1) and then the strongly

convex situation (Sec. 5). However, except when only one step of descent is performed in each

variable (case K = L = 1, already discussed in [11]), the algorithms which are found are not very

practical (as they require the introduction of too many auxiliary variable, while experiments seem

to show that this is not really needed to obtain good convergence properties, cf Section 6.4.1

below).

Eventually, in Section 6, we discuss our application of these results, as mentioned before, to

the computation of the proximity operator of a smoothed version of the total variation, both for

scalar and vectorial (color) images. This approximation is shown to be a correct approximation

of the isotropic total variation in an Appendix (Theorem 4).

1.2 Main assumptions

We will assume here that the functions f and g in (1) are convex and possibly strongly convex,

in respectively metrics F and G: for all x, x′ and y, y′,

f(x′) ≥ f(x′) + 〈∂f(x′), x− x′〉+ 1
2‖x− x′‖2F ,

g(y′) ≥ g(y′) + 〈∂g(y′), y − y′〉+ 1
2‖y − y′‖2G,
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where here F and G are (possibly vanishing) symmetric positive semidefinite operators.

2 Sufficient descent rules

2.1 General updates

We will first consider the following general updates for x and y: given (x̄, ȳ, ȳ′) ∈ X × Y2, the

metrics M,N and integer numbers K,L ≥ 1, we obtain (x̂, ŷ, x̂′, ŷ′) = TK,L(x̄, ȳ, ȳ
′) by letting

x̂0 = x̄, ŷ0 = ȳ, and solving:

x̂k+1 = argmin
x∈X

f(x) + 1
2‖Ax+Bȳ′‖2 + 1

2‖x− x̂k‖2M , k = 0, . . . ,K − 1, (2)

x̂ = x̂K , x̂′ =
1

K

K
∑

k=1

x̂k, (3)

ŷl+1 = argmin
y∈Y

g(y) + 1
2‖Ax̂′ +By‖2 + 1

2‖y − ŷl‖2N , l = 0, . . . , L− 1, (4)

ŷ = ŷL, ŷ′ =
1

L

L
∑

l=1

ŷl. (5)

A basic observation is that, using the strong convexity of the norms and possibly of f , for all

x ∈ X ,

f(x) + 1
2‖Ax+Bȳ′‖2 + 1

2‖x− x̂k‖2M
≥ f(x̂k+1) +

1
2‖Ax̂k+1 +Bȳ′‖2 + 1

2‖x̂k+1 − x̂k‖2M + 1
2‖x− x̂k+1‖2A∗A+M+F (6)

and

g(y) + 1
2‖Ax̂+By‖2 + 1

2‖y − ŷl‖2N
≥ g(ŷl+1) +

1
2‖Ax̂+Bŷl+1‖2 + 1

2‖ŷl+1 − ŷl‖2N + 1
2‖y − ŷk+1‖2B∗B+N+G (7)

If we sum (6) from k = 0 to K − 1, we obtain (remember x̄ = x̂0)

Kf(x) + K
2 ‖Ax+Bȳ′‖2 + 1

2‖x− x̄‖2M

≥
K
∑

k=1

(

f(x̂k) +
1
2‖Ax̂k +Bȳ′‖2 + 1

2‖x̂k − x̂k−1‖2M + 1
2‖x− x̂k‖2A∗A+F

)

+ 1
2‖x− x̂‖2M .

Dividing by K and using the convexity of f and the norms, it follows:

f(x) + 1
2‖Ax+Bȳ′‖2 + 1

2K ‖x− x̄‖2M
≥ f(x̂′) + 1

2‖Ax̂′ +Bȳ′‖2 + 1
2‖x− x̂′‖2A∗A+F + 1

2K ‖x− x̂‖2M . (8)

It is maybe suboptimal to do so, as we do not exploit the fact that letting x = x̂k in (6) yields

f(x̂k) +
1
2‖Ax̂k +Bȳ′‖2 ≥ f(x̂k+1) +

1
2‖Ax̂k+1 +Bȳ′‖2 + 1

2‖x̂k+1 − x̂k‖2A∗A+2M+F ,
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which would allow to evaluate the first two terms in the right-hand side of (8) at x̂ rather than

x̂′, yielding a smaller right-hand side. However, we need later on to exploit cancellations between

the terms involving the norm ‖·‖2A∗A, which we cannot do anymore if we improve the inequality

in this way.

Similarly, one finds

g(y) + 1
2‖Ax̂′ +By‖2 + 1

2L‖y − ȳ‖2N
≥ g(ŷ′) + 1

2‖Ax̂′ +Bŷ′‖2 + 1
2‖y − ŷ′‖2B∗B+G + 1

2L‖y − ŷ‖2N . (9)

We observe again that one also has, for l = 0, . . . , L− 1,

g(ŷl) +
1
2‖Ax̂′ +Bŷl‖2 ≥ g(ŷl+1) +

1
2‖Ax̂′ +Bŷl+1‖2 + 1

2‖ŷl+1 − ŷl‖2B∗B+2N+G,

so that in particular, recalling ŷ = ŷL,

1

L

L
∑

l=1

g(ŷl) +
1
2‖Ax̂′ +Bŷl‖2 ≥ g(ŷ) + 1

2‖Ax̂′ +Bŷ‖2

(plus a term controling the differences, which is hard to exploit), so that one also can write

g(y) + 1
2‖Ax̂′ +By‖2 + 1

2L‖y − ȳ‖2N
≥ g(ŷ) + 1

2‖Ax̂′ +Bŷ‖2 + 1
2‖y − ŷ′‖2B∗B+G + 1

2L‖y − ŷ‖2N . (10)

Summing (8) and (9), we obtain:

E(x, y) + 1
2K ‖x− x̄‖2M + 1

2L‖y − ȳ‖2N
≥ E(x̂′, ŷ′) + 1

2K ‖x− x̂‖2M + 1
2L‖y − ŷ‖2N + 1

2‖x− x̂′‖2A∗A+F + 1
2‖y − ŷ′‖2B∗B+G

+ 1
2‖Ax+By‖2 − 1

2‖Ax+Bȳ′‖2 + 1
2‖Ax̂′ +Bȳ′‖2 − 1

2‖Ax̂′ +By‖2.

Now we observe that

1
2‖Ax+By‖2 − 1

2‖Ax+Bȳ′‖2 + 1
2‖Ax̂′ +Bȳ′‖2 − 1

2‖Ax̂′ +By‖2

= 〈A(x− x̂′), B(y − ȳ′)〉 ≥ − 1
2‖A(x− x̂′)‖2 − 1

2‖B(y − ȳ′)‖2,

and we deduce

E(x, y) + 1
2K ‖x− x̄‖2M + 1

2L‖y − ȳ‖2N + 1
2‖y − ȳ′‖2B∗B

≥ E(x̂′, ŷ′) + 1
2K ‖x− x̂‖2M + 1

2L‖y − ŷ‖2N + 1
2‖x− x̂′‖2F + 1

2‖y − ŷ′‖2B∗B+G.

Had we used (10) instead of (9), we would have rather obtained, in the same way:

E(x, y) + 1
2K ‖x− x̄‖2M + 1

2L‖y − ȳ‖2N + 1
2‖y − ȳ′‖2B∗B

≥ E(x̂′, ŷ) + 1
2K ‖x− x̂‖2M + 1

2L‖y − ŷ‖2N + 1
2‖x− x̂′‖2F + 1

2‖y − ŷ′‖2B∗B+G.

In general, we will consider a new point (x̃, ỹ) such that E(x̃, ỹ) ≤ E(x̂′, ŷ′) (so one could have

x̃ = x̂′, ỹ = ŷ), and use the general sufficient descent rule:

E(x, y) + 1
2K ‖x− x̄‖2M + 1

2L‖y − ȳ‖2N + 1
2‖y − ȳ′‖2B∗B

≥ E(x̃, ỹ) + 1
2K ‖x− x̂‖2M + 1

2L‖y − ŷ‖2N + 1
2‖x− x̂′‖2F + 1

2‖y − ŷ′‖2B∗B+G. (11)
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2.2 The case of alternating minimizations

The case of alternating minimizations, discussed in [11], is substantially simpler. It corresponds

to having M = N = 0, K = L = 1, in particular the points x̄, ȳ are not used, and (x̂′, ŷ′) = (x̂, ŷ).

To simplify, in this case, we drop the prime and denote ȳ the initial point ȳ′. Equation (11)

becomes

E(x, y) + 1
2‖y − ȳ‖2B∗B ≥ E(x̃, ỹ) + 1

2‖x− x̂‖2F + 1
2‖y − ŷ‖2B∗B+G. (12)

In general, in that case, the most natural choice for (x̃, ỹ) is of course the point (x̂, ŷ), as by

construction it has the lowest energy encountered so far.

2.3 A further improvement

Now, we use the ‘FISTA’ trick which consists, given (xk, yk) a current iterate, in replacing (x, y)

in (11) with points of the form (x + (t − 1)xk)/t, (y + (t − 1)yk)/t, for t ≥ 1. We let also

(xk+1, yk+1) = (x̃, ỹ), (x̂′k+1, ŷ′k+1) = (x̂′, ŷ′), (x̂k+1, ŷk+1) = (x̂, ŷ), and, as well, (x̄k, ȳk) =

(x̄, ȳ), ȳ′k = ȳ′. It follows, after a multiplication by t2

t(t− 1)(E(xk, yk)− E(x, y))− t−1
2 (‖x− xk‖2F + ‖y − yk‖2G + ‖A(x− xk) +B(y − yk)‖2)

+ 1
2K ‖x+ (t− 1)xk − tx̄k‖2M + 1

2L‖y + (t− 1)yk − tȳk‖2N + 1
2‖y + (t− 1)yk − tȳ′k‖2B∗B

≥ t2(E(xk+1, yk+1)− E(x, y)) + 1
2K ‖x+ (t− 1)xk − tx̂k+1‖2M + 1

2L‖y + (t− 1)yk − tŷk+1‖2N
+ 1

2‖x+ (t− 1)xk − tx̂′k+1‖2F + 1
2‖y + (t− 1)yk − tŷ′k+1‖2B∗B+G . (13)

In the case of alternating minimizations, this simplifies a lot. Assuming that (xk+1, yk+1) =

(x̃, ỹ) = (x̂, ŷ), one deduces from (12) that

t(t− 1)(E(xk, yk)− E(x, y))− t−1
2 (‖x− xk‖2F + ‖y − yk‖2G + ‖A(x− xk) +B(y − yk)‖2)

+ 1
2‖y + (t− 1)yk − tȳk‖2B∗B

≥ t2(E(xk+1, yk+1)−E(x, y))+ 1
2‖x+ (t− 1)xk − txk+1‖2F + 1

2‖y + (t− 1)yk − tyk+1‖2B∗B+G .

(14)

The convergence rates will be derived from these main inequalities.

3 Accelerated alternating minimization

In [11], it is shown (in case F = G = 0) how one can derive an accelerated algorithm, in the spirit

of the ‘FISTA’ [3] method, from inequality (14). In this section, we extends these results to the

strongly convex case, yielding better rates. As alternating minimizations for two variables are

essentially equivalent to a forward-backward algorithm [13, 11], it is clear that an acceleration

in the spirit of [19, Thm. 2.2.2] will provide efficient convergence rates. A derivation from an

equality similar to (14) is provided in [12, Appendix B]. We provide here an adaption of that

proof to our particular situation (only the parameters are slightly differing, so that we will sketch

most of the arguments). We make the assumption that for some nonnegative parameters γ, δ,

G ≥ γB∗B, F ≥ δA∗A, (15)
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and we assume γ + δ > 0. Observe that

‖x− xk‖2F+‖y − yk‖2G + ‖A(x− xk) +B(y − yk)‖2

≥ (γ + 1)‖y − yk‖2B∗B + (δ + 1)‖x− xk‖2A∗A + 2
〈

A(x− xk), B(y − yk)
〉

≥
(

γ +
δ

1 + δ

)

‖y − yk‖2B∗B ,

hence, denoting γ′ = γ + δ/(1 + δ) > 0, it follows from (14) that

t(t− 1)(E(xk, yk)− E(x, y))− γ′ t−1
2 ‖y − yk‖2B∗B + 1

2‖y + (t− 1)yk − tȳk‖2B∗B

≥ t2(E(xk+1, yk+1)− E(x, y)) + 1+γ
2 ‖y + (t− 1)yk − tyk+1‖2B∗B . (16)

As in [12, Appendix B], we first collapse the two quadratic terms in the left-hand side as follows

(assuming (t− 1)γ′ 6= 1):

−γ′ t−1
2 ‖y − yk‖2B∗B + 1

2‖y − yk + t(yk − ȳk)‖2B∗B

= 1−(t−1)γ′

2 ‖y − yk‖2B∗B + t
〈

y − yk, yk − ȳk
〉

B∗B
+ t2

2 ‖yk − ȳk‖2B∗B

= 1−(t−1)γ′

2 ‖y − yk + t
1−(t−1)γ′

(yk − ȳk)‖2B∗B

+
(

t2

2 − t2

2(1−(t−1)γ′)

)

‖yk − ȳk‖2B∗B

≤ 1−(t−1)γ′

2 ‖y − yk + t
1−(t−1)γ′

(yk − ȳk)‖2B∗B

provided 0 < 1− (t− 1)γ′ ≤ 1, which we now assume (that is, 1 ≤ t < 1 + 1/γ′). Equation (16)

becomes, assuming t = tk+1 is now a variable parameter,

tk+1(tk+1 − 1)(E(xk, yk)− E(x, y)) + 1−(tk+1−1)γ′

2 ‖y − yk + tk+1

1−(tk+1−1)γ′
(yk − ȳk)‖2B∗B

≥ t2k+1(E(xk+1, yk+1)− E(x, y)) + 1+γ
2 ‖y + (tk+1 − 1)yk − tk+1y

k+1‖2B∗B .

Denoting ωk = (1 − (tk+1 − 1)γ′)/(1 + γ) ≤ 1, we find that provided t2k+1 − tk+1 = ωkt
2
k, this

inequality becomes

t2k+1(E(xk+1, yk+1)− E(x, y)) + 1+γ
2 ‖y + (tk+1 − 1)yk − tk+1y

k+1‖2B∗B

≤ ωk

(

t2k(E(xk, yk)− E(x, y)) + 1+γ
2 ‖y − yk + tk+1

1−(tk+1−1)γ′
(yk − ȳk)‖2B∗B

)

.

Hence, provided one ensures

y − yk + tk+1

1−(tk+1−1)γ′
(yk − ȳk) = y + (tk − 1)yk−1 − tky

k,

it will follow

E(xk, yk)− E(x, y) ≤ 1

t2k

(

k−1
∏

i=0

ωi

)

(

t20(E(x0, y0)− E(x, y)) + 1+γ
2 ‖y − y0‖2B∗B

)

. (17)
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The updates rules for tk, ωk, ȳ
k should be as follow:

tk+1 =
1

2

(

1− γ′

1+γ t
2
k +

√

(

1− γ′

1+γ t
2
k

)2

+ 4 1+γ′

1+γ t2k

)

, (18)

βk = (1− (tk+1 − 1)γ′)
tk − 1

tk+1
, (19)

ȳk = yk + βk(y
k − yk−1), (20)

ωk =
1 + γ′ − tk+1γ

′

1 + γ
= 1− tk+1

γ

1 + γ
− (tk+1 − 1)

δ

(1 + δ)(1 + γ)
. (21)

It remains to estimate the rates which these updates yield. This is done in a similar way as

in [19, Chap. 2] and [12, Appendix B]. A starting point is the update equation for tk+1, which is

chosen as the nonnegative root of:

t2k+1 − tk+1 = ωkt
2
k =

1− (tk+1 − 1)γ′

1 + γ
t2k (22)

which, letting q′ := γ′/(1 + γ′), also reads

t2k+1 = tk+1 +
1 + γ′

1 + γ
(1− q′tk+1)t

2
k.

A first fact is that 1 ≤ tk+1 < 1/q′. Indeed if q′tk+1 ≥ 1 one obtains that t2k+1 ≤ tk+1, hence

tk+1 ≤ 1 and q′tk+1 < 1, a contradiction. Hence, q′tk+1 < 1, and t2k+1 ≥ tk+1 so that tk+1 ≥ 1

(moreover, if tk = 0, which is possible only for k = 0 one has tk+1 = 1, otherwise, tk+1 > 1). As

a consequence for any k ≥ 0,

0 < ωk ≤ 1

1 + γ
< 1 (23)

so that (17) provides a linear convergence rate. But as expected, the actual rate is a bit better.

Knowing that tk+1 ≥ 1, we deduce from (22) and γ′ ≥ γ that

t2k+1 − tk+1 ≤ 1− (tk+1 − 1)γ

1 + γ
t2k =

(

1− γ
tk+1

1 + γ

)

t2k,

which after multiplication by q := γ/(1 + γ) ≤ q′ yields

qt2k+1 ≤ qtk+1 + (1− qtk+1)qt
2
k.

Observe that qtk+1 ≤ q′tk+1 < 1. If we assume in addition that

t0 ∈ [0, 1/
√
q], (24)

then by induction we deduce that qt2k ≤ 1 for all k ≥ 0 (as qt2k+1 is bounded by a convex

combination of 1 and qt2k). In particular, it follows from (22) that t2kωk/t
2
k+1 = 1 − 1/tk+1 ≤

1− 1/
√
q so that

θk :=
1

t2k

(

k−1
∏

i=0

ωi

)

=
ω0

t21

k−1
∏

i=1

t2iωi

t2i+1

≤ ω0

t21
(1−√

q)k−1 ≤ (1 +
√
q)(1−√

q)k,
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where we have used (23) and t1 ≥ 1. In addition, if t0 > 0, one also finds similarly the bound

θk ≤ (1−√
q)k/t20.

One deduces from (17) that if (24), (18), (19) and (20) hold, then

E(xk, yk)− E(x, y) ≤







(1 +
√
q)(1−√

q)k
(

t20(E(x0, y0)− E(x, y)) + 1+γ
2 ‖y − y0‖2B∗B

)

(1−√
q)k
(

E(x0, y0)− E(x, y) + 1+γ
2t2

0

‖y − y0‖2B∗B

)

(if t0 6= 0).

Eventually, it is straightforward to check that also [12, (B.10)] holds, that is, θk ≤ 4/(k+1)2. It

Algorithm 1 Accelerated alternating minimizations

Input: Metrics F,G, parameters γ, δ satisfying (15).

Let then q := γ/(1 + γ) ∈ [0, 1), γ′ := γ + δ/(1 + δ).

Choose (x0, y0), t0 ∈ [0, 1/
√
q] and let ȳ0 = y0.

for all k ≥ 1 do

xk = argminx∈X E(x, ȳk−1),

yk = argminy∈Y E(xk, y),

then compute tk+1, βk, ȳ
k according to (18), (19), (20).

end for

follows the result:

Theorem 1. Let (xk, yk) be computed according to Algorithm 1. Then for any k ≥ 1, one has

E(xk, yk)−min
x,y

E ≤ θk
(

t20(E(x0, y0)− E(x, y)) + 1+γ
2 ‖y − y0‖2B∗B

)

(25)

where

θk ≤ min

{

4

(k + 1)2
, (1 +

√
q)(1−√

q)k,
(1−√

q)k

t20

}

.

4 Accelerated alternating descent

Now, we show that this analysis can be adapted, in theory, to yield also accelerated algorithms

for the alternating descent method. The idea is to adapt the previous proof to the more complex

inequality (13). We will do this in a quite suboptimal way, mostly to demonstrate that it is

possible and leads to good convergence rates. In practice, the implementations these methods

lead to are too complicated and lead to not so efficient practical results, and it seems more

efficient to use the rules derived in the previous section, although they should not apply to the

alternating descent method.
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4.1 The non strongly convex case

We first consider the case F,G = 0, for which the computations are substantially simpler to read.

In this case, (13) boils down to

t(t− 1)(E(xk, yk)− E(x, y))

+ 1
2K ‖x+ (t− 1)xk − tx̄k‖2M + 1

2L‖y + (t− 1)yk − tȳk‖2N + 1
2‖y + (t− 1)yk − tȳ′k‖2B∗B

≥ t2(E(xk+1, yk+1)− E(x, y)) + 1
2K ‖x+ (t− 1)xk − tx̂k+1‖2M + 1

2L‖y + (t− 1)yk − tŷk+1‖2N
+ 1

2‖y + (t− 1)yk − tŷ′k+1‖2B∗B . (26)

The standard proof of ‘FISTA’ [3] consists then in letting t0 = 0, and for k ≥ 0, tk+1 =

(1 +
√

1 + 4t2k)/2 (so that tk+1(tk+1 − 1) = t2k) (One can more generally choose, for k ≥ 1,

tk = 1+ (k− 1)/a, a ≥ 2, so that tk+1(tk+1 − 1) ≤ t2k for all k [8]: then the following inequalities

will continue to hold as long as we also assume that (x, y) is a minimizer of the energy). It follows

t2k+1(E(xk+1, yk+1)− E(x, y)) + 1
2K ‖x+ (tk+1 − 1)xk − tk+1x̂

k+1‖2M
+ 1

2L‖y + (tk+1 − 1)yk − tk+1ŷ
k+1‖2N + 1

2‖y + (tk+1 − 1)yk − tk+1ŷ
′k+1‖2B∗B

≤ t2k(E(xk, yk)− E(x, y)) + 1
2K ‖x+ (tk+1 − 1)xk − tk+1x̄

k‖2M
+ 1

2L‖y + (tk+1 − 1)yk − tk+1ȳ
k‖2N + 1

2‖y + (tk+1 − 1)y′k − tk+1ȳ
′k‖2B∗B . (27)

It remains to choose x̄k, ȳk, ȳ′k, to ensure the following equalities:

x+ (tk+1 − 1)xk − tk+1x̄
k = x+ (tk − 1)xk−1 − tkx̂

k

y + (tk+1 − 1)yk − tk+1ȳ
k = y + (tk − 1)yk−1 − tkŷ

k

y + (tk+1 − 1)yk − tk+1ȳ
′k = y + (tk − 1)yk−1 − tkŷ

′k.

This is obtained by letting

x̄k = xk + tk−1
tk+1

(xk − xk−1) + tk
tk+1

(x̂k − xk) (28)

ȳk = yk + tk−1
tk+1

(yk − yk−1) + tk
tk+1

(ŷk − yk) (29)

ȳ′k = yk + tk−1
tk+1

(yk − yk−1) + tk
tk+1

(ŷ′k − yk) (30)

With these choices, one can eventually sum (27) from n = 0 to k − 1 and it follows

E(xn, yn)− E(x, y) ≤
‖x− x0‖2M/K + ‖y − y0‖2N/L+B∗B

2t2n
.

Using the fact that by construction, tk+1 ≥ tk + 1/2 and t1 ≥ 1, and choosing for (x, y) a

minimizer, we deduce the following theorem:

Theorem 2. Let (xk, yk) be computed using Algorithm 2, starting from initial points (x0, y0),

and let (x∗, y∗) be a minimizer of E. Then one has the global rate:

E(xk, yk)− E(x∗, y∗) ≤ 2
‖x∗ − x0‖2M/K + ‖y∗ − y0‖2N/L+B∗B

(k + 1)2
. (31)
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Algorithm 2 Accelerated alternating descent method (general case)

Input: Metrics M,N , number of inner loops K,L ≥ 1.

Choose (x0, y0) ∈ X × Y, t0 ≥ 0, let x̄0 = x0, ȳ0 = ȳ′0 = y0.

for all k ≥ 1 do

Find (x̂k, ŷk, x̂′k, ŷ′k) = TK,L(x̄
k−1, ȳk−1, ȳ′k−1) (cf eq. (2–5)).

Choose a point (xk, yk) such that E(xk, yk) ≤ E(x̂′k, ŷ′k),

then compute tk+1 = (1 +
√

1 + 4t2k)/2, (x̄
k, ȳk, ȳ′k) according to (28), (29), (30).

end for

5 The strongly convex case

The case where F,G > 0 is a bit trickier, if one wants to exploit it to gain a better (linear)

convergence. The main observation is that in (13), the (unknown) points x and y on the left-

hand side of the ‘≥’ sign are evaluated respectively in the M/K and N/L+B∗B norms, while on

the right-hand side, they are evaluated in the M/K+ tF and N/L+B∗B+ tG, respectively. (In

fact, one should also, as in Section 3, use the term involving Ax + By to transfer some control

from x to y or conversely, leading to more tedious even calculations – this would be necessary

for instance if only one of the metrics F,G were positive, which to simplify we do not assume

here.) It follows that if one can choose t such that, for some ω < 1,

1
KM + tF ≥ ω−1 1

KM, 1
LN +B∗B + tG ≥ ω−1

(

1
LN +B∗B

)

, t2 ≥ ω−1(t(t− 1)),

then the energy can be reduced by a constant ratio at each iteration. The last inequality suggests

that ω should be simply equal to 1− 1/t, and the optimal t ≥ 1 is the smallest value such that

t(t− 1)F ≥ 1
KM, t(t− 1)G ≥ 1

LN +B∗B . (32)

In practice, M and N are often chosen of the form I/τ − A∗A and I/σ − B∗B, respectively,

so that the descent steps in x, y can be computed explicitely. One needs τ ≤ ‖A∗A‖−1 and

σ ≤ ‖B∗B‖−1 in order for M,N to be nonnegative. The condition on G then boils down to

t(t− 1)G ≥ I/(σL) + (1− 1/L)B∗B, which is ensured as soon as t− 1 ≥
√

‖G−1‖/σ, while the

condition on F is ensured if t− 1 ≥
√

‖F−1‖/(Kτ) (and is thus in general easier to ensure). In

any case, the geometric ratio involves the square root of the condition number of the problems

in x and y, which indicates that the accelerated algorithm we can derive should have good

performances.

Let us now derive an implementable algorithm. We assume now that (32) holds and denote

ω = 1−1/t. A more general derivation in the spirit of [19, 12] with variable t could be derived as

in Section 3, but the calculations would be much more tedious. Estimate (13) can be rewritten:

ωt2(E(xk, yk)− E(x, y))

+ 1
2K ‖x+ (t− 1)xk − tx̄k‖2M + 1

2L‖y + (t− 1)yk − tȳk‖2N + 1
2‖y + (t− 1)yk − tȳ′k‖2B∗B

≥ t2(E(xk+1, yk+1)− E(x, y)) + 1
2K ‖x+ (t− 1)xk − tx̂k+1‖2M + 1

2L‖y + (t− 1)yk − tŷk+1‖2N
+ 1

2‖x+ (t− 1)xk − tx̂′k+1‖2F+ 1
2‖y + (t− 1)yk − tŷ′k+1‖2B∗B+G+ t−1

2 (‖x− xk‖2F+‖y − yk‖2G)
(33)
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First, one observes that using (32),

1
2K ‖x+ (t− 1)xk − tx̂k+1‖2M + 1

2‖x+ (t− 1)xk − tx̂′k+1‖2F + t−1
2 ‖x− xk‖2F

≥ 1
2K

(

‖x+ (t− 1)xk − tx̂k+1‖2M + 1
t(t−1)‖x+ (t− 1)xk − tx̂′k+1‖2M + 1

t ‖x− xk‖2M
)

= t
2K(t−1)

(

t−1
t ‖x+ (t− 1)xk − tx̂k+1‖2M + 1

t2 ‖x+ (t− 1)xk − tx̂′k+1‖2M + t−1
t2 ‖x− xk‖2M

)

≥ t
2K(t−1)‖x+ (t−1)2

t xk − (t− 1)x̂k+1 − 1
t x̂

′k+1‖2M . (34)

Hence a good choice for x̄k is a choice which ensures that

x+ (t− 1)xk − tx̄k = x+ (t−1)2

t xk−1 − (t− 1)x̂k − 1
t x̂

′k,

yielding

x̄k = xk +

(

t− 1

t

)2

(xk − xk−1) +
t− 1

t
(x̂k − xk) +

1

t2
(x̂′k − xk). (35)

The situation is slightly more complicated for the y variable, but the computations are very

similar. One has, using (32),

1
2L‖y + (t− 1)yk − tŷk+1‖2N + 1

2‖y + (t− 1)yk − tŷ′k+1‖2B∗B+G + t−1
2 ‖y − yk‖2G

≥ 1
2L

(

‖y + (t− 1)yk − tŷk+1‖2N + 1
t(t−1)‖y + (t− 1)yk − tŷ′k+1‖2N + 1

t ‖y − yk‖2N
)

+ 1
2

(

(

1 + 1
t(t−1)

)

‖y + (t− 1)yk − tŷ′k+1‖2B∗B + 1
t ‖y − yk‖2B∗B

)

.

As in (34) (replacing x with y and M with N),

1
2L

(

‖y + (t− 1)yk − tŷk+1‖2N + 1
t(t−1)‖y + (t− 1)yk − tŷ′k+1‖2N + 1

t ‖y − yk‖2N
)

≥ t
2L(t−1)‖y +

(t−1)2

t yk − (t− 1)ŷk+1 − 1
t ŷ

′k+1‖2N ,

while the second expression is a bit simpler:

1
2

(

(

1 + 1
t(t−1)

)

‖y + (t− 1)yk − tŷ′k+1‖2B∗B + 1
t ‖y − yk‖2B∗B

)

≥ t
2(t−1)‖y +

(t−1)2

t yk − (t− 1)ŷ′k+1 − 1
t ŷ

′k+1‖2B∗B

= t
2(t−1)‖y +

(t−1)2

t yk −
(

1 + (t−1)2

t

)

ŷ′k+1‖2B∗B .

We will therefore choose ȳk, ȳ′k to satisfy

y + (t− 1)yk − tȳk = y + (t−1)2

t yk−1 − (t− 1)ŷk − 1
t ŷ

′k,

y + (t− 1)yk − tȳ′k = y + (t−1)2

t (yk−1 − ŷ′k)− ŷ′k,

which is ensured provided

ȳk = yk +

(

t− 1

t

)2

(yk − yk−1) +
t− 1

t
(ŷk − yk) +

1

t2
(ŷ′k − yk). (36)

ȳ′k = yk +

(

t− 1

t

)2

(ŷ′k − yk−1) +
1

t
(ŷ′k − yk). (37)
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With the choices (35), (36), (37), inequality (33) becomes

ωt2(E(xk, yk)− E(x, y)) + 1
2K ‖x+ (t−1)2

t xk−1 − (t− 1)x̂k − 1
t x̂

′k‖2M
+ 1

2L‖y +
(t−1)2

t yk−1 − (t− 1)ŷk − 1
t ŷ

′k‖2N + 1
2‖y +

(t−1)2

t (yk−1 − ŷ′k)− ŷ′k‖2B∗B

≥t2(E(xk+1, yk+1)− E(x, y)) + 1
2Kω‖x+ (t−1)2

t xk − (t− 1)x̂k+1 − 1
t x̂

′k+1‖2M
+ 1

2Lω‖y +
(t−1)2

t yk − (t− 1)ŷk+1 − 1
t ŷ

′k+1‖2N + 1
2ω‖y +

(t−1)2

t yk −
(

1 + (t−1)2

t

)

ŷ′k+1‖2B∗B ,

so that one has (assuming x̄0 = x0, ȳ0 = ȳ′0 = y0)

E(xk, yk)− E(x, y) ≤ ωk
(

E(x0, y0)− E(x, y)) + 1
t2ω

(

1
2K ‖x− x0‖2M + 1

2‖y − y0‖2N/L+B∗B

)

)

.

Hence one has in this case a linear convergence rate.

Algorithm 3 Accelerated alternating descent method (strongly convex case)

Input: Metrics M,N and F,G, number of inner loops K,L ≥ 1.

Choose (x0, y0) ∈ X × Y, t such that (32) holds. Let x̄0 = x0, ȳ0 = ȳ′0 = y0.

for all k ≥ 1 do

Find (x̂k, ŷk, x̂′k, ŷ′k) = TK,L(x̄
k−1, ȳk−1, ȳ′k−1) (cf eq. (2–5)).

Choose a point (xk, yk) such that E(xk, yk) ≤ E(x̂′k, ŷ′k),

then compute (x̄k, ȳk, ȳ′k) according to (35), (36), (37).

end for

Theorem 3. Let (xk, yk) be computed using Algorithm 3, starting from initial points (x0, y0),

and let (x∗, y∗) be a minimizer of E. Then the energy decays with the linear rate:

E(xk, yk)− E(x∗, y∗) ≤

ωk
(

E(x0, y0)− E(x∗, y∗)) + 1
t2ω

(

1
2K ‖x∗ − x0‖2M + 1

2‖y∗ − y0‖2N/L+B∗B

)

)

(38)

where ω = 1− 1/t.

6 Application: Even/Odd splitting of the total variation

6.1 Description

We now consider the computation of the proximity operator of the total variation, using a

splitting proposed in [11]. The idea (which we explain in 2 dimension, but could be extended

to any dimension) is to consider separately the pixels (i, j) + {0, 1}2 for (i, j) even and for (i, j)

odd. Given u = (ui,j)1≤i≤n,1≤j≤m an image, We let for each (i, j)

TV 4
i,j(u) =

√
2
√

(ui+1,j − ui,j)2 + (ui+1,j+1 − ui,j+1)2 + (ui+1,j+1 − ui+1,j)2 + (ui,j+1 − ui,j)2.

Then (here [·] is the integer part)

J(u) =

[(n−1)/2]
∑

i=1

[(m−1)/2]
∑

j=1

TV 4
2i,2j(u) +

[n/2]−1
∑

i=1

[m/2]−1
∑

j=1

TV 4
2i+1,2j+1(u). (39)
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We will denote by Je(u) the first sum above, and by Jo(u) the second one. It is possible to show

that this is an approximation of the isotropic total variation in a variational sense, see Appendix

for a sketch of proof. Given ε > 0 a smoothing parameter, we will also consider the ‘Huber’

variant Jε(u) = Je
ε (u) + Jo

ε (u) defined similarly, but replacing TV 4
i,j with

TV 4,ε
i,j (u) =







TV 4
i,j(u)− ε if TV 4

i,j(u) ≥ 2ε
(TV 4

i,j(u))
2

4ε else.

We will show how to compute, using the approach described so far, the proximity operator

of these functions J = J0 and Jε, which is defined as the solution of the following problem:

min
u

Jε(u) +
1

2λ
‖u− u†‖2. (40)

Given i, j, we denote by Di+1/2,ju = ui+1,j − ui,j if 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m, and Di,j+1/2u =

ui,j+1 − ui,j if 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1. Then, we call Dou the ‘odd’ part of Du and Deu the

even part, that is

Dou = ((Di+1/2,ju, Di,j+1/2u, Di+1/2,j+1u, Di+1,j+1/2u))i,j odd

and Deu is define in the same way but for even indices i, j. It follows that

Jo
ε (u) = sup{〈ξ,Dou〉 − ε

2 |ξ|2 : ‖(ξi+1/2,j , ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2)‖22 ≤ 2 ∀(i, j) odd}

and the same holds for Je, replacing Do with De and ‘odd’ with ‘even’. We will denote

ξo = ((ξi+1/2,j , ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2))i,j odd,

ξe = ((ξi+1/2,j , ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2))i,j even.

The dual of problem (40) reads

min
(ξe,ξo)

‖Do,∗ξo +De,∗ξe − u†‖2 + f(ξe) + g(ξo), (41)

where D•,∗ is the adjoint of D•,

f(ξe) =

{

ε
2λ |ξe|2 if for all i, j even, ‖(ξi+1/2,j , ξi,j+1/2, ξi+1/2,j+1, ξi+1,j+1/2)‖22 ≤ 2λ2,

+∞ else

and g(ξo) is defined similarly.

We find that (41) is a particular case of (1) (the extra term u† in (41) does not change anything

to the analysis, and could in fact be transferred to the functions f, g). In that case, A and B

have the same norm (which is exactly 2, as these operators can be thought as independent cyclic

one-dimensional finite differences over 4 points). Moreover, the functions f, g are (ε/λ)-strongly

convex.
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6.2 Alternating minimizations

For this problem, one may to implement an alternating minimization scheme. An approach to do

it is detailed in [11] and consists in solving, for each odd or even square, a reduced total variation

minimization problem over a cycle of 4 points. This can be done at the expense of a few Newton

iterations to find the Lagrange multiplier associated to the constraint on ξ. It follows that one

can use Algorithm 1, yielding a O(1/k2) (for ε = 0) or a linear (for ε > 0) convergence rate. As

one has A∗A ≤ 4I and B∗B ≤ 4I, the parameters are γ = δ = ε/(4λ). In particular,

q =
γ

1 + γ
=

ε

4λ+ ε
, γ′ =

ε

4λ
+

ε

4λ+ ε
,

which allow to implement the rules (18), (19), (20).

6.3 Alternating descent

For alternating descent, one considers metrics M = I/τ − A∗A and N = I/σ − B∗B which are

nonnegative as soon as τ ≤ 1/4, σ ≤ 1/4. In the non strongly convex case, one could then use

Algorithm 2.

On the other hand, if ε > 0, in order to ensure (32) it is enough to have (for σ = τ = 1/4)

max

{

4

K
,
4

L
+ (1− 1

L
)B∗B

}

≤ t(t− 1)
ε

λ

which is ensured as soon as t(t− 1) ≥ 4λ/ε, hence one should take t = (1+
√

1 + 16λ/ε)/2. The

linear convergence should then follow with the rate

ω = 1− 1

t
= 1− e

8λ

√

1 + 16
λ

ε
+

ε

8λ
≈ 1− 1

2

√

ε

λ

when ε << λ. In practice, we implemented the same overrelaxation rules as in Section 6.2

(however for both “odd” and “even” variables).

6.4 Experiments

6.4.1 Comparison between the algorithms

A first round of experiments simply compares 4 different methods for solving (40) with as input

the image on Fig. 1, left:

• The accelerated alternating minimization method (AAMM) of Alg. 1 where the subprob-

lem are solved almost exactly using an exact inversion with a Lagrange multiplier computed

by 4 iterations of a Newton method [11] (which we found was yielding the same result as

with more iterations);

• The alternating descent method (AADM) of Alg. 2-3 where, to simplify, we have used

only the points (x̂, ŷ) (and not the averages), and we have used the overrelaxation rules as

in Alg. 1;

15



Figure 1: A 3602 = 129600-pixels image (with values in [0, 255]) and the solution of (40) for

λ = 30, ε = 1.

• An inexact implementation of Alg. 1 (AAMM-inexact) where the (almost) exact mini-

mization is replaced with a fixed number of descent steps (the difference with the previous,

being, in particular, that the overrelaxation is only implemented on the second variable);

• The “FISTA” method [3] (FISTA) (with parameter updates which take into account the

strong convexity of the objective when ε > 0, as explained in [19, 12]).

The reasons for which we did not use the complete set of variables (x̂, ŷ, x̂′, ŷ′) in our im-

plementation of Alg. 2 and Alg. 3 are that using all the points would be much more expensive

in memory and computation time per iteration — while identifying the points (x̂′, ŷ′) to (x̂, ŷ)

needs a number of variable of the same order as for the FISTA method, and slightly larger than

(AAMM) (and (AAMM-inexact)) which overrelax only one of the two variables (observe that

for 1 descent step, our implementation is the correct implementation of the algorithms). In these

alternating descent algorithms, we also found the constant step update rule (32) (for ε > 0)

slightly less good than the variable rule (18) of Alg. 1, so in the end we used the latter rule for

both methods.

These first experiments were conducted on a Dell Laptop under Ubuntu Linux, with an Intel

Core i7-3740QM CPU (6Mb cache) with 4 cores and 8 threads, at 3.70GHz. The programs were

implemented in C with omp parallelization over 8 threads, which roughly divides the running

time by 8 as the operations which are run in parallel are truly independent and take about the

same time (they consist in a fixed number of similar operations). For each experiment, we a loop

called the optimization 10 times and we then divided the total elapsed time by 10. There is still

some variability which depends on many factors (some which we cannot really control, such as

the temperature of the CPU, other easier to understand and deal with such as the total load of

the system), we tried to run all the experiments in the same conditions. The results are shown in

Table 1. The number of iterations and time shown are to reach a gap G such that
√

G/N ≤ 0.1,
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where N is the size of the problem (here N = 129600). This implies in particular that the RMSE

between the computed solution and the exact one is less than 0.1 [12].

Table 1: Comparison of different strategies

method (FISTA) (AAMM) (AADM) (AAMM-inexact)

# descent steps # descent steps

ε 1 3 5 1 3 5

0
#iter. 495 146 273 169 153 1654 271 130

t (ms) 681 232 251 228 281 1115 320 204

0.1
#iter. 142 57 89 62 59 513 100 58

t (ms) 203 91 89 91 108 333 130 104

1
#iter. 69 27 57 31 28 174 44 29

t (ms) 101 40 62 50 57 127 54 43

The results are almost as expected. The exact minimization works best, except, strangely,

when ε = 0. Computing one step of descent (with a complete overrelaxation in both variables x

and y) is quite efficient for this particular problem: even if one needs to perform much more many

iterations, these are very fast (in these examples, about 1ms, vs 1.4ms for (FISTA) and 1.6ms

for the Newton iterations) which makes the strategy competitive. We recall however that this

approach requires more memory. If, as expected, the method (AAMM-inexact) gives terrible

results when the number of inner loops is too small (it is unproperly overrelaxed in only one of

the two variables), for more than 5− 6 iteration it starts to compare with the exact (AAMM)

method, which means it probably also almost achieves the exact minimization in each variable

(consider that the dimension of each subproblem is 4). Surprisingly, for ε = 0 (the non-smoothed

total variation), it converges even faster than the exact minimisation approach, and we do not

have a reasonable explanation for this.1

6.4.2 GPU implementation

Thanks to the good parallelization properties of the odd/even splitting, it is easy to implement

such a scheme on a GPU architecture. The practicioner should download the source code avail-

able at http://github.com/svaiter/ftvp to test against its image database. This repository

contains a C/CUDA library together with a Python 3 binding. All the computation are per-

formed on an Amazon EC2 g2.2xlarge instance on Linux Ubuntu Server 14.04 LTS with CUDA

6.5.

If not specified otherwise, the parameter of all simulations is as follows. We used a standard

image of size 512 × 512 which a dynamic inside the range [0, 255]. Our stopping criterion is as

1Consider however that as our implementations are in this case one same program with an option calling either

the descent step or the exact minimization, this is not a bug. This is confirmed both by the fact that for ε > 0,

when the subproblems are easier and hence it is even more likely that the descent steps will converge to the exact

solution in few iterations, the exact and inexact method need nearly the same number of iterations, and the fact

that increasing the number of descent steps yield eventually a number of outer iterations equal to the (AAMM)

algorithm.
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Figure 2: Left: influence of ǫ. Right: influence of λ.

before by checking that the square root of the dual over the size of the image is less than 0.1

which is an upper bound of the root mean-square error (RMSE). The dual gap is computed at

each iteration. If such a bound is not obtained after 10000 iterations, we stop the alternating

minimization. In term of distributed computing, we choose to use thread blocks of size 16× 16.

The use of Huber-TV induces better performances, in term of execution time or raw number

of iterations. We first study the influence of ǫ in Figure 2 We compare both the case where the

inner iterations are done with a Newton step and with a simple descent, both with 5 steps. For

every experience in the following, we consider 20 repetitions of the experiment, and average the

time obtained. Moreover, all time benchmarked are reported minus the memory initialization

time. We fix the value of λ = 30.0. Note that choosing ǫ too big is however problematic in term

of quality of approximation of the true Total Variation regularization.

A similar study can be performed for the influence of λ, see Figure 2. Again, we compare both

the case where the inner iterations are done with a Newton step and with a descent, both with

5 steps. We let vary λ over [1, 36] and fix the value of ǫ = 0 (exact-TV) and also ǫ = 0.1. Note

that the execution time scales nicely with the dimension of the image. For instance, running our

algorithm for ǫ = 0.1 and λ = 20.0 took 800ms for a 2048× 2048 image and 4s for a 4096× 4096

image.

6.4.3 Color TV

For color images, we can implement the same method. The difficulty now is that the “exact”

minimization approach of [11] becomes heavier to program and solve, as the subproblems are now

in dimension 12, involving a “Laplacian” matrix of rank 7. Table 1 suggests that performing a

sufficient number of descent steps (method (AAMM-inexact)) yields essentially the same results

as an exact minimization, in roughly the same time. We thus present the result of such an

implementation. We have just extended the program implementing (AAMM-inexact) to work

with RGB images, and tested it first on a 360×360 crop and then on the 3264×2448 = 7990272
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Figure 3: A 3264 × 2448 = 7990272-pixels image and a 360 × 360 = 129600-pixels crop (with

RGB values in [0, 255]), and (below) the solutions of (40) for λ = 10, ε = 0.1.

pixels image of Fig. 32. The results, shown in Table 2, show that the method is also efficient

with this inexact implementation (with 5 descent steps). The left part of the table shows the

execution time for the small image, on the same computer as in Table 1. The time spent in each

iteration is about 3-4 times longer than for grey-level images.

On the right, we display typical execution times for the large image (of almost 8 · 106 pixels),

on a slightly faster computer (with an Intel Xeon E5-2643 CPU (20Mb cache) at 3.40 GHz, which

has 12 threads).

2Image belongs to the authors.
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Table 2: Color results

Small image Large image

ε λ 1 10 50 1 10 50

0
#iter. 21 50 280 17 41 258

t (s) 0.165 0.243 1.050 3.5 6.3 32.0

0.1
#iter. 15 31 134 13 26 116

t (s) 0.154 0.210 0.526 3.0 4.5 14.7

1
#iter. 8 14 43 8 14 44

t (s) 0.124 0.150 0.206 2.4 3.1 6.1

7 Conclusion

In this paper, we have studied the acceleration of alternating minimization or descent schemes

for problems with two variables with a quadratic coupling, as already considered in [11]. We

have extended some of these results to strongly convex problems, and have investigated the

case of partial descent steps, showing that (theoretically) acceleration is also possible in this

setting. A natural development would be to analyze better the behaviour of the inexact scheme,

which in practice seems to be quite efficient in our application. The correct framework for this

analysis should probably be the framework of inexact accelerated schemes, as studied in [21, 1],

however for this we would need to better estimate the errors which are introduced by the method

(AAMM-inexact) and which seem much smaller than one could naturally expect.
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A An approximation result

In this appendix, we show that although this is not totally obvious at first glance, the discrete

energy Jε(u) is an approximation of the isotropic total variation. The result is more precisely

as follows. To simplify we work in the domain Ω = (0, 1)2 (extension to more general regular

20



domains is not difficult) and we define, forN ≥ 1 an integer, the functional, defined for u ∈ L1(Ω),

Fε,N (u) =







1
N JN,N

ε/N (u) if u = (ui,j)1≤i,j≤N , u(x) =
∑N

i=1

∑N
j=1 ui,jχ( i−1

N
, j

N
)×( j−1

N
, j

N
)(x) a.e.,

+∞ else.

Here, JN,N
ε/N is a notation for the energy (39) in case m = n = N (and with the smoothing

parameter ε/N). We also denote Φε(p) := |p|2/(2ε) if |p| ≤ ε, |p|−ε/2 else and recall that for u ∈
BV (Ω) a function with bounded variation |Du|(Ω) < +∞ [17, 22],

∫

Ω
Φε(Du) =

∫

Ω
Φε(∇u)dx+

|Dsu| where Du = ∇udx +Dsu is the Radon-Nykodym decomposition of Du as an absolutely

continuous and singular part, see [15]. We introduce the functional

Fε(u) =

{

Φε(Du)(Ω) if u ∈ BV (Ω),

+∞ if u ∈ L1(Ω) \BV (Ω).

Then, one can show that Fε can also be defined by duality, as follows:

Fε(u) = sup

{
∫

Ω

u(x)divϕ(x)dx− ε

2

∫

Ω

|ϕ(x)|2dx : ϕ ∈ C∞
c (Ω;R2), |ϕ(x)| ≤ 1 ∀x ∈ Ω

}

(42)

One has the following result:

Theorem 4. As N → ∞, Fε,N Γ-converges to Fε. Moreover, if for some sequence (uN ) ∈
L1(Ω)N, Fε,N (uN ) ≤ C < +∞, then there exists u ∈ BV (Ω), a subsequence (uNk)k and a

sequence of constants (ak)k such that that uNk − ak → u in L1(Ω).

For the proper definition and main properties of Γ-convergence, see for instance [6, 14]. The

theorem establishes that images minimizing JN,N
ε/N (+ other terms such as a quadratic penaliza-

tion) should be close if N is large to minimizers of the isotropic “Huber-total variation” Fε, in

the continuum. The proof is easy, however not really found in this form in the literature, as far

as we know. The closest results are maybe the Γ-convergence theorems of Cai et al. [7] in the

context of wavelet-based approximations of the total variation.

Proof. It is enough to prove: (i) that if uN ∈ L1(Ω) is such that ℓ = lim infN Fε,N (uN ) < ∞,

then not only one can extract uNk which converges to some u, but in addition Fε(u) ≤ ℓ; (ii) that

given u with finite total variation, one can build a sequence uN with lim supN Fε,N (uN ) ≤ Fε(u).

For point (i), we first consider a subsequence (uNk) such that ℓ = limk Fε,Nk
(uNk). Then, we

see that since for all k (large enough) Fε,Nk
(uNk) < +∞, by definition uNk is piecewise constant

and can be written

uNk(x) =

Nk
∑

i=1

N
∑

j=1

uk
i,jχ( i−1

Nk
, j

Nk
)×( j−1

Nk
, j

Nk
)(x)

for some matrix uk = (uk
i,j)1≤i,j≤Nk

. Then we observe that for some constant σ > 0,

Fε,Nk
(uNk) +

ε

2
≥ F0,Nk

(uNk) ≥ σ
1

Nk

∑

i,j

(|uk
i+1,j − uk

i,j |+ |uk
i,j+1 − uk

i,j |) = σ|DuNk |(Ω).

21



Hence |DuNk |(Ω) is bounded, showing that (uNk − ak)k is precompact in L1(Ω), where ak is the

average of the function uNk in Ω. Without loss of generality, we assume ak = 0 and we denote

by u the limit of a subsequence (which for convenience we do not relabel). We must now show

that Fε(u) ≤ ℓ.

Let δ > 0, and let ϕ = (ϕ1, ϕ2) ∈ C∞
c (Ω;R2) be a smooth vector field with |ϕ(x)|2 =

ϕ1(x)2 + ϕ2(x)2 ≤ 1− δ for all x ∈ Ω. Observe that

∫

Ω

uNk(x)divϕ(x)dx =
∑

i,j

uk
i,j

∫

( i−1

Nk
, j

Nk
)×( j−1

Nk
, j

Nk
)

divϕ(x)dx

=
∑

i,j

(uk
i+1,j − uk

i,j)ϕ
1
i+ 1

2
,j + (uk

i,j+1 − uk
i,j)ϕ

2
i,j+ 1

2

where ϕ1
i+ 1

2
,j

is the flux of ϕ through the vertical segment { i
Nk

} × ( j−1
Nk

, j
Nk

) and ϕ2
i,j+ 1

2

is the

flux through the horizontal segment ( i−1
Nk

, j
Nk

)× { j
Nk

}.
Assume (i, j) are both odd or even. Denote by x̄ = (i/Nk, j/Nk): as ϕ is smooth, one clearly

has that Nkϕ
1
i+1/2,j = ϕ1(x̄) +O(1/Nk), etc, and, in fact,

N2
kN 2

i,j := (Nkϕ
1
i+ 1

2
,j)

2+(Nkϕ
2
i,j+ 1

2

)2+(Nkϕ
1
i+ 1

2
,j+1)

2+(Nkϕ
2
i+1,j+ 1

2

)2 ≤ 2(1−δ)+O

(

1

N2
k

)

≤ 2

if Nk is large enough. As a consequence

(uk
i+1,j − uk

i,j)ϕ
1
i+ 1

2
,j + (uk

i,j+1 − uk
i,j)ϕ

2
i,j+ 1

2

+ (uk
i+1,j+1 − uk

i,j+1)ϕ
1
i+ 1

2
,j+1

+ (uk
i+1,j+1 − uk

i+1,j)ϕ
2
i+1,j+ 1

2

− ε

2
N 2

i,j ≤
1

Nk
TV

4,ε/Nk

i,j (uk). (43)

Thanks to the smoothness of ϕ, one can check easily that

∑

(i,j) even

N 2
i,j +

∑

(i,j) odd

N 2
i,j →

∫

Ω

|ϕ(x)|2dx

as k → ∞, hence, summing (43) over all (i, j) both odd or both even, we find (using also the

fact that ϕ has compact support) that

∫

Ω

uNk(x)divϕ(x)dx− ε

2

∫

Ω

|ϕ(x)|2dx+ o(1) ≤ 1

Nk
JNk,Nk

ε/Nk
(uk) = Fε,Nk

(uNk).

In the limit, we find that

∫

Ω

u(x)divϕ(x)dx− ε

2

∫

Ω

|ϕ(x)|2dx ≤ ℓ.

Thanks to (42), we deduce that Fε(u) ≤ ℓ.

We now must prove (ii). We only sketch the proof, which is very simple: one first observes

that as any u ∈ BV (Ω) can be approximated by a sequence (un) with un ∈ C∞(Ω), un → u in

L1(Ω) and
∫

Ω
Φε(∇un(x))dx = Fε(u), it is enough to show the result for a smooth function and

use then a diagonal argument.
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But if u is smooth, letting simply for each N , uN
i,j = u((i − 1/2)/N, (j − 1/2)/N), one first

observes that

uN (x) :=
∑

i,j

uN
i,jχ( i−1

N
, j

N
)×( j−1

N
, j

N
)(x) → u(x)

uniformly in Ω, and then that Fε,N (uN ) is a finite-differences approximation of
∫

Ω
Φε(u(x))dx,

which converges to this limit as N → ∞.
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