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Comparing system reliabilities with ill-known
probabilities
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Sorbonnes université, Université de Technologie de Compiègne, HEUDIASYC, UMR 7253. 57
Avenue de Landshut. 60280 Compiegne, Francesurname.name@hds.utc.fr

Abstract. In reliability analysis, comparing system reliability is an essential task
when designing safe systems. When the failure probabilities of the system com-
ponents (assumed to be independent) are precisely known, this task is relatively
simple to achieve, as system reliabilities are precise numbers. When failure prob-
abilities are ill-known (known to lie in an interval) and we want to have guar-
anteed comparisons (i.e., declare a system more reliable than another when it is
for any possible probability value), there are different ways to compare system
reliabilities. We explore the computational problems posed by such extensions,
providing first insights about their pros and cons.

Keywords: System design, Reliability analysis, Imprecise probability, Compar-
ison

1 Introduction

Being able to compare system reliabilities is essential when designing systems. Pro-
vided the structure function mapping single component reliabilities to the overall sys-
tem reliability is known, this step poses no particular problem (at least from a theoretical
standpoint) when failure probabilities are precisely known.

However, in practice, it may be difficult to provide precise assessments of such
probabilities, for example because little data exist for the components (they may be
issued from new technologies), or because they are given by expert opinions. This typ-
ically happens in early-stage phase design of new systems. In such a case, the problem
of comparing system reliabilities become much more difficult, both conceptually and
computationally speaking.

In this paper, we explore what happens when the component probabilities of func-
tioning are ill-known, that is are only known to lie in an interval. Several aspects of
reliability analysis have been extended to the case of ill-known probabilities, such as
importance indices [8], multi-state systems [4], common cause failure problems [9],
. . . Yet, to our knowledge the problem of system reliability comparison remain to be
formally studied within this setting.

In Section 3, we extend usual system comparisons (recalled in Section 2) to interval-
valued probabilities in two different ways, discussing the theoretical and practical pros
and cons of each extension. Section 4 provides a more complex examples than the very
simple, illustrative ones provided along the paper. The necessary basics of reliability as
well as notations are briefly recalled in Section 2.
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2 System modelling and comparison: basics

In this paper, we assume that we want to compare the designs of K systems S1, . . . ,SK in
terms of reliability, in order to choose (one of) the safest among them. The kth system
will be composed of a set of rk components, and a given component can belong to one
of T populations (types) of components, all components of a population being assumed
to have the same stochastic behaviour (i.e., same failure rate).

We will denote by p j ∈ [0,1] the possibly ill-known probability that a component of
type j is functioning, and 1− p j the probability that it is inoperative or malfunctioning.
We will also denote by xk

i, jik
∈ {0,1} both the ith component of kth system, which is of

type jik, as well as its state (xk
i, jik

= 0 if malfunctioning, 1 if working). p jik is then the
probability of xk

i, jik
= 1. Table 1 summarises these notations.

Variable Domain Meaning
K Z Number of systems
rk Z Number of components in the kth system
T Z Number of component types (of possible stochastic behaviors)
p j [0,1], j ∈ {1, . . . ,T} Probability that a component of type j will be working

xk
i, jik {0,1} ith component of kth system, of type jik, and its state

Table 1. Notation summary

In this paper, we will assume that we know the structure function φ k : {0,1}rk →
{0,1} of the kth system and that it is written in the “simple” following way:

φ
k(xk

1, j1k
, . . . ,xk

rk, jrkk
) = ∑

A⊆{1,...,rk}
dk

A ∏
i∈A

xk
i, jik (1)

with dk
A real-valued coefficients (some subsets A can receive dA = 0) that can either be

positive or negative. At least in principle, every system and structure function can be
put in the form of Eq. (1), that is a multi-linear form [2]. We also make the classical
assumption in reliability that each system is coherent, meaning that φ k is increasing1

and that we have the boundary conditions2 φ k(0, . . . ,0) = 0, φ k(1, . . . ,1) = 1. Going
from the structure function to the reliability Rk of the system is then quite simple, as it
simply consists in replacing xi, jik by the corresponding probability p jik , that is

Rk(p j1k , . . . , p jrkk) = ∑
A⊆{1,...,rk}

dk
A ∏

i∈A
p jik (2)

To simplify notations, we will simply note Rk(p j1k , . . . , p jrkk) by Rk. Note that Rk is a
function of the probabilities p j, that can appear multiple times for one subset A. Note
that being a coherent system means that the functions R j are increasing in every variable
p j.

1 If one component goes from failing to working, then the system state can only improve.
2 The system works (fails) if all components work (fail).
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Example 1. Assume we have two (very) simple series system (K = 2), a first with two
components, a second with three, and three different component types (T = 3). The
two first components of each system are of the same type (1 and 2, respectively). The
systems are illustrated in Figure 1, and we do have

R1 = p1 · p2

R2 = p1 · p2 · p3

x1
1,1 x1

2,2

System 1

x2
1,1 x2

2,2

System 2

x2
3,3

Fig. 1. Two simple series systems

Comparing two systems (say, the kth and `th) then comes down to compare their
reliabilities Rk and R`. System Sk is then said to be preferred to system S`, denoted by
Sk � S`, if and only if

Rk > R` (3)

or, equivalently when probabilities p j are precisely known, if and only if

Rk−R` > 0. (4)

Example 2. Let us continue Example 1 by using the precisely valued probabilities p1 =
0.8, p2 = 0.9 and p3 = 0.8. We then have

R1 = 0.72 and R2 = 0.576

meaning that system S2 should be discarded. We also have

R1−R2 = p1 · p2− p1 · p2 · p3 = p1 · p2 · (1− p3) = 0.144.

We can also notice that whatever the values of p1, p2, p3, we will always have S1 � S2
(since R1−R2 is a product of positive terms).

Let us now investigate what becomes of such a comparison when probabilities p j ∈
[p j, p j] are only known to lie in intervals.

3 Comparing systems with interval probabilities

In this section, we investigate the most natural extensions of Equations (3) and (4) to
an imprecise setting. We will see that in the imprecise case, they do no longer coin-
cide, and the first extension only provides an approximation of the second one, but is
computationally more tractable.
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Note that in this paper, we are interested in guaranteed comparisons, that is we want
to assess that Sk is more reliable than S` when this is true for any values of p j within
[p j, p j] and for j = 1, . . . ,T . For convenience, we will denote by P =×T

j=1[p j, p j] the
Cartesian product of those intervals.

3.1 Interval comparison: definition

A first way to extend the comparison is to compute bounds over Rk, obtaining the inter-
val [Rk,Rk

] such that

Rk = inf
p jik∈[p jik

,p jik
]
Rk = ∑

A⊆{1,...,rk}
dk

A ∏
i∈A

p jik
(5)

and
Rk

= inf
p jik∈[p jik

,p jik
]
Rk = ∑

A⊆{1,...,rk}
dk

A ∏
i∈A

p jik . (6)

Where the fact that probability values can be replaced by their corresponding bounds
follows from the increasing monotonicity of reliability functions. We can then straight-
forwardly extend Eq. (3) by saying that system Sk is interval-preferred to system S`,
denoted Sk �IC S`, if and only if

Rk > R`
, (7)

that is we are absolutely certain that Sk is more reliable than S`. In this case, comparing
two systems just come down to make four computations instead of two to get the corre-
sponding intervals. If the two intervals overlap, then systems Sk and S` are incomparable
according to this criterion.

However, comparison (7) is very rough, in the sense that it will often result in in-
comparability of systems, even if it is obvious that one system is preferable to another,
as example 3 shows.

Example 3. Let us consider the systems of Example 2 with the following bounds

p1 ∈ [0.7,0.9], p2 ∈ [0.8,1] and p3 ∈ [0.7,0.9].

We then obtain the intervals

R1 ∈ [0.56,0.9] and R2 ∈ [0.392,0.81]

meaning that the system are not comparable according to �IC.

3.2 Difference comparison:definition

Interval comparison somehow extends Equation (3), but a second way to extend the
precise comparison is to extend Equation (4). Before doing so, let us simplify notations
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by adopting the convention that Rk−` := Rk −R`. We can then say that system Sk is
difference-preferred to system S`, denoted Sk �DC S`, if and only if the value

Rk−` = inf
p jik∈[p jik

,p jik
]

p ji`∈[p ji`
,p ji`

]

Rk−R` (8)

= inf
p jik∈[p jik

,p jik
]

p ji`∈[p ji`
,p ji`

]

∑
A⊆{1,...,rk}

dk
A ∏

i∈A
p jik − ∑

A⊆{1,...,r`}
d`

A ∏
i∈A

p ji` (9)

is positive, i.e., Rk−` > 0. In practice, this comes down to ask Rk to be higher than R` for
all possible values of p j, hence it also gives a guaranteed comparison. Example 4 and
Corollary 1 show that this way of comparing systems is actually better than the previous,
in the sense that it still gives guarantee but is less conservative. Yet, computing Rk−` can
be far from straightforward (in contrast with the case of interval comparison), and we
try to characterize in the next section when this task will be easy.

Example 4. Let us apply Equation (7) to Example 3. In this case we have from Exam-
ple 2 that R1−2 = p1 · p2 · (1− p3) and so

R1−2 = inf
p1∈[0.7,0.9],
p2∈[0.8,1],
p3∈[0.7,0.9]

p1 · p2 · (1− p3) = 0.7 ·0.8 ·0.1 = 0.056

which is indeed quite low, but still higher than zero, hence S1 �DC S2, allowing us to
reach a decision where we could not before.

And indeed, we always have the following relation between the two notions:

Proposition 1. Rk−` ≥ Rk−R`

Proof. The inequality infx∈D f (x)+g(x)≥ infx∈D f (x)+ infx∈D g(x) with x a vector of
values and D a convex set is known to be true. If we define x as the vector of probability
values p1, . . . , pT , and take f = Rk, g =−R`, D = P , we get

inf
x∈P

Rk(x)−R`(x)≥ inf
x∈P

Rk(x)+ inf
x∈P
−R`(x)≥ inf

x∈P
Rk(x)− sup

x∈P
R`(x)

We then get the following corollary, showing that if Sk �IC S`, then Sk �DC S`,
but not the reverse. Actually, a similar problem is known under the name ”dependency
problem” in interval arithmetic, for which many solutions have been proposed [3].

Corollary 1. If Rk−R`
> 0, then Rk−` > 0

So Rk−` is definitely a more accurate way of comparing systems. Let us now study
a bit the problem of actually computing it.
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Remark 1. In imprecise probability theory, a similar relation exists between the maxi-
mality decision rule and the interval dominance decision rule [10]. However, two main
differences, in terms of optimization problems, between imprecise probabilities and our
study are that P is here an hypercube and that optimization has to be done over non-
linear functions in general, while imprecise probabilities is concerned with bounds of
expectations over a subset of the unit simplex. Note that we could also search to adapt
other imprecise probability decision rules: maximin and maximax extend directly by
using Equations (5) and (6), while the notion of E-admissibility may require more in-
volved investigation, especially as it is not based on a pairwise comparison scheme.

3.3 Computing Rk−`

In general, Rk−R` will be a polynomial in variables p j that is neither decreasing nor
increasing in those variables. Computing bounds over such polynomials when variables
lie in a hyper-cube (which is our case) is known to be NP-hard [6], hence infeasible in
practice. Two solutions are then to look for approximations that remain close to Rk−`

but are more tractable (using interval bounds provides a crude approximation), or to
identify those sub-cases for which the solution will be easier to find. In this paper, we
explore the second alternative, and leave the first for future works.

Before studying in detail how Rk−` can be computed, we have to recall the notions
of global monotonicity and of local monotonicity of a function [5] f (x1, . . . ,xn) in a
variable xi

Definition 1 (Global monotonicity). Function f (x1, . . . ,xn) is globally increasing (de-
creasing) in xi if it is always increasing (decreasing) in xi, irrespectively of the other
variable values.

If f is globally increasing in xi, then its lower and upper bounds are known to be
obtained for xi = xi and xi = xi when xi ∈ [xi,xi], respectively.

Definition 2 (Local monotonicity). Function f (x1, . . . ,xn) is locally increasing (de-
creasing) in xi if it is either increasing or decreasing in xi when the other variables
x1, . . . ,xi−1,xi+1, . . . ,xn values are fixed.

If f is locally monotonic in xi, then its bounds are known to be obtained for xi =
xi or xi = xi, but which value to take between these two ones depends on the other
variable values, in contrast with global monotonicity (where the value to consider is
fixed, whatever the other variable values). A function will be said to be non-monotone
in xi if it is not locally or globally monotone in it.

Example 5. Consider the following functions of x1,x2 with xi ∈ [−2,1], then the func-
tions

f1(x1,x2) = x1− x2, f2(x1,x2) =−(x1 · x2), f3(x1,x2) = x2
1 · x2

2

are respectively globally, locally, and not monotone in each of their variables. x1 (x2)
is globally increasing (decreasing) in f1. f2 is decreasing in x1 (x2) when x2 (x1) is
positive, and increasing when x2 (x1) is negative (hence the monotonicity depends on
the value of the other variables). f3 is neither locally nor globally monotone in both
variables (i.e., f

3
= f3(0,0)).
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Given two systems Sk and S`, we now define the following subsets of component
types:

– The subsets

Tk = { j ∈ {1, . . . ,T}|∀p ji` , i = 1, . . . ,r`, ji` 6= j}

T` = { j ∈ {1, . . . ,T}|∀p jik , i = 1, . . . ,rk, jik 6= j}

that denote the types of components that are encountered only in system Sk (Tk) or
S` (T`).

– The subset

T`∩k,1 = { j ∈ {1, . . . ,T}|∃p ji` , p ji′k s.t. ji` = ji′k = j ∧
∃!i s.t. ji` = j ∧
∃!i′ s.t. ji′k = j}

that includes all component types that are in both systems, but only once in each of
them.

– The subset

T`∩k,+ = { j ∈ {1, . . . ,T}|∃p ji` , p ji′k s.t. ji` = ji′k = j ∧
(∃i, i′ s.t. ji` = ji′` = j ∨
∃i, i′ s.t. jik = ji′k = j)}

that includes all component types that are in both systems and appear more than
once in at least one of the two systems.

The subsets Tk,T`,T`∩k,1,T`∩k,+ form a well-defined partition of the component types in
systems Sk and S`. We can then show a first property

Proposition 2. Rk−R` is a globally monotonic function in variables p j, j ∈ Tk ∪T`. It
is increasing (decreasing) in variables p j, j ∈ Tk (p j, j ∈ T`)

Proof. Without loss of generality, let us assume that p1, . . . , pi ∈ Tk and pi+1, . . . , p j ∈
T`. By assumption, we have

Rk−R` = Rk(p1, . . . , pi, p j+1, . . . , pT )−R`(pi+1, . . . , pT ),

therefore the monotonicity with respect to p1, . . . , pi (pi+1, . . . , p j) depends only of their
monotonicity with respect to Rk (R`), which are known to both be increasing in those
variables.

This means that if pi ∈ Tk or T`, we know for which value of pi the lower bound is
obtained (pi if pi ∈ Tk, else pi ) . Also note that in the particular case where Tk∩`,1 =
Tk∩`,+ = /0, the following result follows:



8 Lanting Yu, Sébastien Destercke, Mohamed Sallak, and Walter Schon

Lemma 1. if Tk∩`,1 = Tk∩`,+ = /0, then Rk−R`
= Rk−`

Proof. When Tk∩`,1 = Tk∩`,+ = /0, there are no shared variables between Rk and R`,
meaning that j = T in proof of Prop 2 and that

inf
p1,...,pi

inf
pi+1,...,T

Rk−R` = Rk(p1, . . . , pi)−R`(pi+1, . . . , pT )

Proposition 3. Rk−R` is a locally monotonic function in variables p j, j ∈ Tk∩`,1.

Proof. (sketch) We know that both Rk and R` are equivalent to replacing the xk
i, jik

in
Equation (1) by their probability types. If a type pi of component is present once (and
exactly once) in each system, this means that for every subset A, p j power will be
either zero or one in the products ∏i∈Ak p jik and ∏i∈A` p ji` of Equation (2). There-
fore, Rk − R` will be a sum of products where p j has power zero or one, meaning
that if the other variables p1, . . . , p j−1, p j+1, . . . , pT are fixed, the derivative of Rk−R`

with respect to p j will be a constant (whose positivity or negativity will depend of
p1, . . . , p j−1, p j+1, . . . , pT values), hence that Rk−R` is either decreasing or increasing
in p j.

x1
1,1 x1

2,2

System 1

x2
1,2 x2

2,3

System 2

Fig. 2. Two simple series systems with common component

Example 6. Let us consider the series systems of Figure 2 with three types of compo-
nents, where p2 ∈ T1∩2,1. We have

R1−R2 = p1 · p2− p3 · p2 = p2 · (p1− p3)

which is indeed locally, but not globally, monotone in p2 (it is increasing if p1 > p3,
decreasing if p1 < p3).

This means that, if we have N = |Tk∩`,1| variables p j for which we are locally mono-
tone, we know that the lower bound is obtained for one of the 2N vertices of the corre-
sponding hypercube ×i∈Tk∩`,1 [pi, pi]. If N is not too high, then we can think of simply
enumerating the set of possible values.

Finally, we cannot guarantee any kind of monotonicity for the variables p j, j ∈
T`∩k,+. However, if the cardinality of T`∩k,+ is not too high, it is always possible to
make a random search within its defined area.
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Example 7. Let us consider the very simple case depicted in Figure 3, where we have

R1 = p2
1 and R2 = p1

hence R1−2 = p2
1− p1 = p1(p1− 1), which will always be negative. However, if p1 ∈

[0.4,0.6], the bound R1−2 =−0.25 is obtained for p1 = 0.5, which does not correspond
to one of the bounds p1, p1.

x1
1,1 x1

2,1

System 1

x2
1,1

System 2

Fig. 3. Two simple series systems with redundancy

It means that when confronted with too much components present in both systems
and multiple times in at least one of them, computing the bound may quickly become
intractable in practice. This becomes even truer if the monotonicity of other variables
(those in T`∩k,1) depends on those variables in T`∩k,+.

An easy solution is to ”duplicate” each variable p j in T`∩k,+ with variables having
the same interval bound, so that each variable is present at most once in each system. In
the case of Figure 3, this means considering a variable p′1 for the second component of
System 1. Such a straightforward approach has two potential drawbacks: the increase
of the number of component types in T`∩k,1, and the fact that the approximation can be
quite loose. Such a strategy is therefore likely to be useful only when the number of
component types.

4 A more complex example

Let us now consider two slightly more complex systems, where we want to chose the
most reliable design. The systems are depicted by Figure 4, and consider three types of
components, with p1 ∈ [0.9,1], p2 ∈ [0.8,0.9] and p3 ∈ [0.85,0.95], where one hesitates
between choosing a 2 out of 3 architecture with slightly less reliable components, and a
parallel architecture with potentially more reliable components. The reliabilities of the
systems are

R1 = p1 · p2
2 · (3−2p2)

and
R2 = p1 · p3 · (2− p3).

Intervals [R1,R1
] and [R2,R2

] intersect, hence interval comparison is not sufficient to
tell us whether S1 is better than S2, or the reverse. We have T1∩2,1 = {1}, T1 = {2} and
T2 = {3}, therefore if we want to compute R1−2, our previous results tell us that

R1−2 = p∗1 · p2
2 · (3−2p2)− p∗1 · p3 · (2− p3)
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with p∗1 ∈ {p1, p1}. The result is obtained for p1 (the function is decreasing in p1 for
p2 = p2 and p3 = p3), and R1−2 = −0.1015, meaning that we cannot conclude that
S1 �DC S2. Following a similar line of reasoning for R2−1 (which is increasing in p1),
we get R2−1 = 0.00495 and are able to tell that S2 �DC S1.

x1
1,1

x1
2,2

x1
3,2

x1
4,2

2/3

Fig. 4.A: System S1

x2
1,1

x2
2,3

x2
3,3

Fig. 4.B: System S2

Fig. 4. Two system designs to compare.

5 Conclusion

In this paper, we have studied how comparisons of system reliabilities can be extended
when probabilities are ill-known, or interval-valued. In particular, we have focused on
comparison notions that allows for incomparability when the information is too weak
to be certain that one system is more reliable than another.

We have seen that computing the lower bound over the difference of reliabilities is
less conservative, but more computationally demanding than just comparing reliability
bounds of each systems taken individually. While we have pointed out ways to reduce
the complexity of such computations (by focusing on global and local comonotonicity),
it remains to investigate how to approximate Rk−` with a lower bound better than Rk−
R`, but computationally more tractable than computing Rk−`. A first way to do so is to
exploit bounds used when the reliability probabilities are precisely known, but when
computing the output probability is computationally prohibitive, see e.g., [7].

An additional interesting problem to explore is to formalize which information we
should query to make two incomparable systems comparable. For instance, we may
formulate it as an expert elicitation problem [1].
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