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Abstract 

In this paper, we present a methodological work that adopts a system-of-systems (SoS) 

viewpoint for the evaluation of the robustness of interdependent critical infrastructures (CIs). 

We propose a Hierarchical Graph representation, where the product flow is dispatched to the 

demand nodes in consideration of different priorities. We use a multi-state model to describe 

different degrees of degradation of the individual components, where the transitions between 

the different states of degradation occur stochastically. The quantitative evaluation of the CIs 

robustness is performed by Monte Carlo simulation. The methodological approach proposed is 

illustrated by way of two case studies: the first one concerns small-sized gas and electricity 

networks and a supervisory control and data acquisition (SCADA) system; the second one 

considers a moderately large power distribution network, adapted from the IEEE 123 node test 

feeders. The large size of the second case study requires hierarchical clustering for performing 

the robustness analysis. 
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1. Introduction 

Critical infrastructures (CIs) are complex systems essential for providing goods (e.g., energy) 

and services (e.g., transportation) across local, regional and national boundaries [Kröger and 

Zio, 2011]. Typically, they present both structural and dynamic complexities. The former derive 

from i) heterogeneity of components across different technological domains, due to the 

integration among different systems and ii) scale and dimensionality of connectivity through a 

large number of components (nodes), highly interconnected by dependences (unidirectional 

relationships) and interdependences (bidirectional relationships). Dynamic complexity 

manifests through the emergence of (unexpected) system behavior in response to changes in 

the environmental and operational conditions of its components. Furthermore uncertainties 

exist in the failure behavior of CI components, interconnections and interactions, so that the 

prediction of CI failure behavior is difficult [Zio and Aven, 2011]. 

Engineered, physically networked CIs are considered in this paper. Examples are those 

providing: energy (electricity, oil and gas supply as subsectors); transportation (by rail, road, 

air, shipping); information and telecommunication (such as the internet); drinking water, 

including wastewater treatment, etc. 

 

Due to the increasing complexity of CIs, random failures, natural events and malevolent attacks 

can have severe consequences on health, safety, security, economics and social well-being. In 

this respect, evaluating the robustness of CIs is fundamental to be able to improve their design 

and management so to reduce the impacts of disruptive events. There is no unique definition of 

robustness. Jensen defines it as the degree to which a system can function correctly in the 

presence of inputs different from those assumed [Jensen, 2001]; for [Carlson and Doyle, 2002] 

and [Jen, 2003], the robustness guarantees the maintenance of certain desired system 

characteristics, despite fluctuations in the behavior of its components or in its environment. 

[Jen, 2003] and [Ali et al., 2003] specify that the concept of robustness should be defined for a 

given set of system features, under a given set of perturbations applied to the system. According 

to Foster, robustness is the ability of a system to react to noisy input parameters with little 

performance degradation [Foster, 2008]. A recent definition of robustness is given in the 

glossary of the specialty group on “Foundations of Risk Analysis” of the Society for Risk 

Analysis, as the antonym of vulnerability [SRA, 2015]. In addition, a system is considered 

robust to uncertainty if specified goals are achieved, despite large information gaps 

(information gap is the disparity between what is known, and what needs to be known to ensure 
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specified goals) [SRA, 2015]. In this work, robustness is seen as the capability of the CIs to 

resist to failures or partial failures of the CIs components assuring the required level (or a high 

level) of supply of goods or services. 

 

Traditionally, three steps are performed in the robustness assessment of CIs: (i) the system is 

represented to define the structural, logical and functional relations among its components; (ii) 

a mathematical model of the system is built to quantify its performance indicators; (iii) the 

model is solved, e.g., by simulating its behavior under different operational and accidental 

conditions. 

With respect to system representation (i), several types of approaches exist in literature, many 

of which rely on a hierarchy or graph structure. Hierarchical modeling has been often adopted 

to represent and model complex systems, since many organizational and technology-based 

systems are hierarchical in nature [Courtois, 1985; Haimes, 2012]. Hierarchical functional 

models include Goal Tree Success Tree (GTST) [Kim and Modarres, 1987] – also combined 

with Master Logic Diagram (MLD) [Hu and Modarres, 2000] – and Multilevel Flow Models 

(MFM) [Lind, 2011a; Lind, 2011b]. In risk analysis, common representation techniques are 

hierarchical trees that are possibly used to identify i) the initiating causes of a pre-specified, 

undesired event or ii) the accident sequences that can generate from a single initiating event 

through the development of structured logic trees (i.e., fault and event trees, respectively) [Zio, 

2007]. Recently, also networks have been represented by hierarchical modeling [Gómez et al., 

2013; Buriticá Cortés et al., 2014]. 

In complex network theory approaches, instead, complex systems are represented by networks 

where the nodes stand for the components and the links describe the physical and relational 

connections among them [Gheorghe et al., 2006; Dueñas-Osorio and Vemuru, 2009; 

Hernandez-Fajardo and Dueñas-Osorio, 2013; Fang et al., 2014; Praks and Kopustinskas, 

2014]. Network-based approaches model interdependent CIs on the basis of their topologies or 

flow patterns [Ouyang, 2014]. Physical and non-physical (heterogeneous) overlapping 

infrastructures have been represented as networks to identify risk scenarios and the impacts on 

connected networks in [Lambert and Sarda, 2005]. Also probabilistic methods (e.g., Petri nets 

[Laprie et al., 2007], Bayesian networks [Di Giorgio and Liberati, 2012] and flowgraphs 

[Huzurbazar, 2005]) are based on graph representations. 

 

In this paper, we present a methodological work that embraces a system-of-systems (SoS) 

framework of analysis [Gheorghe and Vamanu, 2008; Eusgeld et al., 2011; Kröger and Zio, 
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2011; Tsilipanos et al., 2013] and propose a Hierarchical Graph representation to evaluate the 

robustness of interdependent CIs, measured by its capability to deliver the required amount of 

product (e.g., energy, water, etc.) to the demand nodes of the infrastructure. In this respect, the 

system can be considered robust if it can maintain the required level (or a high level) of delivery 

when it is affected by perturbations (failures and partial failures). In doing so, we take into 

account the fact that the demand nodes may have different importances, which leads to possibly 

different priorities in the distribution of the product flow through the connections to the 

elements of the CI. For example, hospitals may be considered more important than residential 

buildings given their role in the health-care system; as a consequence, in the case of a reduction 

of electric power that can be delivered in the network, hospitals may receive the priority with 

respect to houses. This ranking of priority should be fixed by the analyst and, then, criteria 

(hereafter also referred to as “importance criteria”) for the partition of the flow (e.g., electric 

power) in the network can be defined. In this work, we assume three different importance 

criteria that depend on the geographic position of the demand nodes, the quantity of product 

required by each of them and the assumption of equality of the demand nodes.  

The representation proposed consists of a graph structured in hierarchical levels that allows 

highlighting critical arcs and supporting the quantitative robustness evaluation by assigning 

different priorities to the demand nodes. Critical arcs are here defined as those links whose 

interruption or degradation affects several demand nodes. This concept of criticality can be 

related to that of “importance measure” used in reliability theory. Actually, importance 

measures quantify the contribution of a given component to a properly selected measure of 

system performance (e.g., robustness in this case): see, for example, the Birnbaum [Birnbaum, 

1969], Fussell and Vesely [Fussell, 1975], criticality importance measures [Elsayed, 2012], etc. 

More specifically, with respect to network system analysis, other importance measures have 

been defined to measure component criticality [Borgatti, 2005; Kröger and Zio, 2011], like 

classical topological centrality measures including the degree of centrality [Nieminen, 1974; 

Freeman, 1979], the closeness centrality [Sabidussi, 1966; Freeman, 1979; Wasserman and 

Faust, 1994], the betweeness centrality [Freeman, 1979] and the information centrality [Latora 

and Marchiori, 2007]. 

For a more realistic representation, we adopt a multi-state model where different degrees of 

degradation of the individual components are contemplated [Ferrario and Zio, 2014] [Natvig, 

2010]; the transitions between the different states of degradation occur stochastically and are 

modeled within Markov and semi-Markov processes.  
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For illustration purposes, we consider two case studies: the first one is characterized by small-

sized interconnected gas and electricity networks and a supervisory control and data acquisition 

(SCADA) system [Nozick et al., 2005]; the second one is adapted from the IEEE 123 node test 

feeders [IEEE, 2000] and includes a large electricity distribution network. The first case study 

is chosen small enough to be able to clearly illustrate the Hierarchical Graph modeling of (three) 

connected systems, considering different priorities of the demand nodes. The second case study 

serves the purpose of showing how the approach can be extended when the size of the system 

increases. 

As a measure of the robustness of the system, we evaluate the steady-state probability 

distributions of the product (e.g., gas and/or electricity) delivered to the demand nodes. 

 

The quantitative evaluation of the system robustness is performed by Monte Carlo (MC) 

simulation [Kalos and Whitlock, 1986; Zio, 2013]; in the second case study of larger dimension, 

an unsupervised spectral clustering algorithm is employed to make the size of the CI 

manageable and reduce the computational burden related to the analysis [Fang and Zio, 2013]. 

 

The remainder of the paper is organized as follows. In Section 2, the Hierarchical Graph 

representation is introduced and the importance criteria considered are illustrated; in Section 3, 

the procedural steps to evaluate the robustness of interconnected CIs by Hierarchical Graph and 

MC simulation are provided, and the combination of Hierarchical Graph and clustering analysis 

is given, then the advantages and limitations of the approach are discussed; Section 4 contains 

the description of the two case studies, the representation of the corresponding systems and the 

results obtained; in Section 5, some conclusions are provided. Finally, in the Appendix the data 

related to the second case study are illustrated. 

2. Hierarchical Graph representation of systems of systems 

The proposed representation technique can be applied to engineered, physically networked CIs 

(energy, transportation, information and telecommunication) characterized by a radial structure, 

i.e., by unidirectional flows of “products” (power, water, gas, data). Actually, the representation 

requires that the CI of interest be first modeled by a directed graph of nodes and arcs without 

loops (in this case, the arcs may represent elements of an infrastructure or the connections 

between different infrastructures). Typical radial systems are the distribution networks. 
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To build the Hierarchical Graph representation, we then, need to distinguish between input, 

demand (load) and transmission arcs: the “input arcs” connect the production sources to the 

network, the “demand arcs” terminate with nodes that require a given amount of product, 

whereas the “transmission arcs” transfer the product to other components in the network. Notice 

that the transmission and the demand arcs may coincide: for example, an arc may be needed to 

supply the connected node and in addition it may be required to transmit the product to other 

arcs/nodes.  

In the Hierarchical Graph representation, the adjective “hierarchical” does not imply a 

“decomposition of the system into different levels of details”, as in other hierarchical models 

(e.g., Goal Tree Success Tree – Dynamic Master Logic Diagram [Hu and Modarres, 2000] and 

hierarchical clustering [Gómez et al., 2013]), but it simply means that the graph of 

interconnected CIs is structured in hierarchical levels. In extreme synthesis, the representation 

is built as follows: at the bottom of the graph, the inputs (i.e., the arcs through which the product 

is injected into the networks) are represented; at the top, the goals (i.e., the demand nodes that 

have to be satisfied) are reported; in the middle, all the other arcs (transmission and/or load 

arcs) that provide product to the demand nodes are organized in hierarchical levels. These levels 

are numbered on the basis of the number of demand nodes that are served by the corresponding 

arcs: the higher the number of demands supplied by an arc, the higher the hierarchical level of 

that arc. For example, all the arcs that are required to supply LV demand nodes are “placed” at 

hierarchical level LV.  

 

Formally, let us consider A interconnected infrastructure systems S(a), a = 1, …, A, constituting 

the overall SoS, numbered in order in such a way that the first q exchange physical product 

(e.g., energy or material) and the last (A – q) exchange information, and are useful for the 

operation and control of the connected systems (e.g., a supervisory control and data acquisition 

- SCADA - system). The total number of components (arcs) transmitting physical flow is 

denoted as N.  

For illustration purposes, refer to Figure 1 in which the graph of a SoS (top) and its 

corresponding Hierarchical Graph (bottom) are reported. The SoS in the example is composed 

by A = 4 systems, where the first two, i.e., S(1) and S(2), exchange physical product (solid links 

in Figure 1, top) and the last two, i.e., S(3) and S(4), support system S(1) (dotted links in Figure 1, 

top). The total number of components (arcs) is N = 8. 

As described above, the Hierarchical Graph depicts the inputs at the bottom of the 

representation, i.e., in this case, arc S1
(1)_S2

(1) in Figure 1 (bottom); also, it shows the goals (i.e., 
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the demand nodes) at the top: in this case, the demand nodes are represented by all the nodes 

of systems S(1) and S(2), except S1
(1), which is the source of product. Finally, it organizes the arcs 

in different hierarchical levels according to the number of demand nodes they supply: for 

example, in this case arc S1
(2)_S2

(2) is at hierarchical level 4 since it provides product to four 

demand nodes, i.e., S2
(2), S3

(2), S4
(2) and S5

(2). The quantity of product required by the demand 

nodes is referred to as Ddem, where the subscript ‘dem’ is the indicator of the demand node 

among the N components. 

Notice that the arcs referred to the (A – q) control and information systems (which are not 

contributing to the flow of product, but influence the state of the other arcs) do not appear in 

the hierarchical structure: instead, they are reported in a trapezoidal frame under the 

corresponding arc that they affect. 

The squares located between the hierarchical levels mean that the product at that level has to be 

partitioned among the corresponding demand nodes. 

This representation allows highlighting all the paths going from the input sources to the end 

nodes: for example, in Figure 2, the path from input S1
(1) to node S3

(2) is highlighted. In addition, 

the representation is able to put in evidence the critical arcs as those located at higher 

hierarchical levels, since their interruption or degradation affects more demand nodes: for 

example, in Figure 2 arc S2
(1)_ S1

(2) is more critical than arc S2
(1)_ S3

(1) since the first one is 

required to supply five demand nodes (i.e., S1
(2), S2

(2), S3
(2), S4

(2) and S5
(2)), whereas the second 

one is necessary just for node S3
(1). As illustrated in Section 1, in this view the concept of critical 

arcs here adopted can be related to that of “importance measure” employed in classical 

reliability theory. 



8 

 

 

Figure 1: Top: graph of the components of the system of systems; the links represent the exchange of physical 

product (solid lines) and influence/support relationships (dotted lined). Bottom: corresponding Hierarchical 

Graph; LV: Level. 

 

 

Figure 2: Hierarchical Graph of the system of systems in Figure 1, highlighting the path from the input to 

demand node S3
(2); LV: Level. 

This representation is useful to analyze the robustness of interdependent CIs taking into account 

different priorities in the distribution of the product to the demand nodes according to their 

importance (relevance). In this context, Martinez et al. use path diagrams in representation of 
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the relative importance of network elements across infrastructure systems accounting for the 

nonquantifiable (qualitative) features of the allocation of resources among the network elements 

[Martinez et al., 2011]. In this work, we neglect the qualitative aspects and we focus only on 

the quantitative objectives. Notice that the word “importance” is not here related to the concept 

of “importance measure” used in reliability theory, but it is employed to indicate the relevance 

of the demand nodes. For example, hospitals may be considered more important than residential 

buildings, given their role in the health-care system; as a consequence, in the case of a 

malfunctioning in the electrical transmission line, hospitals may be a priority with respect to 

common residential areas. Regarding the water distribution systems, a fire-fighting 

consumption should have the priority with respect to daily water consumption. These priorities 

of the demand nodes are defined by the analyst and drive the definition of importance criteria 

needed for the optimal flow partition in the network. However, these importance criteria are not 

explicitly shown in the representation, which instead is more focused in highlighting the hard, 

physical constraints that affect the product distribution. Three different importance criteria are 

considered in this work, namely, sequential, proportional and equal; such criteria are explained 

hereafter with respect to a simple example consisting of an input of 50 units and two demand 

nodes S1 and S2 that require 40 and 100 units, respectively (i.e., DS1 = 40 and DS2 = 100). 

Sequential importance consists in ranking the demand nodes sequentially on the basis of a 

chosen “ranking criterion” (e.g., according to their distance from the source node: the closer the 

node to the source, the higher the importance). In this case, the nodes classified as more 

important are given higher priority; with respect to the example above, if S1 is more important 

than S2, the input product is given first to S1 until it is completely supplied and the rest (i.e., 50 

– 40 = 10 units) is fed to S2. Vice versa if S2 is more important than S1, the input is given entirely 

to S2 and there is no product left to supply S1.  

Proportional importance orders the demand nodes on the basis of the quantity of product they 

need: the higher their demand, the higher their importance. Then, the product is partitioned into 

the network according to ratios of importance associated to each demand node, computed as 

the ratio between the quantity of product required by a node and the sum of all the demands of 

the entire system. With respect to the example above, S2 is more important than S1 because it 

requires a higher quantity of product. The ratios of importance are DS2/(DS1 + DS2) = 0.7 for S2 

and DS1/(DS1 + DS2) = 0.3 for S1. Then, the input is partitioned as follows: 30% (i.e., 15 product 

units) is given to S1 and 70% (i.e., 35 product units) to S2. 

Equal importance considers the demand nodes equal, even if their demands are different. Thus, 

the input is partitioned into equal parts on the basis of the number of the demand nodes. With 
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respect to the example above, the input is divided in two equal parts: 50% is given to S1 and 

50% to S2. 

The detailed operative steps of the algorithm for partitioning the product according to these 

criteria are given in Section 3.1. 

3. Monte Carlo simulation and Hierarchical Graphs for critical 

infrastructures evaluation  

Within a multi-state system-of-systems (SoS) analysis framework, we wish to evaluate the 

performance of critical infrastructures (CIs) in terms of robustness, measured by the steady-

state probability distribution of the product delivered at the demand nodes of the system. The 

quantitative evaluation is carried out by combining the Hierarchical Graph representation of 

Section 2 with Monte Carlo (MC) simulation.  

In Section 3.1, the operative steps of the basic procedure are presented. Then, a modification of 

the basic procedure is proposed in Section 3.2 to deal with CIs of large size: in particular, a 

clustering algorithm is adopted to pre-process the CI in order to make its size manageable and 

reduce the computational burden associated to the analysis; in Section 3.3 the advantages and 

limitations of the approach are discussed.  

3.1. Operative steps combining Monte Carlo simulation and Hierarchical Graph  

We generically denote the state of a component of the CI (i.e., the capacity of the arcs) as ζcomp,i 

, i  {1, 2, …, NScomp}, comp = 1, …, N, where N is the total number of components in the 

SoS, the subscript ‘comp’ indicates the component of interest, identified by its name or by an 

integer number from 1 to N, NScomp is the total number of states for component comp, and i is 

the state identification number (when i = 1, the component is in the worst state, whereas when 

i = NScomp, it is in the best state). For example, supposing that component S1
(2)_S2

(2) can enter 

three possible states, namely 0, 10 and 20, we denote the total number of states for the 

component as NSS1(2)_S2(2) = 3, and the corresponding states as ζS1(2)_S2(2),1 = 0, ζS1(2)_S2(2),2 = 10, 

and ζS1(2)_S2(2),3 = 20. 

The quantity of product requested by the demand nodes is indicated by the vector {Ddem}, dem 

 {1, …, N}, where the subscript ‘dem’ indentifies the demand nodes. 
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In what follows, we describe an algorithm combining Monte Carlo simulation and Hierarchical 

Graph representation for the evaluation of the robustness of CIs within a multi-state SoS 

framework; as mentioned before, in this work the robustness can be seen as the capability of 

the CIs to resist to failures or partial failures of the arcs assuring the required level (or a high 

level) of supply of product to the demand nodes and it is quantified in terms of the steady-state 

probability distribution of the product delivered to the demand nodes. 

In extreme synthesis, the algorithm requires as inputs: 

 the Hierarchical Graph that allows representing the origin-destination paths and the 

corresponding arcs in the hierarchical levels (see Section 2); 

 the steady state probabilities of transition between the different arc states (i.e., 

capacities) ζcomp,i , i = {1, 2 ,…, NScomp}, comp = {1, 2 ,…, N}; 

 the vector {Ddem}, dem  {1, …, N}, of product required by demand nodes; 

 the importance (relevance) of the demand nodes (see Section 2). 

The output of the algorithm is represented by the steady state probability distributions of the 

product delivered to the demand nodes.  

The assumptions made are the following: 

 only unidirectional relationships are considered; 

 the flow in the network is limited by the arcs capacities (i.e., capacitated networks are 

considered); 

 the flow in the network satisfies the flow conservation principle, i.e., no flow in arcs 

will decrease or increase during flow transmission [Ford and Fulkerson, 1962]; 

 the capacities of the arcs are statistically independent, i.e., the state of an arc does not 

depend on the state of other arcs. 

 

For clarification purposes, we describe the procedure with reference to the simple example of 

Figure 3, where two interconnected systems, S(1) and S(2), are shown. The N = 5 components 

are: S1
(1)_S2

(1), S2
(1)_S3

(1), S2
(1)_S1

(2), S1
(2)_S2

(2) and S2
(2)_S3

(2). The input component is arc 

S1
(1)_S2

(1) that serves five demand nodes (i.e., the goals), S2
(1), S3

(1), S1
(2), S2

(2) and S3
(2), explicitly 

represented at the top of the diagram.  
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Figure 3: Hierarchical Graph of a generic example taken as reference to illustrate the algorithm; LV: Level. 

 

The evaluation is carried out from the bottom to the top of the hierarchy and consists of the 

following steps: 

 

1) Determine one possible system configuration by sampling the capacity of the arcs, ζcomp,i 

, i  {1, 2 ,…, NScomp}, comp = {1, …, N}, from the corresponding steady state 

probability distributions; 

2) Identify the minimum arc capacity (mpathdem, dem  {1, …, N}) for each origin-

destination path: this capacity corresponds to the maximum product that can be 

delivered to the corresponding demand node dem, dem  {1, …, N}; for example, in 

Figure 4 the minimum arc capacity for the path from S1
(1) to S3

(1) is the minimum among 

the capacities of arcs S1
(1)_S2

(1) and S2
(1)_S3

(1), connecting S1
(1) and S3

(1); 

3) Set the input (inp) to the network equal to the capacity of the input arc, i.e., inp = ζcomp,i 

, where i  {1, 2, …, NScomp} and comp is the index of the input arc (in the example of 

Figure 3, the input arc is S1
(1)_S2

(1)); 

4) If the input is zero (inp = 0), no product can be delivered to the demand nodes: EPdem = 

0 for all dem  {1, …, N}; otherwise, estimate the optimal flows {EPdem} that can be 

delivered to the demand nodes by the following steps: 

a. Estimate the vector {EPdem} of optimal flows to the demand nodes taking into 

account i) the importance of the demand nodes and ii) the minimum capacity of 

each path (mpathdem, dem  {1, …, N}) that limits the quantity of product that 

can be delivered to the demand nodes (Figure 5, top). For example, referring to 
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Figure 3, let us consider a proportional importance of the demand nodes (see 

Section 2) and assume that the ratio of importance of S2
(2) and S3

(2) is 0.2 and 

0.3, respectively. According to the importance criterion considered and 

assuming a total input of 100 units, we assign 20 units to S2
(2) and 30 units to 

S3
(2). On the contrary, if the minimum capacity of the path to S3

(2) were lower 

than 30 units (say, mpathS3(2) = 10 units), S3
(2) would receive at most a quantity 

equal to mpathS3(2) (i.e., 10 units) and the surplus quantity in exceedance (i.e., 

20 units) would be distributed to other nodes (see the following steps 4 b. and 4 

c.). 

b. Initialize to zero an auxiliary variable surp (i.e., surp = 0). This variable is used 

to quantify the surplus, i.e., the amount of product that cannot be allocated in the 

network due to arc capacity constraints (i.e., due to the bottlenecks of the 

infrastructure). 

c. Check if the capacities of the links, ζcomp,i, i  {1, 2, …, NScomp}, can support 

the sum of the estimated optimal products to the corresponding demand nodes, 

(dem) computed at the previous step 4 a. Such evaluation is performed from the 

bottom to the top of the diagram. If the sum of the estimated optimal product to 

the nodes served by a link is higher than its capacity, save the exceeding amount 

() in the auxiliary variable surp (i.e., surp = surp + ) and compute the optimal 

partition just for the nodes that are supplied by that link, considering as input the 

corresponding arc capacity inp = ζcomp,i , where i  {1, 2, …, NScomp} and comp 

is the link under analysis (Figure 5, middle). 

d. Create a "new" graph, where the "new" capacities of all the arcs are updated on 

the basis of the quantity of product, {EPdem}, that has been effectively allocated 

at step 4 c. In particular, the arc capacities are reduced by the total quantity of 

product that they have already supplied to the corresponding demand nodes 

(Figure 5, bottom). 

e. Compute again the minimum arc capacity for each path of the "new" graph (as 

in step 2) to evaluate the new maximum product that can reach the corresponding 

demand nodes (Figure 5, bottom). 

f. Update the demands {Ddem}, dem  {1, …, N}, reducing them by the quantity 

{EPdem} that has been already allocated at step 4.c (Figure 5, bottom). 
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g. Set the input inp equal to the auxiliary variable surp (inp = surp) and repeat step 

4 until surp > 0 and the minimum ("new") arc capacity is not zero for at least 

one path. When one of these conditions is verified, the final vector {EPdem} of 

the optimal product that can be delivered to the demand nodes is determined 

(Figure 5, bottom). 

 

The procedure above is repeated a large number of times (e.g., 10000) for many different MC-

sampled values of the arc capacities and the probability distribution of the product delivered at 

steady state to each demand node is obtained. 

A final remark is in order with respect to the use of Monte Carlo simulation for the propagation 

of uncertainty of the arc capacities. Real-world complex infrastructure systems include a large 

number of components, many of which have uncertain (i.e., aleatory, stochastic) performance. 

This high-dimensionality constitutes a major challenge for the extensive propagation of 

(aleatory) uncertainty through the corresponding mathematical models. Classical analytical or 

numerical schemes are not suitable. On the other hand, stochastic simulation methods (e.g. 

Monte Carlo simulation), based on the repeated random sampling of possible component states 

and the evaluation of the system model for the different states sampled, offer a feasible means: 

such approaches are, therefore, adopted in the present work.  

Concerning, instead, the issue of uncertainty representation, the classical way to address the 

uncertainty due to randomness is to collect data about the random phenomenon of interest and 

perform a statistical analysis to identify the probability distribution that best captures the 

variability of the available data. In a frequentist view, the available data may be interpreted as 

observable random realizations of an underlying, repeatable probabilistic model (e.g., a 

probability distribution) representing the stochastic (aleatory) phenomenon of interest which 

can be approximated with increasing precision by the analyst as the size of the available data 

set increases [Apostolakis, 1990]. 
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Figure 4: Exemplification of step 2 of the algorithm with respect to the example proposed in Figure 3. 

 

 

 

Figure 5: Exemplification of step 4 of the algorithm with respect to the example proposed in Figure 3. 
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It is worth noting that the procedure proposed is based on several iterative estimations of the 

vector {EPdem}, obtained by repeating steps 4 a. – g. from the bottom to the top of the hierarchy: 

in the very first iteration, the system configuration is the one sampled at step 1. and the input 

product corresponds to the capacity of the input arc; then, at each loop a “new” graph is 

considered where (i) the new product input value is represented by the surplus (surp), i.e., the 

amount of product that has not been allocated in the network at the previous iteration, (ii) the 

“new arc capacities are reduced by the total amount of product they have already supplied at 

the previous iteration and (iii) the “new” demands are scaled by the quantity already allocated 

in the previous iteration.  

 

Finally, it is worth mentioning that a drawback of the Hierarchical Graph representation 

proposed may be represented by its difficult applicability to large networks since all the origin-

destination paths have to be identified and the bottlenecks of each path have to be spotted out. 

To overcome this limitation, we propose to pre-process the infrastructure system by means of 

a clustering algorithm to reduce the systems dimension by “collapsing” many components in 

few representative clusters and, then, apply the Hierarchical Graph to the “clustered” 

infrastructure. The general concepts underlying the pre-processing phase based on clustering is 

discussed in the following Section 3.2; a discussion on the advantages and limitations of the 

approach is given in Section 3.3. 

3.2. Combination of Hierarchical Graph representation and clustering for large-sized 

critical infrastructures 

In order to manage large-sized CIs, it is useful to resort to clustering techniques to reduce the 

complexity and dimension of the system. Actually, complex systems are characterized by 

modularity that allows identifying groups of elements highly interconnected within them and 

sparsely linked to other dense groups in the network [Sales-Pardo et al., 2007; Porter et al., 

2009]. In addition, several studies show that networks often exhibit hierarchical organization 

[Ravasz and Barabasi, 2003; Clauset et al., 2008]. These features lead to combine hierarchical 

modeling and clustering analysis to represent complex networks. 

Cluster analysis aims at identifying groups of “similar behavior” in their data. For illustration 

purposes, refer to the simple example of Figure 6, left, where the original components of a 

network, namely S1
(1), S2

(1), …, S16
(1), are shown. According to some features of interest (e.g., 

proximity), the components can be clustered in groups of “similar characteristics”: in the 
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example proposed, four clusters, C1, …, C4, are identified (dotted oval shape in Figure 6, left). 

Then, a less complex analysis can be performed on the new fictitious, artificial (i.e., clustered) 

network, composed just by the identified clusters (Figure 6, right).  

The cluster analysis can be carried out at different levels of details: an artificial network with a 

high number of clusters is closer to the original one and, thus, it is more detailed (i.e., it carries 

more information) than one with a small number of clusters. The system can be clustered at 

different levels of details, which allows building a hierarchical1 clustering representation where 

the different hierarchical levels correspond to the different levels of detail of the analysis [Fang 

and Zio, 2013]. 

 

Figure 6: Exemplification of the clustering procedure. 

 

In order to reduce the size of the infrastructure under analysis, in this work we have applied the 

unsupervised spectral clustering algorithm (USCA) and the Fuzzy c-means (FCM) clustering 

as in [Fang and Zio, 2013], for its simplicity of implementation and its effectiveness in 

providing satisfactory results. The operative steps of the procedure are not reported here for 

brevity sake; the interested reader is referred to [von Luxburg, 2007; Fang and Zio, 2013]. The 

result of clustering is sensitive to the similarity function which defines the proximity of the 

nodes in the network; in this respect, the not trivial task is to ensure “meaningful” local 

neighborhoods [von Luxburg, 2007; Fang and Zio, 2013]. As similarity measure to perform the 

clustering, we have adopted the adjacency matrix, i.e., two nodes are similar if they are linked 

                                                 
1 Notice that in this case the term “hierarchical” refers to the level of detail of the clustering and not to the levels 

of the Hierarchical Graph representation that instead correspond to the number of demands served by a given arc 

of the network. 
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directly, otherwise they are not. Different similarity definitions can lead to different cluster 

partitioning of the network. In this case, the use of the adjacency affinity, which considers only 

local direct connection information, is justified by the fact that it allows obtaining radial 

networks for each (clustering) hierarchical level, a condition needed to employ the Hierarchical 

Graph (see Section 2). 

By recursively operating the USCA and the FCM a hierarchical structure of the system can be 

obtained, where, at the top of the hierarchy, the system is represented by just one node and, at 

the bottom, by the whole original network. In the middle, each hierarchical level represents a 

different degree of resolution of the systems (from the top to the bottom it can be seen an 

increasing quantity of information about the local connectivity) and corresponds to artificial 

networks that include artificial nodes and links (these last ones are composed by those original 

network links connecting – in parallel – the original nodes in the clusters forming the artificial 

nodes).  

By applying the USCA and the FCM, an artificial (fictitious) network composed by kL clusters, 

C1
(L), …, CkL

(L), is produced at each (clustering) hierarchical level L. Notice that the last level 

of the clustering hierarchy coincides with the real SoS, i.e., the corresponding clusters coincide 

with the actual/original/real nodes of the SoS. The clustering is performed on the entire network 

except for the input nodes that are left out (only one generation node is considered in the 

application of the present work). For illustration purposes, Figure 7 depicts a sketch of the 

decomposition in five (clustering) hierarchical levels of a SoS with one input node, S1
(1); level 

1 of the hierarchy is, then, composed by two nodes: the input, S1
(1), and the rest of the system 

“condensed” in cluster C1
(1). The clustering algorithm allows a new analysis at hierarchical level 

2 and it decomposes cluster C1
(1) of hierarchical level 1 into two clusters C1

(2) and C2
(2). At this 

point, if we want to increase the level of refinement of the analysis we can use the algorithm to 

further split clusters C1
(2) and C2

(2). In the example of Figure 7, this results in the decomposition 

of cluster C1
(2) into three clusters (C1

(3), C2
(3) and C3

(3)) and cluster C2
(2) into five clusters (C4

(3), 

C5
(3), C6

(3), C7
(3) and C8

(3)). The Hierarchical Graph representation of the decomposed system at 

level 3 is also shown on the right. 

A cluster k is characterized by its demand Dk that is the sum of the demands of the real nodes it 

contains: for example, cluster C1
(4) of Figure 7 has demand equal to the sum of the demands of 

nodes S3
(1), S6

(1) and S7
(1). 
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Figure 7: Left: sketch of the decomposition of a system in five hierarchical levels (L), where the last one (L = 5) 

coincides with the actual nodes of the system; right: Hierarchical Graph of the corresponding hierarchical level 

3; LV: Level of the Hierarchical Graph. 

For a given clustering hierarchical level L, the quantitative evaluation of the performance of the 

"artificial" clustered system is carried out as illustrated in Section 3.1 with reference to an 

indicator that represents the “global” state of the clusters C1
(L), …, CkL

(L) of level L as a 

“synthesis” of the real capacity ζcomp,i , i  {1, 2, …, NScomp}, of the arcs, comp = 1, …, N, 

contained in the cluster itself. Actually, a measure of the cluster state is needed to approximately 

estimate the quantity of product that a cluster can receive and deliver to other clusters. 

To represent the state of a cluster k (i.e., its performance), we consider an indicator idk based 

on the ratio of the expected capacity of cluster k at current and at nominal (optimal) conditions 

as follows: 

𝑖𝑑𝑘 =
∑ 𝑤𝑐𝑜𝑚𝑝∗𝜁𝑐𝑜𝑚𝑝,𝑖
𝑛𝑘
𝑐𝑜𝑚𝑝=1

∑ 𝑤𝑐𝑜𝑚𝑝∗𝜁𝑐𝑜𝑚𝑝,𝑁𝑆𝑐𝑜𝑚𝑝

𝑛𝑘
𝑐𝑜𝑚𝑝=1

,         (1) 

where comp indicates the component (arc) of the original network, nk is the number of arcs 

inside cluster k, 𝜁𝑐𝑜𝑚𝑝,𝑖, i  {1, 2, …, NScomp}, is the current (i.e., actual / sampled) state of the 

component comp, 𝜁𝑐𝑜𝑚𝑝,𝑁𝑆𝑐𝑜𝑚𝑝
 is the maximum capacity of the arc comp and wi is the weight 

associated to the capacity of the arc comp. The weight 𝑤𝑐𝑜𝑚𝑝 is computed as the ratio between 

the capacity of the arc comp and the sum of the maximum capacities of all the arcs of the 

network, i.e., 𝑤𝑐𝑜𝑚𝑝 = 𝜁𝑐𝑜𝑚𝑝,𝑖 ∑ 𝜁𝑐𝑜𝑚𝑝,𝑁𝑆𝑐𝑜𝑚𝑝
𝑁
𝑐𝑜𝑚𝑝=1⁄ , i  {1, 2, …, NScomp} and gives an idea 

of the weight of the arc in the entire network. The index of the cluster state (idk), takes value 

between 0 and 1. 



20 

 

Notice that the state of a cluster affects the cluster itself and the connected clusters, since the 

cluster is both a fictitious load node (which should provide itself with the required amount of 

product) and a fictitious transmission node (which should transmit the product to the other 

connected clusters). The top of Figure 8 shows two clusters, C1 and C2, supplied by the input 

source S1
(1): cluster C2 is both a load and a transmission node, since on one side it contains five 

demand nodes (S2
(1), S3

(1), S4
(1), S5

(1) and S6
(1) in Figure 8, bottom) and on the other side it is 

required to transmit the product to cluster C2. In particular, the product from input source S1
(1) 

has to pass through two arcs (S2
(1)_S5

(1) and S5
(1)_S6

(1)) contained in C1 to reach cluster C2: if 

their capacities decrease, then the flow to nodes S5
(1) and S6

(1) (i.e., to the cluster C1) and to 

nodes S7
(1), S8

(1) and S9
(1) (i.e., to the cluster C2) is reduced. 

 

Figure 8: Top: artificial system composed by two clusters C1 and C2 supplied by one input node S1
(1). Bottom: 

illustration of the real nodes inside the fictitious clusters: two arcs of C1 are needed to supply C2. 

 

Thus, when the "capacity" of a cluster decreases, the consequence is twofold: the cluster cannot 

satisfy itself (i.e., the demands of the demand nodes it contains) and also the connected clusters. 

In order to take into account the “twofold” reduction of performance, we “artificially reduce” 

the amount of product that can be given to the cluster itself and that can be delivered to the 

connected clusters, by multiplying by the indicator of the state of the cluster, idk i) the maximum 

demand Dk that it requires and ii) the maximum capacities, 𝜁𝑐𝑜𝑚𝑝,𝑁𝑆𝑐𝑜𝑚𝑝
, of the arcs (comp) that 

link the output clusters, respectively.  
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3.3. Discussion on the Monte Carlo simulation and Hierarchical Graph modeling for 

critical infrastructures analysis  

The Hierarchical Graph representation supports both a qualitative and quantitative analysis of 

CIs. The former allows identifying critical arcs; the latter allows determining the partitioning 

of the flow in the network and computing a measure of system performance, e.g., the steady 

state probability distribution of the product delivered to demand nodes. However, the 

representation does not make evident how the partition of the flow is carried out, since the 

algorithm used for its computation is recursive. 

 

The Hierarchical Graph representation can aid capturing the structural and dynamic 

complexities of CIs as follows. It can represent components of different technological domains 

(e.g., physical, hard components – like pipelines – and soft components – like information and 

communication systems) and their interconnections by dependences, distributed over large 

geographic areas. Different types of service and product demands can be included, e.g., supply 

of power to critical buildings (hospitals, industrial plant) and residential areas, supply of water 

for daily use or for emergency situations (fire-fighting), etc. However, a limitation is that the 

interdependences (bidirectional relationships) cannot be represented, since the representation is 

based only on unidirectional flow. Also, the Hierarchical Graph becomes large when the scale 

and dimensionality of connectivity is large, and the identification of all the origin-destination 

paths may become computationally prohibitive. To overcome this limitation, the clustering 

technique is employed to reduce the size of the system, obtaining a smaller radial artificial 

(clustered) network, i.e., without loops. This allows a preliminary analysis of system robustness 

to be performed in short time, followed by a more detailed analysis on the most relevant parts 

of the system.  

 

With respect to the dynamic complexity, the quantitative analysis of the system robustness 

supported by the Hierarchical Graph gives indications on how much the system is able to adapt 

to failure scenarios for continuing to efficiently deliver the products and services through the 

network, according to different criteria of importance. It is to be noted that the Hierarchical 

Graph is not well suited to represent growing systems, since the addition of a new component 

to the system methods may change its entire structure (i.e., it lacks of flexibility). 
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The overall approach is based on the assumption that capacitated networks (i.e., networks where 

the flows of product in the links are limited by arcs capacities) provide an appropriate 

representation of infrastructure performance, e.g., robustness. This assumption does not 

represent a limitation for the analysis and, indeed, several works in the scientific literature are 

based on the same hypothesis. Actually, in many real flow networks such as electric power 

networks, gas distribution networks, computer networks, urban traffic networks, logistics 

networks, each arc has several possible capacities or states due to failures, partial failures, 

maintenance, etc. Works related to capacitated networks can be found in [Lin et al., 1995; 

Ramirez-Marquez and Coit, 2007; Yeh, 2008; Ramirez-Marquez and Rocco, 2009; Lin, 2010; 

Lin and Yeh, 2011] [Nozick et al., 2005]. 

 

Table 1 summarizes the advantages and limitations of the approach.” 

Table 1: Advantages and limitations of the Hierarchical Graph representation 

Advantages 

 Both qualitative analysis (identification of critical elements) and quantitative analysis 

(computation of a measure of system performance) can be performed. 

 The complexity of CIs can be handled. 

 Different types of demands (daily water consumption, fire-fighting consumption, power 

consumption, etc.), with different importance (priority), can be taken into account. 

 A clustering algorithm can be employed to reduce the model dimension. 

 A multi-state model can be adopted for a more realistic representation of the system states.  

Limitations 

 Interdependences (bidirectional relationships) cannot be included in the representation. 

 Difficult applicability to large networks (but clustering can reduce this problem). 

 The representation itself shows the physical constraints that affect the product and service 

distribution, but it does not illustrate how the partition of the products and service is carried out, 

since the algorithm used for its computation is recursive. 

 The representation is not flexible, i.e., the addition of a new component may change the 

entire structure. 

 

4. Applications 

In this Section, we apply the proposed Hierarchical Graph representation to evaluate the 

robustness of two case studies (hereafter referred to as “A” and “B”): case study A (Section 

4.1) consists of two interdependent infrastructures (gas and electric power networks) and a 

supervisory control and data acquisition (SCADA) system connected to the gas network; case 

study B (Section 4.2) considers an electric power distribution network adapted from the IEEE 

123 node test feeders. As mentioned before, the robustness addressed in this paper refers to the 

capability of the CIs to resist to failures or partial failures of the CIs components (arcs) assuring 
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the required level (or a high level) of supply of goods or services. It is measured as the steady-

state probability distributions of the product (e.g., gas and/or electricity) delivered to the 

demand nodes.  

In both cases studies, we adopt a multi-state model to account for the different degrees of 

degradation of the components and we describe the state transition processes by Markov and 

semi-Markov modeling. 

4.1. Case study A 

The case study is taken from [Nozick et al., 2005] and deals with two interconnected 

infrastructures, i.e., a natural gas distribution network and an electricity generation/distribution 

network (Figure 9, solid and dashed lines, respectively). The gas distribution network is 

supported by a SCADA system (Figure 9, dotted lines). The objective of this interconnected 

system of systems (SoS) is to provide the necessary amount of gas and electricity (hereafter 

also called “product”) to four demand nodes (end-nodes), namely D1 and D2 (gas), and L1 and 

L2 (electricity).  

 

Figure 9: Interdependent gas (solid lines) and electric (dashed lines) infrastructures and SCADA system (dotted 

lines) [Nozick et al., 2005]. The possible states (i.e., capacities) of the arcs are given in square brackets; the 

quantities of product demanded by end-nodes D1, D2, L1, L2 are reported in bold. 

 

The gas distribution network, supplied by two sources of gas (namely, S1 and S2, connected to 

the network by arcs S1_DS1 and S2_DS2, respectively), provides gas to the end-nodes D1 and 

D2 and to two nodes of the electricity network (E1 and E2). Once the gas enters into nodes E1 

and E2, it is transformed into electrical energy that flows through arcs E1_G1 and E2_G2 



24 

 

(representing the electric power generation stations) to supply the end-nodes of electricity (L1 

and L2); notice that demand L2 can be supplied by both electrical generations E1_G1 and 

E2_G2. The assumption is made that the gas-electricity transformation occurs with a constant 

coefficient, i.e., 100 cu. ft. of natural gas produces 1 MWh of electricity [Nozick et al., 2005].  

A SCADA system controls the gas flow through arcs a_b, b_c, c_d and d_e. It is assumed that: 

i) the SCADA has two core subsystems controlling different sets of arcs (in particular, the first 

one – SUB1 – refers to links a_b and b_c, whereas the second one – SUB2 – controls arcs c_d 

and d_e); ii) the SCADA is always provided with electric power [Nozick et al., 2005]. 

 

The capacities of the arcs of the gas and electricity networks (determining the maximum flows 

of gas or electricity supported by the arcs) can be deterministic (i.e., fixed constant values) or 

stochastic (i.e., randomly evolving in time) (Figure 9, values in the square brackets). The 

stochastic capacities give rise to a multi-state model that reflects the possibly different degrees 

of degradation of the arcs. On the contrary, the SCADA system state is defined by a binary 

random variable, whose values 1 and 0 represent its complete and partial functioning, 

respectively. For example, when the state of the SCADA subsystem SUB1 (controlling arcs 

a_b and b_c) is 0, the capacity of these arcs decreases because of the incorrect information 

provided by the SCADA subsystem (even if the arcs are not subject to a direct damage). On the 

basis of the two states of the SCADA subsystems, two different vectors of capacities are 

identified for each arc a_b, b_c, c_d and d_e: as illustrated in Figure 9, the first vector is used 

when the corresponding SCADA subsystem is in state 0, whereas the second one is employed 

when the SCADA subsystem is in state 1. 

 

Changes in the arc capacities are due to random degradations or recovery actions. The state 

transitions over time are modeled by Markov and semi-Markov processes as in [Nozick et al., 

2005]. Semi-Markov processes are adopted to model the evolution of the capacities of the gas 

supply links (S1_DS1 and S2_DS2), whereas Markov processes are used for all the others arcs. 

Both Markov and semi-Markov processes for a generic component ‘comp’ are defined by a 

transition probability matrix }..., ,2 ,1, :{P compij Sjipcomp  , where pij is the one-step 

probability of transition from state i to state j. In addition, the semi-Markov processes are 

characterized by continuous probability distributions for the holding time Tij
comp, i.e., for the 

time of residence of a component in state i before performing a transition to state j. 
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The steady-state probability vectors for a generic component ‘comp’ described by a Markov 

process is computed as compcompcomp
P  [Zio, 2009]. For a semi-Markov process, this 

equation is weighted by the expected time of residence τi in a given state i before performing a 

transition, i.e., as 
iicompicomp   ,,
  compS

j
jjcomp

1
,/  , i = 1, …, NScomp [Barry, 1995]. 

 

Figure 10 reports the steady-state probability vectors of the arcs of the system of Figure 9 

assuming the state transition probabilities given in [Nozick et al., 2005]. 

 

Figure 10: Steady state probability vectors for the states of the components of the case study A (comp = S1_DS1, 

S2_DS2, a_b, b_c, c_d, d_e, E2_G2, E1_G1, SCADA). 

4.1.1. Hierarchical Graph representation for the system of case study A 

In Figure 11, the Hierarchical Graph of the system of case study A (Section 4.1) is illustrated. 

The injection of product (i.e., gas) in the SoS is made through arcs S1_DS1 and S2_DS2, located 

at the bottom of the diagram (Section 2). Since both arcs enter in node a, also the following 

links DS1_a and DS2_a are considered part of the inputs and reported at the bottom of the 

hierarchy. Four demand nodes, i.e., D1, D2 (gas) and L1, L2 (electricity), represent the goals of 

the analysis and they are explicitly located at the top of the diagram. The graph presents four 

hierarchical levels: in level 4, arc a_b, is reported since it supplies all the four demand nodes; 

in level 3, arc b_c is depicted, since it serves three demand nodes (i.e., L1, L2 and D2); in level 

2, arcs c_E1, E1_G1, c_d and d_e are considered, since they supply two demand nodes: in 

particular, arcs c_E1 and E1_G1 supply L1 and L2, whereas arcs c_d and d_e serve L2 and D2; 

in level 1, there are the remaining arcs that are related just to one demand node: for example, 

e_E2 serves only node L2. The influence of the SCADA subsystem SUB1 on the arcs a_b and 

b_c and of the SCADA subsystem SUB2 on the arcs c_d and d_e is illustrated in the trapezoidal 

frames under the corresponding arcs. 

Π
S1_DS1

 = 1 0.0001 Π
S2_DS2

 = 1 0.0033 Π
SCADA

 = 1 0.0042

2 0.0002 2 0.1703 2 0.0012

3 0.5001 3 0.8264 3 0.0012

4 0.4996 4 0.9934

Π
a_b, b_c, c_d, d_e

 = 1 0.0022 Π
E2_G2

 = 1 0.0006 Π
E1_G1

 = 1 0.0011

2 0.0045 2 0.0007 2 0.9989

3 0.0022 3 0.9987

4 0.0065

5 0.0038

6 0.0052

7 0.9756
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For illustration purposes, three different importance criteria for the demand nodes are 

considered (see Section 2): 

 sequential importance: the demand nodes are ranked on the basis of the proximity to the 

sources: 1) D1 (the most important), 2) L1, 3) L2 and 4) D2 (the least important). 

 proportional importance: the demand nodes are satisfied on the basis of their demands 

(the nodes that require more product are given higher priority). Since D1 and D2 require 

100 and 80 cu. ft. of gas and L1 and L2 need 500 and 400 MWh (equivalent to 50 and 

40 cu. ft.), the resulting importance ranking of the demand nodes is: 1) D1 (the most 

important), 2) D2, 3) L1 and 4) L2 (the least important). 

 equal importance: the product is divided equally among four demand nodes. 

 

 

Figure 11: Hierarchical Graph of the SoS depicted in Figure 9 (case study A); LV: Level. 

4.1.2. Results of case study A 

The robustness of the case study A is given by steady state probability distributions of the 

product delivered to the four demand nodes D1, L1, L2 and D2, by applying the operative steps 

illustrated in Section 3.1. From these distributions two quantities can be analyzed as illustrated 

in Table 2: 

(i) Steady state probabilities of delivering the (maximum, optimal) required product to 

the demand nodes (top); 
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(ii) Steady state probability of delivering a quantity of product exceeding 90% of the 

corresponding demands (bottom). 

 

Table 2: Steady state probabilities of (i) delivering the (maximum, optimal) required product to the demand 

nodes (top) and (ii) delivering a quantity of product exceeding 90% of the corresponding demands (bottom). 

 

 

As expected, in the case of sequential importance of the demand nodes, D1 is the demand node 

most satisfied, whereas D2 is the least served: the corresponding probabilities of being 

completely satisfied are 0.9927 and 0.7526, respectively (Table 2, top). Differently, in the 

ranking produced by the proportional importance criterion, D2 is more important than L1 and 

L2. Thus, the probability of delivering the required product to D2 should increase, whereas the 

probability of satisfying the last two demand nodes should decrease. In fact, the steady state 

probabilities of delivering the required maximum product to L1 and L2 decrease (Table 2, top). 

On the contrary, the probability P(D2 = 80 [1000 cu. ft.]) of delivering the maximum product 

to D2 remains almost the same, since (i) the path needed to reach D2 is affected by the 

uncertainty on the capacity of many arcs and (ii) D2 is not the most important demand node. 

However, an effect of the proportional importance criterion on D2 can be seen by analyzing the 

steady state probability P(D2 > 72 [1000 cu. ft.]) that the product given to D2 exceeds 90% of 

its demand: actually, this value increases considerably from 0.7526 of the previous case 

(sequential importance, Table 2, top) to 0.9160 (proportional importance, Table 2, bottom). 

Finally, the criterion of equal importance, turns out to give preference to the nodes that have 

the lowest demands (this is expected since a lower demand has higher probability to be satisfied 

by an equal partition of the product). Actually, in this case the steady state probabilities of 

supplying L1, L2 and D2 at the optimum level increase with respect to the case of proportional 

importance (from 0.7563 to 0.9306 for L1, from 0.7563 to 0.9678 for L2 and from 0.7568 to 

0.9063 for D2, see Table 2 top); the probabilities to serve D1 remain almost the same (around 

0.82, see Table 2 top). 

Sequential 0.9927 0.9867 0.9723 0.7526

Proportional 0.8195 0.7563 0.7563 0.7568

Equal 0.8205 0.9306 0.9678 0.9063

Sequential 0.9927 0.9867 0.9723 0.7526

Proportional 0.9778 0.9155 0.9507 0.9160

Equal 0.9717 0.9482 0.9816 0.9063

P(L2 > 36 

[10 MWh])

P(D2 > 72 

[1000 cu. ft.])

Importance 

criterion

Importance 

criterion

P(D1 = 100 

[1000 cu. ft.])

P(L1 = 50 

[10 MWh])

P(L2 = 40 

[10 MWh])

P(D2 = 80 

[1000 cu. ft.])

P(D1 > 90 

[1000 cu. ft.])

P(L1 > 45 

[10 MWh])
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Changing the importance criterion induces changes in the ranking of the demand nodes that 

receive less product. However, it can be noticed that the demand node D2 is the most difficult 

to supply to, even in the case of proportional importance where D2 is the second most important 

demand node. The highest probability of supply of D2 is 0.9160 while the others demand nodes 

can reach a probability of supply higher than 0.98. Then, to improve the robustness of the 

system the path from the sources to the demand node D2 should be strengthened. 

4.2. Case study B 

Figure 12 shows the electric power distribution network here considered, as adapted from the 

IEEE 123 nodes test feeder [IEEE, 2000] in the sense that regulators, capacitors, switches and 

feeders with length equals to zero are neglected. With these simplifications, the network is 

composed of 114 nodes: 1 generation point (node 115) and 113 load/transmission nodes. Node 

61 of the original IEEE 123 node test feeders is missing here, since after the removal of switches 

and transformers it turns out to be an end node with load equal to zero. The arcs (i.e., the feeders) 

connect different nodes and distribute the power through the network. In the analysis by 

Hierarchical Graph, we focus on the arcs (and not on the nodes), hereafter also called 

“components”; thus, the total number N of components is 113. 

 

Figure 12: IEEE 123 node test feeders adapted to the purposes of the present analysis. 

Four states, i = 1, …, 4, characterize the capacity (ζcomp,i, comp = 1, …, N) of the arcs: the first 

one (i = 1) represents the worst state and corresponds to the complete failure of the link, i.e., no 
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product can flow through it (ζcomp,1 = 0, comp = 1, …, N); the fourth one (i = 4) corresponds to 

the best state, i.e., to its nominal designed capacity. To obtain a reasonable value for the nominal 

capacity of the arcs useful for the purposes of the present analysis, we have solved the DC 

power flow equations (DCPF) that provide the physical flows of electricity through the lines 

given i) the total power injected in the network (assumed equal to the sum of all the powers 

required by the demand nodes), ii) the network topology (i.e., the adjacency matrix) and iii) the 

reactance of all the arcs [McCalley, 2012]; the nominal capacity of a link is set equal to the 

optimal power flow through that link. 

In the Appendix, the demands of the network nodes provided by the IEEE database and the 

maximal capacity ζcomp,4 of the arcs (comp = 1, …, N) obtained by the DC power flow equations, 

are given. 

Changes in the arc capacities are due to random failures (as in the previous case study A): the 

state transitions over time are modeled as Markov processes.  

4.2.1. Hierarchical Graph representation and clustering for case study B 

An unsupervised spectral clustering algorithm (Section 3.2) is applied to the IEEE electric 

power distribution network of interest and identifies five hierarchical clustering levels: level 1 

is composed by the generation node and one cluster representative of the whole network, 

whereas level 5 coincides with the original network. In Figures 13 – 15, the clusters generated 

at levels 2, 3 and 4 are reported, respectively: the corresponding Hierarchical Graph 

representation to levels 2 and 3 is also given for illustration purposes. Notice that level 2 is 

characterized by two clusters, level 3 by 8 clusters and level 4 by 29 clusters (besides the 

generation point): these clustered representations correspond to different possible “levels of 

detail” that the analyst may choose to study the network. 
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Figure 13: IEEE network clustered at hierarchical level 2 (left) together with the corresponding Hierarchical 

Graph representation (right); LV: Level. 

  

Figure 14: IEEE network clustered at hierarchical level 3 (left) together with the corresponding Hierarchical 

Graph representation (right); LV: Level. 

 

Figure 15: IEEE network clustered at hierarchical level 4. 
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4.2.2. Results of case study B 

In order to evaluate the robustness of the electric power distribution network of Section 4.2, an 

unsupervised spectral clustering algorithm (Section 3.2) is first applied to reduce the size of the 

system and, then, Monte Carlo simulation is performed at a given clustering level in 

combination with the Hierarchical Graph representation (Section 3.1). The outcome of the 

procedure is represented by the steady state probability distribution of the electricity delivered 

at the demand nodes (or clusters). In this case, we consider proportional importance of the 

clusters/demand nodes (see Section 2). 

As illustrated in Section 4.2.1, five hierarchical clustering levels are identified by the 

unsupervised spectral clustering algorithm. In the following, for the sake of brevity the results 

obtained from the analysis of the “fictitious” clustered networks are mainly given for the levels 

3 and 4 of the clustering hierarchy and are compared to those obtained from the analysis of the 

original (i.e., not clustered) system.  

In order to perform a fair comparison, the values of the product delivered to the nodes obtained 

analyzing the real network are “grouped” on the basis of the clustered structure of the 

corresponding “fictitious” network: for example, at hierarchical clustering level 4 the products 

delivered to nodes 9, 10, 11 and 14 have to be summed to allow the comparison with the 

corresponding cluster 6 of the “fictitious” network (Figure 15). The comparison is, then, made 

by means of the expected product not supplied idNSk to cluster k, computed as:  

𝑖𝑑𝑁𝑆𝑘 =
𝐷𝑘−𝜇𝑘

𝐷𝑘
,           (2) 

where Dk is the demand of cluster k (equal to the sum of the demands of the nodes of the original 

network contained in cluster k) and µk is the mean value of the product delivered to the cluster 

k at steady state.  

We have performed the comparison between the performances of the clustered and real 

networks in three cases: 

 Case 1: all the arcs are characterized by the steady state probability vector Π1 of Figure 

16 left; in this case, the system is expected to have a satisfactory performance as all the 

arcs remain in their best state (i.e., state 4) with very high probability (i.e., 0.9982). 

 Case 2: all the arcs are characterized by the steady state probability vector Π2 of Figure 

16, middle; in this case the arcs turn into state 3 (i.e., a state of partially reduced 

functionality) with high probability (i.e., around 0.5) so that the global performance of 

the system is not expected to be very high; 
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 Case 3: same as case 2, except for the fact that the arcs contained in clusters 8 and 12 at 

hierarchical clustering level 4 are assumed to be more prone to degradation than the 

other arcs and then characterized by the steady state probability vector Π3 of Figure 16, 

right; in particular, they degrade to their worse states (e.g., state 2) with high probability.  

 

  
Steady state 

probability 

 1 0.0006 

Π1 = 2 0.0003 

 3 0.0009 

 4 0.9982 

 

  
Steady state 

probability 

 1 0.0005 

Π2 = 2 0.0010 

 3 0.4995 

 4 0.4990 

 

  
Steady state 

probability 

 1 0.0291 

Π3 = 2 0.0971 

 3 0.8651 

 4 0.0087 

   
Figure 16: Steady state probabilities of the four levels of capacity of the arcs of the network in Figure 12 for 

cases 1 (left), 2 (middle), 3 (right). 

 

In the following, comments on the results obtained for the three cases above are given with 

reference to Tables 3 – 4 where the clusters at hierarchical levels 3 and 4, respectively, are 

ranked in ascending order based on the product not supplied (idNSk) (i.e., the mean value of the 

product supplied to clusters at the top of the ranking is closer to their demands than that of the 

clusters at the bottom). Tables 3 – 4, right, illustrate also the ranking of the clusters based on 

their distance (measured in terms of number of arcs) from the source point: for example, at level 

3 cluster 8 is connected to the input source by four arcs (i.e., 115_1, 53_54, 60_67 and 101_105) 

(see Figure 14). The reference to the distance of a demand node from the source is motivated 

by the fact that in general the higher the distance from the source, the higher the probability of 

reduced product supply. 

Table 3: Product not supplied, idNSk, to the cluster k for the real and clustered networks at hierarchical level 3, 

with respect to cases 1, 2 and 3. Right: ranking (in ascending order) of the clusters based on their distance from 

the input source. 

 

 

Level 3

idNS k k idNS k k idNS k k idNS k k idNS k k idNS k k dist k k

0.005 1 0.002 1 0.298 1 0.250 1 0.264 1 0.245 1 1 1

0.011 2 0.004 2 0.338 5 0.298 5 0.338 5 0.296 5 2 2

0.011 3 0.004 3 0.338 6 0.304 2 0.340 6 0.324 7 3 2

0.013 5 0.004 5 0.339 2 0.305 3 0.341 7 0.325 2 5 2

0.013 7 0.004 7 0.339 3 0.322 7 0.345 8 0.332 3 7 3

0.014 6 0.008 4 0.341 7 0.332 6 0.346 4 0.332 6 6 4

0.018 8 0.008 6 0.342 4 0.332 8 0.396 2 0.332 8 8 4

0.019 4 0.009 8 0.345 8 0.338 4 0.412 3 0.335 4 4 5

Case 1 Case 2 Case 3 Distance - 

rankingREAL CLUSTERED REAL CLUSTERED REAL CLUSTERED
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Table 4: Product not supplied, idNSk, to the cluster k for the real and clustered networks at hierarchical level 4, 

with respect to cases 1, 2 and 3. Right: ranking (in ascending order) of the clusters based on their distance from 

the input source. 

 

 

Case 1  

The results obtained from simulations on the clustered and real networks are very similar at all 

hierarchical clustering levels. In particular, the higher is the hierarchical level (i.e., the finer is 

the clustering), the closer are the results of the fictitious network to those of the real network.  

The probability distribution functions (pdfs) of the product delivered to the clusters of the 

fictitious and real networks at steady state present the same modal values (i.e., the same peaks) 

at hierarchical levels 2, 3 and 4 and mean values very close to each other at all hierarchical 

clustering levels. For illustration purposes, the mean and modal values of the pdf of the product 

delivered at steady state to cluster 1 at hierarchical levels 2, 3 and 4 obtained from the analysis 

of the real and clustered networks is given in Table 5, together with their percentage difference.  

Level 4

idNS k k idNS k k idNS k k idNS k k idNS k k idNS k k dist k k

0 4 0 1 0.220 5 0.250 5 0.160 5 0.220 5 1 5

0 5 0 2 0.300 4 0.300 2 0.263 2 0.250 2 2 2

0 13 0 4 0.313 2 0.310 4 0.288 1 0.275 1 2 4

0 18 0 5 0.320 3 0.310 6 0.290 3 0.300 4 2 6

0 19 0 6 0.320 6 0.320 3 0.290 4 0.300 6 3 1

0.008 9 0 13 0.325 1 0.325 1 0.290 6 0.300 19 3 3

0.008 12 0 18 0.325 8 0.325 8 0.313 11 0.310 3 3 19

0.010 3 0 19 0.325 18 0.325 12 0.325 18 0.325 18 4 8

0.010 6 0.008 9 0.325 19 0.325 13 0.325 19 0.330 17 4 12

0.010 10 0.008 12 0.330 17 0.325 18 0.330 17 0.333 24 4 18

0.010 17 0.008 24 0.333 12 0.325 19 0.337 21 0.333 25 5 9

0.010 23 0.008 25 0.337 21 0.330 17 0.338 27 0.333 26 5 11

0.013 1 0.008 26 0.338 7 0.333 9 0.340 16 0.337 21 5 13

0.013 2 0.010 3 0.338 11 0.333 24 0.340 23 0.338 15 5 17

0.013 7 0.010 10 0.338 15 0.333 25 0.341 20 0.338 20 6 7

0.013 8 0.010 16 0.338 27 0.338 7 0.342 24 0.338 27 6 10

0.013 11 0.010 17 0.340 10 0.338 10 0.342 25 0.340 16 6 20

0.013 15 0.010 20 0.340 16 0.338 11 0.342 26 0.340 23 6 24

0.013 27 0.010 23 0.340 23 0.338 15 0.350 14 0.342 22 7 25

0.014 20 0.011 21 0.341 20 0.338 20 0.350 15 0.350 14 7 26

0.014 21 0.013 7 0.342 9 0.338 27 0.350 22 0.350 28 8 21

0.017 22 0.013 8 0.342 22 0.340 16 0.350 28 0.350 29 8 23

0.017 24 0.013 11 0.342 24 0.340 21 0.350 29 0.375 13 9 16

0.017 25 0.013 14 0.342 25 0.340 23 0.375 12 0.383 12 9 22

0.017 26 0.013 15 0.342 26 0.342 22 0.388 7 0.388 7 9 27

0.017 29 0.013 27 0.350 13 0.342 26 0.392 9 0.388 8 10 15

0.020 16 0.013 28 0.350 14 0.350 14 0.413 8 0.388 10 10 29

0.025 14 0.017 22 0.350 28 0.350 28 0.425 13 0.388 11 11 14

0.025 28 0.017 29 0.350 29 0.350 29 0.433 10 0.392 9 11 28

Case 1 Case 2 Case 3 Distance - 

rankingREAL CLUSTERED REAL CLUSTERED REAL CLUSTERED
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Table 5: Modal and mean values [kW] of the steady state probability distributions of the product delivered to 

cluster 1 considering the original and artificial networks clustered at hierarchical levels 2, 3 and 4. Their 

percentage difference is also given. 

  Hierarchical levels 

  2 3 4 

Modal values [kW] 
Real network 1550 565 85 

Clustered network 1550 565 85 

 Difference % 0 0 0 

     

Mean values [kW] 
Real network 1582 557 79 

Clustered network 1592 559 80 

 Difference % 0.63 0.36 1.27 

 

The values of the product not supplied idNSk are in general very low (i.e., lower than 0.025), so 

that the presence of less supplied cluster(s) is not evident. In general, the ranking produced by 

the clustered and real networks are similar (Tables 3 – 4, case 1). Differences in the ranking can 

be found at clustering level 4, but they can be neglected given the very low values of the 

corresponding product not supplied index. Also a correspondence between the rankings of 

“groups” of clusters that have similar product not supplied index can be found: for example, 

the clusters closer to the generation source, e.g., 4, 5, 13, 18, 19, are slightly more supplied than 

those farther, e.g., 14, 15, 16, 22, 27, 28, 29 for both the fictitious and real systems, confirming 

the physical coherence of the approach. 

Case 2 

In general, the results obtained from simulations on the fictitious and real networks are less 

similar to each other than in case 1, where the arc state capacities present less variability. 

However, the trends in the network behavior that have been pointed out in the previous case 

can still be identified. 

The pdfs of the product delivered to the clusters of the fictitious and real networks at steady 

state present (almost) the same peak values at hierarchical levels 2, 3 and 4. Also the mean 

values are very close to each other at hierarchical levels 3 and 4 (actually, the maximum 

percentage difference is 6.9 % for cluster 1 at level 3 and 3.9 % for cluster 5 at level 4); instead, 

at level 2 the difference is larger, i.e., 10.7 % for cluster 1. Thus, as expected, the higher the 

hierarchical level (i.e., the finer the clustering), the closer the results of the artificial network to 

those of the real network. For illustration purposes, the mean and modal values of the pdf of the 

product delivered at steady state to cluster 1 at hierarchical levels 2, 3 and 4 obtained from the 



35 

 

analysis of the real and clustered networks is given in Table 6, together with their percentage 

difference. 

 

Table 6: Modal and mean values [kW] of the steady state probability distributions of the product delivered to 

cluster 1 considering the original and artificial networks clustered at hierarchical levels 2, 3 and 4. Their 

percentage difference is also given. 

  Hierarchical levels 

  2 3 4 

Modal values [kW] 
Real network 1050 375 55 

Clustered network 1050 375 55 

 Difference % 0 0 0 

     

Mean values [kW] 
Real network 1078 393 54 

Clustered network 1193 420 54 

 Difference % 10.67 6.87 0 

 

With respect to the previous case 1, the probability distributions present higher variability; in 

particular, this effect is more evident in the results obtained on the artificial networks. For 

example, referring to cluster 1, the variances of the distributions of the product delivered are 

3514, 725 and 25 at levels 2, 3, 4, respectively, for the original network, whereas they are 25283, 

3199 and 35, respectively, for the clustered network. This can be due to the presence of the 

clusters and to the definition of their performance (Section 3.2). Actually, the state of a cluster 

is represented by indicator idk (eq. 1) that tries to capture and synthetize the main features of 

the nodes inside the cluster itself. By so doing, the (detrimental) effect of the degradation of an 

arc is “spread” through the entire cluster instead of having a contained local impact only on the 

physically connected nodes. This leads to an increase in the variability of the performance of 

the network: as expected, such variability decreases with the level of detail of the analysis, i.e., 

with the reduction of the cluster size.  

 

The ranking based on the product not supplied (Tables 3 – 4, case 2) is similar for the groups 

of clusters at the top and at the bottom (i.e., at the tails) of the ranking, so that it is possible to 

highlight those that are more supplied (e.g., clusters 1 and 5 at level 3, and clusters 1, 2, 3, 4, 5, 

6 at level 4) with respect to those who are less supplied (e.g., clusters 4 and 8 at level 3, and 14, 

28, 29 at level 4, see Table 4, case 2). As for case 1, the tails of the ranking reflect the distance 

of the clusters from the generation point: at the top we find the elements closer to the input 

source, whereas at the bottom those that are farther (see Tables 3 – 4, right). 
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Case 3 

The pdfs of the product delivered to the clusters of the artificial and real networks at steady 

state present almost the same modal (peak) values at hierarchical levels 2, 3 and 4. Instead, the 

mean values are farther from each other than in the previous case 2: for example, at hierarchical 

level 3 the maximum percentage difference is 14.5 % for cluster 3, whereas at level 4 it is 7.9 

% for cluster 10. At level 2 the maximal percentage difference is larger, i.e., 16 % for cluster 1. 

Again, the higher the hierarchical level, the higher the similarity of the results produced by the 

artificial network and by the real network. For illustration purposes, the mean and modal values 

of the pdf of the product delivered at steady state to cluster 1 at hierarchical levels 2, 3 and 4 

obtained from the analysis of the real and clustered networks is given in Table 7, together with 

their percentage difference. 

 

Table 7: Modal and mean values [kW] of the steady state probability distributions of the product delivered to 

cluster 1 considering the original and artificial networks clustered at hierarchical levels 2, 3 and 4. Their 

percentage difference is also given. 

  Hierarchical levels 

  2 3 4 

Modal values [kW] 
Real network 1050 375 55 

Clustered network 1050 375 55 

 Difference % 0 0 0 

     

Mean values [kW] 
Real network 1026 412 57 

Clustered network 1190 423 58 

 Difference % 15.98 2.67 1.75 

 

In this case, the reduction of performance of clusters 8 and 12 at level 4 strongly influences the 

ranking performed according to the product not supplied (idNSk) indicator.  

 

The simulations carried out on the artificial networks at hierarchical level 3 cannot capture the 

reduction in the performances of the arcs inside clusters 8 and 12 at level 4. Actually, according 

to the simulation performed on the original network, at level 3 clusters 2 and 3 should be the 

most impacted, since they are those that contain the arcs with the worst capacities; those are 

followed by clusters 4 and 8 that are the farthest from the input source. On the contrary, the 

simulations of the fictitious networks at level 3 identifies clusters 4 and 8 as the least supplied 

(Table 3, case 3). At level 4, the simulations of the fictitious and original networks produce the 

same results (Table 4, case 3): the clusters most supplied are clusters 1, 2, 3, 4, 5, 6 (i.e., those 

closer to the input source) and those less served are 7, 8, 9, 10, 12, 13 (i.e., those characterized 
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by a reduction of performance and those connected to these last ones), followed by clusters 14, 

15, 22, 28, 29 (i.e., those that are farther from the generation point). Thus, it can be concluded 

that in those cases where the performance of some arcs is biased towards very low values, a 

finer level of analysis is needed to capture the global behavior of the network.  

 

Finally, the computational cost of the simulations depends on the configuration of the system: 

the higher the capacities of the arcs, the faster the process to allocate the product by Hierarchical 

Graph. However, in all the three cases explored, it is evident a considerable reduction in the 

computational time when the level of detail of the analysis is reduced (i.e., when the network 

is clustered). In Table 8, the computational times needed to perform the simulations on the 

clustered networks at hierarchical levels 2, 3 and 4 and on the original network are given for 

cases 1, 2 and 3 detailed above. 

 

Table 8: Computational time [s] of 10000 Monte Carlo simulations for the analysis of the real and clustered 

networks at hierarchical levels 2, 3, 4 for cases 1, 2 and 3 considered. 

 Case 1 Case 2 Case 3 

Level REAL CLUSTERED REAL CLUSTERED REAL CLUSTERED 

2 454 11 1304 11 1392 50 

3 454 33 1304 40 1392 78 

4 454 110 1304 201 1392 256 

 

In conclusion, a robustness analysis has been carried out at different (hierarchical) clustering 

levels by Hierarchical Graph and Monte Carlo simulation for an electric power distribution 

network adapted from the IEEE 123 node test feeders. The results have shown that it is possible 

to apply the approach resorting to clustering techniques to reduce the computational time of the 

simulations since: 

- The modal and mean values of the distribution of the pdfs of the product delivered at 

steady state to the clusters are similar for the analysis of the real and clustered networks; 

- The simulations of the fictitious and original networks produce a similar rankings of the 

product-not-supplied index: it can be noticed a strong correspondence of “groups” of 

clusters at the tails of the ranking. 

However, attention should be paid when some arcs inside the clusters are more prone to 

degradation than other arcs. In this case, the simulation carried out on a clustered network 

characterized by a low level of detail (i.e., by a low number of clusters) may not always capture 

this reduction of performance: a finer clustering level is, then, necessary. 
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These analyses carried out on clustered networks provide approximate results that are useful in 

a decision making process for a preliminary design step, reducing considerably the 

computational cost of the simulation. 

5. Conclusions 

In this paper, we have proposed a new representation technique, i.e., the Hierarchical Graph, to 

analyze the performance of interconnected critical infrastructures (CIs) under a multi-state 

system-of-systems (SoS) framework. In particular, the robustness of the SoS, i.e., the capability 

of the CIs to resist to failures or partial failures assuring the required level (or a high level) of 

supply of goods or services, has been evaluated in terms of the product delivered at steady state 

to the demand nodes of the CIs. 

 

The Hierarchical Graph representation supports both a qualitative and quantitative analysis to 

evaluate the robustness of CIs. Actually, critical arcs, which interruption or degradation affects 

more demand nodes, can be visualized and the product delivered at steady state to the demand 

nodes of the CIs can be quantified, while accounting for: 

- the importance (relevance, priority) of the demand nodes; 

- the quantity of product required by the demand nodes; 

- the state of the arcs of the networks (possibly affected by failures and partial failures). 

The quantification algorithm based on the Hierarchical Graph follows a logical analysis, while 

not resorting to a flow model. 

 

In the paper, we have applied the approach on two case studies. First, we have analyzed a small-

sized SoS composed by two interconnected CIs (gas and electricity networks) and a supervisory 

control and data acquisition (SCADA) system, and we have evaluated its robustness by Monte 

Carlo (MC) simulation considering different importance criteria (sequential, proportional, and 

equal) for the demand nodes. We have shown that the Hierarchical Graph representation can 

support this kind of analyses that are useful for decision makers to understand margins of 

improvement of the SoS to optimize the delivery of product to the demand nodes by changing 

their importance. The small size of this case study has allowed understanding the details of 

Hierarchical Graph modeling. 

Then, we have evaluated a moderately large-sized power distribution network by adopting a 

hierarchical clustering algorithm to analyze the SoS at different levels of detail and simplify the 
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Hierarchical Graph representation. In this case, only a proportional importance of the demand 

nodes has been considered. The results have shown that the Hierarchical Graph can be adopted 

together with hierarchical clustering algorithms to provide approximate results by analyzing 

clustered networks instead of the entire large-sized, real network. This can be useful in a first 

preliminary phase of design of SoS, in order to have satisfactory, physically coherent results 

with relatively low computational cost. 

 

The work presented is methodological in nature and intended to explore the feasibility of the 

proposed approach, while understanding its functioning and potential benefits. To this aim, 

simplifying assumptions have been made in the numerical case studies analyzed. In spite of 

some limitations due to the assumptions made (e.g., the use of exclusively unidirectional 

relationships, the prediction of possibly imprecise results when the clustering algorithm is 

employed), the proposed approach has shown some interesting benefits that make it potentially 

attractive for the analysis of CIs robustness, e.g., the fact that qualitative and quantitative 

analyses can be combined and multistate modeling can be adopted for more refined insights on 

system behavior. 
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Appendix: data of case study B 

Table A1 reports the demands of the network nodes provided by the IEEE database and the 

maximal capacity ζcomp,4 of the arcs (comp = 1, …, N) obtained by the DC power flow equations. 

 

Table A1: Left: loads [KW] for all the nodes of the network (except the generation node whose load is zero). 

Right: maximal capacity ζcomp,4 of the arcs. 

 

NODES
LOADS

[kW]
NODES

LOADS

[kW]

ζ comp,4

[kW]

ζ comp,4

[kW]

1 40 58 20 1 2 20 57 60 1815

2 20 59 20 1 3 100 58 59 20

3 0 60 20 1 7 3330 60 62 370

4 40 62 40 3 4 40 60 67 1425

5 20 63 40 3 5 60 62 63 330

6 40 64 75 5 6 40 63 64 290

7 20 65 140 7 8 3310 64 65 215

8 0 66 75 8 12 20 65 66 75

9 40 67 0 8 9 100 67 68 120

10 20 68 20 8 13 3190 67 72 865

11 40 69 40 9 14 60 67 97 440

12 20 70 20 13 34 100 68 69 100

13 0 71 40 13 18 1115 69 70 60

14 0 72 0 13 52 1975 70 71 40

15 0 73 40 14 11 40 72 73 120

16 40 74 40 14 10 20 72 76 745

17 20 75 40 15 16 40 73 74 80

18 0 76 245 15 17 20 74 75 40

19 40 77 40 18 19 80 76 77 240

20 40 78 0 18 21 280 76 86 260

21 0 79 40 18 35 755 77 78 200

22 40 80 40 19 20 40 78 79 40

23 0 81 0 21 22 40 78 80 160

24 40 82 40 21 23 240 80 81 120

25 0 83 20 23 24 40 81 82 60

26 0 84 20 23 25 200 81 84 60

27 0 85 40 25 26 80 82 83 20

28 40 86 20 25 28 120 84 85 40

29 40 87 40 26 27 40 86 87 240

30 40 88 40 26 31 40 87 88 40

31 20 89 0 27 33 40 87 89 160

32 20 90 40 28 29 80 89 90 40

33 40 91 0 29 30 40 89 91 120

34 40 92 40 31 32 20 91 92 40

35 40 93 0 34 15 60 91 93 80

36 0 94 40 35 36 80 93 94 40

37 40 95 20 35 40 635 93 95 40

38 20 96 20 36 37 40 95 96 20

39 20 97 0 36 38 40 97 98 120

40 0 98 40 38 39 20 97 101 320

41 20 99 40 40 41 20 98 99 80

42 20 100 40 40 42 615 99 100 40

43 40 101 0 42 43 40 101 102 100

44 0 102 20 42 44 555 101 105 220

45 20 103 40 44 45 40 102 103 80

46 20 104 40 44 47 515 103 104 40

47 105 105 0 45 46 20 105 106 80

48 210 106 40 47 48 210 105 108 140

49 140 107 40 47 49 200 106 107 40

50 40 108 0 49 50 60 108 109 140

51 20 109 40 50 51 20 109 110 100

52 40 110 0 52 53 1935 110 111 20

53 40 111 20 53 54 1895 110 112 80

54 0 112 20 54 55 40 112 113 60

55 20 113 40 54 57 1855 113 114 20

56 20 114 20 55 56 20 115 1 3490

57 0 115 0 57 58 40

ARCS (comp) ARCS (comp)


