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Abstract

Background

Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for

adaptive traits variations in forest tree populations. Its experimental assessment requires

rigorous sampling strategies such as those involving population pairs replicated across

broad spatial scales.

Methods

A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replica-

tion of the environmental contrast and the hierarchical genetic structure among replicated

study sites is introduced. Its power was assessed through simulations and compared to

classical ‘within-site’ approaches (FDIST, BAYESCAN) and a simplified, within-site, version

of the model introduced here (SBM).

Results

HBM demonstrates that hierarchical approaches are very powerful to detect replicated pat-

terns of adaptive divergence with low false-discovery (FDR) and false-non-discovery (FNR)
rates compared to the analysis of different sites separately through within-site approaches.

The hypothesis of local adaptation to altitude was further addressed by analyzing replicated

PLOSONE | DOI:10.1371/journal.pone.0158216 July 8, 2016 1 / 26

a11111

OPEN ACCESS

Citation: Brousseau L, Postolache D, Lascoux M,
Drouzas AD, Källman T, Leonarduzzi C, et al. (2016)
Local Adaptation in European Firs Assessed through
Extensive Sampling across Altitudinal Gradients in
Southern Europe. PLoS ONE 11(7): e0158216.
doi:10.1371/journal.pone.0158216

Editor: Benedicte Riber Albrectsen, Umeå Plant
Science Centre, Umeå University, SWEDEN

Received: October 30, 2015

Accepted: June 13, 2016

Published: July 8, 2016

Copyright: © 2016 Brousseau et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: - Data: SNP design,
functional annotation and genotyping: Figshare doi:
10.6084/m9.figshare.1418061 Link: https://figshare.
com/articles/DATA_Abies_data/1418061 -
Simulations example code (python): Figshare doi: 10.
6084/m9.figshare.1385219 Link: https://figshare.com/
articles/Populations_simulation/1385219 - Bayesian
GST inference code and example (BUGS): Figshare
doi: 10.6084/m9.figshare.1385214 Link: https://
figshare.com/articles/Bayesian_GST_inference_
BUGS_encoded/1385214 - Bayesian GST
partitioning (HBM) code and example (BUGS):

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158216&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1418061
https://figshare.com/articles/DATA_Abies_data/1418061
https://figshare.com/articles/DATA_Abies_data/1418061
http://dx.doi.org/10.6084/m9.figshare.1385219
http://dx.doi.org/10.6084/m9.figshare.1385219
https://figshare.com/articles/Populations_simulation/1385219
https://figshare.com/articles/Populations_simulation/1385219
http://dx.doi.org/10.6084/m9.figshare.1385214
https://figshare.com/articles/Bayesian_GST_inference_BUGS_encoded/1385214
https://figshare.com/articles/Bayesian_GST_inference_BUGS_encoded/1385214
https://figshare.com/articles/Bayesian_GST_inference_BUGS_encoded/1385214


Abies alba population pairs (low and high elevations) across the species’ southern distribu-

tion range, where the effects of climatic selection are expected to be the strongest. For com-

parison, a single population pair from the closely related species A. cephalonica was also
analyzed. The hierarchical model did not detect any pattern of adaptive divergence to alti-

tude replicated in the different study sites. Instead, idiosyncratic patterns of local adaptation

among sites were detected by within-site approaches.

Conclusion

Hierarchical approaches may miss idiosyncratic patterns of adaptation among sites, and we

strongly recommend the use of both hierarchical (multi-site) and classical (within-site)

approaches when addressing the question of adaptation across broad spatial scales.

Introduction
Local adaptation is the evolutionary process by which populations diverge toward different
phenotypic and genetic optima in response to their local ecological conditions. Forest trees
provide numerous examples of adaptive divergence across a variety of spatial scales, and local
adaptation is supposedly a key process of tree populations’ evolution and species’ diversifica-
tion [1]. Indeed, forest tree species are often widely distributed across sharply contrasted envi-
ronmental conditions, and local adaptation is favored in trees as a result of large population
sizes and high levels of genetic variation for fitness-related traits [2–12]. In particular, climate
is one of the most important drivers of adaptation in forest tree populations [1, 10, 11, 13–18]
and understanding the molecular bases of adaptation to climatic conditions is essential to accu-
rately predict trees’ responses to global climate change (GCC, [19]). European forests are facing
enormous threats from rapid GCC with increasing frequency and intensity of summer
drought, while considerable uncertainties exist about plants potential to respond to future
warming and declining moisture availability [20]. Although recent evidence suggests that pol-
len flow can connect populations more than 102−103 km apart [21], escaping GCC through
migration will also require substantial seed dispersal, which can be a limiting factor for many
tree species. Those populations will thus have to cope locally with environmental changes,
through individual physiological tolerance (i.e. phenotypic plasticity) in a proximate time (a
time period corresponding to the individual lifespan), and through evolutionary change (i.e.
genetic adaptation over generations, [22, 23]). Notwithstanding large genetic variation and
potentially fast adaptation, there is only anecdotal evidence that forest trees can genetically
adapt to contemporary environmental change over a limited number of generations. In this
context, studying species at the limits of their distribution range is particularly important for
predicting the future evolution of species and their peripheral populations [10].

Outlier methods (i.e. FST-based outlier detection tests) are frequently used to study local
adaptation by identifying loci showing strong differentiation across populations [13, 24]. Their
basic rationale is that loci influenced by natural selection toward different genetic optima
across populations (i.e. divergent selection) are expected to be more differentiated than neutral
loci, while loci subject to selection toward the same optimum across populations (i.e. homoge-
nizing selection) are expected to be less differentiated than neutral ones [25–29]. Despite its
conceptual simplicity, the FST–outlier approach suffers from several limitations, e.g. its sensitiv-
ity to heterogeneity in demographic histories among populations and lineages [30, 31], subse-
quent complex spatial structuring [27, 32, 33] and variations in recombination and linked
selection across the genome [34]. To overcome these problems, it is recommended to apply
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different methods to reduce the risk of false positives [35–37] and to use replicated population
comparisons [31, 32]. Two approaches are widely used to identify outliers under selection: the
coalescent approach (FDIST) by Beaumont and Nichols [26] and the Bayesian method
(BAYESCAN) by Foll and Gaggiotti [28]. In particular, Bayesian modelling is very powerful to
empirically calibrate complex models without a priori assumptions about the magnitude of
parameters to infer [38]. This approach has revolutionized the field of population genetics [39,
40] and is now commonly used to analyze the genetic structure of populations [41–43] and to
identify outliers for selection [28]. Moreover, the Bayesian FST-outlier selection test developed
by Foll & Gaggiotti [28] has been shown to generally result in lower type I and II error rates
than the original coalescent method by Beaumont and Nichols [26].

Although candidate gene approach has proved to be effective in detecting adaptive genetic
differentiation in species with large genomes [18, 44–47], only few studies attempted to detect
divergent selection to altitude using replicated population pairs spread across large spatial
scales. Indeed, developing ad hocmodels able to analyze replicated population pairs [31] is nec-
essary to address the question of local adaptation in natural settings using replicated sampling
designs. This is important since failing to account for demographic history [30, 48] and, more
generally, for hierarchical genetic structure [27, 36, 49, 50] can lead to a lack of detection power
or to the detection of false positives when analyzing replicated populations pairs simulta-
neously. It is thus necessary to develop methods adapted to large datasets and able to reduce
the detection of false positives [27, 32, 36, 51–56].

The main objective of this work was to identify molecular evidence of adaptation to altitude
in a conifer tree, Abies albaMill., by sampling replicated populations pairs at study sites spread
across its southern distribution range, where populations are expected to face strong selective
pressures [10, 57]. To this end, a Bayesian model that explicitly considers both the replication
of the environmental contrast ‘low versus high’ elevation and the hierarchical structure among
replicated sites was developed. Pairs of populations were sampled at nine A. alba study sites
plus one additional site of the congeneric species A. cephalonica Loudon. About 1600 individu-
als were genotyped using 273 SNPs within expressed sequences (ESTs), with the aim of deci-
phering the genetic outcomes of local selection in a keystone European forest tree species.

Material and Methods

Ethics statement
Adult trees of A. alba were sampled in nine study sites in France, Italy, Bulgaria, and Romania
(sites n°1 to 9). In France (sites n°1 to 5), no specific permission was required. Leaf sampling
was nondestructive and carried out on public forest lands. In Italy (sites n°6 and 7), the sam-
pling was authorized by the 'Ente Parco Nazionale del Gran Sasso e Monti della Laga'. In Bul-
garia (site n°8), the sampling was carried out with permission and under the supervision of the
‘Pirin National Park Administration’. In Romania (site n°9), the sampling was carried out with
permission from the private owner of the forest site.

In addition, one natural population of A. cephalonica was sampled in the Peloponnese, Greece
(site n°10). The permission was given by the General Directorate for the Protection and develop-
ment of Forests and Rural Environment of the Greek Ministry for Environment and Energy.

Field studies did not involve endangered or protected species.

1. Biological model
Silver fir (A. albaMill., Pinaceae) is a widespread European conifer occurring in mountainous
regions of central and southern Europe, usually between 500 and 1500 meters [58]. It is a keystone
species of mountain forests with high ecological and economic value. A. alba populations belong to
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at least three main lineages (Pyrenees, Apennines and Balkan) that probably diverged during the
Pleistocene as they remained at least partly isolated in multiple glacial refugia during Quaternary cli-
matic cycles, including the last glacial maximum [59]. In addition, adaptive variations have already
been reported in this species for quantitative traits, isozymes, and candidate genes [18, 60–63].

An additional study site of its congeneric species, Greek fir (A. cephalonica Loudon, [64])
was included in this study and treated separately from A. alba study sites to test whether local
adaptation may be shared by two congeneric species. Greek fir is an endemic fir species wide-
spread in the mountains of central and southern Greece from 400 to 1800 meters. Despite
slight genetic divergence between the two fir species, they are closely related and able to pro-
duce fertile hybrids [59, 65, 66].

2. Sampling strategy and DNA extraction
Adult trees of A. alba were sampled in nine study sites located along the southern edge of the
species distribution range, from the French Pyrenees to Romania (Fig 1, sites n°1 to 9), at two
discrete elevations within each site (‘low’ versus ‘high’). One natural population of A. cephalo-
nica located in the Peloponnese (Greece) was sampled according to the same strategy (site n°
10). The location of the study sites and the sampling scheme are presented in Table 1. Material
from the four French Alps sites is the same as in Roschanski et al. [62]. Genomic DNA was
extracted by LGC Genomics (Middlesex, United Kingdom).

3. SNP design, genotyping, blastX and functional annotation
A total of 763 SNPs and surrounding sequences derived from a transcriptome assembly [67]
were sent to LGC Genomics (Middlesex, UK) for KASP assay design. Candidate genes were
selected based on a specific annotation procedure described in details by Roschanski et al.
(2013) [67]. This set of SNPs has further been enriched by including transcripts related to

Fig 1. Genetic structure. Location of the study sites (A. alba, sites 1 to 9 and A. cephalonica, site 10) and
genetic structure of A. alba populations revealed by STRUCTURE for K = 2 (top) and K = 4 (bottom). The map
was created in ArcMap v.9.3 (ESRI. Redlands, CA). The European basemap is copyrighted by EUROSTATS
(EuroGeographics for the administrative boundaries) and is available at: http://ec.europa.eu/eurostat/web/
gisco/geodata/reference-data/administrative-units-statistical-units. The black area shows the distribution
range of A. alba (according to EUFORGEN 2009, http://www.euforgen.org). Study sites IDs are described in
Table 1.

doi:10.1371/journal.pone.0158216.g001
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drought based on gene ontology as described in Roschanski et al. (2016) [62] (for more details
see these two related articles). Among the 763 SNPs tested for genotyping in the present study,
273 SNPs located within 177 transcripts were found to be amplifiable and polymorphic. These
273 SNPs were thus selected to genotype samples from the nine A. alba sites (n°1 to 9) plus the
unique A. cephalonica site (n°10). Due to technical reasons, however, only 243 SNPs were suc-
cessfully genotyped for the silver fir site of the Pirin Mountains (site 8, Bulgaria) and for the
Greek fir site of Menalo Mt (site 10, Greece).

After genotyping, a standardized (with uniform parameters) and deeper (including KEGG
pathways and enzyme codes) annotation of the targeted transcripts was realized. For this, the
targeted transcripts were blasted (blastX) and annotated using Blast2Go software [68] with
minimum e-value = 10−6, annotation cut-off = 55 and GOWeight = 5. This extended func-
tional annotation was consistent with the hypothesis of climatic adaptation for a majority of
them, confirming thus that the targeted transcripts can be reasonably considered as candidates
for selection. This dataset is thus a non-random genome-scan enriched in candidate genes
which is more relevant than classical genome-scans [69] because SNPs located in expressed
candidates are more likely to experience selection than SNPs randomly sampled from the
entire genome.

SNP design, blastx, functional annotation and genotyping are provided on Figshare doi: 10.
6084/m9.figshare.1418061 (https://figshare.com/articles/DATA_Abies_data/1418061).

4. Genetic structure analysis
Genetic structure was analyzed using STRUCTURE version 2.3 [42, 70]. Five independent runs
for each K value ranging from 1 to 20 were performed under the admixture model, with a
burn-in period of 15,000 followed by 25,000 iterations. The rate of change in L(K) across suc-
cessive K values (ΔK) was calculated following Evanno et al. [71] using the web application
‘STRUCTURE Harvester’ [72].

Table 1. A. alba and A. cephalonica study sites and sampling design.

Number of samples Elevation (meters)

Study
site ID

Country Study site Latitude (decimal
degrees) WGS84

Longitude (decimal
degrees) WGS84

low
elevation

high
elevation

low
elevation

high
elevation

Abies albaMill.

1 France Ossau Valley
(Pyrenees)

42.855 -0.457778 81 82 825 1562

2 France Ventoux (Alps) 44.17511 5.2437 249 290 995 1340

3 France Lure (Alps) 44.11422 5.83912 55 56 1410 1628

4 France Issole (Alps) 44.0242 6.46244 49 47 1108 1585

5 France Vesubie (Alps) 43.97074 7.36577 43 45 1078 1497

6 Italy Valle della Corte
(Apennines)

42.70347 13.37576 48 48 1325 1580

7 Italy Colle dell’Abete
(Apennines)

42.66772 13.42677 47 47 1375 1600

8 Bulgaria Bansko (Pirin
Mountains)

41.843055 23.3852 48 48 1175 1750

9 Romania Arges (Fagaras
Mountains)

45.4411 24.6947 95 94 1070 1410

Abies cephalonica Loudon

10 Greece Menalo Mt
(Peloponnese)

37.68333 22.20639 48 48 1130 1525

TOTAL number of samples = 1568 763 805

doi:10.1371/journal.pone.0158216.t001
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5. Bayesian modelling, step 1: Bayesian allelic frequencies inference
and GST estimation
The Bayesian modelling approach is composed of two independent steps. The first step aims at
inferring allelic frequencies and estimating pairwise GST, while the second step aims at parti-
tioning the GST inferred through the first step into genome-wide and locus-specific parameters.

Allelic frequencies (pi,m and qi,m) at each bi-allelic marker (m) within each population i (i.e.
each site×elevation combination) were inferred independently for each marker and population
from allelic counts (ni,m and Ni,m) through the equations:

Ni;m � Binðpi;m;Ni;mÞ
qi;m ¼ 1� pi;m

The number of observations of a given allele (ni,m) within a population i at a bi-allelic
markerm is sampled from a binomial distribution with parameters pi,m (which is the allelic fre-
quency in population i at markerm) and Ni,m (which is the total number of allelic counts in
population i at markerm). A Beta distribution was chosen as prior for allelic frequencies pi,m:
pi,m~β(1,1).

In order to take into account uncertainties about allelic frequencies, pairwise GST between
populations (i,j) for each marker (m) were estimated within the model, using Nei’s fixation
index [73]:

GSTði;jÞ;m ¼ ðHTði;jÞ;m � HSði;jÞ;mÞ=HTði;jÞ;m

with

HTði;jÞ;m ¼ 1

2
ðpi;m þ pj;mÞðqi;m þ qj;mÞ

and

HSði;jÞ;m ¼ ðpi;mqi;mÞ þ ðpj;mqj;mÞ

The model was written in BUGS [74]. The code is available on Figshare doi: 10.6084/m9.
figshare.1385214 (https://figshare.com/articles/Bayesian_GST_inference_BUGS_encoded/
1385214).

6. Bayesian modelling, step 2: Bayesian hierarchical outlier detection
(HBM = Hierarchical Bayesian Model)
Because our sampling design consisted of 9 replicates of local elevations spread across a broad geo-
graphical scale, we designed a hierarchical Bayesian model (hereafter ‘HBM’) to partition pairwise
GST into genome-wide and locus-specific components under a two-level hierarchical model.

The median of GST inferred through the first step was used as input in the second step. A
logit transformation was applied to GST values and a classical linear model was used to partition
transformed GST into genome-wide effects corresponding to the different levels of neutral
genetic structuring (clusters, sub-clusters within clusters and elevation), and into locus-specific
effects related to elevation:

log itðGSTði;jÞ;mÞ � Nðmeanði;jÞ;m; tRÞ
meanði;jÞ;m ¼ mG þ ðkClusði;jÞmClusÞ þ ðkSubClusði;jÞmSubClusÞ þ ðkElevði;jÞðmElev þ yElevðmÞÞÞ

where
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kClus(i,j), kSubClus(i,j) and kElev(i,j) are binary matrices describing whether the two populations
(i,j) belong to different clusters, to different sub-clusters within a same cluster, or to different
elevations:

kClusði;jÞ ¼
0

1

 !

kClus(i,j) = 1 if the two populations (i,j) belong to different clusters, kClus(i,j) = 0 otherwise;

kSubClusði;jÞ ¼
0

1

 !

kSubClus(i,j) = 1 if the two populations (i,j) belong to different sub-clusters within the same
cluster, kSubClus(i,j) = 0 otherwise;

kElevði;jÞ ¼
0

1

 !

kElev(i,j) = 1 if the two populations (i,j) inhabit different elevation classes (low or high eleva-
tion), kElev(i,j) = 0 otherwise.

μG, μClus, μSubclus and μElev are genome-wide parameters describing the extent of genome-
wide differentiation between clusters, sub-clusters within clusters and between elevations. μG is
a global mean of differentiation that is inferred from all population pairs and captures the
global extent of differentiation among all population pairs. μClus captures the genome-wide
effect of belonging to different clusters, μSubClus the genome-wide effect of belonging to differ-
ent sub-clusters within a same cluster, and μElev the genome-wide effect of belonging to differ-
ent elevations (whatever the cluster or sub-cluster).

θElev(m) are locus-specific parameters describing the extent of locus-specific genetic differen-
tiation among populations belonging to different elevations. These parameters capture locus-
specific effects of differentiation caused by elevation, assuming a common effect of elevation in
all study sites whatever the cluster and sub-cluster.

Genome-wide and locus-specific parameters had non-informative priors:
τR, is the residual precision (i.e. inverse of the residual variance 1/σ²R).

mG � Nð0; tGÞ

with precision (i.e. inverse of the variance) τG = 0.0001, meaning:

s2
G ¼ 1

tG
¼ 1

0:0001
¼ 10000

mClus � Nð0; tClusÞ

mSubClus � Nð0; tSubClusÞ

mElev � Nð0; tElevÞ

Altitudinal Adaptation in European Firs

PLOS ONE | DOI:10.1371/journal.pone.0158216 July 8, 2016 7 / 26



The parameters μClus, μSubClus, and μElev are parameterized by a precision (τ = 1/σ²), follow-
ing a Gamma distribution:

tClus � Gammað0:01; 0:01Þ
tSubClus � Gammað0:01; 0:01Þ
tElev � Gammað0:01; 0:01Þ

Similarly, the residual precision follow a Gamma distribution:

tR � Gammað0:01; 0:01Þ

At last, locus-specific parameters follow a normal distribution:

yElevðmÞ � Nð0; tmÞ

with precision τm = 0.0001 (i.e. σ²m = 10000).
To make the model identifiable, the constraint SθElev(m) = 0 was applied to the estimation of

θElev(m) parameters. θElev(m) were sorted in decreasing order. Outliers were detected by fitting a
posteriori a normal law from the inferred distribution of ordered(θElev(m)) and by attributing a
probability of being under selection to each marker. Outliers on the upper-tail of the distribu-
tion are significantly more differentiated than expected under neutrality (i.e. above the neutral
background), while outliers on the lower tail are significantly less differentiated than expected
under neutrality (i.e. below the neutral background). Outliers above the neutral background
are thus good candidates for divergent selection between environmental contrasts repeated
among the different study sites. Outliers below the neutral background may have different ori-
gins: they may alternatively reflect equilibrium allelic frequencies between elevations resulting
from homogenizing selection, or rare alleles in one or few study sites caused by purifying selec-
tion or other neutral evolutionary processes.

The code is available on Figshare doi: 10.6084/m9.figshare.1385218 (https://figshare.com/
articles/HBM_Hierarchical_GST_partitioning_and_Outlier_detection_BUGS_encoded_/
1385218).

6.1. Running HBM on simulated data and empirical assessment of false-discovery rate
(FDR) and false non-discovery rate (FNR). To assess the statistical power and to explore the
limits of our Bayesian modelling approach, HBM was applied to data simulated under different
selection scenarios. Simulations were performed using the software SIMUPOP [75], an individ-
ual-based forward simulation of population evolution in Python language (http://simupop.
sourceforge.net/Main/HomePage), S1 Method and Figshare doi: 10.6084/m9.figshare.1385219
(https://figshare.com/articles/Populations_simulation/1385219).

The statistical power of HBM to detect divergent selection in the replicated population pairs was
assessed through simulated datasets composed of 16 populations of N = 200 diploid individuals
each (totaling N = 3200 diploid individuals) under a hierarchical model of migration, by varying
both the number of selected loci and the selection strength (s = 1-ω with ω the fitness, S1 Method).

Two thousand iterations with a burn-in of 1000 were largely sufficient to reach chain con-
vergence and to obtain informative posteriors. The model was thus applied to simulated popu-
lations with 1, 5 or 10 loci (out of 100) under divergent selection of different strengths
(uniform among loci): s = 0.05 (weak selection), s = 0.075 (moderate selection), s = 0.1 (strong
selection), s = 0.5 and s = 0.99 (very strong selection leading to differential allele fixation at dif-
ferent elevations). The model was also applied to simulated data composed of 10 loci under
divergent selection with variable selection strengths (s) among loci: 0.06 to 0.15, 0.15 to 0.25
and 0.06 to 0.25. Finally, the power of the model was investigated in the cases of homogenizing
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selection and of a combination of homogenizing and divergent selection. In the former case,
populations with 5 loci under divergent selection with selection strength of 0.1 were simulated.
In the latter case, populations with 2 loci under divergent selection and 2 loci under homoge-
nizing selection with selection strength of 0.1 were simulated.

False-discovery rate (FDR) and false non-discovery rate (FNR) were empirically assessed
[76, 77]: FDR = V/R where V is the number of false positives and R the number of rejected
null-hypotheses, and FNR = T/(m-R) where T is the number of false negatives and (m-R) the
number of accepted null hypotheses.

6.2. Running HBM on A. alba data. Each A. alba population was assigned to a particular
cluster and sub-cluster according to the structuring detected using STRUCTURE (for K = 2 and
K = 4, see results section, S1B Fig), and the model was applied to the whole A. alba dataset using
10000 iterations with a burn-in period of 5000 iterations. The SNPs that were not genotyped in
the nine A. alba study sites were discarded, resulting in a dataset composed of 243 SNPs success-
fully genotyped in all study sites (as described in section 3 ‘SNP design & genotyping’).

7. Within-site outlier detection tests (FDIST, BAYESCAN and SBM)
Because the Bayesian model was developed to find replicated evidence of divergent selection in
replicated population pairs, it was inherently unable to detect evidence of divergent selection
particular to one or a few study sites. Thus, we tested for divergent selection between elevations
within each site through classical coalescent (FDIST) and Bayesian approaches implemented in
Arlequin and BAYESCAN respectively, plus a simplified (single-site) version of the Bayesian
model introduced in this study (hereafter ‘SBM’).

The coalescent FDIST approach [26], implemented in Arlequin [78], was run under 20000
iterations assuming an island model. BAYEsCAN v.2.1 [28] was run with a burn-in of 50000 itera-
tions, a sample size of 5000, a thinning interval of 10 (resulting in a total of 100000 iterations),
and a prior odd of 10000 [32] indicating that for every locus the neutral model is much more
likely than the model with selection (i.e. 10000 neutral loci for every one under selection).

Loci displaying a significant effect of the α-component under a FDR threshold of 0.1 were
retained. Lastly, SBM (a simplified, single-site, Bayesian model excluding genome-wide effects
of differentiation among clusters and sub-clusters) was also applied to each site using 10000
iterations with a burn-in period of 5000 iterations.

Within-site outlier-detection tests (FDIST, BAYESCAN and SBM) were applied to both A.
alba and A. cephalonica study sites. The power of within-site Bayesian methods (BAYESCAN
and SBM) was also assessed through simulated data composed of two populations of N = 1600
diploid individuals each (totaling N = 3200 diploid individuals). Monomorphic loci within
each site were discarded before within-site analyses.

8. Within-site Genotype-Environment Association tests (GEAs)
We assessed whether the genotypic frequencies were structured between elevations within each study
site through genotype-environment association tests (see the methodology flowchart in S2 Fig).

For each study site:

1. An empirical distribution of the fixation index (FIS) across loci in the entire population (low
and high elevations confounded) was drawn, with:

FIS ¼ 1� Hobs

Hexp

¼ 1� Hobs

2pq
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2. n1 = 100 FIS-values were sorted in the empirical distribution of FIS, and n1 populations of
N = 1000 diploids individuals were simulated under Hardy-Weinberg equilibrium corrected
by the different FIS-values.

3. n2 = 100 sub-populations pairs of size 500 diploid individuals (corresponding to each eleva-
tion in our real dataset) were randomly sorted from the simulated populations of N = 1000
individuals.

4. The distribution of expected genotypic frequencies across the n1×n2 = 10000 iterations was
then empirically drawn and corresponds to the expected distribution of genotypic frequen-
cies at each elevation of each study site under the hypothesis of no structuring.

5. The cumulative probability of that distribution was drawn, and a p-value was attributed to
observed genotypic frequencies at the different loci in the different sub-populations (eleva-
tions). It expresses the probability of a given genotype to be more or less present than
expected. A negative association means that the genotype is less abundant at this elevation
than expected under the hypothesis of balanced genotype frequency between elevations,
while a positive association means that the genotype is more abundant at this elevation than
expected under the hypothesis of balanced genotype frequency between elevations.

The test was applied to each study site separately. Monomorphic loci were discarded before
analyses. The test is written in R and provided in appendix (S2 Method).

Results

1. Genetic structure
STRUCTURE revealed a clear spatial structuring up to K = 4, with the highest ΔK at K = 2 fol-
lowed by a secondary peak at K = 4 (Fig 1 and S3 Fig), suggesting that the most likely number
of genetic clusters is 2: one group corresponding to western Europe (French sites) and one
group corresponding to central-eastern Europe (Italian, Bulgarian and Romanian sites). The
genetic structure remained concordant with the geographical distribution of the studied sites
until K = 4, at which a secondary ΔK peak was detected, suggesting complex hierarchical struc-
turing. At K = 4, the clusters detected at K = 2 were both split into two sub-clusters: the western
Europe cluster into two sub-clusters corresponding to western (Pyrenees) and eastern (Alps)
France, and the central-eastern Europe cluster into Italy and Balkan (Romania and Bulgaria)
sub-clusters. K = 2 and K = 4 were thus retained for defining the assignment of each population
to a given cluster and sub-cluster in the following hierarchical Bayesian approach (HBM), as
described in the Materials and Methods.

2. Multi-site outlier detection under the HBM
2.1. Results using simulated data. Running HBM on simulated data revealed high power

to detect divergent selection in the replicated population pairs under a hierarchical island
model compared to within-site approaches. Table 2 shows a summary of the empirical assess-
ment of FDR and FNR under the different selection scenarios at 5% and 1% p-value thresholds
(see also S4–S7 Figs). FDR was always very low, even in the case of a combination of homoge-
nizing and divergent selection and whatever the selection strength (s). No outliers were
detected at 1% threshold when no selection was applied in spite of strong complex neutral
genetic structure among populations, except for one false positive detected at a selection
strength (s) of 0.5. FNR was low under scenarios of strong homogenizing and divergent selec-
tion (FNR = 0%), but was high under weak to moderate selection, even more when the number
of loci was high and the selection strength was variable among loci: at a 1% threshold, the
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model missed all outliers when a selection strength of 0.05 was applied, and FNR varied
between 0% and 8% at a selection strength of 0.075 depending on the number of loci under
selection. While a 1% threshold may lack true-positives, a 5% threshold may produce false-pos-
itives. Thus, it is more conservative to retain only outliers detected at 1% threshold, as it is less
damageable to miss outliers than to produce false-positives. For this reason, a threshold of 1%
was retained.

2.2. Results obtained using A. alba data. The distributions of inferred GST between popu-
lations are displayed in S8 and S9 Figs. As expected, the mean GST decreased across levels of
genetic divergence: the differentiation between populations belonging to different clusters and
sub-clusters (GST = 0.063, S8A and S8B Fig) was slightly higher than the differentiation

Table 2. Power of the Bayesian approaches (HBM, SBM and BAYESCAN) to detect outliers for selection from simulated data. False-discovery rates
(FDR) and false non-discovery rates (FNR) were empirically assessed under different scenarios of divergent and/or homogenizing selection, by varying the
proportion of selected loci, and selection strength.

Multi-site analysis (Hierarchical model HBM) Within-site analysis

5% threshold 1% threshold SBM (threshold 1%) BAYESCAN
(PO = 10000)

Selection type Number of
selected
loci (out
of 100)

Selection
strength (s)

N
detected

FDR
(%)

FNR
(%)

N
detected

FDR
(%)

FNR
(%)

N
detected

FDR
(%)

FNR
(%)

N
detected

FDR
(%)

FNR
(%)

No selection 0 NA NA 1 100 0 NA 0 NA 0 0

Divergent 1 weak 0.05 1 0 0 0 NA 1.00 0 NA 1.00 0 0 1.00

Divergent 5 weak 0.05 1 0 4.04 0 NA 5.00 1 0 4.04 0 0 5.00

Divergent 10 weak 0.05 2 0 8.16 0 NA 10.00 1 0 9.09 0 0 10.00

Divergent 1 moderate 0.075 1 0 0 1 0 0 2 50.00 0 2 50.00 0

Divergent 5 moderate 0.075 5 0 0 3 0 2.06 3 0 2.06 5 0 0

Divergent 10 moderate 0.075 6 0 4.26 2 0 8.16 0 NA 10.00 0 0 10.00

Divergent 1 strong 0.1 1 0 0 1 0 0 1 0 0 1 0 0

Divergent 5 strong 0.1 5 0 0 5 0 0 4 0 1.04 5 0 0

Divergent 10 strong 0.1 10 0 0 3 0 7.22 1 0 9.09 0 0 10.00

Divergent 1 very
strong

0.5 2 50.00 0 2 50.00 0 1 0 0 1 0 0

Divergent 5 very
strong

0.5 5 0 0 5 0 0 5 0 0 5 0 0

Divergent 10 very
strong

0.5 10 0 0 10 0 0 10 0 0 10 0 0

Divergent 1 very
strong

0.99 2 50.00 0 1 0 0 1 0 0 1 0 0

Divergent 5 very
strong

0.99 5 0 0 5 0 0 5 0 0 5 0 0

Divergent 10 very
strong

0.99 10 0 0 10 0 0 10 0 0 11 9.09 0

Divergent 10 variable
moderate

0.06–
0.15

8 0 2.17 4 0 6.25 1 0 9.09 0 0 10.00

Divergent 10 variable
strong

0.16–
0.25

11 9.09 0 6 0 4.26 8 0 2.17 11 9.09 0

Divergent 10 variable
moderate
to strong

0.06–
0.24

10 0 0 10 0 0 4 0 6.25 0 0 10.00

Homogenizing 5 strong 0.1 5 0 0 5 0 0 0 NA 5.00 0 0 5.00

Homogenizing
/ Divergent

2/2 strong 0.1 2/2 0 0 2/2 0 0 2/0 0 2.00 0/2 0 2.00

doi:10.1371/journal.pone.0158216.t002
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between populations belonging to the same cluster but different sub-clusters (GST = 0.056 S8C
and S8D Fig), which was subsequently higher than the differentiation between populations
belonging to the same cluster and the same sub-cluster but different elevations (GST = 0.013,
S8E Fig). This resulted in decreasing genome-wide parameters inferred by HBM from broad to
local scales: μCluster = 1.3 (with 95%CI = [1.28;1.35])> μSubCluster = 1.14 [1.1;1.19]> μElev =
-0.03 [-0.06;-0.001]. The extent of differentiation between elevations within sub-clusters was
quite low compared to the extent of differentiation among populations belonging to different
clusters (GST = 0.063) and sub-clusters (GST = 0.056): the GST varied between 0.003 in site 9
(Romania) and 0.015 in site 4 (Issole, France) (S9 Fig).

HBM did not detect outliers above the neutral background suggesting no tendency of divergent
selection between high and low elevations replicated in the different sites. Two SNPs were detected
below the neutral background: SNP 26 and SNP 111 (Fig 2 and S1 Table). However, these two out-
liers were caused by rare variants rather than by homogenizing selection. SNP 26 was monomor-
phic except in sites 2 and 5 (Ventoux and Vesubie, East France): the minor allele was brought by
three and one heterozygotes at low elevation in each site, respectively. SNP 111 was monomorphic
except in site 5 at low elevation and was represented by one homozygote. These two SNPs were
removed from within-site outlier detection tests in sites in which they were monomorphic.

3. Within-site outlier detection
3.1. Results using simulated data. SBM was applied to simulated data corresponding to

individual study sites, and was less powerful than HBM as it failed to detect true positives in

Fig 2. Hierarchical (multi-site) outlier detection.Result of HBM (hierarchical Bayesian approach) on the
complete A. alba dataset. θElev(m) are locus-specific effects on genetic differentiation among populations
belonging to different elevations. On the left, the estimated values of θElev(m) with their 95% posterior credible
intervals. The markers are sorted by decreasing values of θElev(m) and the dotted lines represent the inter-
quantile limits [Q1-1.5(Q3-Q1); Q3+1.5(Q3-Q1)]. On the right, the distribution of θElev(m) and the fitted normal
distribution. The arrow indicates the two loci detected below the neutral background in the complete dataset
under a 1% probability threshold.

doi:10.1371/journal.pone.0158216.g002
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many cases: under selection strengths of 0.1 and below, as well as under variable selection
strength among loci (Table 2).

The detection power of SBM (with 1% threshold) and BAYESCAN (with prior odd 10000)
was quite comparable under scenarios of uniform selection among loci, with minor differences
only. However, BAYESCAN was less powerful than SBM under scenarios of variable selection
among loci, as it produced more false-positives and more false-negatives.

The hierarchical approach implemented in HBM (under 1% threshold) was generally more
powerful than within-site analyses, as the FDR was equal to 0% in all cases except one (one loci
under very strong selection of strength s = 0.5). The FNR of HBM was also lower than the FNR
of intra-site approaches, except in one scenario (10 loci under variable selection among loci,
with selection strength ranging between s = 0.16 and s = 0.25) at which HBM detected only 6
outliers (i.e. four false-negatives) while SBM detected 8 outliers (i.e. two false-negatives) and
BAYESCAN detected 11 outliers (i.e. one false-positive).

3.2. Results obtained using Abies data. A summary of the outliers detected using the dif-
ferent within-site approaches is provided in Fig 3, Table 3 and S1 Table.

The coalescent approach (FDIST) detected a total of 97 outliers, all sites confounded: 64
outliers were below the neutral background and 33 outliers were above the neutral background
(S1 Table). The number of outliers in each study site detected by FDIST varied between five in
the site 7 (Italy ‘Colle dell’Abete’) and twenty-two in site 9 (Romania). In site 8 (Bulgaria), the
differentiation between elevations was too low to infer meaningful migration rates and to iden-
tify outliers through FDIST.

SBM detected a total of 16 outliers (S10 Fig and S1 Table) located in different transcripts:
three in site 1 (SNPs 29, 65 and 194), four in site 2 (SNPs 56, 69, 113, and 258), three in site 5
(SNPs 99, 157 and 234), two in site 6 (SNPs 61 and 84), one in site 7 (SNP 203), two in site 9
(SNP 58 and 255), one in site 10 (SNP 161). In particular, SBM validated 12 outliers above the
neutral background detected by FDIST (SNPs 29, 58, 61, 65, 84, 99, 113, 157, 161, 203, 255 and
258, Fig 3 and S10 Fig) and detected three additional outliers below the neutral background not
detected by FDIST (SNPs 69, 194 and 234). Additionally, SNP 56 was detected below the neu-
tral background by both FDIST and SBM but in different sites (1 and 2 respectively).

BAYESCAN detected no outliers with a prior odd of 10000.

Fig 3. Within-site outlier detection.Results of FDIST and SBMwithin each A. alba and A. cephalonica
study sites. It is noteworthy that some outliers were detected in two study sites.

doi:10.1371/journal.pone.0158216.g003
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4. Within-site Genotype-Environment Association tests (GEAs)
GEAs were conducted in order to address the question of altitudinal adaptation at the genotype
level. GEAs aimed at testing whether a genotype was more or less abundant at a given elevation
than expected under the hypothesis of balanced genotypic frequencies between elevations.
Among the 13374 associations tested (all sites, elevations, SNPs and genotypes confounded),
10306 (77.06%) were non-significant, while 3068 (22.94%) were significant, suggesting either a
positive or a negative association of a given genotype (homozygote or heterozygote) at a given
(low or high) elevation.

Because a large proportion of outliers under divergent selection previously detected are
expected to be false-positives, we further focused on the 12 consistent outliers for divergent
selection detected twice by the two independent approaches FDIST and SBM respectively
(Table 3). For all of them, significant GEAs were observed in the study sites where they were
detected, with contrasted patterns between low and high elevations (S2 Table). For example, at
SNP 157, homozygotes (GG) were more abundant at low elevation than expected under the
hypothesis of balanced genotypic frequencies between elevations (resulting in a positive associ-
ation) in the study site 5 (where this SNP was detected as outlier for divergent selection).
Homozygotes (GG) were also less abundant at high elevation than expected (resulting in a neg-
ative association) and heterozygotes (AG) were more abundant at high elevation than expected
(resulting in a positive association).

Discussion

1. Power of Bayesian modelling approaches (HBM, SBM and
BAYESCAN) to detect homogenizing and divergent selection in
replicated population pairs (simulations)
Bayesian approaches are known to be more stringent than methods based on coalescent simula-
tions for identifying FST-outliers [36, 50]: even if Bayesian approaches may miss some true-posi-
tives, they often produce less false-positives than the coalescent approach by Beaumont and
Nichols [26]. This observation was confirmed in our study, where significantly more outliers were
detected using FDIST than using BAYESCAN or SBMwhen applied toA. alba data (S1 Table).

Table 3. Consistent outliers detected twice above the neutral background (by two different
approaches). The first column describes the SNP number, the second column the SNP ID. The third column
describes the study site in which the outliers were detected and the method used: FDIST (within-site coales-
cent method) and SBM under a 1% threshold (within-site Bayesian method). Study sites IDs are described in
Table 1. The complete list of outliers detected, all methods confounded, is provided in S1 Table.

SNP N° SNP ID Study site ID (method)

29 contig02088.183 Site 1 (FDIST),(SBM)

58 contig03942.73 Site 9 (FDIST),(SBM)

61 contig04538.344 Site 6 (FDIST),(SBM)

84 contig06968.51 Site 6 (FDIST),(SBM)

113 contig11291.4439 Site 2 (FDIST),(SBM) / Site 7 (FDIST)

157 contig16125.157 Site 5 (FDIST),(SBM)

161 contig16332.419 Site 1 (FDIST) / Site 10 (FDIST),(SBM)

203 contig20694.1090 Site 7 (FDIST),(SBM)

255 contig09373.367 Site 9 (FDIST),(SBM)

65 contig05004.249 Site 1 (FDIST),(SBM)

99 contig08649.617 Site 5 (FDIST),(SBM)

258 contig15452.813 Site 2 (FDIST),(SBM)

doi:10.1371/journal.pone.0158216.t003
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The power of BAYESCAN (with prior odd 10000) and SBM was also explored in more
details through simulated data, revealing minor differences in the detection power of the two
approaches (Table 2). These differences are probably caused by differences between the two
methods, including mathematical formulation, programming, Markov Chain Monte Carlo
sampling algorithm, and decision strategy. Especially, BAYESCAN and the Bayesian models
developed here (HBM and SBM) use different differentiation indices: BAYESCAN estimates a
locus-specific-population FST close to Wright’s FST, while the models introduced here use pair-
wise Nei’s GST. Locus-specific GST values were globally lower than FST values (μ = 0.010 vs
0.017), but also more variable (σ = 0.013 vs 0.010) which probably facilitates the inference of
locus-specific parameters (S11 Fig). In addition, HBM and SBM partition pairwise GST between
populations into genome-wide and locus-specific parameters, while BAYESCAN partitions
locus-population-specific FST coefficients that measure the shared ancestry within each of the
subpopulations. Moreover, the models encoded here do not use a composite likelihood to iden-
tify outliers and thus do not require locus-specific prior odds. Instead, there is no a priori
assumption and a p-value is directly attributed to each marker from the inferred normal distri-
bution of locus-specific parameters, leading to faster computation and allowing the detection
of outliers below and above the neutral background.

Simulations revealed the high power of the hierarchical approach to detect both homogeniz-
ing and divergent selection in replicated population pairs: the false discovery rate was always
very low, and outliers detected under a 1% threshold may be reasonably considered as truly
under selection (Table 2 and S5–S7 Figs). However, HBMmay fail to detect some loci under
selection and the false-non-discovery rate may be high when the selection strength is weak
(because the extent of differentiation is not strong enough to be outside the neutral back-
ground), particularly when many loci are selected and the selection strength is variable among
loci (because the distribution of locus-specific parameters is empirically drawn and becomes
wider when the number of selected loci increases). Nevertheless, HBM was more powerful than
within-site Bayesian approaches (BAYESCAN and SBM) as it detected no (or few) false-posi-
tives with a FNR lower than intra-site approaches. In particular, it was able to detect replicated
patterns of locus-specific divergence caused by moderate to strong selection strength that have
not been detected when analyzing the different study sites independently through SBM
(Table 2). This reinforces the idea that testing for local adaptation not only requires replicated
population pairs at different study sites, but also the use of ad hocmodels able to take into
account replicated sites simultaneously with respect to their genome-wide genetic structure.
On the other hand, HBM was designed to detect patterns of local adaptation replicated in the
different study sites, but it was intrinsically unable to detect divergent selection particular to
one or a few sites. Therefore, such hierarchical approach remains highly sensitive to heteroge-
neous selection among replicated population pairs, and testing for adaptation within each site
remains essential to finely explore the process of adaptation within sites spread across broad
geographical scales.

2. Altitudinal adaptation across the southern distribution range of Abies
alba
Altitudinal gradients have attracted much attention because they display strong ecological vari-
ations (e.g. temperature, solar irradiance and precipitation) over short geographical scales [10,
37, 79, 80], and many studies have provided evidence of local adaptation to elevation in a vari-
ety of plant species at both phenotypic [81–83] and molecular levels [18, 19, 61, 84–88]. This
study addresses the question of altitudinal adaptation across large spatial scales, fromWestern
to Eastern Europe, using a dataset composed of 273 expressed SNPs located in candidate genes.
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The analysis of neutral genetic variation showed a clear hierarchical genetic structure into
clusters (K = 2) and sub-clusters (K = 4), as further confirmed by decreasing estimates of
genome-wide parameters across geographical scales (μCluster> μSubCluster> μElev). This observa-
tion was concordant with a classical ‘isolation-by-distance’model, in which the extent of neu-
tral genetic differentiation increases with geographic distance because of limitations in gene
flow caused by the geographic distance itself.

The hierarchical Bayesian model (HBM) detected only two SNPs below the neutral back-
ground (SNPs 26 and 111) but no common trend of divergent selection between elevations in
sites spread across the whole southern distribution of silver fir. On the contrary, within-site
analyses allowed the detection of many outliers (S1 Table) but most of them are probably false-
positives, as the majority was detected in only one study site and by the coalescent (FDIST)
approach only, and not validated by any of the Bayesian approaches (SBM or BAYESCAN).
These genes may either be neutral or under too weak selection strength to be detected by the
Bayesian approaches, thus making the distinction between true and false-positives extremely
complicated. Especially, the demographic histories experienced by populations inhabiting the
different sites (for example bottleneck or fast expansion) would also affect allele frequency
spectra, resulting in the discovery of false-positives or false-negatives by selection tests [27, 89,
90]. Even if Bayesian approaches [25, 28] are known to be less sensitive to neutral processes
and less prone to detect false-positives than the coalescent approach [36, 50, 91], they may
remain sensitive to demographic processes [32, 36, 50, 55, 56, 92]. However, the confounding
effects of demography and selection have not been fully explored yet, and it is impossible to
conclude whether the genes showing a departure from neutral expectations in one site and
only detected by a single approach are true-positives or not, without knowing if the different
populations have experienced strong demographic changes. In addition, the relative measures
of divergence used by these methods (FST, GST) are sensitive to heterogeneous recombination
rates in the genome. For example, centromeric or rearranged regions, where recombination is
reduced, are expected to be more differentiated than the rest of the genome [34], and SNPs
located in these regions are likely to be false-positives. However, the location of the targeted
contigs and SNPs on the chromosomes of the species is unfortunately unknown. At last, the
SNPs detected below the neutral background cannot be viewed as being involved in local adap-
tation caused by elevation and will not be considered thereafter.

Twelve SNPs (Table 3) may nonetheless be reasonably considered under divergent selection
in one study site (SNPs 29, 58, 61, 65, 84, 99, 113, 157, 161, 203, 255 and 258), as they were
detected above the neutral background by both FDIST and SBM and they were corroborated
by contrasted GEAs between elevations at study sites in which they were detected. It is however
unclear why these 12 SNPs were not detected by BAYESCAN, and several reasons may be
invoked: (i) the selection strength may have been too weak to allow their detection by BAYES-
CAN (as suggested by the results on simulated data), (ii) the dataset size may be too small to
allow a reliable outlier detection, and/or (iii) a prior odd of 10000 may be too stringent to detect
outliers in scans of expressed candidate SNPs [88]. In fact, prior odds up to 10000 (that means
that each SNP is ten thousand times more likely to be neutral than to be under selection) are
commonly used to identify candidate loci in the context of genome wide association studies
with millions of SNPs. However, each SNP analyzed through a genome scan of candidate genes
is expected to be as much or more likely selected than neutral, and a prior odd of 10000 would
probably lack true positives in this context. In addition, local demographic events may also
produce false-positives, but the sensitivity of the different methods used (FDIST, BAYESCAN,
SBM) has not been explored in this study.

These 12 consistent outliers (out of 273 analyzed) were particular to one study site, and the
proportion of consistent outliers within each study site varied between 0% and 0.95% (S3
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Table). These estimates may however be biased by the size of the dataset. Indeed, this study
focused on a set of 273 SNPs within 177 transcripts, which is far from being representative of
the entire genome, and local adaptation may have targeted other genes not examined in this
study. Moreover, the SNPs analyzed here are located in expressed candidate genes and there-
fore this set of SNPs is probably enriched in selected SNPs, which may result in an over-estima-
tion of the true proportion of selected SNPs in the entire genome. Nevertheless, these estimates
are comparable to those obtained by other experimental surveys of altitudinal adaptation in
Fagus sylvatica. In the Mediterranean area, Jump et al. [93] detected one outlier locus out of
241 scored (0.4%) in the Mountains of Catalonia in north-eastern Spain, while Csilléry et al.
[88] detected only three marginally significant outliers out of 546 scored SNPs (0.5%) in the
Mont Ventoux study site in south-eastern France. Also, Pluess andWeber [94] detected 13 out-
lier loci out of 517 scored (2.5%) in the lowland forests of Switzerland. In Abies alba, adaptive
variations have recurrently been reported for quantitative traits, isozymes, and candidate genes
(sequences and SNPs data) in European wild populations [18, 60–63]. In particular,
Roschanski et al. [62] recently provided evidence of local adaptation to drought and cold toler-
ance in the French Alps at both molecular and phenotypic levels. They identified 16 outlier out
of 267 SNPs (~6%) that showed patterns of divergent selection, and 8 genes containing SNPs at
which allelic frequencies were correlated with bioclimatic variables. Among the SNPs they ana-
lyzed, one (0.37%) showed evidence of adaptation to altitude. In addition, two consistent SNPs
detected here (SNP 65 in the Pyrenees and SNP 157 in the French Alps) were also detected as
being involved in adaptation by Roschanski et al., providing thus additional evidence of local
adaptation in A. alba.

Taken together, the results obtained through hierarchical and within-site approaches
revealed only weak evidence of local adaptation to altitude, as idiosyncratic patterns among
study sites were detected by the within-site FDIST and SBM approaches only (see for example
variations in genotypic frequencies among sites at SNP 255, Fig 4). It is however not surprising
to find site-specific evidence of selection not detected by the hierarchical (multi-site) approach,
as the process of local adaptation to elevation is probably confounded with the processes of
adaptation caused by large-scale factors not explored in this study (i.e. variations in environ-
mental conditions between clusters, sub-clusters or sites). Indeed, the analyzed study sites may
not be exactly ‘true’ replicates of the altitudinal contrasts as the range of ecological conditions
might vary among them. In particular, the sampled populations occur at different elevations
(Table 1), and the ecological conditions they experience may differ in many ways, including
temperature, solar irradiance, length of the growing season, rainfall, soil type, water and nutri-
ents availability and/or pathogens. In addition, the populations inhabiting the different study

Fig 4. Idiosyncrasy between sites.Observed genotypic frequencies in the different sites at SNP 255
(genotypes CC, CT and TT). SNP 255 was detected by two within-site outlier detection methods (FDIST and
SBM) in site 9 (purple line), but in no other site. In addition, significant GEAs were detected in site 9 (S2
Table).

doi:10.1371/journal.pone.0158216.g004
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sites belonged to different lineages/gene pools as revealed by the complex biogeographic struc-
ture fromWest to East Europe: these populations may thus have adapted differently because
different ancestral gene pools were exposed to selection. It is thus not surprising that different
loci would have been under selection in the different study sites.

The 12 consistent outliers for divergent selection detected twice by within-site approaches
and validated by significant GEAs were the strongest possible targets of natural selection, and
are thus good candidates for exploring in detail the molecular bases of altitudinal adaptation in
Abies. These SNPs are probably independent and not significantly linked to each other, or to
other SNPs not analyzed in this study. They are located in different expressed genes (i.e. con-
tigs, with size varying between 418 and 2340 bp, S4 Table) and we do not expect the presence
of other -not genotyped- SNPs in the same transcripts or in other transcripts adjacent to those
targeted in this study. Moreover, linkage disequilibrium is supposed to decay fast within genes
in natural settings (within 100 bp), as suggested by Heuertz et al. [95] and Pavy et al. [96] in
other coniferous species. For example, SNPs 157 and 158 were located in the same contig (428
bp apart) but only one of them (SNP 157) was detected by SBM and considered as a consistent
outlier for selection. It confirms that linkage disequilibrium decreases sufficiently fast to pre-
vent hitchhiking between close SNPs, and it proves the robustness of the Bayesian method
SBM to potential linkage between a selected SNP and neutral SNPs located in the same or in
adjacent contigs.

In this respect, functional annotation may help to identify the metabolic pathways as well as
the biological process involved in local adaptation (S4 Table). Especially, it needs to be stressed
that six consistent outliers are located in transcripts involved in primary metabolic processes
(SNPs 29, 58, 84, 113, 157 and 161) and three in a gene involved in nitrogen compound meta-
bolic process (SNPs 65, 99 and 258). Primary metabolic processes -among which photosynthe-
sis, carbon assimilation and sugar metabolism- are crucial for plants survival and development,
and our results suggest that genes involved in primary metabolism pathways would be targeted
by natural selection in European fir species. In particular, solar irradiance is a major constraint
for plant development, and the processes related to photosynthesis and carbon assimilation
have repeatedly been identified as being targets of natural selection in plant populations [10,
97–101]. In addition, the primary products of photosynthesis and the activity of enzymes
involved in sugar metabolism may vary with altitude as demonstrated by Kumar et al. [102] in
grass species. Our results open the question of how metabolic variation in photosynthetic
metabolism, sugar biosynthesis and their regulatory pathways may be genetically driven and
structured by natural selection along altitudinal gradients. However, fleshing out our under-
standing on local adaptation to altitude would require a more detailed investigation of the
adaptation process at the phenotypic level through quantitative genetic approaches (such as
reciprocal transplants), and a fine exploration of the genetic architecture behind metabolic,
physiological and morphological variations in wild populations (via association genetics and
QTL analyses).

Supporting Information
S1 Fig. Hierarchical design.Hierarchical design used for the simulated data and A. alba data-
sets. For simulations, migration rates ‘m1’, ‘m2’ and ‘m3’ refers to the migration rate between
clusters (minter-clusters), between sub-clusters within clusters (minter-subclusters), and within sub-
clusters respectively (minter-populations).
(TIF)

S2 Fig. Within-site genotypes-environment associations (GEAs).Methodology flowchart.
(TIF)
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S3 Fig. Genetic structure. Evanno’s ΔK posterior to STRUCTURE analysis.
(TIF)

S4 Fig. Results of HBM on simulated data under a scenario of no selection. The points show
the inferred θElev(m) with their 95% credible intervals. The dotted lines represent the inter-quan-
tile limits [Q1-1.5(Q3-Q1); Q3+1.5(Q3-Q1)].
(TIF)

S5 Fig. Results of HBM on simulated data under scenarios of divergent selection (uniform
among loci). One to 10 loci (out of 100) were submitted to divergent selection between eleva-
tions, with a uniform selection strength among loci (s) varying between 0.05 and 0.99. The
plots show inferred θElev(m) with their 95% credible intervals in the most extreme cases. The
dotted lines represent the inter-quantile limits [Q1-1.5(Q3-Q1); Q3+1.5(Q3-Q1)]. The absolute
number of outliers detected in each case is shown at the top-right of the different plots: (a) 1%
threshold, (b) 5% thresholds.
(TIF)

S6 Fig. Results of HBM on simulated data under scenarios of divergent selection (variable
among loci). Ten loci (out of 100) were submitted to divergent selection between elevations,
with a variable selection strength among loci: weak selection (s = [0.05,0.15], left panel), inter-
mediate selection (s = [0.15,0.25], middle panel), and wide selection (s = [0.05,0.25], right
panel). The plots show the inferred θElev(m) with their 95% credible intervals. The dotted lines
represent the inter-quantile limits [Q1-1.5(Q3-Q1); Q3+1.5(Q3-Q1)]. The absolute number of
outliers detected in each case under 1% (a) and 5% (b) thresholds is shown at the top-right of
the different plots.
(TIF)

S7 Fig. Results of HBM on simulated data under scenarios of homogenizing selection
between elevations (left panel) and of a combination of homogenizing and divergent selec-
tion between elevations (right panel). In the left panel, 5 loci (out of 100) were submitted to
homogenizing selection (s = 0.1, uniform among loci). In the right panel, 4 loci (out of 100)
were submitted to selection: 2 under homogenizing selection (s = 0.1, uniform among loci),
and 2 under divergent selection (s = 0.1, uniform among loci). The plots show the inferred θElev
(m) with their 95% credible intervals. The dotted lines represent the inter-quantile limits [Q1-
1.5(Q3-Q1); Q3+1.5(Q3-Q1)]. The absolute number of outliers detected in each case under 1%
(a) and 5% (b) thresholds is shown at the top-right of the different plots.
(TIF)

S8 Fig. Inferred GST in A. alba.Distributions of locus-specific GST among pairs of A. alba pop-
ulations (site×elevation) inferred using the hierarchical approach (HBM). Population pairs
were classified depending on their membership to the same cluster (K = 2), sub-cluster (K = 4),
and elevation according to the hierarchical approach, cases (a) to (f). The table included below
shows the mean GST for each case (a) to (f) and details how GST values are partitioned into
genome-wide and locus-specific effects by HBM. Notice that the parameters μClus, μSubClus
and/or μElev are not applied when the populations (i,j) belong to the same cluster (kClus(i,j) = 0),
to the same sub-cluster (kSubClus(i,j) = 0), and/or to the same elevation (kElev(i,j) = 0).
(TIF)

S9 Fig. Inferred GST in A. alba. Distribution of locus-specific GST between elevations within
each study site inferred through classical ‘within-site’ approach (SBM). The values above the
plot show the mean differentiation among all markers in each site. Sites ID are described in
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Table 1.
(TIF)

S10 Fig. Within-site outlier detection in A. alba. Results of SBM within each A. alba and A.
cephalonica site. The arrows indicate the detected outliers for homogenizing (left-tail) and
divergent (right-tail) selection under 1% threshold. Sites IDs are described in Table1.
(TIF)

S11 Fig. Within-site genetic differentiation in A. alba. Comparison of locus-specific differen-
tiation indices estimated within the different sites: FST is estimated using BAYESCAN and
Nei’s GST is estimated using SBM. Different symbols were used for the different sites.
(TIF)

S1 Method. Populations simulation.
(PDF)

S2 Method. Within-site genotypes-environment associations (GEAs). R script and func-
tions.
(PDF)

S1 Table. Outliers detection in A. alba and A. cephalonica using different approaches (hier-
archical and within-site approaches).Outliers are sorted by their position relative to the neu-
tral background: I. Outliers detected above the neutral background; II. Outliers detected above
the neutral background in one site and below the neutral background in another site; III. Outli-
ers detected below the neutral background. The first column describes the SNP number, the
second column the SNP ID. The third column describes the study site in which the outliers
were detected and the method used: (a) HBM under a 1% threshold (hierarchical multi-site
Bayesian method), (b) FDIST (within-site coalescent method), (c) BAYESCAN (within-site
Bayesian method), (d) SBM under a 1% threshold (within-site Bayesian method). Study sites
IDs are described in Table 1. The 12 outliers detected twice above the neutral background (by
two different approaches) are shaded in grey.
(PDF)

S2 Table. Results of GEAs for the 12 consistent candidate SNPs for divergent selection
between elevations. The first column describes the SNP number, the second column the SNP
ID, the third column describes the study site in which the SNP was detected as outlier for diver-
gent selection (study sites IDs are described in Table 1) and the fourth column describes the
alleles genotyped. The columns 5 to 10 describes the results of GEAs at low (columns 5 to 7)
and high elevations (columns 8 to 10) for each genotype (homozygotes and heterozygote):
‘Homozygote 1’ is the first homozygote and ‘Homozygote 2’ is the second homozygote (for e.g.:
for two alleles (C) and (T), (CC) is the homozygote 1 and (TT) the homozygote 2); ‘+’ indicates
a positive association, ‘-’ indicates a negative association, ‘ns’ a non-significant association, and
‘NA’ a missing value (because the SNP is monomorphic in the study site.
(PDF)

S3 Table. Proportion of consistent outliers detected in each study site.
(PDF)

S4 Table. BlastX and functional annotation of the transcripts containing the 12 consistent
candidate SNPs for divergent selection between elevations.
(PDF)
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