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RELATIVE EQUILIBRIA WITH HOLES FOR THE SURFACE QUASI-GEOSTROPHIC
EQUATIONS

CORALIE RENAULT

ABSTRACT. We study the existence of doubly connected rotating patches for the inviscid surface quasi-
geostrophic equation left open in [12]. By using the approach proposed by [4] we also prove that close to
the annulus the boundaries are actually analytic curves.

1. INTRODUCTION

In this paper we investigate the surface quasi-geostrophic (SQG) model which describes the evolution of the
potential temperature 6 according to the transport equation,

00 +u-VO=0, (t,) € Ry x R?
(1.1) uw=—V4t(=A)"20,
0)t=0 = b
where u refers to the velocity field and V- = (—dy,d;). The operator (—A)~ 2 is defined as follows

(~ay o) = o [

2w R2 [z —yl

This model is used to study the atmospheric circulations near the tropopause and the ocean dynamics in
the upper layers, see for instance [15, 21, 25]. This nonlinear transport equation is more singular than the
vorticity equation for the 2D Euler equations where the connection between the velocity and the vorticity is
given by the Biot-Savart law

u=—V*+(-=A)"t0.
Another model appearing in the literature which interpolates between the (SQG) and Euler equations is the
(SQG), model, see [9], where the velocity is given by

u=—-VH(=A)""20, ac(0,2).

These equations have been intensively studied during the past few decades and abundant results have been
established in different topics such as the well-posedness problem or the vorticity dynamics. For instance, it
is well-known that for Euler equations when the initial data 8y belongs to L> N L' then there is a unique
global weak solution # € L>°(R*;L> N L'). This theory fails for & > 0 due to the singularity of the
kernel. However, the local well-posedness can be elaborated in the sub-class of the vortex patches as it was
shown in [6] and [14]. Recall that an initial datum is a vortex patch when it takes the form yp, which is
the characteristic function of a smooth bounded domain D. The solutions keep this structure for a short
time, that is, 8(t) = xp, where D, is another domain describing the deformation of the initial one in the
complex plane. The global existence of these solutions is an outstanding open problem except for Euler
equations in which case Chemin proved in [7] the persistence of smooth regularity globally in time. Note
that a significant progress towards settling this problem, for a enough close to zero, has been done recently
in [24]. Another direction related to the construction of periodic global solutions through the bifurcation
theory has been recently investigated. They correspond to rotating patches also called V-states or relative
equilibria. In this setting the domain of the patch is explicitly given by a pure rotation with uniform angular
velocity, that is, Dy = Ry, o:D where R, o is the planar rotation with the center xg and the angle t; the
1



parameter € is the angular velocity. The first example of rotating patches goes back for Euler equation to
Kirchhoff who discovered that an ellipse of semi-axes a and b rotates uniformly with the angular velocity
Q= (az‘l—fb%; see for instance [1, p304] and [26, p 232]. One century later, Deem and Zabusky gave in [11]

numerical evidence of the existence of the V-states with m—fold symmetry for each integer m € {2, 3,4, 5}
and afterwards Burbea gave an analytically proof in [2]. The main idea of the demonstration is to reformulate
the V-states equations with the contour dynamics equations, using the conformal parametrization ®, and
to implement some bifurcation arguments. The bifurcation from the ellipses to countable curves of non
symmetric rotating patches was discussed numerically and analytically in [4, 20, 22]. On the other hand we
point out that the extension of this study to the (SQG), was successfully carried out in [3, 16]. Moreover
the boundary regularity was achieved in [3, 4, 20].

The existence of V-states with one hole, also called doubly connected V-states, has been recently explored in
[12, 17]. To fix the terminology, a patch 8y = xp is said to be doubly connected if the domain D = Dy \ D-
with D; and D5 being two simply connected bounded domains such that the closure D, is strictly embedded
in Di. The first result on the existence of m-fold symmetric V-states bifurcating from the annulus A, =
{#z;b < |z| < 1} is established in [12]. Roughly speaking, it is shown that for higher modes m there exist two
branches of m-fold symmetric doubly connected V-states bifurcating from the annulus at explicit eigenvalues
QF. Similar result with more involved computations was obtained for (SQG), model with « € [0, 1), see
[17]. Actually, it is shown that for given o € [0,1) and b € (0,1), there exists N € N such that for each
m > N there exists two curves of m-fold doubly connected V-states bifurcating from the annulus A, at the
angular velocities

0 = 5 (1= 575+ (1 = )N () + 5/ Bl D)
with
Ap(a,b) = (b7 +1)Sm — (1 +5%)A1 (b)) — 4b*A2, (b),
+oo
A2 5 [ )00
and

Sm £ A1(1) = Am(1).
Where J,,, refers to the Bessel function of the first kind.
The main goal of this paper is to study the same problem for the SQG equation (1.1) corresponding to
a = 1. Our aim is twofolds. First we shall establish the existence of doubly connected V-states and second
we shall prove that the boundary is analytic. The main result of this paper reads as follows.

Theorem 1.1. Let b € (0,1), there exists N € N*\ {1} with the following property: For any integer m > N
there exist two analytic curves of m-fold doubly connected V-states for (1.1) bifurcating from the annulus
Ay ={z € C,b < |z| <1} at the angular velocities

1 1 1
(1.2) Qf =5 [(1 - g)sm r(1- b?)Al(b)] + 5VAL0)
where Sy, Ay, and A, are defined above by taking o = 1.
Remarks. e For a =1, the expression of Sy, can be simplified and takes the form
n—1
2 1
Sp = — —
T ; 2k +1

o As we shall see later in the proofs, the number N is defined as the smallest integer such that

1+ b2 2b

e Our results are in line with results foretold in [12].
Now we shall sketch the proof of Theorem 1.1 which relies on Crandall-Rabinowitz’s theorem applied in

suitable Banach spaces that capture the analyticity of the boundary. We mention that these spaces were
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introduced in [4] in order to study the simply connected V-states. The first step is to write the bound-
ary equations using the exterior conformal parametrization of the domains D; and Dy. These conformal
mappings ®; : D¢ — Df have the following structure

a
Y|z > 1, ®1(2) = z + Z z_: and  Do(z2) =bz + Z —.

neN neN
with D being the unit closed disc. The Fourier coefficients are supposed to be real meaning that we look only
for the V-states which are symmetric with respect to the real axis. Notice also that when the boundaries
are assumed to be enough smooth then the ®; admit unique univalent extension up the boundary. We recall

from Section 2 that the boundaries of the V-states are subject to the equations: For j € {1,2} and w € T

@mph%mgém{@@@yﬂ@h@m@+amﬂm@0@@b}
0

with
T®)(1) — wP(w) dr
ﬂ@@ﬂ@—ﬁwgw—%WH7'

To apply the bifurcation arguments we make use of the Banach spaces X¥t1°8 and Y*~! that will be
fully described in the subsection 3.2. The main difficulty is to show that the functionals G; send a small
neighborhood in X**1°8 of the trivial solution (Id,bld) to the space Y*~!. This will be done carefully in
Section 4 where additional regularity properties will also be established. The second step is to compute
explicitly the linearized operator of the vectorial functional G = (G1, G2) at the annular solution (Id, b1d).
This part is very computational and after using special structures of the Gauss hypergeometric functions we
obtain the following compact expression: Given

+o0 +oo
hi(w) = Z apw™  and  ho(w) = Z e, weT
n=1 n=1

we get

DG(,1d,b1d)(hy, ho)(w) = % Z(n + 1) M1 ( Zn ) (Wt — @)

n>1 "

where the matrix M,, is given for n > 2 by

v o [ Q= Su+BPALD) —b2A,b
ne DA, (b) bQ+ Sy — bAL(D) )

With this explicit formula in hand we find the values of 2 leading to a one dimensional kernel operator.
We also check the full conditions required by the Crandall-Rabinowitz’s theorem. This discussion will be
investigated in detail in Section 5.

In what follows, we will need some notations:

The unit disc and its boundary will be denoted respectively by D and T.

The disc of r radius and centered in 0 and its boundary will be denoted by D, and T,.
We denote by C any positive constant that may change from line to line.

Let f: T — C be a continuous function. We define its mean value by,

f far 2 5 [ myar

where d7 stands for the complex integration.
e Let be X and Y be two normed spaces. We denote by £(X,Y) the space of all continuous linear
maps T : X — Y endowed with its usual strong topology.
e Let Y be a vector space and R be a subspace, then Y/R denotes the quotient space.
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2. BOUNDARY EQUATIONS

We intend in this section to write down the equations governing the V-states in the doubly connected case.
But before doing that we shall recall the Riemann mapping theorem. To restate this result we need to recall
the definition of simply connected domains. Let C2cu {00} denote the Riemann sphere, we say that a
domain U C C is simply connected if the set C \ U is connected.

Theorem 2.1 (Riemann Mapping Theorem). Let D denote the unit open ball and U C C be a simply
connected bounded domain. Then there is a unique bi-holomorphic map called also conformal, ® : C\ D —
C\ U taking the form

z)zaz—i—ZZ—Z with — a > 0.

Notice that in this theorem the regularity of the boundary has no effect regarding the existence of the
conformal mapping but it contributes in the boundary behavior of the conformal mapping, see for instance
[27, 30].

Next, we shall move to the equations governing the boundary of the doubly connected V-states. This can be
done in the spirit of the paper [12]. Assume that 8y = xp is a rotating patch with an angular velocity Q and
such that D = D; \ Dy is a doubly connected domain meaning that D; and Ds are two simply connected
bounded domains with Dy C D;. Denote by I'y and I'y their boundaries, respectively. Then following the
same lines of [12] we find that the exterior conformal mappings ®; and ®, associated to Dy and Ds satisfy
the coupled nonlinear equations: For j € {1,2},w € T,

Gi(2,01,02)(w) 2 T {(Q0;(w) - S(P1,@;)(w) + S(®2, D) (w) ) B} (W) |
(2.1) = 0
with

TP(7) — wj(w) dr
5(0.))(w) = f o2

Notice that we aim at finding V-states which are small perturbation of the annulus A, with b € (0,1) and
therefore the conformal mappings take the form,

Viz| =1, ®1(z) =2+ fi(z —Z+Z
and

Dy(2) = bz + folz _bz+Z—

We shall introduce the functionals

(2:2) Gi(Q f1, f2) £ Gj(Q,@1,8,) j=1,2.
Then equations of the V-states become,
Ywe T, Gj(Q, f1, f2)(w) =0, j=1,2.
Now we can check that the annulus is a rotating patch for any Q € R. Indeed,
G1(9,0,0)(w) = Im{—w [ =T vof %%} .
Using the change of variable 7 = w¢ in the last equation we obtain:

B e-lde b1 ds
G200/ = { - VeTie ! gt




Now we just observe that each integral is real. In fact using the parametrization & = e’ one gets,
aé—1de 1 /2” ae” —1
rlaé =1 ¢ 2m Jy Jaemm -1
It suffices now to make again the change of variables n — —7. Hence we find,

Yw e T,G1(Q,0,0)(w) = 0.

Va € (0,1],

dn.

Arguing similarly we also get
Yw e T,G2(2,0,0)(w) = 0.

3. TooLs

In this section, we shall gather some useful results that we shall use throughout the paper. First, we will
recall the Crandall-Rabinowitz’s theorem which is the key tool of the proof of our main result. Second,
we shall introduce different basic Banach spaces needed in the bifurcation. Last, we shall collect some
important properties on special functions and which are helpful in the subsection 5.1 to get compact formula
for the linearized operator.

3.1. Crandall-Rabinowitz’s theorem. We intend now to recall Crandall-Rabinowitz’s theorem which is
an important tool in the bifurcation theory and will be used in the proof of Theorem 1.1. Let F': Rx X — Y
be a continuous function with X and Y being two Banach spaces. Assume that F'(A,0) = 0 for any A\ € R.
Whether or not close to a trivial solution (Ag,0) one may find a branch of non trivial solutions of the
equation F'(A,z) = 0 is the main concern of the bifurcation theory. The following theorem provides sufficient
conditions for the bifurcation based on the structure of the linearized operator at the point (Ao, 0). For more
details we refer to [10, 23].

Theorem 3.1. Let XY be two Banach spaces, V a neighborhood of 0 in X and let F : R x X — Y with
the following properties:

1 F(X\0) =0 for any A € R.

2 The partial derivatives Fyx, F, and Fx, exist and are continuous.
3 Ker(Ly) and Y/Im(Ly) are one-dimensional.

4 Transversality assumption: Ox\0,F(0,0)xo ¢ Im(Ly), where

Ker(Lo) = span(xg), Lo 2 0,F(0,0).

If Z is any complement of Ker(Lo) in X, then there is a neighborhood U of (0,0) in R x X, an interval
(—a,a), and continuous functions ¢ : (—a,a) — R, ¢ : (—a,a) — Z such that $(0) = 0,2»(0) = 0 and

FH0) U = {(6(0), €xo + €6(9)): el < af u{ (1,0 (1, 0) € U}

3.2. Function spaces. We shall see later the spaces that we shall introduce in this paragraph will play a
central role in the proof of our main theorem. They were first devised in [3] but with a different representation.
Let € € (0,1) and introduce the sets

1
OE_{zeC|a<|z|<g} and Asz{zeﬂ:|a<|z|}.

We denote by A, the set of holomorphic functions h on A, and such that
Vzeb., h(z)=> hyz" with h, €R.

n>1
5



For m € N we define A" as the set of functions h € A, such that
Vz € A, h(z) = Z hnZ*nerl.

n>1

Let ﬁs be the set of holomorphic functions h on C; with the property

Vz e C., h(z _th . hn €R.

For m € N we define ﬁ;” as the set of functions h € A, such that,
Vz € C., h(z _th — 27" h, €R.

Finally we denote by A, the set of holomorphic functions on C. and such that,

Vz € Ce, h(z) = Y hnz" with hy, € R.
nez

For k € N we introduce the spaces,

2m 2m
Xhtlos — {h € A, / |h(ge??)2df < +oo, / |(0%R) (¢")|?dB < +o0,

H/ (0%n)(eT) = (ER)(e) dr

T = T

< +oo}
L2(T)

and
k+log __ yk-+log m
Xhtlos — xhtlos o gm.

We also define the spaces,
2T 2m
Ykt = {h € A, |h(ce®)|2dh < +o0, / |(051h) (e")|?db < —I—oo},
0 0

v =yl aam

2m 2m
yhl = {h €A, / |h(ee'?)|?df < 40, /
0 0

2m
/

Next we shall be concerned with a characterization of the space X*t1°2 space in terms of the Fourier
coeflicients.

Lemma 3.2. Let k € N and h € A. with h(z) =Y, o= hnz™". Then h € X*H1°8 if and only if

and

2
h(a_lele)‘ df < 400,

] 2 27 ] 2
(85‘%)(56“9)‘ d < +00, / ‘(65‘111)(5_16“9)‘ do < —l—oo}.
0

—+o0
h2
Vw e T, hw Zhnw and || h|[% s ~ oy n?*(1 + log(n))?.

Proof. Tt is easy to see that for z € A,

(05h)(2) = f(_l)khn (n+k—1! 1

(n—1)1 zntk’

n=1
6



Hence using the identity (5.1) we get for w € T

][(65hﬂ57)—(8§hﬂ5w)gz_:zié(_1y7hﬂ (n4-k—-n!][aw+k-wn+kd7

|7 — wl entk  (n—1)! r—w| T

+oo
hn (n+k—1)!_ 2
o k n n+k

- (_1) €n+k (n — 1)' v |:__ B n+k:| ’

n=1

Therefore we may obtain the equivalence between the norms since S,, ~ log(n). O

3.3. Hypergeometric functions. We shall give basic results on the Gauss hypergeometric functions. The
formulae listed below will be crucial in the computations of the linearized operator associated to the V-state
equations. Recall that V(a,b,c¢) € R x R x R\ (=N) the hypergeometric function z — F(a,b, ¢; z) is defined
on the open unit disc D by the power series

—+oo
n(b
F(a,b,c;2) = Z (@n()n
n=0
Here, (), is the Pockhhammer symbol defined by,
(@) = 1 n=>0
Thn = z(z+1)---(x+n—-1) n>1
One may easily see that
(@)n =21+ @)n-1, (@)nt1 = (T + 1)(2)n.

For a future use we recall an integral representation of the hypergeometric function, for instance see [31].
Assume that ¢ > b > 0, then

1
F(a,b,c;2) = G ) / 22711 = 2)°7 Y1 = z2) " %a, V2 € D.
0

TO)T(c—b

The function T' : C\ (—=N) — C refers to the gamma function which is an analytic continuation to the
negative half plane of the usual gamma function defined on the positive half-place {Re(z) > 0} by the
integral representation,

+oo
I'(z) = / t*~le~tdt.
0

Next, we recall some contiguous functions relations of the hypergeometric series, see [31].

(3.1) cF (a,b,c;2) —cF(a+1,b,¢;2)+bzF (a+ 1,0+ 1,¢c+1;2) =0
(3.2) cF (a,b,c;2) —cF (a,b+1,¢2)+azF (a+1,b+1,c+1;2) =0
(3.3) bF (a,b+1,¢;2) —aF (a+1,b,¢2) + (a—b) (a,b,¢;2) =0

(3.4) cF (a,b,c;2) — (c—=b)F (a,b,c+1;2) —bF (a, b+ 1,c+1;2) =0

We end this discussion with recalling Bessel function J,, of the first kind with n € N,

B (_1)k 2\ 2k+n
vz e, Jﬁ@)—-%%;;@;;?ﬁi(i)
7



We recall the Sonine-Schafheitlin’s formula which hold provided that 0 < b < a and the integral is convergent,
see for example [31, p. 401],
/+°° J,.(at)J, (bt) g AT (S + v — AA+ 1)
0 A 2)‘F(V+1)F(%M+2)\—§V+2)

- 1 v=X- 1 b2
Y F LHv—XA+ ,V A—p+ b))
2 2 a?

4. REGULARITY OF THE NONLINEAR FUNCTIONAL

In this section we are going to check that the functionals G; seen in (2.2) are well-defined and satisfy the
regularity assumption required by Crandall-Rabinowitz’s theorem. Recall that the exterior domains C\D;
are parametrized by the conformal mappings ®; whose extension to the boundaries enjoy the following
structure,

VweT, O(w)=w+ Z anw" = w+ f1(w) with a, € R.
neN*
Py (w) = bw + Z cn@w" = bw + fo(w) with ¢, € R.
neN*

The parameter b belongs to (0,1) which means that we are looking for V-states which are perturbation of
the annulus centered at zero and of radius b and 1. Recall that the equations of the V-states are given by,

Vwe T, Gj(Qvf17f2)(w) =0,7=12,
where
(4.1) G(©, f1, f2) (@) = T { (905 (w) — S(®1, @;)(w) + S(P2,®)(w)) T (W)}
with
7®i(7) — w®(w) dr

SO = a7

The study of the regularity of these functionals will be done in several steps. In the first step we shall analyze
the existence of the functionals and in the second one establish some strong regularity.

4.1. Existence. The main result of this section reads as follows.

Proposition 4.1. For j € {1,2} and for any k > 3, there exists r € (0,1) such that,

Gi: RxV,xV, — Ykl
(@2, f1, f2)  — G f1, f2)
is well-defined. Where V, = {f € X*™1°8 || f|| xrr10e <7}

The proof of this result is postponed later and is founded on the following lemma.

Lemma 4.2. Let € € (0,1),5 € {1,2}, V = 6/"Ud 4+ V with V € V, and r small enough. Let h € V., then

the function
wETH][Tah wah()
Viwl]

can be extended analytically in C¢ to a function K with K € Y*1. In addition,

1R lgas < C(IVaien + VIl aserm ) 1l o
8




Before giving details of the proof we need to make a comment.

Remark 4.3. Tuake

h: T —C and h: C. —C
T s St z '—>Z+O°M

n=1 n=1 zn

a,T"

then for any T € T, z € C;

+o00 too
o —n+1 7 . Qn
O-h(T) = — Zlnam' and O h(z) = — Zlnﬁ
Thus,
dO-h = 8.h| .
T

Proof. By change of variables, we may write
K(w) = ][ 7O h(Tw) — Orh(w) ﬁ
T [Viw) =V 7

Our next task is to get a holomorphic extension of w — |V (7w) — V(w)|. For this aim we write for any
T,weT,

V(rw) = V(W) = (V(rw) = V(w)) (V(Fw™") = V(w ™))
=20V |r — 12 g(r,w) g(F,w ™),

where g can be extended in a usual way as follows,

— B V(rz) —V(z)
(42) Vz € A, g(T,Z) =1+ m
Therefore we get as a by-product,
(4.3) 3C >0,VreT,Vzeh,, C'<lg(r,2) <C.

Now we shall use the following estimate,
V(r2) = V(2)] < elr = 110:V || 1< e

This follows from the mean value theorem combined with the maximum principle for holomorphic functions.
Indeed, setting V(z) = V/(1), which is holomorphic in the disc D1 = {z € C, |z| < 1}, we deduce by the
mean value theorem that for any 21,29 € D1,

(4.4) V(1) = V(2| < 121 — 2210Vl e .
According to the maximum principle one readily gets

Han”Loo(D_l) = Han”Lm(a*lF)

= 52H6ZVHL°°(5'IT)7
Applying this inequality with z; = T—lz and 2o = % for z € C; we deduce
V(r2) = V(2)| < elm = U[|0:V || oo em)

which is the desired inequality. Using Sobolev embedding X**1°¢ < Lip(eT) for k£ > 2 we find
(4.5) [V (r2) = V(2)| < Clr — 1|10,V || xi-15106 < C|7 — 1| V|| xxr+108
with C' a constant depending on e.
Consequently, one may find small r such that for V € V, the function z € C. — g(7,2)g(r,271) is holo-

morphic and does not cross the negative real axis R_. This allows to define the square root of this latter
9



function, which remains in turn holomorphic in the same set C.. Finally, the holomorphic extension of K to
C. could be

K(z) = Z]]{ T@:M)(r2) = (1)) oy 1 adr

2
bi—tr —1| z T

£ z][ k(z,7)dr.
T

It remains to check the holomorphic structure of this integral with respect to the complex parameter.
Observe that for fixed 7 € T\{1} the function z € C. — E(7, z) is holomorphic. We also note that the
mapping 7 € T\{1} — k(7, ) is bounded uniformly in z € C.. This follows from the estimate
|0:h(12) = 0:h(2)| < elr = 1|[|92hl| L= (7
< Clr = 1|kl g3
< Clr = 1||h] xr+10e-

Therefore in view of (4.3), we find a constant C' such that for any (z,7) € C. x T
(4.6) |k(z,7)] < C.

Consequently K is analytic in the annulus C; and therefore it belongs to the class A.. Hence, it remains to
check that K has finite norm in Y#=1. We shall start with the L? norm of the inner restriction w € T
K (ew). We observe that

K(ew) = ew ]{T k(ew, T)dr.

It is obvious from (4.6) that
K(e) € L=(T) c L*(T)
with
1K () 2ery < CNV larzem 2l o T

As to the estimate over the exterior boundary we proceed in the same way as before and we get
~ 1
HE ()2 < CIVI iz em All s e

Now, we want to control the L? norm of 8*~ 1K (¢*-). In what follows, we just give details about 1K (e-),
we deal with the other term with similar ideas. The computations are very long and we shall focus only on
the leading term of 0¥~ K. From Leibniz formula we may write

][ (0Fh)(12) — (0Fh)(2) 1 1 adr
S S VT ! P

(D@ 1 dr
+ Z]{r T, Z

F 1K ()

bi=tlir —1] 2 p
7(0:h)(12) = (02h)(2) Hp_1 Lo 1aydr
N Z]i bi—lr — 1] 9; [9(772) g(T,Z) } - +lo.t.

2K1(2) + 2K2(2) + 2K3(2) + Lo.t.

We shall now check that the terms Ko and K3 can actually be included to the low order terms. Indeed, for
K5 we write according to (4.3),

1K)y < ClOER(E) | z2cr)-

As to the third term K3 we shall only extract some significant terms and the other ones are treated in a
similar way. First, it is easy to get

N
et
—~
=
IS
~—
[V
N
—
o
| =
S~—
|
W=
[E—
I
|
|
N
/N
Q
—
n
IS
S~—
N
—
Il
|
N~—
——
R}
—~
=
IS
~—
|
M
R}
—~
h
|
S~—
|
e



and

0. (9(7_7 Z)g(?, _)) = Zijfl(T— 1) g(?v _)
(V@) -Td) - F-10.7(2) - (0.V(2) - 0.7(1))
+ Bl —1) 9(r.2).
Thus
.o ) R ) Y) = g I (e )
d.V(Z) -0, V(L . 5
2;71 V(E?)_1)V(Z)g(7,z)_2g(?,§)_2 +l.o.t.

Tterating this procedure we find

1

Zafil(g('rvz)i%g(?v;)i%) = _2bj_1 > (T—l)z 9(7,2)7%9(?,;)7%
1 EV(E)-aV(3) o 1s
ST ) g(1,2)"2g(T,—=)"2 + Lot
It follows that
1 70, h(eTw) — B h(ew) 81V (eTw) — 951V (ew) s 1 _adr
K — i z z _ _
3(5(‘)) 2[)]_1]{T |7__1| r—1 g(T,EW) 29(7-7 aw) 2 T
1 70, h(eTw) — O, h(ew) XV (L) — 951V (L) . 1 _sdr
. = = — — +l.ot
Jrzba—l]{T =1 71 g(mew) 2g(T, 2) 72—+ Lo
By the definition of Hélder spaces
17 15 Liak—17) 1
05V (¥ ) — T V (#)] < 2405V g g I — 11,

Thanks to

1
/ —|dT] < +o0
Tl =12

combined with (4.3) we obtain

1Ks(ery < C(10:hl e emy + 102hl e emy ) (1057 Wl o gy + 105 Vll g o) + -

Hence, using Sobolev embedding we get

1Ko < C(IVImscery + IV axe-my ) 1l s e,

Now let us move to the estimate of the term K7 which is is the most singular one. For this goal we need the
following lemma.

Lemma 4.4. Let be € € (0,1), V eV, and r be small enough. Define for any 7 € T and z € eTUe™ T

B V(rz) = V(2)
g(T, Z) =1+ m

Then

g(T, z)*% = (1 + 8;)}/_(5)) +(r—1)H(T,2)

where H(-,e*') € L=(T x T) and

[H(,e® )| oo (rxm) < ClIV || 3ty
11



Proof. We shall only prove the result for z € £T. Similar computations can be done for z € ¢e~!T. From

Taylor expansion at the second order we find,

2.V (2)
bi—1

Vzeel, g(r,z) =1+ + (r = 1)Hy (1, 2),

such that .
|Hi(7,2)] < CO2V || oo ey
Using Sobolev embeddings we get for k > 3 and (1,2) € T x T
|Hi(7, 2)| < C|| V| xns108.
Finally, from standard computations we obtain the identity

= (1 + 32{(;’)) +(r—1)H(r,2)

(7,2 (\/1+ 2V 4\ /14 57 7—1)H1(T,z))_1

\/1+ ang,SZ)\/H &V 4 (r — 1)Hy(r, 2)

N|=

g(,2)”

with

H(T,z):—

One may easily check that
H(-,-) € L*™(T xeT)
and the desired result follows immediately by choosing the radius r small enough. O

Let us now see how to use the preceding lemma for estimating K;. According to this lemma one may obtain
a constant C' depending on £ and b such that

[K1(e) > < O+

PV 414 BT | f EREI RN

v b=l L2(T)
+ Cl|OER(e-) |2y < ClR 108
This concludes the proof of the Lemma 4.2. =

Now, we are in position to give the proof of the Proposition 4.1.

Proof. Note that for any w € T one has

G, f1, f2)(w) = T’

1\ 1 1\ 1 [ 70;P1(7) — w0, P;(w) dr
F; =QP,; (WP |- | — - | — —][ s L
o =anw (3) -0 (3) o f i
Y (l) l][ 70; P2 (1) — w0, P (w )d_
w)wly  [RAr) - O5(w)] T
We shall prove that F; belongs to Y* =1 The first term of the right-hand side describing the rotation term
belongs to that space. The remaining terms are of two kinds: the self-induced terms and the interaction
terms. For the first ones we simply use Lemma 4.2 with h = V = ®;. As to the interaction terms, the
integrand is nowhere singular because the interfaces do not intersect and therefore they are well estimated.
We shall briefly give more explanation about this fact. Take the term
TPL (1) — wP) (w) dr 704 (Tw) — P} (w) dr
|

with

B2 Bm @] 7~ % () — @) 7

12




As before we write, for any 7,w € T,

[@a(rew) = @1(w)] = Ior — 1/(3(r.w)g(Fw ™))
where
Vz € b, §(T,2) =1+ %‘652)

From the maximum principe,

fa(r2) = f1(2) If2(e) oy + A1l e 27

(br — 1)z = 1-b Ser—
Hence
Note that

0<1-b<|br—1]<1+b

and consequently the integrand is less singular than those of the self-induced terms and thus one can find that
K is analytic in C. and belongs to Y*~1. At this stage we have shown that F; belongs to the space Y*-1 and
to achieve the proof of the proposition it remains to check that the Fourier coefﬁments of G;(Q, f1, f2) belong
to iR. By the assumptions, the Fourier coefficients of ®; = b/~1Id + f; are real and thus the coefficient of
QT; are real too. From the stability of this property under the multiplication and the conjugation we deduce
that the Fourier coefficients of w = Q®;(w)®’;(w)w are real. To end the proof we shall check that the Fourier
coefficients of S(®;, ®;) for i, j € {1,2} are real. We have

S’(<I>Z ;) TPH(7) — W (W) dr dw
S(D;, D;) n ’ — .
Za w" ]{r wn+1 ][][ ) w)| P |
The coefficient can also be written in the form

27 p2m 10(1)1 19 _ in(I);_ (ein) )
n . N d0dn.
w2 ], ), e ew —g,emp T

By taking the conjugate of a, and using the properties:
D;(eif) = ®;(e™ ), () = @) (e ") and |z| = 7).

One may obtain by change of variable

2w p2m —ZG(I)I —10) _ e—in(I)l( —in) )
T = g
T / / @i(c w) e T

2w p2m 19(1)/ m(I);_( “7) )
. ~Md0dn = ay,.
=, [@:( ew —o,emy - T

Consequently the Fourier coefficients of S(®;, ®;) are real and therefore G, (€2, @1, ®2) belongs to the space
Y*~1 and the proof of Proposition 4.1 is now achieved. O

4.2. Regularity. The goal of this section is to study the strong regularity of G; and the main result reads
as follows.

Proposition 4.5. For j € {1,2} and for any k > 3, there exists r € (0,1) such that,

Gi: RxV,xV, — Ykl
(Q, f1, f2) — G5(Q, f1, f2)

is of class C*, where V. = {f € X 8| || f[| xrs100 <7}
13



Proof. To prove that G; is of class C! we shall first check the existence of its Gateaux derivative. Second,
we will show that this derivative is strongly continuous, and therefore it will necessary coincide with the
Fréchet derivative. This will answer the C! regularity. We split G; into two terms, the self-induced term
and the interaction term,

G (S, f1, f2) = O5(Q, f3) + N; (f1, f2), 5 € {1,2}
with
Vo€ T, 05(2 £)(@) 2 Tm { (20;(w) + (~1)7 S(2;,®;)(w)) 3P} (w) |
and
N (fr, f2)(w) 2 (1) { 5(®;, @) (@)T®] @) } i #
The Gateaux derivative of G; at (fi, f2) in the direction (hq,he) is given by the formula:
DG(9, f1, f2)(h1, ha) DO; (S, fj)hj + DN;(f1, f2)(ha, h2)

o1 1
= m=[05(Q, f; + thy) = O;(2, ;)] + M= [N (f1 + tha, fo + tha) = Nj(fr. f2)]
d d
(4.7) = — =00 fj +th;) + — | Nj(f1 +tha, f2 + ths),
dt dt|,_,

where the limits are taken in the strong topology of Y*~1. Once we have checked the existence of these
quantities, it remains to verify that the functions,

0;(2, fj + thj)(w)
t=0

A(tw) £ % {Oj(ﬂ,fj +thy)(w) — OJ'(Q’fj)(w)] a %

and

d

= | N futth, ot the)(w)
t=0

By(t,w) = %{Nj(ﬂu f1+thy, fo + the)(w) — N;(£, f17f2)(w)}

can be analytically extended on C., and their extension, still denoted by F}, satisfy
tim | F5 (1) [y s = 0.

The existence of Gateaux derivative can be done in a straightforward way and one readily gets

00 - et e (BT @) (#0) - #56) ) o,
t G q)j(w)w]{r |©5(7) — @;(w)]? T
; ——— [ Thi(T) —whl(w) dr
(4.8) + (-1 Im{fl)j(w)w FW7}
and
DN, f1, f2) (1, ha)(w) = (—UJ’”Im{W@ g ]iiﬁ)__fﬁ;)d{

T Thg(T)—wh;-(w)d_T
TR B e -

[r}(r) — we (@)Re( (Ai(r) = hy@)) (@i(r) = @;@)) )
“9) - BOEf ém — 5, )d}

14




First we note that Fi (t,w) can be written in the form

ST SEEYIE

~
—

with

L(tw) = -2 : ]{T[Tq);(T) — w®’(w)] [A‘&)j (hj) (T, w) - Aq)j('?',&})‘| T

Ltw) = (I);_(w)w]{T[Th;(T) —wh;-(w)] lA%'(h;)(T w) B A(bjz w)] %7
B = TR ) - | 5 - S w>] g

fatbw) = IR A ) T

Ii(t,w) = tQwh(w)hj(w).
We have use the following notations,
AR (7, w) = [@;(7) — j(w)]
and
A, (hy)(r,w) = |®5(7) + thi(1) — j(w) — thj(w)].
First, it is not difficult to check the following limit
tim | (1) g4+ = 0
Moreover, if t is small enought, one may use the Lemma 4.2 with h = h; and V = ®; 4 th; to etablish
lim | 240l = 0

We have to rewrite the terms Iy, Is and I3 to compute theirs limits. We begin to rewrite one part of the
integrand term:

(410) R B (a2,(r.0)” - (a4, (hy)(r.)” |
AG (hj)(r,w)  A®;(1,w) (A@j(T,w)) (A;j(hj)(w)) (A;j(hj)(T,w)Jr M)j(ﬂw))

Then we display the dependency on t in the numerator
(4.11)

(85r))” = (a8, ()(r)) " = =t [2Re( (1s7) = 156)) (23() = 256)) )| = £hhs(r) = mstel?

Moreover, straightforward manipulations lead to the following identity usefull for the term I3

1 . 2
A2;m@)”  (ad;(rw) (Ah, (1) (rw)) (A%, (b)) (r.w)+A2; (10))

(2%, (hi) ()] C A (rw)? (2%, (h)(rw)] * A, (r.w))?
5 + .
(25 (@)l | Ak (h) ()] [AL (1) ()25 (rw)] T (A4 (h)(70)) (A, (1) (AL, (k) (1) +A®;(7w))
15
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Thanks to (4.10),(4.11),we rewrite the terms I and I3 .

[() <w>]|h<> s () ar

L(t,w) = —t2¥ (W)@

[7h)(7) — whi;(w)] [2Re<(hj(7’

_t@;(w)WJ{T ( ) ( 7- w) t ( )(7_ w) +A(I) ( ))
oS T‘I’J(T) @4(w)] |hy(r ) hj(w)|? dr
Btw) = —CHww 7[( ) (84, (h)(r >)( () + A (r) T

e [r@)(r) — w®)(w)] [2Re(( -

][ ) —
! T (Acpj( )(Ag )( (h)(1,w) + AT, ))
Moreover, using in addition 4.12 we can also rewrite I;.

[72](7) — w®}(w)] |h;(7) — h;(w)|? dr

ﬁ(Afbj(w)) (A4, () (7)) (B, (hy)(r,w) + AD;(r,w)) T

L(t,w) = —td (w)w

[704r) = )] [Re((na(r) = 1y (20) — 250)) ) ) -

’ ][(Acb( )( (r,w)) (Bh, (hy)(r,w) + A (r,w)) T
) - (w))( 0 -2))]

(e >)( 0 -2w))] .

_tQWG
1 (20,0’ (a4, (h)(7.)

., [704r) = o) [Re( (na(r) = 1506) (257) = 250)) )| 1)~ sl
—t20 (W)@ - -
ol (8%, (1)) (825 (r,0))” (A%, (1)) (r.0) + Ay ()

ra () — w2 (@)] [Re( (1(7) — b)) (2,(0) — 2, <w>)>: 2

20’ (w)w - <
: 7{r (Acpj(T,w))?’(Agpj(hj)(w)) (Agj(hj)(T,w)+Aq>j(T,w))

B

240 (w) =
]{T (A%, (1)) (r.)) (A@j(T,w))Q(A;j(hj)(f,w)JrAcbj(T,w))z T

One may see that we just need to check that the integral term of I;(t,w) belongs to Yk=1 We introduce a

model integral term, the others term are controled in a similarly way. For any w € T,
b ][ (r2(r) —w®} (@) (h(r) ~h(@)) (hF) —h@) 47
T (Al (hy)(r,w) + A0;(7,w) ) (80;(r,w)) (A%, (b)) (r.w)) T
—of (7 = D@)(rw) + @ (rw) = @) ) (s () = () ) (13(Z) = By (2)) g
T (8%, () (rw,w) + A0, (rw,w) ) (80, (rw,w) ) (A () (rw,w)) T

Following the same idea of the Lemma 4.2, we can write

1 1 1

AD;(Tw,w) + Afbj (hj)(Tw,w) I~ —1] \/gj(ﬂw)gj(ﬁ %) + \/gj(ﬂw)gj(i %)
16




Where g; and g; can be extended in the usual ways as follows,

fi(rz) = fi(2)
bi—lz(r —1)

hi(rz) = hy(2)

Vz € b, gi(1,2) =1+ R

and g;(7, 2) = g;(7,2) + t—=

As before we can extend P analytically in C. and control the L? norm of the inner restriction w € T
P(e*'w). We just give few details to control the L? norm of the leading term of 9¥~!P(e-), the proof for
the control of 9¥~1P(¢~1.) is similar. Using the same arguments than before we may write for z € C.

h1P(z) = 2 ][ (@0:)) - 020,)0) (15072 - 1) (hj@ — hy(4))g5(r.2)"Hgi(7, L) T tot

b3G—|7r — 1|3(\/g7 T,2)g; (T +\/gj T,2)§ _7Z )\/gj 7,2)9;(T ) 4

Applying the Lemma 4.4 with Vi = f; and Vo = f; + th; we can etablish for z € eT Ue~!T the following

identity
(T D T D)oo,
|7 — 1] |7 — 1]

L . (Fi4th;)) (2 L (Fitth;)) (L B
(\/(1+ (:-1)G)) (1 + <azb£]>1<1>)+\/(1+ (6 (fjbﬁ’lu))( >)(1+ (6 <.ﬂ;t@>)<z>)>
|7 — 1

7, %)

+
With H(-,e*:) € L=(T x T).
Consequently, this identity allows us to deal with the leading term of =1 P. Tt follows for [ € {1,2,3}
lim|| i g2 = 0.
Eventually, we have proved than F} can be extended analytically on C; and
sy |7+ = .

Moreover, the interaction term F» is dealed with the same arguments than the regularity of the interaction
term. Our next task is to prove that

DG, : R x V. x V. — L(R x XFHlos  xktlos yh=1)

is well-defined and continuous.

For the first part, the non trivial point is that ¥(Q, f1, f2) € R x V;. x Vi, DG;(Q, f1, f2) € L(R x Xk+los x
Xktlog 'yk=1)  The linearity is obvious.

As before, we just give details about the continuity of the self-induced term DO; (€2, f;) . To begin we rewrite

0;(, £;)(h ii f (z)
with =
h@) = 0L (B @n )+ he) .
-t e
Lw) = (-1)’®] é)%ﬁ%%7
and

(78 r) ~ oy ( (BT = 1500 (2360) - 256)) ),

17



Using the Lemma 4.2 and an adaptation, one may find a constant C such that for p € {1,2,3,4} the following
estimate is checked

[Lpllgn-1 < Cll®;l xns108 [ 7 || 14108
Consequently, DG is well-defined. The continuity of DG is the final point of the proof. We just explain

the continuity of DO;(Q,-). Let be fj, f; € Vs x V, and hj € X*H1°8 with ||h;]| xr+10s = 1, we have for any
wel

o e s hiw) = D))
DO;(Q, f;)(hj)(w) — DO;(, f;)(h;)(w) = Z —_— s

T
» z
i) = (00 = ) )1 () + 2 (5 0) — 5 (1) )y ),
Mm:Q%&#aﬁT@ﬂﬂ4W2£:Swm—@wng7
i) = ) £ [0 - b)) | 5717 M)jtw)] T

(A(i)j(T, w))3
) 11 (roy(r) - oJ(I);-(w))Re<(hj(w) B0 (85() = @;(w) = (8;(7) - @, m))) .
Ty(w) = — L' (= _ ar
=S, (A8 (7))’ T

For p € {1,2,4,6,7,8}, one may extend fp as before. The control of the Y*~! norm leads on the lemma 4.2
and an adaptation, we can find a constant C such that

1pllge-s < Cll@; — ;) cnsor.
18



We give few details for the integral term of I5. As
L (B ae) (@ - em) - () - nw)
Aq)j (T’ w) A(I)j (7_7 W) - (Aq)j (Tv w)) (A(i)J (7_7 w)) (A(I)j (T7 w) + A(i)j (Tv w))
(‘I)J(F) — ‘I%(%)) (‘iJ(T) — (I)j(T) — (i)j((AJ) + fI)J(w)>
(AD;(1,w)) (AD;(T,w)) (AD;(T,w) + Ad; (7, w))

The integral can be split in two terms and we just give few details for one. We deal with the other in the
same way. After a change of variabe, we shall extend and control the term

(- @) (B0 - 850) (06 - 2@) - (B0 - 50)
hw 2o f (A®; (rw,w)) (Ad;(rw,w) ) (AD;(rw,w) + Ad; (rw,w)) T

As before, we can write
. 1
ADj(tw,w) =1 — 14/ g(r,w)g(F, —),
w

Ad (o, w0) =¥ r — 1 a(r,w)i(r, ),

and

- . 1 1
AD; (rw,w) + Adj(rw,w) = b — 1] (Jgu, w)g(T, =) + \/g<r @)g(7, =)
where we can extend g and g as usual,

fi(rz) — [i(2)
bi—lw(r —1)

filrz) = fi(z)

Vz €D, g(r,2) =1+ Tl 1)

and g(7,2) =1+

Thus the holomorpic extension of jg on C¢ is given by
. (70:9,(r2) — 08,(2)) (é (r2) = &z >) (2@ -0 -0,0)+2,(3) 4
I3(z) = z][
T

b3(j*1)|7'—1|3\/§(7',z \/grz (\/grz T—+\/g7'z (7 )7
Is

(e+). For

Concerning the Y*~! norm, we just give some details for the L? norm of the leading term of 95!
z € C., one may write

‘95711:3(2):]? (3’@-( )( z))(ij(g)—‘bj@)—@( )+ @ (L )) 0

|7'—1|3\/g7'z _l\/gTz (\/gTZ %)4-\/@(7’,2)@(7,%)) T

The control of the L? norm of the inner restriction (w (’“)f_lfg(sw)) must ensure the continuity. First, one
may obtain the following identity for z € eT Ue~!T:

(®5(72) = 8,(2)) (D) — #,(0) - 9,(4) + 9,(4)) _K() (-1

|7 —1]3 \/gTz \/gTz T—(\/gTZ (T +\/g 2)3(T l)_|T_1|+|T_1|

with the estimations

(4.13) 1K || oo exmy < ClI®5 = @l xtron, [ H | oo wxetmy < Cf[B5 — @] 04105

— +lot

H(r,2)

The proof leads on the lemma 4.4 and an adaptation. Hence, we can estimate for p € {3,5}:

1pllgi-s < Cll®j = @ xns100
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For Iy we just need to notice this decomposition

1 1 1
(A(I)J (T, w))3

+

(A‘IDJ- (T,w)) (A‘i)j (T,w))
. 1
(A‘i)j (T, w)) 2

1 1
Ad;(T,w) A‘i)j(ﬂw)] '
With this writting and the same arguments than for I , we get
[Hollgn1 < Cl|®5 — Byl 105

Finally, DG is continuous. O

5. STUDY OF THE LINEARIZED OPERATOR

The main task of this section is to perform a spectral study of the linearized operator of the functional
G introduced in (2.2) at the annular solution (Id,bId). The first subsection is dedicated to an explicit
computation of this operator and to get a more user-friendly expression through some basic identities on
hypergeometric functions. In the second part, we want to find the values of () leading to a one-dimensional
kernel for the linearized operator. We show that for each frequency mode this study reduces to a second
degree equation on the variable ). The dimension of the kernel is achieved through the strict monotonicity
of the eigenvalues with respect to the frequency. Lastly, we check the full assumptions of the Crandall-
Rabinowitz’s theorem especially the transversality condition which holds only when the eigenvalues are
simple.

5.1. Linearized operator. The primary purpose of this section is to compute the linearized operator of G
at the trivial solution (Id, bId) and to reach a more simplified and compact expression. Since G = (G1, G2)
then for given (hy,hs) € XkF108 x Xk+log we have

DflGl(Q, 0, O)hl + szGl(Q, 0, O)hg
Df1 Gy (Q, 0, O)hl + sz Go (Q, 0, O)hg ’

Replacing in (4.7), (4.8) and (4.9) ®; by Id and ®5 by bld yields
DGl(Q, O, 0)(h1, hg)(w) = Qﬁo(hl)(w’) + Ll(hl)(w) + Lz(hl, hg)(w),
DGQ(Q, O, 0)(h1, hg)(w) =0 bﬁo(hg)(w) + »51 (hg)(u)) + L3(h1, hg)(w)

DG(9,0,0)(hy, ha) = (

with
Lo(hj)(w) =Im {h; (W) + hy (w)w} ,

Te by f (r — w)Re((h,(7) = B, @) (7~ ) g

T|w—7|7 |7 — w|3 T

|w — 7] T
[ br—w dr _ [ whi(w)—Thh(T) dr
_ ; al 1 o(7) a7
Lo(hy, ha)(w) Im{hl(w)w [—- } m{“]{T lw — b7| ju

(b7 — w)Re( (b (w) — ha(7) @ — b7 ) gr
+ Im —wﬁ ( |1b7-—w|32 )dT
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and

L3(h1, he)(w) = Im (—whg(w)][ T bw dr +wb]1[r whi(w) —Thg(T)d_T>

T lT—bw| T |bw — 7| T

T bw][ (1 — bw)Re((hl(T) — he(w))(T — bw)) dr
T

|7 — bw|3 T

We shall now compute the Fourier series of the mapping w — DG(Q 0,0)(h1, he)(w) with

—+oo
hi( Zanw and ha(w chw weT

n=1

where a,, and ¢, are real for all the values n € N*. This is summamzed in the following proposition.

Proposition 5.1. Let b € (0,1), n € N* and define

IWOEE: /0 T (b8) I (8)d 2
k=1

with Jy, refers to the Bessel function of the first kind. Then, we have
) (79 n —n
DG(9,0,0)(h, hs)(w) = 3 ;(n—i— )M 11 ( o ) (W —w" ) VweT

where the matriz M, is given for n > 2 by:

Q= Sp+020(0)  —b2An(b)
My = ( bAL (D) b+ S, — bA4 (b) ) :

Proof. We begin with the easier term Lg(h;)(w). Thus by straightforward computations we obtain
. +oo

Lo(hy)(w) = % 30+ Dag (™ — ),

n=1

and
. +oo
Lolha)(@) = 5 D (n+ Ve (@™ =@ ),

The computation of £1(h1)(w) lies on the following identities whose proofs can be found in [16]. Let n € N*
and w € T then

n—1
—w" dT 2w 1
5.1 _ -
(5-1) ][ Jw—7] 7 i ]§2k+1

and

(5.2)

][ (T —w)}(r" —w")dr 2w IS 1
T lw—73 T o k712k—|—1'

Performing straightforward computations we obtain the result

dr 1 =X w)?dr
L, ) =1 . dr
(o m{zm‘” ][|T—w| 2WZ ][ |T—w|3 T
—+oo _ . —+oo
T"—w"dr —wdr
I w ntf —— .
+ m{wZna ]{T T —w| 7 sz ][ T —w| 7 }

n=1

Noticing the following equality

—n_—nd n __ nd
VTH,WGW,][iL: T owndr
1r|W—T| T 1T|W—T|
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we obtain thanks to (5.1) and (5.2) the following identity

+oo +oo
Lq(h)(w) == Z apanIm {E"Jrl} + Z Bra,Im {w"Jrl}
n=1 n=1

where
n—1
2n +1 1
A
an £ >
T k:02k+1
and
M 1= 1
e -
P = 7r+7r;2k+1'
As

2n+1) < 1
O+ Pn = —— ;%Jrl'

Finally we get
. +oo
w) = _% ,; an(n+1)Spp1 (W™ — @),

In the same way we obtain

. +oo
LS e 1) S (@ — ),

n=1

Li(h2)(w) =

N |

To compute La(h1,ha)(w) we begin to rewrite

- w)Re(hl(w) - hQ(T))m) e T [ ) — he(r) dr
1 A

v |bT — W] T

|br — w3 T

o f (b7 — )2 (@) — (7)) dr
T

+ .
2 |br — w3 T
Replacing h; and h;- by their expressions, we obtain the following identity

Lo(hy, ho)() I JFZOO br —w dT++f _ [ a,@" —ec, 7" dT f ][anw —7" dT
w) = Im<{ — na, + — — no4f ———
2 T2 Tt —w| T lw—0r] 7 [br —w| T

n=1 n=1 7
= (bw — 7)(apw™ — ¢, ™) 1% (b — wT)(anw™ — ¢, ™)
I dr — = dr p .
* m{ Z” b — P T 2; b — o 7

To compute these terms, we will use the identities proved in [12]: Let b € (0,1) and n € N, then for any
w € T we have

(5.3) g Do (1 N
. :w — n — n .
T |bT — W] n! 2’ 2’ ' ’
=n+1 1
_— T = _—
T b7 — w| T|b7'—w|
(3)n, (3 3
: ———d7 = Wb 2 = Son+ 1502
(5:5) ][|w—b7'|3 T n! <2,n—|—2,n+ ' >’

-l (D)o (3 .3
5.6 ———dr = W = 1; b
(5:6) ]{T|w—b7'|3 T n! (2,n—|— ot L )’

[\]
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(5.7) ]{T (b7 —w)(aw” —ct") dr = —w"*?

3 15 2 n()n+1 o .32

|w — 7|3
and
1
(bw — 7)(cw™ — at™) 2,903 35 . 5 (3) 42 3 5 5
5.8 dr = —w"2? [ ZcF [ =, 2,3;0% | —ab" —"=F ( = - 3;0 .
(58) ]{T w — o7 e s\ 22 D gt

We shall split the computation in many parts. By using (5.3) and (5.4) we find

br —w dT 1 9 b 13 nal
—Znan |b7'—w| Znan[ (2 271,1))——F(2 3 2b)]w .

Moreover
+oo 0o 1

1 apw” — ¢, 7" dr 11 (5)n 1 1

o 2= WF 10 ) — e b2 = - 1;0% ) | @™t
;(n—l-Q)w]{T o — b - 2( )[ (2 3 ) ol (2,n+2,n+ ; w

Now, using (5.7) we obtain
- f ][ (b |bf’i“w|3_ ™) gy — g [cnb” ((fiﬁ)l'F (%n—i— ; n+ 2 b2) g o F (% g,z;bQ) ]w”“.
For the last term of Lo(hy, he) we use (5.5) and (5.6)

g ey 1S5, [ (38 ) () e

3
(TL+ 2)b2F <§ n+§7n+2;b2> —F(g,n—l—g,n—kl;bQ)]w"H.
Now we shall apply (3.1) with a =

—+o0

(n+1) 2’ 2

1.b=n+32 c=n+1and z=b* where i1 € {0,n}

+oo +00
(b — wT)(apw™ — ¢, ™) 1 13 b (3 1 3
n n dr = = nF I 1b2 —cn— | = FlZ e 1b2 n+1'
S f e e =y e (p3) —e (5), (e )

n=1
Finally we get
. 400
1 ~ 5 n —n
Lol h2)(@) = 5D |an(o = 90) + (Bn = Bu)en] @+ =7+
n=1
with
11 b2 1 1 1 1
Yn =N F —,—,1;1)2 __F _7§52;b2 _§b2F _a§a2;b2 +_F _5§51;b2 )
2°2 2 2°2 4 2°2 2 2°2
. 1 11 9
Tn (TL+§)F (iuiulvb)u
b2 ()t 1 5 b (2) 1 3
- Iy A = 20 — —2"F (= = 1;b2
s <2’"+2’"+’ ) 2 7l (2’"+2’"+’
and

. 1o, (5 (1 1 .
Bn=—(n+=)b " a §,n+§,n+1,b )
Now, we want to simplify the expression of L5(hq, h2) through the use of the identities (3.1)-(3.4). We begin
with (3.2) witha=1,b=n+ 3, c=n+ 1 and z = b? where 72 € {0,n} which implies
i b2 13 B (15 54 b2 33
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and

- bt (3 3 1 5 1 (1 3
e S)F( 5 Son+2:0%) - F (= Son+ 1507 |
Bn— B O <2>n[<n+2) (2,n+2,n+, > 5 <2,n+2,n+, ”

Thus using (3.3), one may check the following expression

. 400 2
b 13
Lao(hy, ho)(w) = % > (n+ )T F (5, 5,2;192) an (W™ — ")
n=1

. +oo
bt 1 3
% 7(2)n+1F (5,”4‘ §,n+2,b2> cn(w"+1—w"+1).

Now we focus on L3(hq, h2) given by

Lg(hl, hg)(w) =Im {—whlz(w)

T—bw dr +wb7[ whiy(w) —Thll(T)d_T}
T

TlT—=bw| T |bw — 7| T

. ][ (T—bw)Re((hl(T) _h2<w))(m)) dr

|7 — bw|3 T
Observe that

bw]i (r — bw)Re((hl (1) = ha(w)) (m)) dr g

€l

][ hl(T) — hg(w) ﬁ
T |7 — bw| T

/ (7= t) (W) o))

|7 — bw|3 T

|7 — bw|3 T

N o
&l

+

Replacing h; and h'» by their expressions we get

Galha, ho)(@) = Im chw ][ —bw dr wbi’" hal ][cnwn_a,ﬁnﬁ
1he)(@) = " |T—bw| ] 2) 7 w—1] T
bw — T cnw" — anT") p2 I (1 — bw?) (cnw” — anT”)
+ Im wz][ dr + 0} Z]{r dr

|T e 7 — b3

n=1

As before, we shall split the computations in many parts. Thanks to (5.3) and (5.4), the first term takes the
form

+oo

T — bw dT " T —bw dr
> new f g = S onewr f
n=1 n—= T

Note that we have used in the first line the identity
VrweT, |1—bw|l=]|br—w|
For the second term, we use (5.3) and (5.4) to obtain

_bf N 1 ][ cn@" — ap, T dT f n 1 be F 11 1:12 ) o+t
Gy n —_ _— = — n = Cn Sy a0 L3 w
n=1 2 T |bw - 7'| T 2 22

n=1

1 b"Jrl 1 1 1 2\ —n+1
—i—Z(n—i— ) (§)HF<§,n+§,n+l,b>w .
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The computation of the third term can be done in view of (5.8),
bw -7 (cnw" — anT”) R KR 1 3 5
dr = -n - F(Z v 3: b2 n+1
WZ][ e T=> 2 (n+2)! (2) (2,n—|—2,n—|— ’ )w
n=1 n+2
3
- Z e ( 535 bz) Wt

For the last term, we use (5.5) and (5.6)

E JFZOO]{T (1 — bw?) (cnw" — anT") o JFZOO gcn

_ 3
2 —~ |7 — bwl —
“+o0 3 3
o+ | (3)ngr - (3 5 (2) 3 3
o . n Fl2 e 2b2 _\2 np (2 e 1 b2 n+1
7 (n+1)! (2’"+2’"+’ ) nl <2’”+2’”+’ v

Finally, we obtain the following expression

. +oo

Ly(hy, ho)(w) = %; [an(An A+ (B, — 9n)} (W —
with
b3 (S (3 5 b3 (S (35
A, = 2ntlp (2 Son+3:b%) — 2np (2 = 2;b°
2 (n+2) <2’"+2’”+’ ) 2 (n+1) <2’"+2’”+’
b3 (3)n (3 3
— 22 2 1; %
T (2’”+2’"+’ )
. 1 () (1 1
_ - n+1\2 - - .12
An—(n+2)b - F(2,n+2,n+1,b>,
1 (13, 11, 30° (35 . .,
Hn—bn[QF(2,2,2,b) F(2,2,1,b>} P (5530
3
+b_ §F §,§,2;b2 _F §,§,1;b2
2127 \272 22
and

0,=—(n 1 bE 11,1;1)2 .
*3 272

We want to simplify the expression of £3(h1,h2). First we note that

~ 3
9n—9n_an<1 5 2b> 9F<1 L 1b2>—£F<3 > 3;b2)

2 27277 2" \272"" 165 \272
|3 (35 33
+—|ZF Z.2:° Z1;0°

2127 \272 2°2

By using (3.2) we get

- b L3 o) L b (Ll 2) _bp(L 3,
== S+ 07 (3. 3.200) 4 b (§ 1 00) - B (3.500)

¥Il3 /35, 33,
- 5F(§,§,2,b>—F<§,§,1,b> .

2
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Now combining (3.2) with a =b =1, ¢ =1 and z = b? as well as (3.4) witha =b =3, c =1 and z = b?,

one may obtain the following identity

112 13 2 32 (30 5.2 2 (33 .2 _
F<2,2,1,b) F(2,2,1,b)+2bF(2,2,2,b VF (5.5 107) =0

Consequently,

~ b 13 9
On the other hand

Pin+2) /3 5 3 3 5
— F(= = 307 | — b2 S)F( = = 2; b2
2tz \"tyntd nty Tty

3 1 1
n+—,n+1;b2> —(n+1)F (—,n—l——,n—i—l;b?)}.

A= A, =yt (ot
" " (n+1)!

3
2
+b(n+1)F( 5 5

2772
Applying (3.2) with a = %,b =n+1 c=n+1and z=b? one gets,

3 5 3 3 5
F(—,n+—,n+3;b2) —b? (n+—>F(—,n+—,n+2;b2)

A _A _ bn+l (%)"Jrl
" " 2 2 2 2 2

(n+1)!

+0*(n+1)F 3ot —(n+1)F L I +EF S ot o
27 27 b 27 27 ) 2 27 27 b M
Again applying (3.2) with a = %, b=n+ %, c=n+2and z = b?, we deduce

A, — A, =t

15 . 3. (1 .3 .
(n+ )F(2,n+2,n+2,b) (n+2)F(2,n+2,n+2,b>

F<g,n+g,n+2;b2) +b*(n+1)F (g,n+g,n+1;b2>

3 O\ B2 /3 3 )
,n+§,n+1,b)+5F(§,n+§,n+2,b .

We use (3.4) with a = %,b =n-+ %,c: n+1 and z = b? to cancel some terms
3 1 5 3 1 3
( (n+—)F(—,n+—,n+2;b2)—(n+—)F(—,n+—,n+2;b2>

n—+ 2) +1

(n+1)!

1 3
—(n+1)F (§,n+§,n+1;b2)

Finally, using (3.4) with a = %, b=n+ %, ¢c=n+1and z = b2, we obtain

A, —A _o (] (n+1)F LI
n n — (TL+ 1)' 2 n+1 27 27 ) .
Consequently, we have

. +oo
prtl 1 1 3
Ls(hy,ha)(w) :32 (—) (n+1)F (—,n+—,n+2;b2> ap (W — ")
n+1

2~ (n+1) \2 2 2
. +oo
i b 13

— =N S+ DF(=,2,2:0% ) cp (" — @),
2n:12(n+ ) (2727 ’ )C(w “ )

As we have (see [7])

A, (b —%NHF Lol
n()_ TL' 2,TL+2,TL+ ) .
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the proof of the proposition is now achieved. O

5.2. Monotonicity of the eigenvalues. In what follows we shall use the variable A\ £ 1 — 2Q instead
of Q2. The main task is to list the suitable conditions on the used parameters in order to guarantee a
one-dimensional kernel. Recall from Proposition 5.1 that the operator DG(£2,0,0) acts as a Fourier matrix
multiplier and the determinant of each matrix M, is given by

(5.9) det(M,,) = Z(V —2C, A+ Dy,)
with
Cn = 1+4(+—1)Sy—(1=b*)A1(b)
{ D, = —3$82+42[t—1+2(1+0b)A1(b)] Sy — 4b* (A(b) — AZ(b)) — 2(1 — b*)A1(b) + 1

From that proposition one can easily see that the kernel of DG(£2,0,0) is non trivial if and only if
{3n > 2, det(M,,) =0}

Therefore the dimension of the kernel is related to the structure of the eigenvalues and to how they depend
on the frequency modes. Observe that A — det(M,,) is a second order polynomial and the roots structure
depends on the reduced discriminant which is given by

A, = (% + 1) Sn = (L4 b%)A1(b)? — 4b°A2 (b).

We shall prove the following proposition.

Proposition 5.2. (1) For any n € N* we have A,(b) > 0, n — S, is a strictly increasing sequence,
n = A, (b) is a strictly decreasing sequence and b— A, (b) is a strictly increasing function.
(2) There exists N > 2 such that for any n > N we get A,, > 0 and the equation det(M,) = 0 admits

two different real solutions given by
ME =0, £ VA,

(3) The sequences (Ap)n>n and (A)n>n are strictly increasing and (N, )n>n is strictly decreasing.
(4) Ym >n > N we have
A <A <AF <AL

Proof. (1) The positivity and the monotonicity of A, (b) follow easily from the integral representation
pr—1 1
An(b) = T/ "2 (1—2)"2(1 — b*x) " 2da, for b € (0,1).
I2(3) Jo
As to the monotonicity of S,, it is obvious.
(2) We write A, (b) = E,,(b)F,,(b) with

E,(b) = (3+1)85,— (140*)A1(b) — 2bA,(b)
{ Fob) = (3+1)Sn— (1+0*)A1(b) + 2bA,(b)

|

We remark that
A, (b) > 0 if and only if E,(b) > 0 or F,(b) < 0.

Using the strictly monotonicity of the sequences (Ay,)nens and (S, )nens we get
1
FEn (b) — En(b) = (1 + E) (Sn+1 - Sn) — 2b(An+1 (b) - An(b)) > 0.
Therefore (E, (b))nens is a strictly increasing. As 11111 E,(b) = 400 and
N +00

Ey(b) = —(1 4 b)?A4(b),
we obtain that
3N e N*such that Vn > N, E, (b) > 0.

This implies the assertion (2).
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(3) Straightforward computations yield
1\? 1
Bpr=An = (147 ) (831 = 81 = 107 (02,0) - 30) ~ 200+ (143 ) MO Suia = 52)
1 (1
b i b
1 [ 1
1+ g) (Sn-i-l - Sn) I <1 + g)
1 [ 1
b I (1 3

1) S 520 =204 2000~ 2010+ a0

(Spt1 + Sn) —2(1+ bQ)Al(b)} —40% (A2 1 (b) — A2 (b))
(Spi1 +Sn) —2(1 + bQ)Al(b)}
(

1+ —) (Sust = S)(Busa(6) + En(8)) > 0.

3
S = —

—1> (Sni1 = Sn) = [V Ani1 — VA,

Ani1 — Ay,
- 1) (Sn-‘rl - Sn) - H

\V4 AnJrl + V An

e (s ) -]

AP (A7 44 (D) —AZ(D) (1 _
+ \/m+ N + (b 1) (Sn-i-l Sn)

1
Ve Kl
——1) St — Sn)

+3) Gurr =0 [(147) Susa 8 20+ 20|

ﬁ (145) Guat 8 -204 b2>A1<b>H (Ss1 = 5n)

+m[(l

<

because [ (14 %) (Sni14S,)—2(1+0*)A1(b)] > Eypp1(b)+E,(b) > 0and VA, < (14 1) S, — (1+6?)A1(b).
Consequently the sequence (A, )n>n is strictly decreasing.

(4) Tt is obvious and follows from (2) and (3). O

5.3. Proof of Theorem 1.1. This section is dedicated to the proof of the main result of this paper which is
deeply related to the spectral study developed in the preceding section combined with Crandall-Rabinowitz’s
theorem. To proceed, fix b € (0,1) and m > N, where N was defined in Proposition 5.2. Set,

k+log __ k+log m
Xhtlos — xhtlos q gm.

We define the ball of radius r € (0,1) by

B™ = {f € XEFE | || grsion < r}
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and we introduce the neighborhood of the trivial solution (0, 0),
Vi = B x B

The set V,,,, is endowed with the induced topology of the product spaces. Take (f1, f2) € Vi, then the
expansions of the associated conformal mappings @1, @5 in A, are given successively by

+oo
Qi(z) =2+ fi(z) == <1+Z;—?n>
n=1
and
+00 c
By(2) = bz + foz) =2 <b+ > w—"m> .
n=1

Consequently for any z € A,

2im 217

(5.10) Dilem z)=em ®j(2),j=1,2and |z| > e.

From Proposition 5.2 recall the definition of the eigenvalues A and the associated angular velocities are

Q:I: _ __ +
1~ 1
=-CphE+=vVA,

2 2

with
1 2
A, = ((g + 1)Sm —(1+ bz)Al(b)> — 4b*A2 (D)

and

Con = <1 - %) Sy 4 (1 = b%)A1 (D).

Note that Sy, and A,,(b) were introduced in Proposition 5.1. The V-states equations are described in (4.1)
and (2.2) which we restate here, for j € {1, 2},

G(Q, @1, P2) £ G(Q, f1, f2) and G = (G1,G?)
with

- ) o 79 (1) — wP}(w) dr Ty (1) — w®(w) dr e
Gy (1, @) () = 1 {<Q<I>J( e e A e T>q>j( ] }

The following result is more precise than Theorem 1.1.

Theorem 5.3. Let k> 3, N be as in the Proposition 5.2, m > N, and take Q € {Q:E}. Then, the following
assertions hold true.

(1) There exists r > 0 such that G : R X V. = YEL x YE=1 s well- defined and is of class C*.
(2) The kernel of DG(£2,0,0) is one dimensional and generated by

Q"’STm_Al(b) wm—l'
_Am(b)

(3) The range of DG(R,0,0) is closed and is of co-dimension one in Vi~ x Y,k=1.

(4) Transversality assumption: If  is a simple eigenvalue (A, > 0) then

9aDG(Q,0,0)v0,m ¢ Im (DG(22,0,0)) .

v07m:w€T'—><

Proof. (1) Compared to Theorems 4.1 and 4.5, we just need to check that G = (G1, G2) preserves the m-fold
symmetry and maps Xftlos x XFHoe into Y1 x Vi~ To this end, it is sufficient to check that for
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given (f1, fa) € Xk+log s xk+log the Fourier coefficients of G (€, ®1, ®y) vanish at frequencies which are not
integer multiple of m. This amounts to proving that,

éj(Q, Py, @2)(ei27_§w) = éj(Q,(I)l, @2)(&)), VoeT,j=1,2.
As
(5.11) (e w) = ¥ (w),

the property is obvious for the first term Im{QmI);- (w)®;(w)}. For the two last terms of G; it is enough to
check the identity,

VweT, 8(0;,0,)(e w)=em S(P;,®;)(w
This follows easily by making the change of variables 7 = e { and from ( .10) and (5.11),
S@h®xdﬂw—f”m§@(m)‘emife ") dt
T @i - @i(ew)| €
§Pi(§) — W‘I"( w) d¢
T [®i(§) — @ (w)]
=S (cp“q) )(w).

This concludes the proof of the following statement,

Y (f1, f2) € Vi, G f1, f2) € YL x YL

(2) We shall describe the kernel of linear operator DG(2,0,0) and show that it is one-dimensional. Let
h1, hs be two functions in X,’fj‘log such that

—+o0 —+o0
(5.12) hi(w) =Y a,@"™ " and ha(w) = »_ c,@™™ .

n=1 n=1
Recall from Proposition 5.1 the following expression
(5.13) DG(,0,0)(h1, hs) = anMnm ( ) (W™ — "™

n>1 Cn
where the matrice M, is given for n > 2 by :
M. — Q— S, + b2\ (b) —b2A,,(b)
" bA,,(b) bQ+ S, —bA1(b) )
Now if Q € {QE} then
det(M,,) = 0.

Thus, the kernel of DG(£2,0,0) is non trivial and is one-dimensional if and only if:
det(My,m) # 0, Vn > 2.
This condition is ensured by Proposition 5.2. Hence we have the equivalence:
(5.14) (h1,h2) € Ker(DG(£,0,0)) if and only if a, = ¢, =0¥n > 2 and (a1,¢1) € Ker(M,,)

Hence, a generator of Ker (DG(£2,0,0)) can be chosen as the pair of functions

S )

weT— (
(3) We introduce
Zm=19="(01,92) € yE-1 x Yk_1|g(w) = E An (W =), Yw e T
" 7 " " >1 Cn
2 2 . aq Al
s.t. (An,Cp) € R Vn > 2 and I(a, ¢1) € R* with M, . = c )
1 1
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Z, is closed and of codimension 1 in Y,*~1 x Yk=1. The following inclusion is obvious
Im(DG(£2,0,0)) C Zy,.
Therefore it remains just to check the converse. Let (g1, 92) € Z,, we shall prove that the equation :
DG(Q,0,0)(h1, h2) = (91, g2)

admits a solution (hy, hy) € Xk+lee x Xk+los where the Fourier expansions of these functions are given in
(5.12). According to (4.7), the preceding equation is equivalent to

QAn, o Ay *
annm(cn)_<Cn ),VTLED\I.

For n = 1, the existence follows from the condition of space Z,, and therefore we shall only focus on n > 2.
Owing to (5.14) the sequences (a,)n>2 and (¢,),>2 are uniquely determined by the formula

(a”>:LMn_"1L<A” ),VnZZ
Cn nm On

By computing the matrix M,,} we deduce that for all n > 2,

b(Q2+ 3 Spm—A1 (b)) b2 Ay (b
{ On = mndct(Mnni) A + mndct(l\/} )m)Cn
Cn = = mndet(Mpm) An + mndct(Mnml) Cn

We just need to check that (hi, he) € XEHoe x XF+los \We shall develop the computations only for h; since
the same analysis can be applied to hs. By using the characterization given by Lemma 3.2 one writes

b(Q+ £Sum — A1(D)) b2 A (b)
2 2 b nm
A1l 5cssoe & lar|” + E 2(nm+k 1) (1 + log(nm)) et (Vo) o+ et () "
2(k=1) (1 4 log(nm))?
< Ja? 2 42 22
lax]® + Z 82(nm+k D det(Mm)? [Snm o+ A (b) Cn]

2(k—1)
2 2 2
S laa] +Z 2(nm+k 1) (45 +C7)
S ||91||y,;¢1 + lg2llyn-1-

We have used the asymptotics Sy, ~ log(nm) and |det(M,m,)| ~ S2,,
(4) We have
+ _im Q4+ Sm - Ay (D) m —m
0o DG(Q2,0,0)vgm = 5 ( Ao (b) (w w™).
We resort to reductio ad absurdum and we suppose that
Do DG(QE,0,0)v0,m € Im(DG(XE,0,0)).

Then there exists (a1, c1) € R? such that
s
o — A1 (b) aq
b =
< —bAm(b) M { o )

) will be a scalar multiple of one column of the

As M,, has a one-dimension kernel, ( L l}\
matrix M, which happens if and only if

(5.15) (2+ Sy — A1(5))” = b2 A, (B)% = 0.
Combining this equation with det(M,,) = 0, we get

(Q = Sy +b°A1 (D)) (Q+ ST’” —Al(b)) + (Q+ ST’” —Al(b))2 =0.
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This yields
(Q + ST’” - Al(b)> (2Q+ (b — )AL (b) + (—1 + %) Sm) =0

which is equivalent to

O+ ‘%m —A(b)=0ouQ = % ((1 — b A;(b) + (1 — %)sm> .

This first possibility is excluded by (5.15) because A,,(b) # 0 and the second one is also impossible because
it corresponds to a double eigenvalue which is not also the case here. We obtain an absurdity and this
concludes the proof of Theorem 5.3. O
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