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ON THE SPECTRAL RADIUS OF A RANDOM MATRIX

CH. BORDENAVE, P. CAPUTO, D. CHAFAÏ, AND K. TIKHOMIROV

Abstract. Consider a square matrix with independent and identically distributed
entries of zero mean and unit variance. It is well known that if the entries have a finite
fourth moment, then, in high dimension, with high probability, the spectral radius is
close to the square root of the dimension. We conjecture that this holds true under
the sole assumption of zero mean and unit variance, in other words that there are no
outliers in the circular law. In this work we establish the conjecture in the case of
symmetrically distributed entries with a finite moment of order larger than two. The
proof uses the method of moments combined with a novel truncation technique for
cycle weights that might be of independent interest.

1. Introduction

Let XN denote the random N×N matrix (Xi,j)i,j=1,...,N , where Xi,j are independent
copies of a given complex valued random variable x with mean zero and unit variance:

E[x] = 0 and E
[
|x|2

]
= 1. (1.1)

Let ρ(XN ) denote the spectral radius of XN :

ρ(XN ) := max
{
|λ| : λ eigenvalue of XN

}
. (1.2)

The well known circular law states that, in probability, the empirical distribution of the
eigenvalues of N−1/2XN weakly converges to the uniform law on the unit disc of the
complex plane [TV, BC2]. In particular, it follows that with high probability

ρ(XN ) > (1− δ)
√
N , (1.3)

for any δ > 0 and large enough N . Here and below we say that a sequence of events
holds with high probability if their probabilities converge to one. The corresponding
upper bound on ρ(XN ) has been established by Bai and Yin [BY] under a finite fourth
moment assumption: if E[|x|4] < ∞, then with high probability ρ(XN ) 6 (1 + δ)

√
N ,

for any δ > 0 and large enough N ; see also Geman and Hwang [GH] and Geman
[G] for an independent proof under stronger assumptions. Together with (1.3), this
says that if E[|x|4] < ∞ then, in probability, ρ(XN )/

√
N → 1, as N → ∞. We

refer to [G, BY] and references therein for related estimates and more background and
applications concerning the spectral radius of a random matrix. Surprisingly, there
seems to be little or no discussion at all in the literature – even in the recent works
[T] and [BC1] – about the necessity of the fourth moment assumption for the behavior
ρ(XN ) ∼

√
N . We propose the following conjecture, which is illustrated by Figure 1.

Conjecture 1.1. The convergence in probability

lim
N→∞

ρ(XN )√
N

= 1, (1.4)
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holds under the sole assumptions (1.1).

Figure 1. The dots are the eigenvalues of a single realization of XN

where N = 1000 and x is real with distribution given by

P(x > t) = P(x < −t) = 1
2tα , t > 1,

with α = 1.8 (left) and α = 2.2 (right). The circle has radius
√

(E|x|2)N .

Another way to put this is to say that there are no outliers in the circular law. This
phenomenon reveals a striking contrast between eigenvalues and singular values of XN ,
the latter exhibiting Poisson distributed outliers in absence of a fourth moment, see for
instance [S, ABP]. A tentative heuristic explanation of this phenomenon may proceed
as follows. Suppose x has a heavy tail of index α, that is P(|x| > t) ∼ t−α, as t → ∞.
If α ∈ (2, 4), then with high probability in the matrix X = XN there are elements Xi,j

with |Xi,j | > Nβ, for any 1/2 < β < 2/α. Any such element is sufficient to produce a
singular value diverging as fast as Nβ. On the other hand, to create a large eigenvalue,
a single large entry is not sufficient. Roughly speaking one rather needs at least one
sequence of indices i1, i2, . . . , ik+1 with i1 = ik+1 with a large product

∏
j |Xij ,ij+1 |, i.e.

one cycle with a large weight if we view the matrix as an adjacency matrix of an oriented
and weighted graph. It is not difficult to see that the sparse matrix consisting of all
entries Xi,j with |Xi,j | > Nβ is acyclic with high probability, as long as αβ > 1.

Somewhat similar phenomena should be expected for heavy tails with index α ∈ (0, 2).
As shown in [BCC], in that case the circular law must be replaced by a new limiting law
µα in the complex plane. More precisely, the empirical distribution of the eigenvalues
of X/N1/α tends weakly as N →∞ to a rotationally invariant light tailed law µα, while
the empirical distribution of the singular values of X/N1/α tends weakly as N →∞ to
a heavy tailed law να. By the above reasoning, no significant outliers should appear in
the spectrum. The precise analogue of (1.4) in this case is however less obvious since
the support of µα is unbounded. From the tail of µα, one might expect that the spectral
radius is of order N1/α(logN)1/α+o(1) while typical eigenvalues are of order N1/α.

In this paper we prove that the conjectured behavior (1.4) holds if x is symmetric and
has a finite moment of order 2 + ε for an arbitrary ε > 0. We say that x is symmetric
if the law of x coincides with the law of −x.
Theorem 1.2. Suppose that x is symmetric and that E

[
|x|2

]
= 1. Suppose further that

E
[
|x|2+ε] <∞ for some ε > 0. Then, in probability,

lim
N→∞

ρ(XN )√
N

= 1. (1.5)
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In view of (1.3), to prove the theorem one only needs to establish the upper bound
ρ(XN ) 6 (1+δ)

√
N with high probability, for every δ > 0. We shall prove the following

stronger non-asymptotic estimate, covering variables x whose law may depend on N .

Theorem 1.3. For any ε, δ > 0 and B > 0, there exists a constant C = C(ε, δ, B) > 0
such that for any N ∈ N, for any symmetric complex random variable x with E

[
|x|2

]
6 1

and E
[
|x|2+ε] 6 B, we have

P
(
ρ(XN ) > (1 + δ)

√
N
)
6

C

(logN)2 . (1.6)

The rest of this note is concerned with the proof of Theorem 1.3. We finish this
introduction with a brief overview of the main arguments involved.

1.1. Overview of the proof. The proof of Theorem 1.3 combines the classical method
of moments with a novel cycle weight truncation technique. For lightness of notation,
we write X instead of XN . The starting point is a standard general bound on ρ(X) in
terms of the trace of a product of powers of X and X∗. Let ‖X‖ denote the operator
norm of X, that is the maximal eigenvalue of

√
X∗X, which is also the largest singular

value of X. Recall the Weyl inequality ρ(X) 6 ‖X‖. For any integer m > 1 one has

ρ(X) = ρ(Xm)1/m 6 ‖Xm‖1/m and ‖Xm‖2 6 Tr((X∗)mXm).
It follows that for any integer k > 2, setting m = k − 1,

ρ(XN )2k−2 6 Tr((X∗)k−1Xk−1) =
∑
i,j

[Xk−1]i,j [(X∗)k−1]j,i. (1.7)

Expanding the summands in (1.7) one obtains

ρ(XN )2k−2 6
∑
i,j

∑
P1,P2:i 7→j

w(P1)w̄(P2), (1.8)

where the internal sum ranges over all paths P1 and P2 of length k − 1 from i to j, the
weight w(P ) of a path (i1, . . . , ik) is defined by

w(P ) :=
k−1∏
`=1

Xi`,i`+1 , (1.9)

and w̄(P ) denotes the complex conjugate of w(P ). So far we have not used any specific
form of the matrix entries.

As a warm up, it may be instructive to analyze the following simple special case.
Assume that Xi,j has the distribution

x =

±q−
1−ε

2 with probability q
2 ,

0 with probability 1− q,
(1.10)

where q = qN ∈ (0, 1] is a parameter that may depend on N , while ε ∈ (0, 1) is a fixed
small constant. If qN ≡ 1, then we have a uniformly random ±1 matrix, while if qN → 0,
N → ∞ one has a matrix that may serve as a toy model for the sparse matrices from
the heuristic discussion given above. Notice that the assumptions of Theorem 1.3 are
satisfied with the same parameter ε and with B = 1, since

E[|x|2] = qε and E[|x|2+ε] 6 qε/2.

We can now take expectation in (1.8). Using the symmetry of x we may restrict the
sum over paths P1, P2 satisfying the constraint that in the union P1 ∪ P2 each directed
edge (i`, i`+1) appears an even number of times. We say that P1 ∪ P2 is even. In this
case E[w(P1)w̄(P2)] = q−(1−ε)(k−1)qn, where n is the number of edges in P1∪P2 without
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counting multiplicities. Let P denote the closed path obtained as follows: start at i,
follow P1, then add the edge (j, i), then follow P2, then end with the edge (j, i) again.
Thus, P is an even closed path of length 2k. Notice that

E[w(P1)w̄(P2)] 6 q−εE[w(P )].

Since the map (P1, P2) 7→ P is injective we have obtained

E[ρ(XN )2k−2] 6 q−ε
∑
P

E[w(P )], (1.11)

where the sum ranges over all even closed paths of length 2k. Observe that

E[w(P )] 6 q−(1−ε)kq`,

where ` is the number of distinct vertices in P . Therefore, letting N (k, `) denote the
number of even closed paths of length 2k with ` vertices, (1.11) is bounded above by

k∑
`=1
N (k, `)q−εq−(1−ε)kq`. (1.12)

Combinatorial estimates to be derived below, see Lemma 2.2 and Lemma 2.3, imply
that N (k, `) 6 k2(4k)6(k−`)N `. Putting all together we have found

E[ρ(XN )2k−2] 6 k2Nk
k∑
`=1

a(k,N, q)k−` (1.13)

where a(k,N, q) = (4k)6(Nq(1−ε))−1. We choose k ∼ (logN)2. Suppose that q >
N−1−ε. Then Nq(1−ε) > N ε2 and therefore a(k,N, q) 6 1 if N is large enough. It
follows that E[ρ(XN )2k−2] 6 k3Nk, and by Markov’s inequality, for all fixed δ > 0:

P
(
ρ(XN ) > (1 + δ)

√
N
)
6 (1 + δ)−2k+2N−k+1E[ρ(XN )2k−2]

6 (1 + δ)−2k+2k3N. (1.14)

Since k ∼ (logN)2 this vanishes faster than N−γ for any γ > 0. On the other hand,
if q 6 N−1−ε, then a different, simpler argument can be used. Indeed, since an acyclic
matrix is nilpotent, it follows that if ρ(XN ) > 0 then there must exist a cycle with
nonzero entries from the matrix X. The probability of a given such cycle is q` where
` is the number of vertices of the cycle. Estimating by N ` the number of cycles with `
vertices one has

P[ρ(XN ) > 0] 6
∞∑
`=1

(qN)`. (1.15)

Thus, if q 6 N−1−ε, then P[ρ(XN ) > 0] 6 2qN 6 2N−ε. This concludes the proof of
(1.6) in the special case of the model (1.10).

The given argument displays, albeit in a strongly simplified form, some of the main
features of the proof of Theorem 1.3: the role of symmetry, the role of combinatorics,
and the fact that cycles with too high weights have to be ruled out with a separate
probabilistic estimate. The latter point requires a much more careful handling in the
general case. Since it represents the main technical novelty of this work, let us briefly
illustrate the main idea here. Consider the collection Cm of all possible oriented cycles
with m edges of the form C = (i1, . . . , im+1) with ij ∈ {1, . . . , N}, and with no repeated
vertex except for i1 = im+1. Let νm denote the uniform distribution over the set Cm.
Given the matrix XN , we look at the weight |w(C)|2t corresponding to the cycle C
repeated 2t times, where w(C) is defined in (1.9). Since one can restrict to even closed
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paths, and each such path can be decomposed into cycles that are repeated an even
number of times, it is crucial to estimate the empirical averages

νm[|w(C)|2t] = 1
|Cm|

∑
C∼Cm

|w(C)|2t,

where the sum runs over all cycles with m edges and |Cm| denotes the total number of
them. Broadly speaking, we will define an event Ek by requiring that

νm[|w(C)|2] 6 k2 , and νm[|w(C)|2+ε] 6 k2Bm, (1.16)
for all m 6 k, where as before k ∼ (logN)2. The assumptions of Theorem 1.3 ensure
that Ek has large probability by a first moment argument. Thus, in computing the
expected values of w(P ) we may now condition on the event Ek. Actually, on the event
Ek we will be able to estimate deterministically the quantities νm

[
|w(C)|2t

]
. To see this,

observe that if
wmax(m) := max

C∼Cm
|w(C)|

denotes the maximum weight for a cycle with m edges, then

w2
max 6

( ∑
C∼Cm

|w(C)|2+ε
) 1

1+ε/2
.

If ε is small enough, on the event Ek, from (1.16) one has w2
max 6 (|Cm|k2Bm)1−ε/4.

Since |Cm| 6 Nm, a simple iteration proves that for any t > 1:

νm[|w(C)|2t] 6 (k2NmBm)t(1−ε/4) 6 Nmt(1−ε/8), (1.17)
for all N large enough. The bound (1.17) turns out to be sufficient to handle all paths
P of the form of a cycle C ∼ Cm repeated 2t times, for all m 6 k. To control more
general even closed paths P one needs a more careful analysis involving the estimate of
larger empirical averages corresponding to various distinct cycles at the same time. We
refer to Section 3.3 below for the details. The combinatorial estimates are worked out
in Section 2. Finally, in Section 4 we complete the proof of Theorem 1.3.

2. Counting paths and digraphs

We first introduce the basic graph theoretic terminology and then prove some com-
binatorial estimates.

2.1. Multi digraphs and even digraphs. For each natural N , [N ] denotes the set
{1, 2, . . . , N}. A directed graph, or simply digraph, on [N ], is a pair G = (V,E), where
V ⊂ [N ] is the set of vertices and E ⊂ [N ] × [N ] is the set of directed edges. We also
consider multisets E, where a directed edge e ∈ E appears with its own multiplicity
ne ∈ N. In this case we say that G = (V,E) is a multi digraph. Given a vertex v of a
multi digraph, the out-degree deg+(v) is the number of edges of the form (v, j) ∈ E,
counting multiplicities. Similarly, the in-degree deg−(v) is the number of edges of the
form (j, v) ∈ E, counting multiplicities. Notice that each loop of the form (v, v) is
counted once both in deg+(v) and deg−(v).

Given natural m, a path of length m is a sequence (i1, . . . , im+1) ∈ [N ]m+1. The path
P is closed if the first and the last vertex coincide. Each path P = (i1, . . . , im+1) natu-
rally generates a multi digraph GP = (V,E), where V = {i1, . . . , im+1} and E contains
the edge (i, j) with multiplicity n if and only if the path P contains exactly n times
the adjacent pair (i, j). Notice that in general there is more than one path generating
the same multi digraph. If the path P is closed, then GP is strongly connected, that is
for any u, v ∈ V one can travel from u to v by following edges from E. A closed path
without repeated vertices except for the first and last vertices is called a cycle. A loop
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1 2

3 4 1 2

3

4

Figure 2. Two examples of multi digraphs. In the first case deg+(1) = 4
and deg−(1) = 2. The second example is an even digraph: it is generated
by the even path (1, 2, 3, 2, 4, 3, 1, 2, 3, 2, 4, 3, 1), and it can be decomposed
into two double cycles, e.g. (1, 2, 3, 1, 2, 3, 1) and (2, 4, 3, 2, 4, 3, 2).

(i, i) is considered a cycle of length 1. A multi digraph will be called a double cycle if
it is obtained by repeating two times a given cycle. In particular, a double cycle is not
allowed to have loops unless its vertex set consists of just one vertex. We say that P is
an even path if it is closed and every adjacent pair (i, j) is repeated in P an even number
of times. A multi digraph is called an even digraph if it is generated by an even path;
see Figure 2.1 for an example. Thus, an even digraph is always strongly connected. The
following lemma can be proved by adapting the classical theorems of Euler and Veblen.

Lemma 2.1. For a strongly connected multi digraph G, the following are equivalent:
1) G is an even digraph;
2) deg+(v) = deg−(v) is even for every vertex v;
3) G can be partitioned into a collection of double cycles.

2.2. Equivalence classes and rooted digraphs. Two multi digraphs G = (V,E)
and G′ = (V ′, E′) are called isomorphic if there is a bijection f : V → V ′ such that
(i, j) ∈ E if and only if (f(i), f(j)) ∈ E′ and the multiplicities of the corresponding edges
coincide. The associated equivalence classes are regarded as unlabeled multi digraphs.
Given an unlabeled multi digraph U , we will write G ∼ U for any multi digraph G
belonging to the class U . An edge-rooted multi digraph G = (V,E, ρ), or simply a
rooted digraph, is defined as a multi digraph with a distinguished directed edge ρ ∈ E.
The definition of equivalence classes is extended to rooted digraphs as follows. Two
rooted digraphs G = (V,E, ρ) and G′ = (V ′, E′, ρ′) are called isomorphic if there is a
bijection f : V → V ′ such that (i, j) ∈ E if and only if (f(i), f(j)) ∈ E′, multiplicities
of corresponding edges coincide, and f(ρ) = ρ′. With minor abuse of notation we will
use the same terminology as above, and write G ∼ U for rooted digraphs G belonging
to the equivalence class U .

2.3. Counting. We turn to an estimate on the number of paths generating a given even
digraph. Let G = (V,E) be an even digraph with |E| = 2k edges. Unless otherwise
specified, multiplicities are always included in the edge count |E|. By Lemma 2.1 every
vertex v has even in- and out-degrees satisfying

deg+(v) = deg−(v). (2.1)

Thus G has at most k vertices. Moreover, since the number of edges in G is 2k, we have∑
v∈V

deg+(v) =
∑
v∈V

deg−(v) = 2k. (2.2)

Lemma 2.2 (Counting paths on digraphs). Let G = (V,E) be an even digraph with
|E| = 2k and |V | = `. The number of paths generating G does not exceed

`(4k − 4`)!
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Proof. There are ` possibilities for the starting points of the path. The path is then
characterized by the order in which neighboring vertices are visited. At each vertex v,
there are deg+(v) visits, and at most deg+(v)/2 out-neighbors. If deg+(v) = 2, there is
only one possible choice for the next neighbor. If deg+(v) > 4, then there are at most
deg+(v)! possible choices considering all visits to the vertex v. Hence, the number of
paths generating G is bounded by

`
∏
v: deg+(v)>4(deg+(v)!) 6 `

(∑
v: deg+(v)>4 deg+(v)

)
!

where we have used that the product of factorials does not exceed the factorial of the
sum. Now, let q be the number of vertices v such that deg+(v) > 4. From (2.2), we
have ∑

v: deg+(v)>4 deg+(v) + 2(`− q) = 2k. (2.3)
Estimating the sum in (2.3) from below by 4q one has 4q + 2(`− q) 6 2k. Hence,

q 6 k − `. (2.4)

Using (2.4) in (2.3) one finds∑
v: deg+(v)>4 deg+(v) 6 4k − 4`.

�

For integers 1 6 ` 6 min{k,N}, let GN (k, `) be the set of rooted even digraphs
G = (V,E) with V ⊂ [N ] such that |V | = ` and |E| = 2k.

Lemma 2.3 (Graphs counting). For any k,N ∈ N, 1 6 ` 6 min{k,N}, the cardinality
of GN (k, `) satisfies

|GN (k, `)| 6 N `k2(k−`)+1. (2.5)

Proof. We first choose ` vertices among N . There are(
N

`

)
6
N `

`!

choices. Without loss of generality we assume that the set of vertices is given by
{1, . . . , `}. Next, we assign an admissible degree to each vertex of {1, . . . , `}. Let
m(j) ∈ N be defined as m(j) = deg±(j)/2. In view of (2.1) and (2.2), one has m(j) > 1
and

∑`
j=1m(j) = k. Thus there are(

k − 1
`− 1

)
6 kk−`

choices for the vector (m(1), . . . ,m(`)). Next, we need to count the number of multi
digraphs with the given degree sequence. To this end, we may use the configuration
model. Namely, we think of every vertex j as having m(j) heads and m(j) tails. Al-
together, there will be k heads and k tails. Each head is thought of as a pair of loose
out-edges (without an assigned out-neighbor) while each tail is thought of as a pair of
loose in-edges (without an assigned in-neighbor). The number of multi digraphs with
the given degree sequence is bounded by the number of bipartite matchings of heads
and tails, which gives k! possible choices. Thus, using k!/`! 6 kk−`, we see that the
total number of even multi digraphs with ` vertices and 2k edges is bounded above by

N `k2(k−`).

It remains to choose the root edge. Since there are at most k choices, the proof is
complete. �
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3. Statistics of even digraphs

Every edge (i, j) ∈ [N ] × [N ] is given the random weight Xi,j , where Xi,j are inde-
pendent copies of a random variable x satisfying the assumptions of Theorem 1.3. The
weight of an even digraph G = (V,E), is defined as

p(G) :=
∏

(i,j)∈E
|Xi,j |ni,j , (3.1)

where each edge (i, j) ∈ E has multiplicity ni,j > 2. Note that in this formula we
interpret “(i, j) ∈ E” without taking into account the multiplicity in the multiset E.
Given an unlabeled even graph U , consider the equivalence class of even digraphs {G :
G ∼ U}. We are interested in estimating

Sh(U) := 2h|{G ∼ U : p(G) > 2h}|
|{G : G ∼ U}| , (3.2)

for h = 0, 1, 2, . . . Moreover, we define
S(U) := max(1, max

h∈{0,1,2,... }
Sh(U)) . (3.3)

We refer to S(U) as the statistics of the unlabeled even digraph U .
We extend the above definitions to rooted even digraphs as follows. The weight of a

rooted even digraph G = (V,E, ρ) is defined by

pr(G) =
∏

(i,j)∈E
|Xi,j |ni,j−21(i,j)=ρ . (3.4)

Note that
pr(V,E, ρ) = |Xρ|−2p(V,E),

is well defined even if Xρ = 0 since the root edge ρ satisfies ρ ∈ E and thus nρ > 2. If U
is an unlabeled rooted even digraph, that is an equivalence class of rooted even digraphs,
then Sh(U) and S(U) are defined as in (3.2) and (3.3), provided p(G) is replaced by
pr(G) in that expression.

Estimates for the statistics S(U) will be derived from a basic estimate for double
cycles. Let Cm be the unlabeled double cycle with 2m edges. Similarly, C?m will denote
the unlabeled rooted double cycle with 2m edges. From the assumptions of Theorem
1.3, for any double cycle C ∼ Cm we have

E[p(C)] 6 1 , E[p(C)1+ε/2] 6 Bm. (3.5)
Note that the same bounds apply for any rooted double cycle C ∼ C?m, with the weights
p(C) replaced by pr(C).

Lemma 3.1 (Cycles statistics). For any k > 1, and m 6 k, define the event

Ak := A1
k ∩ A2

k ∩ A3
k

where

A1
k :=

k⋂
m=1

{ ∞∑
h=0
Sh(Cm) 6 k2

}
,

A2
k :=

k⋂
m=1

{ ∞∑
h=0
Sh(C?m) 6 k2

}
,

A3
k :=

k⋂
m=1

{ ∞∑
h=0

2hε/2Sh(Cm) 6 k2Bm
}
.
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Then
P(Ak) > 1− 6

k
.

Proof. For any a > 0 one has
1
2

∞∑
h=0

2h1a>2h 6 a 6 1 + 2
∞∑
h=0

2h1a>2h . (3.6)

Take any C ∼ Cm. The first inequality in (3.6) yields
1
2

∞∑
h=0

2h1p(C)>2h 6 p(C). (3.7)

Taking the expectation, (3.5) implies
∞∑
h=0

2hP(p(C) > 2h) 6 2.

On the other hand, by symmetry any C ∼ Cm satisfies
2hP(p(C) > 2h) = E[Sh(Cm)]. (3.8)

Hence, from Markov’s inequality and a union bound over 1 6 m 6 k, one has

P(A1
k) > 1− 2

k
. (3.9)

for all m 6 k. Next, as in (3.7) one shows that

p(C)1+ε/2 >
1
2

∞∑
h=0

2h(1+ε/2)1p(C)>2h .

Then (3.5) and (3.8) imply
∞∑
h=0

2hε/2E[Sh(Cm)] =
∞∑
h=0

2h+hε/2P(p(C) > 2h) 6 2E
[
p(C)1+ε/2

]
6 2Bm.

Therefore, from Markov’s inequality and a union bound over 1 6 m 6 k,

P(A3
k) > 1− 2

k
. (3.10)

Finally, we observe that the same argument leading to (3.9) can be repeated for rooted
cycles, with no modifications. It follows that

P(A2
k) > 1− 2

k
. (3.11)

From (3.9)-(3.11) and the union bound over i = 1, 2, 3, it follows that

P(Ak) > 1− 6
k
.

�

In the remainder of this section, on the event Ak, we will deterministically upper
bound the statistics of any unlabeled rooted even digraph; see Proposition 3.3 below.
The proof will use the following induction statement.

Lemma 3.2 (Induction). Fix integers 1 6 r 6 m 6 k �
√
N . Let U ′ be an unlabeled

rooted even digraph with at most k vertices and assume that U ′ can be decomposed as
U ′ = U ∪ Cm for some unlabeled rooted even digraph U and a double cycle Cm of length
2m having r common vertices with U . Suppose that Ak holds. Then
1) S(U ′) 6 3ek2N rS(U);
2) If m logB 6 ε

4r logN , then S(U ′) 6 5ek2N r(1−ε/8)S(U).
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Proof. Fix an even rooted digraph G′ ∼ U ′ and denote by C ∼ Cm and G ∼ U , respec-
tively, the double cycle with 2m edges and the even rooted digraph isomorphic to U
so that G′ = G ∪ C. Further, let π be a uniform random permutation of [N ], which
we assume to be defined on a different probability space. Any permutation induces a
mapping on rooted digraphs via vertex relabeling, so that the rooted digraph π[G′] is
uniformly distributed on the set {H : H ∼ U ′}. Hence we may write

Sh(U ′) = 2hPπ(pr(π[G′]) > 2h), h = 0, 1, . . . (3.12)

where Pπ denotes the probability w.r.t. the random permutation π. For any a, b > 0,

1ab>2h = 1ab>2h

( h∑
`=1

12`−16a<2` + 1a<1 + 1a>2h

)

6
h∑
`=1

1b>2h−`; a>2`−1 + 1b>2h + 1a>2h .

Using this and pr(π[G′]) = pr(π[G]) p(π[C]), one may estimate

Pπ
(
pr(π[G′]) > 2h

)
6

h∑
`=1

Pπ
(
pr(π[G]) > 2h−`; p(π[C]) > 2`−1

)
+ Pπ

(
p(π[C]) > 2h

)
+ Pπ

(
pr(π[G]) > 2h

)
. (3.13)

Let us condition on a fixed realization R of π restricted to the vertices V of G. Thus,
Pπ(· |R) represents a uniform average over all permutations that agree with the given
R on V . We write C ′ ∼ (C;R) for any digraph C ′ that has the form C ′ = π[C] for
some π that agrees with R on V . Since C has m − r free vertices (those which do not
fall into V ), and we can pick them among N − |V | available vertices, the cardinality of
{C ′ ∼ (C;R)} is at least

(N − |V |)(N − |V | − 1) · · · (N − |V | − (m− r − 1)) > (N − k)(m−r),

where we use that the total number of vertices satisfies |V | + (m − r) 6 k. Since the
number of double cycles of length 2m is

(N
m

)
(m− 1)! 6 Nm, we can write for any τ > 0:

Pπ(p(π[C]) > τ |R) = |{C
′ ∼ (C;R) : p(C ′) > τ}|
|{C ′ ∼ (C;R)}|

6 (N − k)r−m|{C ′ ∼ Cm : p(C ′) > τ}|
6 (N − k)r−mNmPπ(p(π[C]) > τ) 6 eN rPπ(p(π[C]) > τ),

where we use r 6 m 6 k �
√
N to bound (1− k

N )r−m 6 e. Since the above estimate is
uniform over the realization R, for any ` = 1, 2, . . . , h we have

Pπ
(
pr(π[G]) > 2h−`; p(π[C]) > 2`−1

)
6 Pπ

(
pr(π[G]) > 2h−`

)
sup
R

Pπ
(
π[C] > 2`−1 |R

)
6 eN rPπ

(
pr(π[G]) > 2h−`

)
Pπ
(
p(π[C]) > 2`−1

)
.

Using the definition of S(U) and the identity (3.12) applied to G and C we obtain, for
all ` = 1, . . . , h:

Pπ
(
pr(π[G]) > 2h−`; p(π[C]) > 2`−1

)
6 eN r21−hS(U)S`−1(Cm). (3.14)
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From (3.13) one has

Pπ(p(π[G′]) > 2h) 6 eN r21−hS(U)
h−1∑
`=0
S`(Cm) + 2−hSh(Cm) + 2−hS(U).

Since S(U) > 1, on the event Ak of Lemma 3.1 one can estimate

2hPπ(p(π[G′]) > 2h) 6 2eN rS(U)
∞∑
`=0
S`(Cm) + S(U) 6 3ek2N rS(U).

Taking the supremum over h, the above relation proves the first assertion of the lemma.
Let us prove the second assertion. On the event Ak of Lemma 3.1, for any T ∈ N,

∞∑
`=T
S`(Cm) 6 2−εT/2k2Bm.

Fix T = dlog2(N r(1−ε/8))e. If m logB 6 ε
4r logN , then

∞∑
`=T
S`(Cm) 6 k2N−εr/8.

Estimating as in (3.14) for all ` > T + 1, we obtain
h∑

`=T+1
Pπ
(
pr(π[G]) > 2h−`; p(π[C]) > 2`−1

)
6 2−h+1ek2S(U)N r(1−ε/8).

On the other hand, using Pπ
(
pr(π[G]) > 2h−`

)
6 2−h+`S(U), we find

T∑
`=1

Pπ(pr(π[G]) > 2h−`; p(π[C]) > 2`−1) 6 2−hS(U)2T+1 6 2−h+2S(U)N r(1−ε/8).

From (3.13) it follows that

Pπ(p(π[G′]) > 2h) 6 2−h+2ek2S(U)N r(1−ε/8) + 2−hSh(Cm) + 2−hS(U).

On the event Ak one has Sh(Cm) 6 k2 6 k2S(U), and therefore

2hPπ(p(π[G′]) > 2h) 6 5ek2N r(1−ε/8)S(U).

Taking the supremum over h, we obtain the second assertion of the lemma. �

We turn to the main statement of this section

Proposition 3.3 (Main estimate). Suppose N ε/16 > 5ek2, and let U be an unlabeled
rooted even graph with 2k edges and x vertices. Define

yx := max
(

0, k − x− 4k logB
ε logN

)
.

Then, on the event Ak we have

S(U) 6 Nk−xN−εyx/16k2(3ek2) 4k logB
ε logN .

Proof. By Lemma 2.1 we may represent U as the union of double cycles C1, . . . , Cq, such
that:
1) C1 is rooted;
2) for all i ∈ [q], Ci has 2mi edges;
3) for i > 2, Ci has ri > 1 common vertices with ∪i−1

j=1Cj .
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Define the rooted even digraphs Ui =
⋃i
j=1Cj , i = 1, 2, . . . , q. Let Ui denote the

associated equivalence classes. Let J be the set of indices i > 2 such that

mi logB 6 ε

4ri logN.

Since mi >
ε logN
4 logB for any i > 2, i /∈ J , using

∑
i>2mi 6 k we see that

|{2, . . . , q} \ J | 6 4k logB
ε logN .

Since U1 is a rooted double cycle with at most 2k edges, and we are assuming the validity
of the event Ak, by Lemma 3.1 we have S(U1) 6 k2. Moreover, by Lemma 3.2, one has

S(Ui) 6 3ek2S(Ui−1)N ri , i ∈ {2, . . . , q} \ J

S(Ui) 6 5ek2S(Ui−1)N ri−riε/8 6 S(Ui−1)N ri−riε/16, i ∈ J,

where we used the assumption 5ek2 6 N ε/16. Next, observe that
q∑
i=2

ri = k − x.

Thus, combining the above estimates one has

S(U) 6 Nk−xN−εy
′/16k2(3ek2) 4k logB

ε logN ,

where y′ =
∑
i∈J

ri. Note that

∑
i/∈J

ri 6
∑
i/∈J

4mi logB
ε logN 6

4k logB
ε logN ,

implying that y′ > k − x− 4k logB
ε logN . The proof is complete. �

4. Proof of Theorem 1.3

Let B denote the event that |Xij | 6 N2 for all (i, j) ∈ [N ] × [N ]. An application
of Markov’s inequality and the assumption E[|Xij |2] 6 1 shows that P(B) > 1− 1/N2.
Thus, if we define Ek := Ak ∩ B, where Ak is the event from Lemma 3.1, then

P(Ek) > 1−N−2 − 6k−1. (4.1)

We are going to choose eventually k ∼ (logN)2. Therefore, thanks to (4.1), to prove
the theorem it will be sufficient to prove the conditional statement

P
(
ρ(XN ) > (1 + δ)

√
N | Ek

)
6 C(logN)−2. (4.2)

To prove this, we estimate the conditional moments E[ρ(XN )2k−2 | Ek]. From the
expansion in (1.8) one has

E[ρ(XN )2k−2 | Ek] 6
∑
i,j

∑
P1,P2:i 7→j

E[w(P1)w̄(P2) | Ek] , (4.3)

where the internal sum ranges over all paths P1 and P2 of length k − 1 from i to j, the
weight w(P ) of a path is defined by (1.9), and w̄(P ) denotes the complex conjugate of
w(P ).

Notice that since |Xi,j | 6 N2 on the event Ek, all expected values appearing above
are well defined. By the symmetry assumption we can replace the variables Xi,j by

X ′i,j = θi,jXi,j

where θi,j ∈ {−1,+1} are symmetric i.i.d. random variables, independent from the
{Xi,j}. Conditioning on Ek the entries X ′ij are no longer independent. However, since
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Ek is measurable with respect to the absolute values {|Xij |}, the signs θi,j are still
symmetric and i.i.d. after conditioning on Ek. It follows that

E [w(P1)w̄(P2) | Ek] = 0,
whenever there is an edge with odd multiplicity in P1 ∪ P2. Thus, in (4.3) we may
restrict to P1, P2 such that each edge in P1∪P2 has even multiplicity. Let P denote the
closed path obtained as follows: start at i, follow P1, then add the edge (j, i), then follow
P2, then end with the edge (j, i) again. Thus, P is an even closed path of length 2k.
Note that according to our definition (3.4), if GP is the rooted even digraph generated
by the path P , with root at the edge (j, i), then

|w(P1)w̄(P2)| = pr(GP ).
Since the map (P1, P2) 7→ P is injective, (4.3) allows us to estimate

E
[
ρ(XN )2k−2 | Ek

]
6
∑
P

E [pr(GP ) | Ek] , (4.4)

where the sum ranges over all even closed paths P = (i1, . . . , i2k+1) of length 2k and
GP is defined as the rooted even digraph generated by the path P , with root at the
edge (ik, ik+1). By Lemma 2.2, the sum in (4.4) can be further estimated by

k
k∑
x=1

(4k)4(k−x) ∑
G∈GN (k,x)

E [pr(G) | Ek] , (4.5)

where we used x(4k − 4x)! 6 k(4k)4(k−x), and GN (k, x) denotes the set of all rooted
even digraphs with 2k edges and x vertices. Below we estimate

∑
G∈GN (k,x) pr(G) de-

terministically on the set Ek. Using the second inequality in (3.6) one has, for any
G ∈ GN (k, x):

pr(G) 6 1 + 2
∞∑
h=0

2h1pr(G)>2h .

Since on the event Ek all entries satisfy |Xi,j | 6 N2, it follows that pr(G) 6 N4k−4.
Therefore the above sum can be truncated at

H := b4k log2Nc.
Let U be a given equivalence class of rooted even digraphs with x vertices and 2k edges.
Summing over all G ∼ U , and recalling (3.3),∑

G∼U
pr(G) 6

(
1 + 2

H∑
h=0
Sh(U)

)
|{G ∼ U}| 6 3HS(U) |{G ∼ U}| .

From Proposition 3.3, on the event Ek we can then estimate∑
G∼U

pr(G) 6 3HNk−xN−εyx/16k2(3ek2) 4k logB
ε logN |{G ∼ U}| ,

where yx = max
(
0, k − x − 4k logB

ε logN
)
. Summing over all equivalence classes U of rooted

even digraphs with x vertices with 2k edges, on the event Ek one obtains∑
G∈GN (k,x)

pr(G) 6 3HNk−xN−εyx/16k2(3ek2) 4k logB
ε logN |GN (k, x)| . (4.6)

Going back to (4.5), using (4.6), and Lemma 2.3 to estimate |GN (k, x)|, one finds

E
[
ρ(XN )2k−2 | Ek

]
6 3Hk4Nk(3ek2) 4k logB

ε logN
k∑
x=1

(4k)6(k−x)N−εyx/16 (4.7)
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Fix k ∼ (logN)2. If x 6 k − 8k logB
ε logN , then yx > (k − x)/2 and therefore

(4k)6(k−x)N−εyx/16 6 (4k)6(k−x)N−ε(k−x)/32 6 1,
provided that N is sufficiently large. It follows that

k∑
x=1

(4k)6(k−x)N−εyx/16 6 k + 8k logB
ε logN (4k)

48k logB
ε logN .

From (4.7), for large enough N and k ∼ (logN)2, one has

E
[
ρ(XN )2k−2 | Ek

]
6 Nk(logN)C logN , (4.8)

where C = C(ε,B) > 0 is a constant depending only on ε,B. The proof of (4.2) is
concluded by using Markov’s inequality: for any δ > 0,

P(ρ(XN ) > (1 + δ)
√
N | Ek) 6 (1 + δ)−2k+2N−k+1E[ρ(XN )2k−2 | Ek]

6 (1 + δ)−2k+2N(logN)C logN .

Since k ∼ (logN)2, for fixed δ > 0, the expression above is O(N−γ) for any γ > 0. This
ends the proof of Theorem 1.3.
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