
HAL Id: hal-01346243
https://hal.science/hal-01346243

Submitted on 16 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytical insights into the partially integrated
transport modeling method for hybrid Reynolds

averaged Navier-Stokes equations-large eddy simulations
of turbulent flows

Bruno Chaouat, Roland Schiestel

To cite this version:
Bruno Chaouat, Roland Schiestel. Analytical insights into the partially integrated transport modeling
method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent
flows. Physics of Fluids, 2012, 24 (8), pp.085106. �10.1063/1.4745003�. �hal-01346243�

https://hal.science/hal-01346243
https://hal.archives-ouvertes.fr


PHYSICS OF FLUIDS 24, 085106 (2012)

Analytical insights into the partially integrated transport
modeling method for hybrid Reynolds averaged
Navier-Stokes equations-large eddy simulations
of turbulent flows

Bruno Chaouat1,a) and Roland Schiestel2
1ONERA, 92322 Châtillon, France
2IRPHE, Château-Gombert, 13384 Marseille, France

(Received 26 December 2011; accepted 9 July 2012; published online 31 August 2012)

The basis of the partially integrated transport modeling (PITM) method was in-

troduced by Schiestel and Dejoan [“Towards a new partially integrated transport

model for coarse grid and unsteady turbulent flow simulations,” Theor. Comput.

Fluid Dyn. 18, 443 (2005)] and Chaouat and Schiestel [“A new partially integrated

transport model for subgrid-scale stresses and dissipation rate for turbulent devel-

oping flows,” Phys. Fluids 17, 065106 (2005)]. This method provides a continuous

approach for hybrid RANS-LES (Reynolds averaged Navier-Stokes equations-large

eddy simulations) simulations with seamless coupling between RANS and LES re-

gions. The main ingredient of the method is the new dissipation-rate equation that

can be applied as a subfilter scale turbulence model. Then, it becomes easy to convert

almost any usual RANS transport model into a subfilter scale model. In particular,

the method can be applied to two equation models and to stress transport models

as well. In the derivation of the method, the partial integration technique allows

to keep a link between the spectral space and the physical space of the resulting

model. The physical turbulent processes involving the production, dissipation, and

flux transfer of the turbulent energy are introduced in the equations. The present

work, after recalling the main building steps of the PITM method, brings further

insight into the physical interpretation of the method, its underlying hypotheses and

its internal acting mechanisms. In particular, the finiteness of the coefficients used in

the dissipation-rate equation is discussed in detail from a theoretical point of view.

Then, we consider the analytical example of self-similar turbulent flow for analyzing

the dissipation-rate equation. From an analytical solution obtained by Taylor series

expansions taking into account the Kovasznay hypothesis for evaluating the transfer

term, we compute the functional coefficients cǫ2
and cs f sǫ2

used in RANS and LES

methodologies, respectively, and we demonstrate that both coefficients take on finite

values when the Reynolds number goes to infinity. Finally, after briefly mentioning

some flow illustrations to get a real appraisal of the PITM method in its capabilities to

simulate unsteady flows on relatively coarse grids with a sufficient accuracy for en-

gineering computations, we study the coefficient cs f sǫ2
through one chosen example.

C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745003]

I. INTRODUCTION

The current trends in turbulence modeling for tackling engineering applications is to develop

hybrid RANS-LES (Reynolds averaged Navier-Stokes equations-large eddy simulations) methods

capable to reproduce a RANS-type behavior in the vicinity of a solid boundary and a LES-type
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behavior far away from the wall boundaries.1 As mentioned by Germano,2 this type of approach

allows to bridge the gap between the RANS and LES approaches. Indeed, these hybrid methods

constitute a good compromise between the statistical RANS approach which is not well suited for

simulating complex or unsteady flows subjected to a large range of frequencies that can interact with

the turbulence time scales and a highly resolved LES approach that requires prohibitive computer

time consumption. For instance, as mentioned by Spalart,3, 4 it will not be possible in a near future

to simulate industrial applications requiring large computational domains like an entire aircraft,

even with the rapid increase of super-computer power. The computational cost of such a flow

simulation still remains not affordable. For a comparative assessment of RANS and LES methods,

Gatski et al.5 and Lesieur and Metais6 have pointed out the respective advantages and drawbacks

of both methods in some interesting review papers. According to the literature,5, 7 hybrid methods

can be classified into two categories, zonal and non-zonal methods. This terminology employed

for classifying hybrid RANS-LES methods among zonal and non-zonal methods can be, however,

ambiguous since both methods use different models in different regions. For this reason, some

authors1 prefer to identify on the one hand segregated modeling when different models are used

and, on the other hand unified modeling corresponding to the counterpart to segregated modeling

considered as a more continuous approach. Among these hybrid RANS-LES methods, the detached

eddy simulation3, 8 where the model is switching from a RANS behavior to a LES behavior, depending

on a criteria based on the turbulent length-scale, is certainly one of the most popular models used for

aeronautical applications. Generally speaking, although of practical use, the main shortcoming of

standard hybrid RANS-LES methods comes from the connection interface between the RANS and

LES regions where the turbulence closure changes from one model to another one without continuity

when crossing the interface.9, 10 This procedure may require internal forcing in order to get the correct

velocity and stress profiles in the boundary layer11 and still pose some conceptual and numerical

problems.

In the field of hybrid RANS-LES methods, Schiestel and Dejoan12 and Chaouat and Schiestel13

have developed in the last several years a partially integrated transport modeling (PITM) method

with seamless coupling between the RANS and LES behaviors which is inspired from multiple-time

scale modeling14 developed previously in the RANS framework. This new approach is intended

to respond to the problems raised by conventional hybrid RANS-LES methods. In particular, the

PITM method allows to simulate turbulent flows on relatively coarse grids or flows with strong

departure from spectral equilibrium. Such situations in flow physics occur, for instance, when forced

unsteadiness interacts with the turbulence field, energy being injected into the flow,12 but also in

more complex situations where natural self-sustained unsteadiness develops due to the existence of

organized eddies in particular flow geometries.13, 15 From this method, these authors have derived

some subfilter turbulent models, a former using a viscosity two-equation model and the latter using

a stress transport model based on second-moment closure. In contrast with zonal hybrid RANS-

LES models, the models derived from the present PITM method have the particularity to vary

continuously with respect to the ratio of the turbulent length-scale to the grid-size Le/� (or the filter

width) so that they avoid the need to set any interface between RANS and LES regions and to change

the model from one computational domain to another one. Among these models, the subfilter scale

stress transport models13, 16–19 transposed from Reynolds stress models (RSM) (Refs. 20–23) are

probably the most elaborated models based on complex constitutive relations. Although the PITM

method has been developed in the wave number space, it is possible to transpose its formalism in

the frequency space. This work was done by several authors, Fadai-Ghotbi et al.18 involved in the

Poitier group in France. These authors have considered temporal filters instead of physical space

filters to handle non-homogeneous stationary flows. Their method called TPITM (temporal partially

integrated transport modeling) method was also used to derive the dissipation-rate equation in an

analogous manner. As a result, they showed that the dissipation-rate equation finally takes the same

formulation as the one found in the spectral space by the original PITM method. Another approach is

the PANS (partially averaged Navier-Stokes) method24 based on the self-similarity scale assumption

that has recently emerged for performing unsteady computations. Although some equations of the

PANS approach look similar to the PITM method, the method does not provide a clear link between

the model equations and the filter size.
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The PITM method is now becoming more widespread in turbulence modeling13, 17, 19, 25–27

because of its practical interest in the field of engineering applications. As the method retains a

strong link with the underlying spectral concepts, there is a need to make clear how this connection

is working. In the present work, we shall first briefly recall the basic principles and the foundation of

the method. After this recalling of the main building steps of the PITM method, then we shall make

a more in depth discussion of the underlying hypotheses, their physical interpretation and the acting

mechanisms behind the equations, and so how the derived subfilter models work. We will present the

partially integrated equations describing the physical turbulent processes involving the production,

dissipation, and flux transfer of the partial turbulent energy associated to each spectral zone. These

spectral balance equations constitute the cornerstone of the PITM method. In this formalism, we will

introduce the cutoff wave number used in the spectrum splitting in LES by means of dimensionless

relations and we will discuss their domain of validity from a theoretical point of view. We will show

that the PITM method can be applied to almost any statistical model to derive its corresponding

subfilter model that can be used in LES. The important question concerning the finiteness of the

coefficients used in the dissipation equation will be extensively discussed. In particular, we will

examine the asymptotic behavior of the functional coefficient cs f sǫ2
when the turbulence Reynolds

number goes to infinity and we will give arguments to show that it reaches finite values whatever the

flow considered. Then, we consider the given example of a self-similar turbulent flow. We will show

that the generic dissipation-rate equation is physically consistent with this type of flow. To do this,

we will calculate the analytical solution of Reid and Harris28 obtained in the present case by means

of Taylor series expansions developed in the spectral space taking into account the Kovasznay

hypothesis for evaluating the transfer term. We will determine the expressions of the functional

coefficients cǫ2
and cs f sǫ2

used in the statistical and subfilter generic dissipation-rate equations to

show that these coefficients, as expected, take on finite values when the Reynolds number goes to

infinity. Finally, after briefly mentioning some flow illustrations to get a real appraisal of the PITM

method in its capabilities to simulate unsteady flows on relatively coarse grids, we will study the

coefficient cs f sǫ2
through one chosen example.

II. THE SPECTRAL FRAMEWORK IN THE STATISTICAL SENSE

A. Spectral transport equations

A turbulent flow of a Newtonian viscous fluid is considered. The theoretical formalism of

the dynamic of homogeneous turbulence in spectral space can be obtained from the transport

equation of the two-point fluctuating velocity correlations in the physical space, by taking its Fourier

transform.29, 30 Extending this methodology to non-homogeneous flows is possible31, 32 but leads to

very complicated equations. The practical mean, however, to keep the equation reasonably simple

and tractable is to introduce the approximate concept of tangent homogeneous space, that we used

in the development of the PITM method.14, 33 In this approach, the variation of the mean velocities is

accounted for by the use of Taylor series approximations limited to the linear terms. These equations

are functions of the wavevector. They can be converted into one-dimensional spectral equation that is

the only function of the wave number by averaging over spherical shells. This technique introduced

by the French turbulence group in Lyon (see, for instance, Jeandel et al.34 or Cambon et al.35)

applied to the fluctuating field in homogeneous turbulence allows a considerable simplification

of the mathematical formalism, although the directional information is lost. But this practice is a

necessary surrender to keep simple equations and is sufficient for engineering applications. These

spectral equations have been the basis of one-dimensional non-isotropic spectral models34–37 and an

interesting overview has been conducted in Ref. 38. Spectral turbulence transport equations are the

basis to develop both multiple scale statistical models14, 39, 40 and subfilter transport closures such as

the PITM method.12, 13, 33 As a result of the mathematical formalism,14, 33, 34 the dynamic equation for

the spectral two point velocity correlation tensor in one-dimensional spectral space formally reads

∂ϕi j (X, κ)

∂t
= Pi j (X, κ) + Ti j (X, κ) + �i j (X, κ) + Ji j (X, κ) − Ei j (X, κ), (1)
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where the different terms appearing in the right-hand side of this equation are, respectively, the pro-

duction, transfer, redistribution, diffusion, and dissipation contributions, acting in the spectral space

associated to the scalar wave number κ (modulus of the wavevector). The exact expressions of these

terms can be found for instance in Ref. 33. In this equation, the variable X denotes the midway position

X = 1
2
(x A + x B) between the two points x A and x B introduced as the reference location in space. As

already mentioned earlier, an essential simplification used in establishing Eq. (1) is the integration on

spherical shells of modulus κ to get one-dimensional spectra such as ϕi j (X, κ) =
∫
|κ | �i j (X, κ)dκ

in which the spectral tensor �i j (X, κ) is depending on the full wavevector κ , thus not only on the

modulus but also on the orientation. Spherical averaging33, 39, 40 allows to reduce the complexity of

the problem in a reasonable way, especially in real flow applications in which the X dependency is

important. It is worth mentioning here that similar approaches have been made in physical space for

the two-point correlation functions. In this case, the correlation tensor is a function of ξ = x B − x A,

the vector joining the points A and B, but only the dependence on the modulus ξ is retained in

spherically averaged structure functions. For instance, one can cite the recent work by Cimarelli and

De Angelis41 for turbulent wall flows in which r-averaging is performed on square domains in wall

parallel planes, keeping the wall distance parameter. In the more theoretical case of homogeneous

anisotropic turbulence, there is no X dependency in space and the turbulent diffusion terms vanish.

Consequently, it becomes possible to further refine the analysis. The linear rapid transfer term and

the pressure redistribution term present in Eq. (1) as rapid parts of the terms Ti j (X, κ) and �i j (X, κ)

need closure assumption while they would be already closed in the transport equation for �i j . This

lack of information on the directional dependence on the wavevector κ leads to a specific closure

problem with solutions proposed in particular in the Lyon group in France35, 42 based on a linear

analysis coupled with the extended eddy damped quasi-normal Markovian (EDQNM) approach43, 44

which is an outgrowth of the classical EDQNM analytical theory.45 This dependency upon the full

wavevector κ in the three-dimensional spectral space introduces another kind of anisotropy and has

lead some authors to introduce the directional anisotropy in addition to the polarization anisotropy.44

The structure based model of Kassinos and Reynolds46 developed independently in CTR of Stanford

is also based on the similar decomposition into so-called “componentality” and “dimensionality.”

These considerations bring new analytical complexities and are particularly relevant in rapidly ro-

tating turbulent flows.36 Such a type of modeling has been introduced by Cambon et al.47 including

in addition to the usual Reynolds stress transport equation, a separate transport equation for the

directional anisotropy which appears in physical space as a hidden parameter of the turbulence field.

B. Spectrum splitting and partial integration

In the present approach, each flow variable φ is decomposed into a statistical mean value 〈φ〉
and a fluctuating turbulent part φ′ which is developed itself into several ranks m of fluctuating parts

φ′(m) of increasing wave numbers as follows:13, 14

φ = 〈φ〉 +
N∑

m=1

φ′(m), (2)

corresponding to an extended form of the Reynolds decomposition. The terms of the series are

defined by partial integration of their generalized Fourier transform

φ′(m)(ξ ) =
∫

κm−1<|κ |<κm

φ̂′(κ) exp ( jκξ )dκ, (3)

where φ̂′(κ) denotes Fourier transform of φ′(ξ ) and κm is a series of evolving partitioning wave

numbers and where ξ denotes the vector difference ξ = x B − x A. For m = 1, this formalism allows

to recover the usual Reynolds decomposition φ = 〈φ〉 + φ′(1) used in RANS modeling in which

the integrated whole spectrum is modeled. For m = 2 or more, we find the kind of decomposition

retained in the multiple-scale statistical models.14 The particular case of the two-level decomposition

m = 2 is most often used in practice. In multiple-scale statistical models, all the spectral ranges

are modeled. In the case of large eddy simulations (studied in Sec. III), the previous definitions of
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splitting can be viewed as a statistical filter.48 This is also the two level decomposition which will

be used in large eddy simulations where only one part of the spectrum containing the small eddies

is modeled while the large eddies are explicitly simulated. Hence, the decomposition can be written

as φ = 〈φ〉 +φ< + φ> with φ< = φ(1) and φ> = φ(2). The transport equation of the partial turbulent

stresses τ
(m)
i j is obtained by partial integration of the spectral spectrum in the wave number ranges

[κm−1, κm].14, 33 The partial turbulent stress τ
(m)
i j is defined by

τ
(m)
i j =

∫ κm

κm−1

ϕi j (X, κ)dκ. (4)

Keeping in mind that the wave numbers can be evolving in time, the integration of Eq. (1) over the

range [κm−1, κm] provides the transport equation for the partial turbulent stress τ
(m)
i j :

∂τ
(m)
i j

∂t
= P

(m)
i j + F

(m−1)
i j − F

(m)
i j + �

(m)
i j + J

(m)
i j − ǫ

(m)
i j . (5)

Each term in the right-hand side of Eq. (5) is the integral in the interval [κm−1, κm] of the correspond-

ing terms in Eq. (1), the details can be found in Refs. 14 and 33. The transfer terms also include the

contribution coming from the left-hand side derivative,

F
(m)
i j = F

(m)
i j − ϕi j (X, κ)

∂κm

∂t
, (6)

with

F
(m)
i j = −

∫ κm

0

Ti j (X, κ)dκ. (7)

In Eq. (5), it is implicitly supposed that F
(0)
i j = 0. The transport equation of the partial turbulent

kinetic energy k(m) is simply obtained by tensorial contraction of equation (5):

∂k(m)

∂t
= P (m) + F (m−1) − F (m) + J (m) − ǫ(m) (8)

with the following definitions

F (m) = −
∫ κm

0

T (X, κ)dκ, (9)

and where

F (m) = F (m) − E(X, κ)
∂κm

∂t
, (10)

where E(X, κ) = 1
2
ϕi i (X, κ), P (m) = 1

2
P

(m)
i i , F (m) = 1

2
F

(m)
i i , F (m) = 1

2
F (m), J (m) = 1

2
J

(m)
i i , and

ǫ(m) = 1
2
ǫ

(m)
i i . On a schematic point of view, in high Reynolds number turbulence, all the con-

tributions ǫ
(m)
i j are negligible in all the wave number ranges [κm−1, κm] except for the last one

corresponding to the dissipation range which verifies the relation ǫ
(N+1)
i j = F

(N )
i j . Obviously, each

one point statistical variable φij is obtained by integrating the whole spectrum and thus is also equal

to the sum of each partial contribution φ
(m)
i j leading to the result,

φi j =
N∑

m=1

φ
(m)
i j , (11)

and in particular, the total stress tensor τ ij and the dissipation-rate tensor ǫij verify τi j =
∑N

m=1 τ
(m)
i j

and ǫi j =
∑N

m=1 ǫ
(m)
i j . In the following, the variable X will be omitted to alleviate the presentation

of the mathematical physics formalism. When the general equation (5) is applied to the particular

range wave numbers [0, κ1], [κ1, κ2], and [κ2, ∞[, we get two scale models leading to the exact
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partially integrated transport equations:

∂τ
(1)
i j

∂t
= P

(1)
i j − F

(1)
i j + �

(1)
i j + J

(1)
i j − ǫ

(1)
i j , (12)

∂τ
(2)
i j

∂t
= P

(2)
i j + F

(1)
i j − F

(2)
i j + �

(2)
i j + J

(2)
i j − ǫ

(2)
i j , (13)

and

F
(2)
i j = ǫ

(3)
i j ≈ ǫi j . (14)

We have supposed that the turbulence Reynolds number is large, so that τ
(3)
i j is negligible while

ǫ
(1)
i j = ǫ

(2)
i j ≈ 0 meaning that ǫ

(3)
i j corresponds in fact to the true dissipation-rate ǫij. In the case of

low turbulence Reynolds number, this schematic description is no longer valid so that all the terms

appearing in Eqs. (13) and (14) have to be therefore kept as shown in Ref. 49. Equations (12)–(14)

describe the turbulent processes acting in each particular zone [0, κ1], [κ1, κ2], and [κ2, ∞[ of the

energy spectrum taking into account the transfer fluxes of the turbulent energy passing from one

zone to a next zone and ensuring the continuity between each interface. These equations can be

contracted leading to the transport equations of the turbulent energies in the wave number ranges

[0, κ1] and [κ1, κ2] as follows:

∂k(1)

∂t
= P (1) − F (1) + J (1) − ǫ(1), (15)

∂k(2)

∂t
= P (2) + F (1) − F (2) + J (2) − ǫ(2), (16)

F (2) = ǫ(3) ≈ ǫ. (17)

Equations (12)–(14), as well as (15)–(17), constitute, respectively, the transport equations for the

partial scale stresses and turbulent energies in the statistical sense. Hence, they will be transposed

into filtered equations in LES methodology as it will be shown in Sec. III. Note that a full integration

in the spectral space yields the again well-known one point equations,

∂τi j

∂t
= Pi j + �i j + Ji j − ǫi j , (18)

and

∂k

∂t
= P + J − ǫ. (19)

C. The transfer rate equations

In RANS methodology, the wave numbers splitting was first introduced in the past decade

by Schiestel14 for developing multiple scale models in the framework of second moment closures.

Because of the evolution of the turbulent characteristic scale and energy distribution in time and

space, it was assumed that the splitting wave number is related to the local parameters k(m) and F(m)

by the dimensional relation,

κm − κm−1 = αm

F (m)

(k(m))3/2
, (20)

where αm is a numerical constant. As pointed out by Schiestel in RANS modeling,14 this practice

allows the wave numbers κm to adapt themselves dynamically to the evolving energy spectrum

distribution when for instance the energy distribution would concentrate or spread away from the
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initial distribution. So, we insist on the fact that Eq. (20) is not by any way a closure hypothesis,

although it has to be dimensionally correct. In principle, the splitting wave numbers could be chosen

freely. But the choice of Eq. (20) is mainly to guarantee that the splitting wave numbers conform

to the evolving spectrum and prevent aberrant location of the splitting during evolution of the

flow. This choice proved to be the most useful but this is not the only possible way to do it.39, 40

Equation (10) involves the flux transfers. From this equation, it is possible to compute the derivative

∂κm/∂t of the wave number κm as

∂κm

∂t
=

F(κm) − F(κm)

E(κm)
. (21)

Using then Eqs. (20) and (21), one can derive a formal transfer rate equation for each flux energy

F(κm) at high Reynolds number that reads14, 49

d F (m)

dt
= C

(m)
1

F (m) P (m)

k(m)
+ C

(m)
2

F (m) F (m−1)

k(m)
+ C

(m)
3

(
F (m)

)2

k(m)
+ C

(m)
4

F (m)ǫ(m)

k(m)
+ J

(m)
F , (22)

where C
(m)
i are coefficients depending on the spectral slice. Equation (22) embedded the diffusion

term J
(m)
F . The model is thus composed of a set of m = 1 to N equations for the partial energies or

each partial stress of Eq. (5) coupled with m equations for the energy fluxes between each spectral

slice. The splitting wave numbers vary dynamically in order to comply with the variations of the

energy spectrum itself. As it will be seen in Sec. III, the same kind of technique will be used in

the PITM method with the major difference that the first splitting wave number will be fixed by the

given filter width.

III. SPECTRAL PARTITIONING FOR HYBRID RANS-LES METHODS

This section is devoted to the PITM method. Although the preceding transport equations are

still formally valid, there are three fundamental important differences to take into account in LES

methodology. First, the PITM method only uses two level decomposition involving a large scale

resolved spectral zone and a smaller scale modeled spectral zone. Second, the splitting cutoff wave

number κc is determined by the LES filter cutoff � and is no longer governed by Eq. (21) as usually

made in RANS modeling. Third, the transport equations are written in a instantaneous form instead

of a statistical form.

A. Subfilter scale stress transport equations

As it was indicated in Sec. II B, the definition of the splitting given in Eq. (3) viewed as a

statistical filter48 can also be appropriate for LES. The two level decomposition has to be used in

PITM simulations where the small eddies range is modeled while the large eddies range is simulated

numerically. Thus, this decomposition leads to φ = 〈φ〉 +φ< + φ> with

φ<(ξ ) =
∫

0<|κ |<κc

φ̂′(κ) exp ( jκξ )dκ, (23)

and

φ>(ξ ) =
∫

κc<|κ |<∞
φ̂′(κ) exp ( jκξ )dκ, (24)

in which κc, here, denotes the first splitting wave number. Using these definitions, it is simple

matter to see that the filtered variable φ̄ can be computed as φ̄ = 〈φ〉 + φ< which contains in fact

both statistical mean and large eddies fluctuations whereas φ> is the subfilter-scale fluctuation of

the small eddies. In the PITM method,12, 13, 33, 50 the practical case of two splitting wave numbers

κc = κ1 and κd = κ2 is considered. So, the averaged subfilter scale (SFS) stress associated to the

wave number range [κc, κd] is defined by 〈(τi j )s f s〉 = τ
(2)
i j and its transport equation is obtained from
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085106-8 B. Chaouat and R. Schiestel Phys. Fluids 24, 085106 (2012)

Eq. (13):

∂〈(τi j )s f s〉
∂t

= 〈(Pi j )s f s〉 + 〈(�i j )s f s〉 + 〈(Ji j )s f s〉 − 〈(ǫi j )s f s〉, (25)

where in this equation, the approximations 〈(Pi j )s f s〉 = P
(2)
i j + F

(1)
i j , 〈(�i j )s f s〉 = �

(2)
i j , 〈(Ji j )s f s〉

= J
(2)
i j , ǫ

(2)
i j ≈ 0 are conceded at high Reynolds number. The averaged subfilter dissipation-rate

tensor 〈(ǫij)sfs〉 associated to the wave number range [κd, ∞] results from Eq. (14):

〈(ǫi j )s f s〉 = ǫ
(3)
i j ≈ F

(2)
i j . (26)

The energy fluxes appearing in these equations are defined by F
(1)
i j = Fi j (κc) and F

(2)
i j = Fi j (κd ). The

transport equation of the subfilter turbulent energy is simply obtained from Eq. (25) in its contracted

form

∂〈ks f s〉
∂t

= 〈Ps f s〉 + 〈Js f s〉 − 〈ǫs f s〉. (27)

Closure of Eq. (25) needs to model the subfilter tensorial dissipation-rate 〈(ǫij)sfs〉 which is approached

by 2/3 〈ǫsfs〉 δij. The modeling of the dissipation-rate 〈ǫsfs〉 is made in the present case by means of its

transport equation. In LES methodology, the transport equations of the filtered turbulent quantities

are evolving in time and space. By analogy with the statistical mean equations (25) and (27), the

transport equations of the filtered quantities to be modeled can be written in term of central moments

as51

D(τi j )s f s

Dt
= (Pi j )s f s + (�i j )s f s + (Ji j )s f s −

2

3
ǫs f sδi j , (28)

Dks f s

Dt
= Ps f s + Js f s − ǫs f s . (29)

In these equations, D/Dt denotes the material derivative defined by D/Dt = ∂/∂t + ūk∂/∂xk where

ū is the filtered velocity. The passage from the set of statistical equations (25) and (27) to the set

of filtered equations (28) and (29) is not truly demonstrated in the mathematical sense but results

from physical intuitive considerations although the reciprocity is formally verified.13, 33 The use of

a spectral cutoff filter defined by Eqs. (23) and (24) has the advantage that the Leonard term in the

momentum equations strictly vanishes. However, in the physical space calculations, in practice, the

filter will be either a smooth bell shaped function or the discretization grid cell itself. In these latter

cases, and when the cell size varies, a commutation error52, 53 will appear like in any LES calculation.

So, in physical space the equations will only be approximate. To minimize the commutation error,

it will then be safe to use slowly varying cell sizes.

B. The generic subfilter dissipation-rate transport equation

In LES methodology, the wave number κ1 is identified as being the cutoff wave number κc which

is the spectral filter size usually related to the grid cell size by κc = π /� so that it is assumed constant

or slowly variable in the case of variable step size of the grid. The splitting κc is no longer given

by Eq. (20) as for two-scale RANS modeling but it is fixed by the filter size or the step size defined

by the user. On the other hand, the wave number κ2 corresponds to the dissipative wave number

κd which is located at the far end of the inertial range of the spectrum assuming that the energy

pertaining to higher wave numbers is entirely negligible. But it is also located before the dissipative

zone as shown in Figure 1 which describes the sketches of the energy density spectrum E(κ), the

spectral flux transfer F(κ), and the spectral transfer term T (κ) with respect to the wave number κ in

the spectral space at high Reynolds number. This choice is simply inspired from the multiple scale

modeling14 in which this spectral splitting avoids to consider infinite limits and molecular viscosity

effects in the far end of the spectrum. The low Reynolds number viscous effects will be treated

empirically49 afterwards. The splitting wave number κd in LES methodology is still related to the
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085106-9 B. Chaouat and R. Schiestel Phys. Fluids 24, 085106 (2012)

FIG. 1. Sketches of the energy density spectrum E(κ), spectral flux transfer F = −
∫ κ

0
T (X, κ)dκ , and spectral transfer term

T with respect to the wave number κ in the spectral space, where κc denotes the cutoff wave number and κd is the dissipative

wave number.

cutoff wave number κc by the dimensional relation (20) now written as

κd − κc = ζc

〈ǫs f s〉
〈ks f s〉3/2

, (30)

where ζ c is a given coefficient which may be dependent on the spectrum shape and on the Reynolds

number. Like in multiple scale statistical models, Eq. (30) is introduced for conforming dynamically

the location of the cutoff wave number to the evolving spectrum in time and space and consequently,

it is not interpreted as a closure assumption. It simply results from a formal dimensional analysis of

the turbulent variables ksfs and ǫsfs. Obviously, here also, other choices than (30) could be possible

as, for instance, those proposed by Schiestel.39, 40 From a physical point of view, the relation which

links the wave numbers κc, κd, and the subfilter scale energy ksfs is given by the definition of ksfs

itself

〈ks f s〉 =
∫ κd

κc

E(κ) dκ. (31)

In practice, κc can be located anywhere within the spectrum. So, Eq. (31) cannot be integrated using

the inertial Kolmogorov law which is not satisfied in the general case, and consequently this equation

cannot provide any explicit relation relying κc to κd. In the case of full statistical modeling where
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085106-10 B. Chaouat and R. Schiestel Phys. Fluids 24, 085106 (2012)

κc = 0, Eq. (30) is reduced to equation,

κd = ζd

ǫ

k3/2
, (32)

where the coefficient ζ d is a numerical constant chosen such that κd is located after the inertial

range. This is an alternative method to derive an ǫ equation.14 The subfilter dissipation-rate equation

is then obtained by taking the derivative of Eq. (30) with respect to time using Eq. (10) written for

the wave number κd:

∂κd

∂t
=

F(κd ) − F(κd )

E(κd )
(33)

considering also the transport equation (27) of the subfilter turbulent energy. The technique for

deriving the ǫ equation is formally the same as the one used in statistical multiple scale modeling

but there is an important difference. In statistical multiple scale models, all the splitting numbers κm

are dynamically self adjusting to the spectrum evolution whereas in the LES case, the wave number

κc is now a given quantity while κd still remains dynamically self adjusting. In the following, we

will consider that both κc and κd are some functions of time to keep a general character of the

formalism although the reader has to bear in mind that κc remains almost constant in time in the

most usual LES applications. As a result of the algebra, it is then simple matter to see that the

subfilter dissipation-rate equation in homogeneous turbulence reads12, 13

∂〈ǫs f s〉
∂t

= cs f sǫ1

〈ǫs f s〉
〈ks f s〉

〈Ps f s〉 − cs f sǫ2

〈ǫs f s〉2

〈ks f s〉
, (34)

where

cs f sǫ1
= 3/2, (35)

and

cs f sǫ2
=

3

2
−

〈ks f s〉
(κd − κc) E(κd )

[(
F(κd ) − F(κd )

〈ǫs f s〉

)
−

E(κd )

E(κc)

(
F(κc) − F(κc)

〈ǫs f s〉

)]
. (36)

We have thus obtained formally the so-called generic dissipation equation because it is written in

non-closed form. Setting κd ≫ κc, and E(κd) ≪ E(κc), Eq. (36) reduces to

cs f sǫ2
=

3

2
−

〈ks f s〉
κd E(κd )

(
F(κd ) − F(κd )

〈ǫs f s〉

)
. (37)

Considering that we deal here with high Reynolds number turbulence, the relation F(κd) = 〈ǫsfs〉 is

nothing else than ǫ. In a compact form, Eq. (37) can be written as

cs f sǫ2
=

3

2
−

〈ks f s〉
k

ζ (κd ), (38)

where the function ζ is defined by

ζ (κd ) =
k

κd E(κd )

(
F(κd ) − F(κd )

ǫ

)
. (39)

At this stage, there are two possible approaches to close this equation. The first one is to try to use

spectral theories in order to express the spectral fluxes F(κd ) and F(κd) appearing in Eq. (37) with

known quantities. This is a difficult way leading to complex equations not tractable for engineering

applications. The second approach is to give directly an estimate of the coefficients appearing in

Eq. (34). This is the second approach that has been retained in the PITM method because it is far

simple, even if some weaknesses are non avoidable. As an additional result of interest, one can

notice that Eq. (37) reduces to cs f sǫ2
= 3/2 in two particular cases. The first case occurs when

κd − κc ≈ 0 implying that the subfilter energy 〈ksfs〉 in the slide [κc, κd] is evanescent (see

Appendix A). The second case corresponds to the exact spectral equilibrium when F(κ) = F(κ).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

ip
.o

rg
/a

ip
/p

o
f/a

rtic
le

-p
d
f/d

o
i/1

0
.1

0
6
3
/1

.4
7
4
5
0
0
3
/1

5
9
5
1
4
1
8
/0

8
5
1
0
6
_
1
_
o
n
lin

e
.p

d
f



085106-11 B. Chaouat and R. Schiestel Phys. Fluids 24, 085106 (2012)

IV. THE PITM CLOSURE OF THE DISSIPATION-RATE EQUATION

The method followed for closing the dissipation-rate equation relies on two main

requirements.12, 13 The first one is to impose that the subfilter model is consistent with its com-

panion statistical model when κc goes to zero. We will see that this condition will imply that the

cs f sǫ2
coefficient becomes a linear function of ratio 〈ksfs〉/k. The second one is to estimate this ratio

〈ksfs〉/k analytically to achieve the closure. These two steps will be considered in the following

sections.

A. Hypothesis of consistency with the RANS model at the zero cutoff limit

The generic dissipation-rate equation (34) using the relations (35), (38) and (39) is valid for any

choice of κc because the spectral fluxes and dissipation-rate remain physically unchanged when the

splitting κc in modified. This is also verified for the particular case κc = 0 corresponding to the full

statistical case. So, for κc = 0, Eq. (38) reduces to

cǫ2
=

3

2
− ζ (κd ), (40)

the other relations remaining formally unchanged. By substituting Eq. (40) into Eq. (38), it is simple

matter to see that the hypothesis of consistency with the RANS model in the zero cutoff limit leads

to the resulting coefficients

cs f sǫ1
= cǫ1

= 3/2, (41)

and

cǫs f s2
=

3

2
+

〈ks f s〉
k

(
cǫ2

−
3

2

)
. (42)

The value suggested for cǫ1
seems restrictive if one remarks that this coefficient may take on different

values in statistical RANS models according to its calibration made by different authors. Although

the 3/2 value seems realistic as shown in Appendix A, this restriction can be easily removed if we

want an exact compatibility with a given RANS model. In this aim, let us now consider the standard

form of the statistical dissipation-rate equation written in homogeneous turbulence that reads

∂ǫ

∂t
= cǫ1

ǫ

k
P − cǫ2

ǫ2

k
(43)

with given values of the coefficients cǫ1
and cǫ2

. The issue to address is to compute the function

cs f sǫ2
when the coefficient cs f sǫ1

differs from the value 3/2. Using Eqs. (38) and (40), respectively,

then, Eqs. (34) and (43) can be rewritten in the following forms as

∂〈ǫs f s〉
∂t

= cǫ1

〈ǫs f s〉
〈ks f s〉

〈P〉s f s −
[(

3

2
−

〈ks f s〉
k

ζ (κd )

)
−

(
3

2
− cǫ1

)
〈Ps f s〉
〈ǫs f s〉

]
〈ǫs f s〉2

〈ks f s〉
(44)

and

∂ǫ

∂t
= cǫ1

ǫ

k
P −

[(
3

2
− ζ (κd )

)
−

(
3

2
− cǫ1

)
P

ǫ

]
ǫ2

k
(45)

showing that

cǫ2
=

(
3

2
− ζ (κd )

)
−

(
3

2
− cǫ1

)
P

ǫ
(46)

and

cs f sǫ2
=

(
3

2
−

〈ks f s〉
k

ζ (κd )

)
−

(
3

2
− cǫ1

)
〈Ps f s〉
〈ǫs f s〉

(47)

Both Eqs. (46) and (47) allow to determine the function ζ (κd) in two different forms as follows:

ζ (κd ) =
[

3

2
− cǫ2

+
(

cǫ1
−

3

2

)
P

ǫ

]
, (48)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

u
b
s
.a

ip
.o

rg
/a

ip
/p

o
f/a

rtic
le

-p
d
f/d

o
i/1

0
.1

0
6
3
/1

.4
7
4
5
0
0
3
/1

5
9
5
1
4
1
8
/0

8
5
1
0
6
_
1
_
o
n
lin

e
.p

d
f



085106-12 B. Chaouat and R. Schiestel Phys. Fluids 24, 085106 (2012)

and

ζ (κd ) =
[

3

2
− cs f sǫ2

+
(

cǫ1
−

3

2

)
〈Ps f s〉
〈ǫs f s〉

]
k

〈ks f s〉
. (49)

By identifying Eq. (48) with Eq. (49), one can easily find the expression for the coefficient cs f sǫ2

that reads

cs f sǫ2
= cǫ2

+
(

3

2
− cǫ2

) [
1 −

〈ks f s〉
k

]
+

(
cǫ1

−
3

2

) [
〈Ps f s〉
〈ǫs f s〉

−
P

ǫ

〈ks f s〉
k

]
. (50)

If we assume that the ratio 〈ksfs〉/k of the subfilter energy to the total energy is constant or varies

slowly with time, then

∂

∂t

(
〈ks f s〉

k

)
=

〈ks f s〉
k

(
−

1

k

∂k

∂t
+

1

〈ks f s〉
∂〈ks f s〉

∂t

)
≈ 0 (51)

implying

〈ks f s〉
k

≈
∂〈ks f s〉

∂t

∂t

∂k
=

〈Ps f s〉 − 〈ǫs f s〉
P − ǫ

. (52)

Equation (52) allows to compute the ratio 〈Psfs〉/〈ǫsfs〉 as follows:

〈Ps f s〉
〈ǫs f s〉

≈ 1 +
〈ks f s〉

k

P − ǫ

ǫ
. (53)

By substituting this ratio into Eq. (50), we obtain the final form of the coefficient cs f sǫ2
that reads

cs f sǫ2
= cǫ1

+
〈ks f s〉

k
(cǫ2

− cǫ1
). (54)

Equation (54) established at high Reynolds numbers is the key equation for the PITM method. This

new development clearly shows that the subfilter coefficient cs f sǫ2
can be adapted to any RANS

dissipation-rate equation of the form (43) whatever the values of the coefficients cǫ1
and cǫ2

consid-

ered, and in particular when cǫ1
differs from the value 3/2. In that sense, this approximate derivation

of Eq. (54) provides some justification of the practices already made in previous works.13, 16, 33 So, we

have proved in this section that the PITM method can be applied to almost any statistical transport

model to derive its corresponding counterpart companion subfilter model and Eq. (44) is finally

rewritten in its general form as

∂〈ǫs f s〉
∂t

= cǫ1

〈ǫs f s〉
〈ks f s〉

〈Ps f s〉 − cs f sǫ2

〈ǫs f s〉2

〈ks f s〉
. (55)

At this step, it is of importance to note that Eq. (55) is related to the subfilter spectral interval

[κc, ∞[ and that the first term appearing in the right-hand side of Eq. (55) involving the energy

flux 〈Psfs〉 passing through the cutoff wave number obviously depends on the location of κc. The

second term appearing in the right-hand side of this equation also depends on the wave number

κc through the coefficient cs f sǫ2
which is a function of the ratio 〈ksfs〉/k. As a consequence, these

terms are shown to balance each other, allowing to recover a subfilter dissipation-rate value which is

practically independent of κc, at least at high Reynolds number, according to the theoretical physics

of the turbulence cascade. This result is physically consistent with the fact that the dissipation-rate

can be interpreted as a spectral flux energy passing through the dissipative wave number κd as shown

by Eq. (26) written in its contracted form.

B. The analytical closure for the csfsǫ2
term

The ratio 〈ksfs 〉/k appearing in Eq. (54) is evaluated by means of an accurate energy spectrum

E(κ) inspired from a Von Kármán like spectrum

E(κ) =
2
3
βηL3

e k κ2

[1 + βη(κ Le)3]11/9
, (56)
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where βη is a constant coefficient and Le denotes the turbulent macro-scale leading to the result16

〈ks f s〉(κc) =
∫ ∞

κc

E(κ) dκ = k[1 + βη(κc Le)3)]−2/9. (57)

So that the function cs f sǫ2
is given by

cs f sǫ2
(ηc) = cǫ1

+
cǫ2

− cǫ1[
1 + βη η3

c

]2/9
, (58)

where ηc = κcLe is a dimensionless parameter involving the cutoff wave number κc = π /� computed

from the filter width (in practice the grid spacing) � and the turbulent macro-scale itself computed

as Le = k3/2/( 〈ǫsfs〉 + 〈ǫ<〉 ) built by means of the total turbulent energy and the total dissipation-rate

ǫ = 〈ǫsfs〉 + 〈ǫ<〉, including the dissipation in the subgrid zone ǫsfs and the resolved part of the

dissipation-rate. Indeed, in many practical cases, the Reynolds number is finite, and it proved to

be useful and closer to reality to include also the resolved part of the dissipation-rate in the scale

definition. The resulting expression for ηc is

ηc = κc Le =
π k3/2

� (〈ǫs f s〉 + 〈ǫ<〉)
. (59)

In Eq. (59), the resolved dissipation-rate caused by the large-scale fluctuating velocities

u<
i = ūi − 〈ui 〉 is defined by

ǫ< = ν
∂u<

i

∂x j

∂u<
i

∂x j

. (60)

It allows to account even partly for low Reynolds number flow effects. But if the resolved part

of the dissipation becomes important, this means that a low Reynolds number formulation of the

model needs to be used. In Eq. (59), the quantity � is the effective filter usually obtained from

� = (�1�2�3)1/3 where �1, �2, and �3 are the filter width in each direction of space or in practice

the grid step size in each direction of space. When the grid cell is very anisotropic like in wall flows,

it is possible to account for this anisotropy of the grid like in the proposal of Scotti et al.54

� = �a

(
ζ + (1 − ζ )

�b

�a

)
, (61)

where the filters �a and �b are defined by �a = (�1�2�3)1/3 and �b = [(�2
1 + �2

2 + �2
3)/3]1/2

and where ζ is a constant parameter. The theoretical value of the coefficient βη appearing in Eq. (58)

is obtained by the limiting condition limκ → ∞E(κ) = Cκǫ
2/3κ−5/3 for recovering the Kolmogorov

law at high wave numbers. As a result, one can find βηT = [2/(3Cκ )]9/2. It is worth noting that the

analytical energy ratio obtained from Eq. (57), i.e.,
(

〈ks f s〉
k

)

eq

= [1 + βη(κc Le)3)]−2/9 (62)

is an equilibrium value. In practice, the effective value of 〈ksfs〉/k during the numerical simulation

can be different from its equilibrium values if there are some departures from equilibrium state.

So, the cs f sǫ2
term can be more or less understood like a “return to equilibrium” term such as the

Rotta term was a “return to isotropy” term. The present section allows to point out some essential

differences with the PANS method cited in the introduction. In the PANS method,24 the partial

averaging is directly quantified using the unresolved-to-total ratio fk = 〈ksfs〉/k for turbulence kinetic

energy and fǫ = 〈ǫsfs〉/ǫ for dissipation which are empirically prescribed in each computation. The

PANS equations can be derived very simply from an hypothesis of given constant ratios fk and fǫ
implying some self-similarity evolution hypothesis which is not relevant for all applications and

specifically for flows in situation of out of spectral equilibrium turbulence. In spite of a totally

different background, developed independently from each other, the PITM and PANS equations

are hopefully very similar. However, the PITM approach provides a physical foundation in spectral

space that allows to make a clear link between the unresolved-to-total ratios and the filter length scale
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whereas the PANS in the contrary does not at all address this question. So, in a PITM simulation,

although the filter width is prescribed as usually made in LES, the unresolved-to-total ratios are not

prescribed but are obtained as a result of the calculation itself.

C. On the finiteness of the csfsǫ2
term

The expression (37) for the cs f sǫ2
coefficient appearing in the generic dissipation-rate equation

deserves a particular attention. The main questions being, does this term remains finite in all cases?

And is it acceptable to model this term as a linear function of 〈ksfs〉 with a constant factor? First of

all, one has to notice that Eq. (10) applied for the wave number κd leading to Eq. (33) indicates that

the energy flux F(κd) passing through the wave number κd is composed by two terms of different

origins, on the one hand the usual spectral transfer rate F(κd ) and, on the other hand, an extra term

corresponding to the variation of the κd splitting

F(κd ) = F(κd ) − E(κd )
∂κd

∂t
. (63)

So, it appears that the flux difference F(κd ) − F(κd ) is a driving mechanism in the variation of the

dissipation-rate. More precisely, one can wonder what is the asymptotic limit of the coefficient cs f sǫ2

when the splitting wave number κd goes to infinity? This question can be raised when the turbulent

Reynolds number goes to infinity and is of importance for the theoretical consistency of the method.

Large Reynolds numbers may appear, for instance, when the molecular viscosity is very low. This

situation is illustrated in Figures 2 and 3 showing the sketches of the spectral flux transfer F and

the spectral transfer term T , respectively, at very high turbulent Reynolds numbers for situations

of spectral equilibrium and non-equilibrium flows. This high Reynolds number asymptotic limit

is obtained in the present model by extending the inertial zone and increasing the wave number

κd, thus moving farther the last spectral dissipative slice in the spectrum located just after κd as

illustrated in the sketches of Figures 2 and 3. From a physical point of view, as the wave number

κd increases, the inertial cascade zone becomes larger and larger so that an equilibrium zone finally

will be established after a relaxation time at the large wave number κd implying therefore that the

energy transferred from the inertial zone to the small scales will balance the dissipation-rate, i.e.,

F(κd ) ≈ ǫ. In the PITM method, the splitting wave number κc is constrained by Eq. (32), and then

keeps a finite value. Consequently, cs f sǫ2
is obviously finite. It is, however, permissible to let the

wave number κd go to infinity. This condition is obtained by taking the limiting condition ζ c → ∞
in Eq. (30)

κd = κc + lim
ζc→∞

ζc

〈ǫs f s〉
〈ks f s〉3/2

. (64)

The cs f sǫ2
coefficient written in its generic form (no model) given by Eq. (37) can be computed by

the energy spectrum E(κd) approximated itself by the Kolmogorov law E(κ) = Cκǫ
2/3κ−5/3 where

Cκ is the Kolmogorov constant yielding

cs f sǫ2
=

3

2
−

〈ks f s〉
Cκǫ2/3κ

−2/3

d

(
F(κd ) − ǫ

ǫ

)
. (65)

When κd → ∞, the first factor appearing in the second term in the right-hand side of this equation

goes to infinity while the second factor goes to zero because F(κd ) → ǫ. As a consequence, the

limit of the second term takes the indeterminate form 0 × ∞. This does not mean at all that the limit

is not finite as it was erroneously said in Ref. 55. In fact, Eq. (47) of Ref. 55 is not exact.

Moreover, in case of strict equilibrium implying that F(κd ) = ǫ, Eq. (65) leads to the result

cs f sǫ2
= 3/2. At a first glance, this result may seem surprising. But one can remark that this situation

also occurs in the usual statistical ǫ equation for homogeneous turbulence. Indeed, one has to bear in

mind that a steady equilibrium turbulence can only exist if the production of the turbulence balances

the dissipation-rate (P = ǫ) and in addition if the constraint cǫ1 = cǫ2 is satisfied in the dissipation-

rate equation. In the general case, there are no strict equilibrium F(κd ) 
= ǫ, and it is necessary to
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FIG. 2. Sketches of the spectral flux transfer F and spectral transfer term T with respect to the wave number κ in the spectral

space for flows in spectral equilibrium. (a) High Reynolds number; (b) infinite Reynolds number.

make some spectral closure approximation to go further in the analysis. With this aim, let us suppose

that the spectral transfer is approximated by the Kovasznay closure F(κd ) = C
−3/2
κ E3/2κ

5/2

d . The

question is to search a possible spectral distribution that could make the second term appearing in

the right-hand side of Eq. (65) a constant quantity C0 such as

C0 =
3

2
− cs f sǫ2

=
〈ks f s〉

Cκǫ2/3κ
−2/3

d

(
C

−3/2
κ E3/2κ

5/2

d − ǫ

ǫ

)
. (66)

From Eq. (66), one can easily deduce that

E(κ) ≈ Cκǫ
2/3κ

−5/3

d

[
1 +

2

3
C0

Cκǫ
2/3κ

−2/3

d

〈ks f s〉

]
. (67)

Equation (67) suggests that the energy spectrum varies with respect to the wave number κ according

to the form as

E(κ) ≈ ακ
−5/3

d + βκ
−7/3

d , (68)

which is entirely plausible. Consequently, it is found that the coefficient cs f sǫ2
can indeed take on

a finite value even if the wave number κd goes to infinity. From the previous discussions, one can
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FIG. 3. Sketches of the spectral flux transfer F and spectral transfer term T with respect to the wave number κ in the spectral

space for flows out of spectral equilibrium. (a) High Reynolds number; (b) infinite Reynolds number.

notice that the hypothesis consisting of increasing the turbulence Reynolds number (as long as an

inertial cascade region already exists, i.e., if the Reynolds number is already sufficiently high) with

the effect to lengthen the inertial zone without altering the statistical properties of the large eddies

is implicitly contained in the PITM method. On the overall, because of its spectral foundation,

the PITM method is mainly dedicated to the study of non-standard spectral distribution with some

departures from the Kolmogorov distribution implying in most cases that F(κd ) 
= F(κd ).

D. Limiting behaviors

The subfilter models derived from the PITM method have the particularity to vary continuously

with respect to the ratio of the turbulent length-scale to the grid-size Le/�. Equation (58) indicates

that the function cs f sǫ2
acts like a dynamic parameter which controls the part of the turbulence which

is filtered relatively to the part which is explicitly calculated. In this method, the subfilter turbulence

energy is interacting with the resolved energy, contrary to what appears for the Smagorinsky model.

Regarding the two extreme limiting behaviors of the subfilter models, one can see that the models
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behave like statistical RANS models when the parameter ηc goes to zero, whereas the computations

switch to direct numerical simulation (DNS), provided the grid-size is sufficiently refined when ηc

goes to ∞. In this latter case, the subfilter models are still running but become useless! Before

switching to DNS, the subfilter models behave like the Smagorinsky model when the filter width

is small corresponding to large values of the wave number κd but not infinite. This has been

demonstrated by assuming a Kolmogorov law in the inertial zone and spectral equilibrium conditions

in the vicinity of the wave number κd.16

V. TEST OF THE GENERIC DISSIPATION-RATE EQUATION ON A SELF-SIMILAR

ANALYTICAL FLOW EXAMPLE

A. Objective

The objective of this section is to evaluate the coefficients cǫ2
and cs f sǫ2

when the dissipative

wave number κd goes to infinity with the aim to demonstrate that these coefficients take on finite

values. The demonstration is restricted to a particular example such as the case of the self-similar

decay of homogeneous isotropic turbulence. The determination of the coefficient cs f sǫ2
defined in

Eq. (37), first requires to compute the energy flux F(κd, t) and the energy transfer F(κd , t) versus the

time t of the turbulence decay. The present demonstration relies upon the generic dissipation-rate

equation applied to a particular case assuming the Kovasznay transfer closure and self-similarity

hypothesis. This flow has been studied by Reid and Harris28, 56 and provides a useful test case of

reference. The method consists of solving in time and wave number the spectral equation written

for homogeneous isotropic inviscid flows

∂ E(κ, t)

∂t
= −

∂F(κ, t)

∂κ
. (69)

B. The analytical solution of Reid and Harris

We consider similarity solutions given for the energy spectrum and transfer function in the initial

period of decay of homogeneous isotropic turbulence for large values of the turbulent Reynolds

numbers under self-similarity conditions.28 The general self-preservation hypothesis implies that

the energy spectrum can be written in the reduced form as follows:57

E(κ, t) = H (t) G(γ ) =
b

√
t

G(κ
√

at) = Cκǫ
2/3κ−5/3, (70)

where H and G are similarity functions, γ (t) = κ
√

at is a similarity variable whereas a and b denote

constant coefficients. The new independent variables are now γ and t instead of κ and t. As a

consequence of Eq. (70), E(t) ∝ t−1/2 if κ(t) ∝ t−1/2 implying that ǫ(t) ∝ t−2 so that d(ǫt2) = 0 or

equivalently

∂ǫ

∂t
= −2

ǫ

t
. (71)

As an example, the decay law of the density spectrum is illustrated in Figure 4. In the absence of

turbulent production, the equation ∂k/∂t = −ǫ implies that k(t) ∝ t−1 and that the turbulence time

scale k/ǫ = t. Equation (69) can be solved by expanding the density spectrum E(κ , t) as Taylor series

of the dimensionless variable z(κ , t) = ǫ(t)−1/3κ−2/3t−1 where κ and t are independent variables and

assuming the Kovasznay’s hypothesis for the transfer term. As a result of the analytical calculation

developed in Appendix B, one can obtain the Taylor series expansions for both the density spectrum

E(κ , t) and the transfer term F(κ, t) that read

E(κ, t) = Cκǫ
2/3κ−5/3 −

4

3
Cκ

2ǫ1/3 κ−7/3

t
+

2

3
Cκ

3 κ−3

t2
−

8

81
Cκ

4 ǫ−1/3 κ−11/3

t3
+ ǫ2/3κ−5/3 O(z4),

(72)
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FIG. 4. Evolution of the density spectrum E given by Eq. (72) corresponding to the self-similar decay of turbulence.

and

F(κ, t) = ǫ − 2Cκ

ǫ2/3κ−2/3

t
+

5

3
Cκ

2 ǫ1/3κ−4/3

t2
−

2

3
Cκ

3 κ−2

t3
+ ǫO(z4). (73)

These analytical results will form the basis of a test of the generic model for the ǫ equation. The

coefficients of the generic dissipation-rate equation will be calculated in this particular case in order

to verify that they both remain finite. Before, it is worth emphasizing again that the first term in the

right-hand side of Eq. (73) which is the major transfer term contributes for nothing in Eq. (69). The

active term is, in fact, the smaller second term in the right-hand side of Eq. (73) which represent the

imbalance. The counterpart in the PITM method is the (F − F) flux imbalance which appears as the

acting mechanism. The imbalance in decaying isotropic turbulence has been shown in Bos et al.58

to explain the difference between decaying and forced isotropic turbulence.

C. Consequences on the generic dissipation equation

1. Full statistical case where κc equals zero

We consider the full statistical case where κc equals zero. In this condition, the only splitting

wave number is κd defined by κd = ζ dǫ/k3/2. In the case of self-similar case, it is of interest to remark

that ǫ/k3/2 = 1/
√

at (see Appendix B) so that κd = ζd/
√

at and thus ζd = κd

√
at . This relation

shows that the coefficient ζ d is nothing else than the similarity dimensionless variable γd = κd

√
at

introduced in Eq. (70) in this very special case. The question now is to compute the fluxes F(κd, t)

and F(κd , t) that appears in Eq. (39). In the PITM method, we usually assume that the partial

turbulent energy associated to the spectral zone [κd, ∞[ at very high wave numbers is very weak

and is currently considered as negligible leading to the well-known flux equation F(κd, t) = ǫ.

However, in the present analytical application, the Reid and Harris solution is indeed extending up

to infinity turbulent Reynolds number and to be exact, one has to account for this energy through
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the relation assuming the Kolmogorov law
∫ ∞

κd

E(κ, t) dκ =
3

2
Cκ ǫ2/3κ

−2/3

d . (74)

The energy transfer F(κd, t) is obtained by means of the energy balance equation in the zone

[κd, ∞[ as

F(κd , t) = ǫ +
∂

∂t

∫ ∞

κd

E(κ, t) dκ. (75)

Using Eq. (32) for expressing the wave number κd with respect to ǫ and k, one can obtain
∫ ∞

κd

E(κ, t) dκ =
3

2
Cκ ǫ2/3

(
ζd

ǫ

k3/2

)−2/3

=
3

2
Cκ ζ

−2/3

d k, (76)

and its time derivative is obtained as

∂

∂t

∫ ∞

κd

E(κ, t) dκ = −
3

2
Cκ ζ

−2/3

d ǫ (77)

leading to the result

F(κd , t) = ǫ

[
1 −

3

2
Cκ ζ

−2/3

d

]
. (78)

Considering the first terms in the Taylor series (73) applied for the wave number κd

F(κd , t) = ǫ − 2Cκ ǫ2/3 κ
−2/3

d

t
, (79)

and using Eq. (32) for expressing the wave number κd, taking into account that k = ǫt, then Eq.

(79) reduces to

F(κd , t) = ǫ
[
1 − 2Cκ ζ

−2/3

d

]
. (80)

It is then easy to compute the flux difference F(κd , t) − F(κd , t) = −Cκ ζ
−2/3

d ǫ/2 using

Eqs. (78) and (80), respectively. Taking also into account that κd Ed = Cκǫ
2/3κ

−2/3

d , one can find

that the coefficient cǫ2
appearing in the dissipation-rate transport equation takes on a finite value

cǫ2
=

3

2
−

〈ks f s〉
κd E(κd )

(
F(κd ) − F(κd )

ǫ

)
= 2. (81)

The important fact is that the coefficient is indeed finite. The precise numerical value cs f sǫ2
= 2

is not at all surprising since it comes from the self-preserving hypothesis (see also Appendix C)

implying that

∂ǫ

∂t
= −cǫ2

ǫ2

k
= −2

ǫ2

k
. (82)

2. Subfilter turbulence case where κc is non-zero

The partial energy in the wave number range [κd, ∞[ is now given by

∫ ∞

κd

E(κ) dκ =
3

2
Cκ ζ−2/3

c 〈ks f s〉
(

κd

κd − κc

)−2/3

, (83)

where in this equation, Eq. (30) has been used. Considering that κd ≫ κc, the temporal derivative of

Eq. (83) in a first approximation reads

∂

∂t

∫ ∞

κd

E(κ) dκ ≈
3

2
Cκ ζ−2/3

c

(
κd

κd − κc

)−2/3
d〈ks f s〉

dt
. (84)
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In order to get an acceptable approximation for the derivative d 〈ksfs〉/dt, it is then necessary to

account for the total shape of the spectrum, while the Reid and Harris solution only apply to the

inertial zone. A continuity approximation satisfying 〈ksfs〉/k → 1 when κc → 0 has to be provided.

This is made by setting

〈ks f s〉
k

= Q(ηc), (85)

where Q denotes an analytical function of the dimensionless parameter ηc = κc k3/2/ǫ, yielding

d〈ks f s〉
dt

= Q(ηc)
dk

dt
+ k

d Q(ηc)

dt
= −ǫ Q(ηc) + k

d Q(ηc)

dηc

dηc

dt
. (86)

The derivative dηc/dt in the case of the self-similar decay of homogeneous isotropic turbulence is

given by

dηc

dt
=

κc

ǫ2

(
3

2
ǫk1/2 dk

dt
− k3/2 dǫ

dt

)
=

κc

ǫ2

(
−

3

2
k1/2ǫ2 + 2k3/2 ǫ2

k

)
=

1

2
κck1/2 (87)

so that
d Q(ηc)

dt
= −ǫ Q(ηc) +

1

2
κck3/2 d Qηc

dηc

(88)

and finally
d〈ks f s〉

dt
= −ǫ Q(ηc)

[
1 −

ηc

2

d ln Q(ηc)

dηc

]
. (89)

Hence, the energy flux F(κd) defined such as in Eq. (75) can be computed using Eqs. (84) and (89)

leading to

F(κd , t) = ǫ

[
1 −

3

2
Cκ ζ−2/3

c

(
κd

κd − κc

)−2/3 〈ks f s〉
k

(
1 −

ηc

2

d ln Q(ηc)

dηc

)]
. (90)

From the Taylor series (73) using the similarity relation ǫ−1/3/t = ǫ2/3/k, one also gets

F(κd , t) = ǫ

[
1 − 2Cκ ζ−2/3

c

(
κd

κd − κc

)−2/3 〈ks f s〉
k

]
. (91)

The difference between Eqs. (90) and (91) is then

F(κd , t) − F(κd , t) = −
Cκ

2
ζ−2/3

c

(
κd

κd − κc

)−2/3 〈ks f s〉
k

[
1 +

3

2
ηc

d ln Q(ηc)

dηc

]
(92)

leading to the final result for the cs f sǫ2
coefficient appearing in Eq. (37)

cs f sǫ2
=

3

2
+

1

2

〈ks f s〉
k

[
1 +

3

2
ηc

d ln Q(ηc)

dηc

]
. (93)

Equation (93) written in a compact form can be applied whatever the function Q = 〈ksfs〉/k introduced

in the analytical development. For the particular choice of the Von Kármán type spectrum defined

in Eq. (56) and corresponding to

Q =
〈ks f s〉

k
= (1 + βηη

3
c )−2/9, (94)

it is straightforward to get
d ln Q(ηc)

dηc

= −
2

3

βηη
2
c

(1 + βηη3
c )

(95)

leading to the final result

cs f sǫ2
=

3

2
+

1

2

〈ks f s〉
k

[
1 −

βηη
3
c

1 + βηη3
c

]
. (96)

When ηc → ∞, the limit cs f sǫ2
→ 3/2 is obtained, suggesting that the turbulence in the

[κc, κd] slice is vanishing (see Appendix A) leading to a DNS like simulation. As an interesting
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result, one can see that cs f sǫ2
always takes on a finite value whatever the domain variation of κd

and in particular when κd goes to ∞. On the other hand, one can remark that limηc→0 cs f sǫ2
(ηc) = 2

according to the previous result found in full statistical modeling where κc = 0. We have thus shown

that in a particular analytical case, taken as a test example, the coefficients of the dissipation-rate

equation remain finite when κd goes to infinity, even if the generic form of cs f sǫ2
coefficient takes the

indeterminate form 0/0 at infinity. Of course, the cs f sǫ2
value thus obtained is by no means universal

but would take on a different numerical value in other particular examples.

As a marginal remark, one can see that Eq. (89) provides the temporal evolution of the subfilter

energy

∂〈ks f s〉
∂t

= −ǫQ(ηc)
1 + 4

3
βηη

3

1 + βηη3
. (97)

Equation (97) indicates that the decay of the subfilter energy is governed by the parameter η varying

from 0 to ∞. In particular, when ηc → 0, Eq. (97) leads to equation

∂〈ks f s〉
∂t

= −ǫQ(ηc) =
〈ks f s〉

k

∂k

∂t
, (98)

which is the same as Eq. (52) introduced in Sec. IV A whereas when ηc → ∞

∂〈ks f s〉
∂t

= −
4

3
ǫQ(ηc) =

4

3

〈ks f s〉
k

∂k

∂t
(99)

meaning that the decay is increased relatively to the ratio 〈ksfs〉/k. This result is found to be in

agreement with the physics of turbulence suggesting that the small scales decrease more rapidly than

the large scales energy.

VI. THE PITM METHOD IN PRACTICE

The PITM method is based on the system of the instantaneous transport equations for the

subfilter energy (29), the subfilter scale stresses (28), and the subfilter dissipation-rate inspired from

Eq. (55) that reads

Dǫs f s

Dt
= cs f sǫ1

ǫs f s

ks f s

Ps f s − cs f sǫ2

ǫ2
s f s

ks f s

+ (Jǫ)s f s, (100)

where in this equation, the diffusion term (Jǫ)sfs has been embedded for handling non-homogeneous

flows. In Eq. (100), the cs f sǫ1
coefficient is equal to the corresponding coefficient in the compan-

ion statistical model cs f sǫ1
= cǫ1

whereas cs f sǫ2
is the dynamic coefficient computed by means of

Eq. (58).

A. Subfilter scale viscosity models

The subfilter scale viscosity models are transposed from RANS k − ǫ models initially developed

by Jones and Launder,59 and Launder and Sharma.60 These subfilter models derived from the PITM

method rely on Eqs. (29) and (100) where the different terms appearing in these equations are

modeled using an eddy viscosity hypothesis νsfs defined itself by12

νs f s = cμ

k2
s f s

ǫs f s

, (101)

where cμ is a constant coefficient. In this case, the subfilter turbulent stresses are proportional to the

filtered deformation of the flow field

(τi j )s f s = −νs f s

(
∂ui

∂x j

+
∂u j

∂xi

)
+

2

3
ks f sδi j . (102)
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The production term Psfs due to the interaction between the subfilter stress and the filtered gradient

velocity is

Ps f s = −(τi j )s f s

∂ ū j

∂xi

. (103)

The diffusion term Jsfs appearing in Eq. (29) is modeled by a gradient law hypothesis

Js f s =
∂

∂x j

[(
ν +

νs f s

σk

)
∂ks f s

∂x j

]
, (104)

where σ k is a constant coefficient. In the same way, the diffusion term (Jǫ)sfs appearing in Eq. (100)

is modeled as

(Jǫ)s f s =
∂

∂x j

[(
ν +

νs f s

σǫ

)
∂ǫs f s

∂x j

]
, (105)

where σ ǫ is a constant coefficient. Recently, more advanced viscosity subfilter models based on the

PITM method have emerged. One is the ksfs − ǫsfs − ζ − f model25 where ζ represents the ratio

of the normal velocity to the turbulent energy and f is an elliptic function inspired from the Durbin

RANS model61 taking into account the Speziale-Sarkar-Gatski (SSG) model.62 The second one is

the ksfs − ωsfs subfilter model inspired from the RANS k − ω SST model.63

B. Subfilter scale stress models

The subfilter scale stress models are transposed from RANS-RSM turbulence models initially

developed by Launder et al.20 and Speziale et al.62 at high Reynolds numbers. These subfilter

models derived from the PITM method are based on Eqs. (28) and (100). In the contrary to the

two-equation subfilter model which requires to model the production term Psfs, the production term

(Pij)sfs appearing in the subfilter-scale stress model takes the exact expression

(Pi j )s f s = −(τik)s f s

∂ ū j

∂xk

− (τ jk)s f s

∂ ūi

∂xk

. (106)

However, the redistribution, diffusion and dissipation terms need to be modeled. Like in RANS

modeling, the redistribution term (� ij)sfs is decomposed into a slow part (�1
i j )s f s which characterizes

the return to isotropy due to the action of turbulence on itself and a rapid part (�2
i j )s f s which describes

the return to isotropy by action of the filtered velocity gradient. The term (�1
i j )s f s is modeled on

the one hand assuming that the usual statistical Reynolds stress models must be recovered in the

limit of vanishing cutoff wave number κc and on the other hand considering also that the small

scales return more rapidly to isotropy than the large scales before cascading into smaller scales by

nonlinear interactions

(�1
i j )s f s = −c1 cs f s1

ǫs f s

ks f s

(
(τi j )s f s −

2

3
ks f s δi j

)
. (107)

In Eq. (107), c1 is the usual Rotta coefficient used in statistical RANS modeling whereas cs f s1
is an

increasing function of the parameter ηc empirically calibrated as

cs f s1
(ηc) =

1 + αη1 η2
c

1 + αη2 η2
c

, (108)

where αη1, αη2 are constant coefficients verifying the condition αη1 > αη2. The second term (�2
i j )s f s

is modeled by means of the rapid distortion theory for homogeneous strained turbulence in an

initially isotropic state64

(�2
i j )s f s = −c2

(
(Pi j )s f s −

1

3
(Pmm)s f s δi j

)
, (109)

where the coefficient c2 remains the same as in statistical modeling. The diffusion term (Jij)sfs

appearing in Eq. (28) associated to the fluctuating velocities and pressure together with the molecular
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diffusion is modeled assuming a gradient law hypothesis

(Ji j )s f s =
∂

∂xk

(
ν
∂(τi j )s f s

∂xk

+ cs

ks f s

ǫs f s

(τkl)s f s

∂(τi j )s f s

∂xl

)
, (110)

where cs is a constant numerical coefficient. In the case of the flux equation, the diffusion term

(Jǫ)sfs appearing in the subfilter dissipation-rate equation (100) is modeled assuming a well-known

gradient law hypothesis referring to the tensorial eddy viscosity concept as follows:

(Jǫ)s f s =
∂

∂x j

(
ν
∂ǫs f s

∂x j

+ cǫ

ks f s

ǫs f s

(τ jm)s f s

∂ǫs f s

∂xm

)
, (111)

where the coefficient cǫ remains constant. The coefficients used in these energy and stress subfilter

models can be found in the original papers.12, 15 Other authors, Fadai-Ghotbi et al.18, 19 have recently

developed another subfilter-scale stress model derived from the temporal partially integrated transport

modeling method.18 Their model is inspired from the RANS-RSM model developed by Manceau

and Hanjalic23 and it is based itself on the Durbin elliptic blending approach61 taking into account

the SSG model.62

C. Relaxation mechanism and convergence acceleration

The key equation for the PITM method is Eq. (54) that in terms of the grid spacing becomes

Eq. (62). The ratio of the grid spacing (more precisely the filter width) to the turbulence macroscale

(scale of the total turbulent field including subfilter and resolved scales) is the key parameter that

determines the equilibrium value of the ratio between the modeled and the total kinetic turbulent

energy (62). The coefficient cs f sǫ2
defined in Eq. (58) indeed controls the amount of energy which

is modeled relatively to the amount which is simulated. For equilibrium flows, it is observed that

the ratio of the subfilter energy to the total energy computed by the simulation rCFD = 〈ksfs〉/k is

close to the equilibrium value req = (〈 ksfs〉/k)eq solution of Eq. (57) deduced from the theoretical

Von Kármán energy spectrum E(κ), once the permanent state is reached after a long CPU time. In

strongly non-equilibrium flows, there is a time lag. The use of req in Eq. (62) allows to relate directly

the turbulence energy ratio to the ratio of the turbulence to grid length scales. As mentioned earlier,

the mechanism acting in the ǫ equation can be interpreted as a “return to equilibrium” process. How

this targeted value is related in practical computations to the observed values can be evidenced as a

relaxation process on the usual dissipation rate equation. Considering, to remain simple, the case of

homogeneous turbulence at large Reynolds numbers (〈ǫsfs〉 = ǫ since 〈ǫ<〉 ≈0), the subfilter scale

equations for energy (29) and transfer (55) can be written as

∂ǫ

∂t
= cǫ1

ǫ〈Ps f s〉
〈ks f s〉

− cs f sǫ2

ǫ2

〈ks f s〉
, (112)

coupled with the equation
∂〈ks f s〉

∂t
= 〈Ps f s〉 − ǫ. (113)

Equation (58) expresses in fact the relation with the equilibrium turbulence energy ratio

cs f sǫ2
= cǫ1

+ (cǫ2
− cǫ1

)

(
〈ks f s〉

k

)

eq

. (114)

In order to get an intuitive understanding of how the relaxation works, let us suppose that the

evolution of the turbulence field is approximately self-similar so that taking into account the total

turbulence energy equation
∂k

∂t
= P − ǫ (115)

together with Eq. (113), one gets
〈ks f s〉

k
=

〈Ps f s〉 − ǫ

P − ǫ
, (116)

which is the same as Eq. (52) written for 〈ǫsfs〉 = ǫ. Note that this approximation is just used for the

present simplified demonstration but not in the model itself. Using then Eq. (116) to eliminate 〈Psfs〉
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appearing in Eq. (112) in conjunction with the basic Eq. (114) derived from the PITM method, gives

after some straightforward algebra the resulting equation

∂ǫ

∂t
= cǫ1

ǫ〈P〉
k

− cǫ2

ǫ2

k
+ (cǫ2

− cǫ1
)

ǫ2

〈ks f s〉

[
〈ks f s〉

k
−

(
〈ks f s〉

k

)

eq

]
. (117)

Comparing to the usual dissipation equation in statistical models, an extra term in bracket in the

right-hand side of this equation now appears that acts as a relaxation term towards the equilibrium or

target value. More precisely, if rCFD = 〈 ksfs〉/k < equilibrium value req (respectively, > equilibrium

value), then ∂ǫ/∂t decreases (respectively, increases) and rCFD = 〈ksfs〉/k increases (respectively,

decreases) so that at the end of the iterative process, rCFD approaches req although the strict equality

is not absolutely guaranteed if the flow remains out of spectral equilibrium.

In practice, for accelerating the numerical convergence towards the solution in the permanent

state and to avoid the model to wander towards a purely RANS or LES limiting behavior during the

transition phase, a procedure19 is activated during the computations to force the model to approach

more rapidly the expected energy ratio. The mechanism described before based upon physical

considerations is then reinforced. To do that, the equilibrium energy ratio req = (〈ksfs〉/k)eq given

by Eq. (57) is then compared with the ratio value rCFD computed by the simulation. The dynamic

correction applied to the subfilter coefficient δcs f sǫ2
is then calculated by means of the parameter

rCFD/req as follows:17, 19

δcs f sǫ2
= χ cs f sǫ2

(
1 −

rC F D

req

)
, (118)

where χ is a constant parameter set to 0.1 once for all.

D. Extensions

The most important outgrowth of the subfilter models is their extensions to low Reynolds number

turbulence, a feature which is absolutely necessary to deal with real turbulent flows and in particular

wall flows. In low Reynolds number turbulence, the subfilter models need to be modified in two

main aspects. The first aspect concerns the evaluation of the dissipation-rate. Indeed, as the inertial

zone shortens and can even disappear completely, the dissipation process can occur in the resolved

part of the flow so that it is necessary to account for the resolved part of the viscous dissipation.

In order to take into account all contributions, the true dissipation rate ǫ becomes the sum of the

modeled dissipation-rate 〈ǫsfs〉 and the resolved dissipation ǫ< as

ǫ = 〈ǫs f s〉 + ǫ<, (119)

where ǫ< is defined in Eq. (60). In low Reynolds number turbulence, this is the total dissipation-rate

that has to be used in Eq. (59). The conditions under which this term may be important can be

determined approximately using turbulence scales. As usually assumed, if one considers that an

appreciable viscous dissipation occurs for scales smaller than the Taylor microscale λ =
√

15νk/ǫ,

the condition to satisfy takes the form

κc >
1

λ
or equivalently ηc = κc Le >

√
ReT

15
(120)

with ReT = Le

√
k/ν = k2/(νǫ) is the turbulent Reynolds number. At the extreme limit, if κc = 1/ηK

with ηK = (ν3/ǫ)1/4 being the Kolmogorov scale, or equivalently ηc = Re
3/4

T , then the simulation

would become a DNS. So, in the presence of resolved dissipation, the input energy flux entering

the subfilter zone though the wave number κc will be reduced of the corresponding same amount,

but there is no reason to think that the form of the dissipation-rate equation should be modified.

For illustrative purposes, Figure 5 has been worked out to show the energy density spectrum,

productive, transfer, and dissipative zones as well as the energy flux acting in the spectral space

at low Reynolds number. The second aspect concerns the coefficients used in the models. Like in

statistical modeling, the model coefficients must become some functions of the local turbulence
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FIG. 5. Sketches of the density energy spectrum E, spectral flux transfer F , and spectral transfer term T with respect to the

wave number κ in the spectral space at low Reynolds number.

Reynolds number and/or the turbulent invariants involving the anisotropy tensors for approaching

wall regions. These functions are largely empirical and in the present case, they will be directly

inspired from the statistical model counterparts. The practical formulation of the low Reynolds

number counterparts of both viscosity and stress transport models are given in Refs. 12, 13, 17,

and 19 using low Reynolds number corrections21, 60 or the elliptic blending approach.23, 61 Another

promising extension of the approach is the extension to models accounting for directional dependence

allowing a refined modeling of anisotropy. These models as initiated in Refs. 47, 65, 46, and 66 in

statistical RANS closures include transport equations for the directional anisotropy in addition to

the turbulent stresses. There is no doubt that this approach could be fruitfully extended to the PITM

method in the near future.67

VII. SOME PITM SIMULATIONS EXAMPLES

As mentioned earlier, the PITM method can be applied to almost any usual statistical closure to

convert it into an hybrid continuous model, for energy model as well as stress transport model. Most

of the PITM applications achieved at present time does use subfilter scale stress transport equations.
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A. PITM challenges

The PITM method has been especially developed for performing continuous hybrid non-zonal

RANS-LES simulations of free and wall-bounded flows on coarse grids with a sufficient rep-

resentativeness for engineering applications. This method is mainly dedicated to applications in

non-equilibrium turbulence. The subfilter models derived from the PITM method are applied on

the whole computational domain without arbitrary setting RANS or LES regions. In that sense, the

turbulent models are able to automatically adapt themselves to the level of turbulence modeling

required for the simulations. As shown in the preceding sections, the dimensionless parameter η

involving both the grid spacing of the mesh and the turbulence length scale is the key parameter in

the PITM method. The models are applied in their low Reynolds number versions for accurately

reproducing the wall boundary layers of turbulent confined flows, the grid being sufficiently refined

in the normal direction to the wall. This allows to avoid the requirement of empirical wall func-

tions. In practice, the subfilter models derived from the PITM method behave like RANS models

near the wall regions and more or less like LES in the core flows, with a progressive change.

Among these subfilter models, the subfilter scale stress models are particularly recommended for

simulating wall bounded flows because of the redistribution term that allows to reproduce the

near wall flow anisotropy. In the following, we briefly mention some flow illustrations to get an

insight into the PITM method in its capabilities to simulate unsteady flows, the physical analy-

sis of these flows being extensively conducted in previous references. From a numerical point of

view, the governing equations are integrated by a Runge-Kutta scheme of fourth-order accuracy in

time whereas the convective fluxes are computed by a quasi-centered numerical scheme of second

or fourth-order accuracy in space,68 the space-time scheme combination being well appropriate

for LES.

B. Simulation of homogeneous turbulence

The decay of homogeneous isotropic turbulence referring to the experiment of Comte-Bellot

and Corrsin69 has been simulated on a coarse grid16 with a cutoff wave number κc defined such as

the initial ratio of the subfilter energy to the total energy was roughly 1/3. Then, initial perturbed

spectra with a peak or a defect of energy was considered for analyzing the model capabilities in

strong non-equilibrium flow situations. As a result, it has been found that the PITM simulations

reproduced very well the experimental data associated to the decay of the spectrum69 and provided

results in good qualitative agreement with EDQNM simulations.35

C. Simulation of non-homogeneous turbulence

Different bounded flows have been performed on coarse grids including the basic test case of

fully turbulent channel flow12, 13, 19 and more complex flows such as the channel flow with mass

injection subjected to the development of natural unsteadiness,13 the pulsed channel flow influenced

by forced unsteadiness,12 the channel flow over periodic hills15, 25, 27 governed by interacting turbu-

lence mechanisms associated with separation, recirculation and reattachment, and the channel flow

subjected to a spanwise rotation ranging from moderate to higher rotation rates.17 The prediction

of rotating turbulent flows is known for the difficulty in modeling the subtle effects of the Coriolis

forces. In particular, in the channel flow subjected to a spanwise rotation, any viscosity model is

blind to rotation effects and misses completely the asymmetry character (stable and unstable sides)

of the flow. This is why, the calculation in Ref. 17 makes use of a subfilter model including all the

stress transport equations. This level of closure allows to account for explicit Coriolis effects in the

stress equations to get satisfactory results because the Coriolis forces are naturally embodied in the

equation, both in the source and redistribution terms. It is true, however, that implicit Coriolis effects

also exist, that are not taken into account in the equations here, but they probably become important

at very high rotational Reynolds numbers like for flows in inter-disk systems.36 But such an account

would be only possible through directional anisotropy sensitized models like in Refs. 36 and 67.

Free turbulent flows were also simulated such as the turbulent spectral non-equilibrium flow created
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FIG. 6. Mean streamlines of the average flow field computed at the Reynolds number Re = 37 000. PITM simulation (160

× 60 × 100).

by the mixing of two turbulence fields of different scales in a shearless mixing layer.70 As a result,

it was found that the PITM method was able to simulate these turbulent flows on coarse grids with

satisfactory agreement with the reference data and provided some details of the large flow structures,

from a qualitative point of view.

D. Study of the coefficient csfsǫ2
through one chosen example

As an example, we consider the calculation of turbulent flows over periodic hills at the high

Reynolds number Re = 37 000 (Ref. 71) performed using the PITM method on a curvilinear

grid 160 × 60 × 100 (≈1 × 106 grid points) in the streamwise, spanwise, and normal directions

(x1, x2, x3). The objective here being to study the coefficient cs f sǫ2
and not the flow in itself (see

Refs. 15 and 25), only some characteristics of the flow and its turbulence properties will be briefly

recalled in the following. Concerning the geometry, the hills constrict the channel by about one third

of its height h and they are spaced at a distance of about 9 hills. Figure 6 shows the streamlines of

the averaged flow field illustrating the recirculation zone as well as the turbulence effects associated

with separation, recirculation, and flow reattachment of the boundary layer. At a first sight, one can

see that the recirculation zone computed at Re = 37 000 is smaller than the one computed at the

lower Reynolds number at Re = 10 595 plotted in Ref. 15. Figure 7 displays the evolutions of the

dimensionless parameter ηc = κcLe in the cross section of the channel at the stations prior to the

reattachment x1/h = 2 and at the flow recovery station x1/h = 6. This figure reveals that the parameter

ηc goes to zero near the wall regions and reaches maximum values in the shear layer region. The high

ηc values found in the present case can be explained by the relatively large value of the Reynolds

number considering also that the core flow is dominated by unsteady large energy carrying scales

which develop in the channel from the windward side of the first hill to the second hill. This remark

suggests that, considering the particular discretization mesh chosen in the calculation, the PITM

method behaves like a LES in the shear layer region where x3/h ≈ 1 and more or less like a RANS

model in the wall regions x3/h ≈ 0 and x3/h ≈ 3. When comparing these evolutions at these two

locations, it can be shown also that the parameter ηc takes on higher values at the station x1/h = 2

than at the station x1/h = 6. Physically, this outcome means that the PITM simulation resolves more

large scales in the middle of the recirculation zone close to the leeward hill face than on the region of

the windward slope of the hill. The main result is shown in Figure 8 which describes the evolutions

of the coefficient cs f sǫ2
in the normal direction from the walls at the stations x1/h = 2 and x1/h

= 6. As expected, these coefficient values stay nicely in scale between the two limiting statistical

values cǫ1
= 1.50 and cǫ2

= 1.90 according to Eq. (54). The function cs f sǫ2
goes to the upper limit

cǫ2
near the walls because of the parameter ηc involved in Eq. (58) is going to zero in that region,

and then gradually decreases when moving away from the walls as the parameter ηc increases. As

shown in the preceding sections, this result confirms that the PITM method varies continuously from
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FIG. 7. Evolution of the parameter ηc = κcLe in different cross sections of the channel. (a) x1/h = 2, ◦: ηc; (b) x1/h = 6,

�: ηc.

quasi-URANS modeling in the wall region (although the grid is very refined �+
3 = 0.5) to large

eddy simulations far away from the walls, with seamless coupling between these two regions. We

emphasize again that this example is particular to flow under consideration and the discretization

mesh which in the present case, determines the filter width. One can remark also, that it is always

permissible to use a filter width larger than the mesh step, for numerical accuracy reasons, but it is

often useless in practice.
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FIG. 8. Evolution of the cs f sǫ2
coefficient in different cross sections of the channel. (a) x1/h = 2, ◦: cs f sǫ2
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�: cs f sǫ2
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VIII. CONCLUSION

In this work, we have first recalled the main building steps of the PITM method and we have given

further insight into the physical mechanisms of the modeled equations. The underlying hypothesis of

the PITM method have been thoroughly examined from a physical standpoint. A special attention has

been devoted to the generic character of the subfilter dissipation-rate transport equation. In particular,

we have demonstrated that it is possible to apply the PITM method to all statistical models with

the aim to derive their corresponding subfilter models used in LES, provided some approximations

are, however, conceded. Then, as an example, we have considered the self-similar analytical flow

of Reid and Harris28 obtained in the present case by means of Taylor series expansions taking into

account the Kovasznay hypothesis for evaluating the transfer term. We have analytically calculated

the functional coefficients cǫ2
and cs f sǫ2

used in RANS and LES methodologies, respectively, and

we have proved that they both take on finite values in all cases. Finally, some flow illustrations were

briefly mentioned to get a real appraisal of the PITM method in its capabilities to simulate unsteady

flows on relatively coarse grids with a sufficient accuracy for engineering computations and the

coefficient cs f sǫ2
was analyzed through one chosen example.

APPENDIX A: ON THE PHYSICAL MEANING OF csfsǫ2
IN THE SPECTRAL SPACE

It is worth mentioning some consequences of the Kovasznay hypothesis in spectral space in

connection with the flux equations used in multiple scale models. Let us consider the Kovasznay

hypothesis for the transfer term,

F(κ, t) = C−3/2
κ E(κ, t)3/2 κ5/2, (A1)

and take the logarithmic partial time derivative of both sides, giving

1

F

∂F(κ, t)

∂t
=

3

2

1

E

∂ E(κ, t)

∂t
(A2)

taking into account the spectral energy equation in the inertial zone

∂ E(κ, t)

∂t
= −

∂F(κ, t)

∂κ
, (A3)

the previous equation becomes

∂F(κ, t)

∂t
= −

3

2

F

E

∂F(κ, t)

∂κ
. (A4)

It is straightforward to discretize this latter equation using simple finite differences in the wave

number space

∂F (m)

∂t
=

3

2

F (m)

E (m)

F (m−1) − F (m)

�κ
. (A5)

The term E(m)�κ is in fact the partial turbulent energy k(m) comprised within the spectral slice

[κm−1, κm] and the resulting equation

∂F (m)

∂t
=

3

2

F (m)F (m−1)

k(m)
−

3

2

(F (m))2

k(m)
(A6)

looks like the flux equation in the multiple scale model for the spectral slice (m). It has also the very

same structure as the standard dissipation-rate equation in which the coefficients are cǫ1
= cǫ2

= 3/2.

Although the Kovasznay spectral hypothesis is a very rough representation of the spectral cascade,

it is interesting to note that it shows some trends towards the constant value 3/2 in the limiting case

of a very thin spectral slice. In this light, this value cannot be considered as a lucky haphazard.
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APPENDIX B: ANALYTICAL SOLUTION OF THE ISOTROPIC SELF-SIMILAR

DECAY TURBULENCE

1. Technical preliminary

Let us consider a Taylor series expansions in space for the function f

f (x) = f (x0) +
∞∑

n=1

(
dn f

dxn

)

x0

xn

n!
. (B1)

The real power α of the function f can be easily derived as

[ f (x)]α = f α
0 + α f

α1

0

(
d f

dx

)

x0

x +

[
α f

α1

0

(
d2 f

dx2

)

x0

x2

2
+ αα1 f

α2

0

(
d f

dx

)2

x0

]
x2

2

+

[
α f

α1

0

(
d3 f

dx3

)

x0

+ 3αα1 f
α2

0

(
d f

dx

)

x0

(
d3 f

d3x

)

x0

+ αα1α2 f
α3

0

(
d f

dx

)3

x0

]
x3

6
+ O(x4),

(B2)

where f0 = f(x0), α1 = α − 1, α2 = α − 2 and α3 = α − 3. For a given series

f (x) =
∞∑

n=0

an xn, (B3)

Eq. (B2) can be applied for α = 3/2 leading to the result

[ f (x)]3/2 = a
3/2

0 +
3

2
a

1/2

0 a1x +
3

2
a

−1/2

0

[
a0a2 +

1

4
a2

1

]
x2

+
3

2
a

−3/2

0

[
a2

0a3 +
1

2
a0a1a2 −

1

24
a3

1

]
x3 + O(x4). (B4)

2. Analytical spectrum solution

The similarity hypothesis studied in particular by Monin and Yaglom57 (Vol. II, 16.1) leads to

a separation of variables

E(κ, t) =
b

√
t

G(γ ), (B5)

where γ = κ
√

at , a and b being constant coefficients.

Considering the variable change (κ , t) � (γ , T) with γ = γ (κ, t) = κ
√

at and T = T(t) = t,

the previous equation shows that

k =
∫ ∞

0

E(κ, t)dκ =
∫ ∞

0

b
√

t
G(κ

√
at)dκ =

∫ ∞

0

b
√

aT
G(γ )dγ =

Cte

T
. (B6)

In the present case, the dimensionless reduced variable involving the time is

z(κ, t) = ǫ(t)−1/3κ−2/3t−1. (B7)

If κ(t) ∝ 1/
√

t and ǫ(t) ∝ t−2, then this result leads to

dǫ(t)

dt
= −2

ǫ

t
. (B8)

The factor 2 in the right-hand side of this equation, obviously comes from the hypothesis of self-

similarity. It implies that the time evolution of ǫ is such that ǫ(t) = a/t2. From the energy decay
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equation dk/dt = −ǫ one also deduces again k(t) = a/t. Then follow other useful relations, all of

them being consequences of the self-similarity written as

ǫ

k
=

1

t
,

ǫ2

k
=

a

t2
,

k3/2

ǫ
=

√
at . (B9)

In order to derive the solution equations of Reid and Harris56 (solution for large values of the

Reynolds number in the initial period similarity), the spectrum and the transfer term are computed

by Taylor series expansions of the dimensionless variable z = z(κ , t) where κ and t are independent

variables as follows:

E(κ, t) = Cκ ǫ(t)2/3κ−5/3

∞∑

n=0

an zn, (B10)

where a0 = 1. The Kovasznay hypothesis for the transfer term

F(κ, t) = C−3/2
κ E(κ, t)3/2 κ5/2 (B11)

gives the series equation

F(κ, t) = ǫ(t)

[ ∞∑

n=0

an zn

]3/2

. (B12)

The spectrum E and the transfer term F are obtained by satisfying Eq. (69) with the theoretical

assumption that the Reynolds number goes to infinity or equivalently that the fluid viscosity goes

to zero. The derivatives ∂E/∂t and ∂F/∂κ are calculated and then identified. The derivative of

Eq. (B10) reads

∂ E(κ, t)

∂t
= Cκκ

−5/3

[
2

3
ǫ−1/3 dǫ

dt

∞∑

n=0

an zn + ǫ2/3

∞∑

n=0

n an zn−1 ∂z

∂t

]
. (B13)

The derivative dǫ/dt given by Eq. (B8) is computed as

dǫ(t)

dt
= −2ǫ4/3κ2/3z. (B14)

The derivative ∂z/∂t is computed using Eq. (B8) coming from the self-preservation hypothesis

∂z(κ, t)

∂t
= −κ−2/3

[
1

3
ǫ−4/3 dǫ

dt
t−1 + ǫ−1/3t−2

]
= −

z

3t
= −

1

3
ǫ1/3κ2/3z2. (B15)

So that Eq. (B13) reads

∂ E(κ, t)

∂t
= −

2

3
Cκ ǫκ−1

[
2z +

5

2
a1z2 + 3a2z2 +

7

2
a3z3 + O(z4)

]
. (B16)

Using the preliminary result (B4) in Eq. (B12), one can then obtain

F(κ, t) = ǫ

[
1 +

3

2
a1z +

3

2

(
a2 +

a2
1

4

)
z2 +

3

2

(
a3 +

1

2
a1a2 −

a3
1

24

)
z3 + O

(
z4

)]
. (B17)

The derivative of Eq. (B17) with respect to the wave number κ is obtained from

∂F(κ, t)

∂κ
=

∂F(κ, t)

∂z(κ, t)

∂z(κ, t)

∂κ
. (B18)

The derivative ∂z/∂κ is computed using Eq. (B8) coming from the self-preservation hypothesis

∂z(κ, t)

∂κ
= −

2

3
κ−5/3ǫ−1/3t−1 = −

2

3

z

κ
. (B19)

Hence, the derivative of Eq. (B17) can be written

∂F(κ, t)

∂κ
=

∂F

∂z

∂z

∂κ
= −

2

3
ǫκ−1

[
3

2
a1z + 3

(
a2 +

a2
1

4

)
z2 +

9

2

(
a3 +

a1a2

2
−

a3
1

24

)
z3 + O

(
z4

)]
.

(B20)
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By identifying term by term the series (B16) and (B20), one can easily obtain a1 = −4Cκ /3,

a2 = 2Cκ
2 /3 and a3 = −8Cκ

3 /81 so that the final results read

E(κ, t) = Cκ ǫ2/3κ−5/3−
4

3
Cκ

2 ǫ1/3 κ−7/3

t
+

2

3
Cκ

3 κ−3

t2
−

8

81
Cκ

4ǫ−1/3 κ−11/3

t3
+ǫ2/3κ−5/3 O(z4),

(B21)

F(κ, t) = ǫ − 2Cκ

ǫ2/3κ−2/3

t
+

5

3
Cκ

2 ǫ1/3κ−4/3

t2
−

2

3
Cκ

3 κ−2

t3
+ ǫO(z4), (B22)

∂F

∂κ
(κ, t) =

4

3
Cκ

ǫ2/3κ−5/3

t
−

20

9
Cκ

2 ǫ1/3κ−7/3

t2
+

4

3
Cκ

3 κ−3

t3
+ ǫκ−1 O(z4). (B23)

As expected, one can verify that limt→∞E(κ , t) = Cκ ǫ2/3κ−5/3 and limt→∞ F(κ, t) = ǫ. It is also

important to remark that the first term in the right-hand side of Eq. (B22), which is the major term

contribute for nothing in Eq. (69). The active term is indeed the second term in the right-hand side

of Eq. (B22) which is far smaller in value. The same mechanism happens in the PITM method in

which the acting mechanism comes from the (F − F) flux difference.

APPENDIX C: THE cǫ2 COEFFICIENT FROM INTEGRATION TECHNIQUE

In statistical RANS turbulence modeling, the cǫ2
coefficient is not at all a universal constant but

it depends on the spectral distribution itself, on the turbulent energy which has been transferred from

the large scales to the small scales by the turbulence cascade and on the type of flow. In this respect,

it is interesting to consider a schematic energy spectrum defined as follows:

E(κ) = ακm f or κ ≤ κ0,

E(κ) = Cκ ǫ2/3 κ−5/3 f or κ ≥ κ0, (C1)

where m is a parameter coefficient. There is a simple way49 (Section 5.10) to derive a decay ǫ-

equation, summarized hereafter. The maximum of the spectrum is obtained for κ0 = (Cκǫ
2/3/α)3/3m+5.

It is then simple matter to compute the turbulent energy

k =
∫ ∞

0

E(κ) dκ =
3m + 5

2(m + 1)
Cκǫ

2/3κ
−2/3

0 =
3m + 5

2(m + 1)
α

2
3m+5 C

3(m+1)
3m+5

κ ǫ
2(m+1)
3m+5 . (C2)

The equation describing the law of the dissipation-rate decay can be easily obtained by taking the

derivative of Eq. (C2)

dk

k
=

(
2m + 2

3m + 5

)
dǫ

ǫ
(C3)

and by considering the equation of the turbulent energy decay in absence of production, one can

easily find the resulting equation

dǫ

dt
= −

(
3m + 5

2m + 2

)
ǫ2

k
(C4)

showing clearly that the coefficient cǫ2
is a function of the parameter m that characterizes the spectrum

in the zone of large scales. As a result, in the case of self-similar decay, the value cǫ2
= 2 is recovered

for the particular value m = 1.
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