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ON UNCONDITIONAL WELL-POSEDNESS FOR THE PERIODIC
MODIFIED KORTEWEG-DE VRIES EQUATION

LUC MOLINET*, DIDIER PILOD' AND STEPHANE VENTO*

ABSTRACT. We prove that the modified KdV equation is unconditionally well-
posed in H*(T) for s > 1/3.

1. INTRODUCTION

We consider the initial value problem (IVP) associated to the modified KdV
(mKdV) equation

(1.1) Opu+ 02u F 0, (u®) = 0
(1.2) u(+,0) = uog,

where u = u(z,t) is a real valued function, x € T=R/Z and t € R.

In [1] Bourgain introduced the Fourier restriction norm method and proved that
(1.1) is locally well-posed in H*(T) for s > 1/2. Note that, by a change of variable,
Bourgain substituted the mKdV equation (1.1) by the renormalized mKdV equation

Ut+6§v$3(’l}2—P0(’U§))’UIZO, ’U(',O):UO;

where Pyw denotes the mean value of w. This result was then proved to be sharp
if one requires moreover the smoothness or the uniform continuity on bounded sets
of the solution-map associated with the renormalized equation (see [2], [11], [5]).
This obstruction is related to the resonant term Y-, ., [0(k)|*v(k)e™* that appears
in the nonlinear part of this equation. However, in [20], Takaoka-Tsutsumi proved
that (1.1) is locally well posed in H*(T) for s > 3/8. For this, they first establish
a smoothing effect on the difference |F,(v(t))(k)|?> — |0p(k)|* and then work in a
Bourgain’s space depending on the initial data in order to treat the resonant term.
This was improved in [19] where the local well-posedness was pushed down to H*(T)
with s > 1/3.

The local well-posednesss results proved in these papers mean the following :
for any initial data ug € H*(T) there exists a time T = T'(|lug||gs) > 0 only
depending on ||ug||g= and a solution u that satisfies the equation at least in some
weak sense and is unique in some function space (called resolution space) Xr —
C(]0,T); H*(T)) that can depends on the initial data. Moreover, for any R > 0,
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2 L. MOLINET, D. PILOD AND S. VENTO

the flow-map ug +— wu is continuous from the ball centered at the origin with radius
R of H*(T) into C([0,T(R)]; H*(T)).

On the other hand, in [7], Kappeler and Topalov introduced the following notion
of solutions which a priori does not always corresponds to the solution in the sense of
distributions: A continuous curve vy : (a,b) — HP(T) with 0 € (a,b) and v(0) = ug
is called a solution of the mKdV equation in HP(T) with initial data ug iff for
any C>-sequence of initial data {ug.,} converging to ug in HP(T) and for any
t €la,b], the sequence of emanating solutions {u,} of the mKdV equation satisfies
S up(t) = y(t) in HP(T)

Note that a solution in the sense of this definition is necessarily unique. With
this notion of solution they proved the global well-posedness of the defocusing
mKV equation (with a 4+ sign in front of the nonlinear term) in H*(T) s > 0,
with a solution-map which is continuous from L?(T) into C'(R; L*(T)). Their proof
is based on the inverse scattering method and thus depends in a crucial way of
the complete integrability of this equation. It is worth noticing that, by Sobolev
embedding theorem, their solutions of the defocussing mKdV equation satisfy the
equation in the distributional sense as soon as s > 1/6. In [14] Molinet proved that,
actually, the solutions constructed by Kappeler-Topalov always satisfy the equation
at least in a weak sense. He also proved that the flow-map cannot be continuously
extended in H*(T) as soon as s < 0. Therefore the result of Kappeler-Topalov is
in some sense optimal. However it is not known to hold for the focusing equation.
Moreover, it uses the integrability of the equation and is thus not suitable to solve
perturbations of the defocusing mKdV equation. Also, the question of the existence
of a resolution space where the uniqueness holds remains open at this low regularity
level.

Another interesting question about uniqueness, even in higher regularity, is to
know wether uniqueness also holds in some larger spaces that contains weak solu-
tions. This kind of question was first raised by Kato [8] in the Schrédinger equation
context. We refer to such uniqueness in L>°(]0,T[; H®), without intersecting with
any auxiliary function space as unconditional uniqueness. This ensures the unique-
ness of the weak solutions to the equation at the H?-regularity. This is useful, for
instance, to pass to the limit on perturbations of the equation as the perturbative
coefficient tends to zero (see for instance [15] for such an application).

Unconditional uniqueness was proved for the mKdV equation to hold in H'/?(T)
by Kwon and Oh ([12]) following an approach developed in [3]. In this paper we
push down the local well-posedness and the unconditional uniqueness for the mKdV
equation to H'/3(T).

To obtain our unconditional uniqueness result we gather the approach developed
in [17] based on the construction of modified energies with some ideas of [20] and
[19] to derive the smoothing effect. On one side the absence of very small frequencies
enables to simplify some estimates on the nonlinear term with respect to [17]. On
the other side because of true resonances we need to derive a smoothing effect as
in [20]. Actually this is the obtention of the smoothing effect that limits us to the
Sobolev index s > 1/3 (see Remark 4.10). It is also worth noticing that we do not
succeed to get an estimate on the L H®-norm of the difference of two solutions
with different initial data - this seems to be related to the fact that the flow-map
is not Lipschitz below s = 1/2. Instead we will establish an a priori estimate in
L¥H 5/, for some s’ < s, on the difference of two solutions emanating from the
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same initial datum. This estimate will lead to the unconditional uniqueness result.
It will be also sufficient to prove the well-posedness result thanks to the smoothing
effect which ensures that, given a sequence of solutions {u,,} C L>(0,T; H*(T)) to
(2.1) associated with a sequence of initial data {ug .} relatively compact in H*(T),
the set {u,(t), t € [0,T]} is relatively compact in H*(T).

2. NOTATIONS, FUNCTIONS SPACES AND STATEMENT OF THE RESULT

We will not work directly with the mKdV equation but with the renormalized
mKdV equation defined by

(2.1) ug + 02u F O, (u® — 3Py(u*)u) = 0.

We explain how to come back to the mKdV equation (1.1) in Subsection 6.3. In
the sequel of this paper, we choose to the take the sign ”+” since this sign will not
play any role in our analysis. Let us start by giving our notion of solution.

Definition 2.1. Let 7 > 0 and s > ¢. We will say that u € L>(0,T; H*(T)) is
a solution to (1.1) (resp. (2.1) ) associated with the initial datum uy € H*(T) if
satisfies (1.1)-(1.2) (resp. (2.1)-(1.2)) in the distributional sense, i.e. for any test
function ¢ € C°(] — T, T[xT), there holds

(2.2) / / Qﬁt—l-@gqﬁ Ju+ ¢ F'(u )} dxdt—i—/Tqﬁ(O,-)uo dx =0
where F(u) = u® (vesp. F(u) = u® — 3Py(u?)u).

Remark 2.2. Note that for u € L>(0,T; H*(T)), with s > ¢, u® is well-defined
and belongs to L>(0,7T; L*(T)). Therefore (2.2) forces u; € L>(0,T; H=3(T)) and
ensures that (1.1) (resp. (2.1)) is satisfied in L°°(0,7; H3(T)). In particular,
uw € C([0,T]; H3(T)) and (2.2) forces the initial condition u(0) = ug. Note that,
since u € L>°(0,T; H*(T)), this actually ensures that u € Cy([0,T]; H*(T)) and
w e C([0,T]; H* (T)) for any s’ < s. Finally, we notice that this also ensures that
u satisfies the Duhamel formula associated with (1.1)-(1.2)) (resp. (2.1)-(1.2)).

Definition 2.3. Let s > %. We will say that the Cauchy problem associated
with (1.1) (resp. (2.1)) is unconditionally locally well-posed in H*(T) if for any
initial data ug € H*(T) there exists T = T(||uollzs) > 0 and a solution u €
C([0,T); H*(T)) to (1.1) (resp. (2.1)) emanating from ug. Moreover, u is the unique
solution to (1.1) (resp. (2.1)) associated with ug that belongs to L>(]0, T'[; H*(T)).
Finally, for any R > 0, the solution-map ug — wu is continuous from the ball of
H*(T) with radius R centered at the origin into C([0, T (R)]; H*(T)).

Theorem 2.4. The mKdV equation (1.1) and the renormalized mKdV equation
(2.1) are unconditionally locally well-posed in H*(T) for s > 1/3.

2.1. Notation. For any positive numbers a and b, the notation a < b means that
there exists a positive constant ¢ such that a < c¢b. We also denote a ~ b when
a <band b < a. Moreover, if a € R, a, respectively av_, will denote a number
slightly greater, respectively lesser, than «.

For a1, az, az € RY, we define the quantities amaz > Gmed > Amin to be the
maximum, sub-maximum and minimum of a1, as and a3. Usually, we use k;, j; to
denote integers and N; = 2% L, = 27i to denote dyadic numbers. For f = f(z) €
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L2(T), we denote its Fourier transform by f : Z — C by f(k) = Jp e~ %k f(2) da
and or any integer £ € N we set

P.f = J?(k:)e%”kz, P, = Z J?(q)e%”qu and P<ju = Z f(q)e%”qm )
lal~k lal <k

In particular,
Rt = F0) = [ ria)da.

For u = u(w,t) € 8'(R?), Fypu = (u)"t= will denote its space-time Fourier transform,
whereas F,u = u, respectively Fru = (u)"t, will denote its Fourier transform in
space, respectively in time. For s € R, we define the Bessel and Riesz potentials of
order —s, J; and D3, by

Jiu=F; (1 + |k[*)2Fu) and Diu=F, " (|k|*Fsu).

We also denote by U(t) = e~t9: the unitary group associated to the linear part
of (1.1), i.e.,
U(tyug = e~ Prug = ;1 (™ F, (uo) (k) -
Throughout the paper, we fix a smooth cutoff function x such that
x € CFR), 0<x <1, Xy =1 and supp(x) C [-2,2].
We set ¢(k) := x(k) — x(2k). For | € Z, we define

dor (k) == (27'k),
and, for | € N*,
Ui (k,7) = b (T — k7).
By convention, we also denote
¢o(k) = x(2k) and  wo(k,7) = x(2(T — k7).

Any summations over capitalized variables such as N, L, K or M are presumed
to be dyadic.We work with non-homogeneous dyadic decompositions i.e., these
variables range over numbers of the form {2* : k € N} U {0}. We call those
numbers nonhomogeneous dyadic numbers. Then, we have that Y\ on(k) =1

N
supp (¢n) C Inv == {7 < [k < 2N}, N> 1, and supp(¢o) C Lo := {|k| < 1}.
Finally, let us define the Littlewood-Paley multipliers Py, Rx and Q1 by
Pyu= 9" (¢nFou), Rru=F; " (¢xFu) and Qru=F '(YrFu),

Pon =Y psn Pr Pan = Ygan Pr, Q21 1= Ypeop Qr and Q< = 3 gy, Q-
Sometimes, for the sake of simplicity and when there is no risk of confusion, we
also denote uy = Pyu.
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2.2. Function spaces. For 1 < p < oo, LP(T) is the usual Lebesgue space with
the norm || - ||z». For s € R, the Sobolev space H*(T) denotes the space of all
distributions of (C°°(T))" whose usual norm ||u|| g« = ||JSul| 2 is finite.

If B is one of the spaces defined above, 1 < p < oo and T" > 0, we define the
space-time spaces L} B, and L%.B, equipped with the norms

follzgs. = ([ 15¢015a)" . ullgs. = ( | S rtol)”

with obvious modifications for p = co. For s, b € R, we introduce the Bourgain
spaces X*? related to linear KAV group as the completion of the Schwartz space
8(R?) under the norm

(2.3) || xe := (Z/ — k32 (k)25 | F pyu(k, T>|2d7> 2 :
where (z) := (1 + |z[?)Y/2. Tt is easy to see that

24)  Jullxes ~ (UC0ulges where ful e = 7270 1z,
We defined the function space Z¢, with s > 0, by

(2.5) Z° = X* 10 N L°H? .

Finally, we will also use restriction in time versions of these spaces. Let T' > 0 be
a positive time and B be a normed space of space-time functions. The restriction
space By will be the space of functions u : Rx]0, T[— R or C satisfying

HUHBT = 1nf{||ﬂ|\3 | u:RxR—Ror (C, a'RX]O,T[ = U} < 0.

3. A PRIORI ESTIMATES ON SOLUTIONS
3.1. Preliminaries. Let us set

(3.1) m (Jnin_ 1ki + k|

and
Ay = {(k1, k2, ks) € Z% : |ko + ks| = miin }
(3.2) Az = {(ki, ko, ks) € Z®JA; : |k1 + ks| = munin }
Ay = {(k1, k2, ks3) € Z%/(A1 U As) : |ky + ko| = mipin } = Z%/(A1 U A3).

Then, it is clear from the definition of those sets that

(3.3) xa, (k1, ko, k) = 1, V(k1, ko, k3) € Z°.

<.
-
i

Definition 3.1. Let 7 be a (possibly complex-valued) bounded mesurable function
on R3. We define the pseudo-product IT,, (that will also be denoted by IT when there
is no risk of confusion) in Fourier variable by

(3.4) Fo (L (frg, ) (k) = D mlkrs ko, ks) f(k1)G(ka)h(ks)

k1+ko+kz=k
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Moreover when (k1, ko, k3) € A; for some j = 1,2,3 and m ~ M, where M is a
dyadic number > 1, we also denote IT; ,, (or IT3, when there is no risk of confusion)

the operator defined in Fourier variable by
(3.5)

T\ (Fog ) (R) = D (xa,m) . ko ks)ons (S k) f(k1)g(k2)h(ks)

ki+ko+ks=k q#J

The following technical lemma corresponds to integration by parts for some
pseudo-products (cf. [17]).

Lemma 3.2. Let N and M be two homogeneous dyadic numbers satisfying N > 1.
For any real-valued functions f1, fa, g € L*(R), we define

(3.6) Tvn(f1, f2,9,9) = /EPNH?,M(flaf%g)PNazg-

Then, for M < N, it holds

(37) TM,N(fla f27gvg) = M/ H?]g,M(fl) f27P~Ng)PNgdza
T

where 13 is a function of (ki, ke, ks) whose [°°—norm is uniformly bounded in N
and M.

Proof. From Plancherel’s identity we may rewrite T v as
T]\/I,N(fla f23 g, g)(k)

= > xXag(krka,ks)gar(ky + ka)kon (k) Fi (k1) fo(k2)G(ks )G (k) -
k1+ko+ks=k

We use that k = k1 + k2 + k3 to decompose T n(f1, f2,9, g) as follows.

Tvn(fis for9,9) =M Z /EH%,M(flaf%Png)PNgdx

N <N3<2N
(3.8) +M > /H%27M(f1,f2,PNBg)PNg dz
Ny<ns<an T
+TM7N(f1)angag)a
where
_ ki +k
M1 (K1, ka2, k3) = ¢N(k)%xsuppw (k1 + k2),
_ k) — k
772(k71a ka, kS) = W’%)@upp onm (kl + k2) s
and
Tun(fif9.9) = D xay(kr, ko, ka)gn (ky + ka)ks fi (k) fa (k) g (ks) g (k)

(k,kq ko kg)ezt
ky+ko+kz=k
with the notation gy = Png.
First, observe from the mean value theorem and the frequency localization that
71 and 72 are uniformly bounded in M and N.



UNCONDITIONAL WELL-POSEDNESS FOR MKDV 7

Next, we deal with TVMJV(fl, f2,9,9). By using that ks = k — (k1 + k2) observe
that

Tun(fiof2,9:9) == D Xag(krs ko, ks)ons (ki + ko) (kn + ko) fi (ki) fo (ko) g (s )G (k)

(k,k1, ko, kg)Ent
ki+ko+kz=k

+ Sm,n(f1, f2,9,9)
with
Sun(fifag.9) = D xas (k. ke, ks)dar (kr+ka) fi (ke ) fo (ko) g (ks ) kg (k)

(k,kq ko kg)ezt
kytkotkz=k

Since g is real-valued, we have gy (k) = gn(—Fk), so that

Sun(fisf2,9:9) = D Xag(k1, kb, k)b (ka+ka) fi (k1) o (ko) gn (—ks) kgn (<k) .

(k,k1, ko, kg)ent
ki+ko+kz=k

We change variable ks = —k = —(k1 4+ ko + ks3), so that —ks = k1 + ko + ks. Thus,
Sm.n(f1, f2,9,9) can be rewritten as

_ Z XA (K1, ke, 7]{317]{:272:3)@/)]\4(k1+k2)f/l\1(kl)‘f;(kg)kggAN(kg)gAN(kl T ko + 153) .
(k,ky kg, kg) €24
k1tkotkz=k
Now, observe that [k 4 (—k1 — ko — ks)| = |k + k3| and |k + (—k1 — ko — k3)| =
|[k1 + ks|. Thus xa,(k1, ke, —k1 — ko — ks) = xa,(k1, k2, k3) and we obtain

Su.n(f1,f2,9,9) = —TM,N(fh f2.9.9),

so that
(3.9) TN (fis f2,9,9) = M/EH%Z,]VI(fla f2, Png)Png dx
where

N2 (k1, ko, k3) = *%kl;MkQXsuppmf(h + k2)

is also uniformly bounded function in M and N.
Finally, we define 1y = 71 + 72 and 13 = n1 + n2. Therefore the proof of (3.7)
follows gathering (3.8) and (3.9). O

The following proposition gives suitable estimates for the pseudo-products ITy;.

Proposition 3.3. Assume that m = miny<;2j<s |ki+k;j| ~ M where M is a dyadic
number with M > 1 and n is a bounded mesurable function. Then for all j =1,2,3
and all f; € S(T) it holds that

4
(310) | [ 180G o) e S M TT e
T i=1

where the implicit constant only depends on the L°-norm of the function .

Proof. By symmetry we can assume that j = 3. Since the norms in the right-
hand side only see the size of the modulus of the Fourier transform, we can assume
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that all the functions have non negative Fourier transform. By using Plancherel’s
formula, Holder and Bernstein inequalities, we get that

‘/RH%M(fhf%fS)flld-T} S g Ot (k1 + ko) |1 (k)| fa (k) || fa(k — oy — k2| Fa (k)| dr depde

= /PM(flfz)fsf4d$
R
S IPu(fif)lleell f3llLeall fall 22

4
MITNfiles -
i=1

A

O

We are now in position to state the main result of this subsection. In the sequel
we set

(3.11) D = {(ky, ko, ks) € Z°, (k1 + ka2)(k1 + k) (k2 + k3) # 0},

(3.12)
1)1 = {(kl,kg, kg) € D, med1§i¢j§3(|ki+kj|) 5 279|l€1+k2+k3|} and 1)2 = D\l)1 .

Proposition 3.4. Assume that 0 <T <1, n is a bounded mesurable function and
u; are functions in Z% where Z° is defined in (2.5). Assume also that N > 1,
M >1 and j € {1,2,3}. We define

(3.13) GaM(ul,UQ,Ug,U4> = /]O,T[XTH%’M(UMUQ,UB)U4d:Cdt.
Then
(3.14) |GIY L ar(un,ua,us, Pyus)| S TVSMTINT f[ uil| 7o, -
i=1
and
(3.15) GIL (i, uz,us, Pyug)| S TVENTT0 f[ [Juil 2o, -
i=1

Moreover, the implicit constant in estimates (3.14)-(3.15) only depend on the L>-
norm of the function n.

Remark 3.5. Sometimes, when there is no risk of confusion, we also denote
T T
GM(ula Uz, U3, ’LL4) = Gn7M(ula Uz, U3, U4) .

To prove Proposition 3.4, we need the following technical lemmas derived in [16].
For any 0 < T < 1, let us denote by 17 the characteristic function of the interval
10, T[. One of the main difficulty in the proof of Proposition 3.4 is that the operator
of multiplication by 17 does not commute with (). To handle this situation, we
follow the arguments introduced in [16] and use the decomposition

(3.16) Ip = 1% + 159 with  F,(158%) (7) = x(r/R)F: (17) (1) ,

for some R > 0 to be fixed later.
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Lemma 3.6. Let L be a nonhomogeneous dyadic number. Then the operator Q<r,
is bounded in L$° L% uniformly in L. In other words,

(3.17) |Q<rullreerz S llullserz

for all w € L°L? and the implicit constant appearing in (3.17) does not depend on
L.

Lemma 3.7. For any R >0 and T > 0 it holds

(3.18) 159 r ST AR
and

high ow
(3.19) 7% e + 112 % e S 1.

Lemma 3.8. Assume that T >0, R > 0 and L > R. Then, it holds
(3.20) 1QL(1FRu)ll> S 1Qrullzz

for all u € L?(R?).

Lemma 3.9. On D', it holds

k1| ~ [ka| ~ k3| ~ |k1 + k2 + k3| and Iggj?;gﬂki +kil) 2 [k1 + k2 + ksl

1<

whereas on D? it holds medi<;zj<s(|ki + kj|) 2 max kil

Proof. To prove the first assertion, we assume without loss of generality that |ko +
k3| > |k1 + k3| > |k1 + ka2|. On D!, this forces |ka| ~ |k3| ~ |k1 + k2 + k3|. On one
hand |ki| < |k1 + ko + k3| would imply |ky + k3| ~ |k1 + k2 + k3| which can not
hold. On the other hand, |k1| > |k1 + k2 + k3| would imply max(|kz|, |ks|) ~ |k1| >
|k1 + ko + k3| which is in contradiction with the preceding deduction. Therefore
|k1| ~ |]€1 + kQ + k3| Finally, either kgkg Z 0 and then |l€2 + k3| 2 |]€1 + kQ + k3| or
koks < 0 and then max(|k:1 + k2|, |k/’1 + k/’3|) Z |k/’1 + ko + I{?3|

To prove the second assertion, we first notice that this assertion is trivial when

max |k;| ~ |k| where k = ki + ko + k3. We thus can assume that max |k;| > |k|.
1<i<3 1<i<3

By symmetry, we can assume that |ki| > |ka| > |ks|. This forces |ko| ~ [k1| > |k|.
Therefore |k1 + k3| = |]€ — k2| ~ |k1| and |k2 + k3| = |]€ — k1| ~ |]€1| O

Proof of Proposition 3.4. We define the resonance function of order 3 by

Q3(k1, ko, k3) = k3 4+ k5 + k3 — (k1 + ko + k3)®
—3(1{?1 + kg)(k/’l + k?3)(k2 + kg) .

(3.21)

We first prove (3.14). According to Lemma 3.9, in the region D' it holds |k;1| ~
|ka| ~ |ks| ~ |k| and thus

(3.22) Q3 (k1 ko, )| 2 MPN .

We take extensions @; of u; such that [|@;[|z0 < 2[|uil| 29, @ = 1,..,4. To lighten the

notations we drop the tilde on u; in the sequel. We set R = M 7 and decompose 11
aslp = 1;Z%h+11797%, The contribution of the first term in Gy, ar(u1, uz, us, Pnug)
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is easily estimated thanks to Holder’s inequality in time, (3.10), (3.18) and (3.19)
by

|Gn1D17M(1;f%hU1,u2,U3,PNU4)} Tl/nghzthLsﬁH/H] ]DNN’LLl,PNNUQ,PNNUQ,)P]\]’u,4dl'||LOc

STYSRTSM H [ PonuillLgers ,
i=1
4
STYVEM T [ IPenvtill ooz -
i=1
To deal with the contribution of 1IT0ff2, we first note that N > 1 and M < N so that
R < M?N and we are in the hypotheses of Lemma 3.8. Now, thanks to (3.22), we

may decompose the contribution of 11‘”}”% as
G v (VP%ur, g, uz, Pyug) = Gy (@ aren (UP%u1), uz, us, Pug)

+Gn1 0 ,M(Q<M2N(1ZTO,T}%U1)a Q> pn2u2, us, Prug)

+Gn,, ,M(Q<M2N(1l79,1}1~2ul)a Q<rin2u2, Q> pn2us, Pniyg)

(3.23) +Gn1,, ,M(Q<M2N(1l79,“éu1), Qcnn2uz, Qeprn2u3, Q> vz Prnug) .
The first term of the right-hand side of the above equality can be estimated thanks
to (3.10) and (3.20) by
4

|Gt o 21 (Qu a2 v (V25 )un, iz, ug, Pyua)| S TV M|Qx nar (V25 Panvun) |2z, T lslloge 2

j=2
4
STEMTNG ol g T lillegers
i=2
The other terms can be controlled in exactly the same way. Note that we use (3.17)

and not (3.20) for these terms.
2. Let us now prove (3.15). In the region D?, Lemma 3.9 ensures that

Q5] ~ M max(|ki|, | k2|, |k3)* .

By symmetry we can assume that |ki| = max(|k1],|kz|, |ks]). We make a dyadic
decomposition in |k1| ~ Ny = N. This time we set

R= (MNP < MN? ~ |93 .

The contribution of 1%% in GW1D2 M (P, uq, P§N1 Us, P§N1 uz, Pnuy) is easily esti-
mated thanks to Holder’s inequality in time, (3.10) and (3.18) by

|G7;1D2 M(lT R PN1U1;P<N1U2; Py, u3, Pyuy) |
~ Tl/ngthhHLsﬁH / PNlul, P<N1u2, P<N1’M3)PN’LL4d:CHLOO

STY3R™ 7/8MH [ P<n, willgere

=1

4
_9
STVEN, 10 H lluill Loor2

i=1
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which yields the desired result by summing over Ny 2 N. Finally to estimate the
contribution of 1%, we proceed as in (3.23) by using that this time Q3 ~ MN7.
The contribution of QZMN%(IZQE’%PNIM) is estimated thanks to (3.10), (3.17) and

(3.20) by

‘GnlAC,M(sz\/Ile(1’11?,1;)2PN1U1)5P§N1U% P§N1u3a PNU4)’

<MT1/2HPN1Q>MN2 (1 %u1) (7%3 HHU%HL&LZ

9
1/2 A7~ 10
STYAND Ol a1 H||ui|\L;0Lg,
Summing over N7 2 N, this is also acceptable. The other regions C; can be handle
in the same way. O

3.2. Uniform estimates on solutions. The preceding lemmas enables us to eas-
ily get an uniform H*-bound for solutions to (2.1). This is the aim of this subsection
where we do not attempt to get the lowest propagated regularity since we will be
forced to take s > 1/3 in the estimate on the difference.

We first prove refined Strichartz estimates. The following linear estimate in
Bourgain’s space is established in [1],

llullLagoaixry S llullxo1s  Vu € X015

We will make use of the following Strichartz estimate that follows directly from the
above estimate (see for instance [6]),

(3.24) U@l Laqorixmy S TEllellzz, VT €]0,1], Ve e LA(T),
where the implicit constant does not depend on T

Lemma 3.10. Let 0 < T < 1 and u E L>(0,T; H*(T)) be a solution to (2.1)
emanating from ug € H*(T). For s > zt holds

(3.25) lullpa 20 S |\UHL;°H5(1 +[lull7ze +)
and for s > 28,
(3.26) 1D ull s rs S lullpgms (L4 uliep-) -

Proof. Let u be a solution to (2.1) defined on a time interval [0,7]. We use a
nonhomogeneous Littlewood-Paley decomposition, u = )y un where uy = Pyu
and N is a dyadic integer. Since, (3.25) and (3.26) are obvious for N < 1, it
suffices to control [[un|Ls z20 for any N > 1. For such N, Sobolev and Bernstein
inequalities lead to

lunllzszz0 S N3 flun|ps
Let § be a nonnegative number to be fixed later. we chop out the interval in

small intervals of length N 9. In other words, we have that [0,7] = |J I; where
GET

I; = [a;,b;], |I;| ~ N~% and #J ~ N°. Since uy is a solution to the integral

equation

t
un (t) = e (79)%y\ (a;) + / e~ =2 Pyo, (ud — 3Py (u?)u)(t)dt!

J
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for ¢t € I;, we deduce from (3.24) that
(3.27)

541 i 546 4

unlligen S (1025 Funtalty)” + (3 ([ 1075 ¥yt ~ 3Roa)u) (¢ zzt)')
, . I,
J J J

-

1

s —-24+1 —546
N¥ID; P unlipgrs + (D 1L / 1Dz 778 Py (u? = 3Py (u?)u) (¢ 2t
J J

A

N 541 _11546
SN (IDE T uigrs + 107 275 Py = 3R (u)u)l .z
Now, to prove (3.25) we notice that Sobolev’s inequalities and the fractional Leibniz
rule lead to

_ 11546 —us -
|D2 75 Py (u® = 3R @)y ze S 1Da 2 TP Py (u® - 3Ryl
(3.28) S Mullfsepo 1D ull e -
cpo o201 1 _ 15,7 1
foralll1 <p<2and2<q< ocosatisfying +7 =, and0 <k = —F+ 5+ < L.

Thus, the Sobolev embedding yields

—1lls54 64
(3.29) 1D 277 Py (u® = 3Ry (u)u)l| g pow S M1l s g »

if we choose k satisfying k = % — % = % — %. This implies that
11 7 1 11 11 11 11
3.30 =——0f+—4+-—=—0+—-2 = =——0+—.
(830)  m=—dt T, T T30ty T FETE0 T
Then, we choose § such that % + % = k which leads to
48 11 70 70
0=—, K= _— = and ¢

35’ 350 7761 13
Therefore, we conclude gathering (3.27)—-(3.30) that if « is a solution to (2.1)-(1.2)
defined on the time interval [0, 7], then for N > 1,

_ =+ a4+
(3.31) [Pnullpsz20 S N°7IDE T Pyuol Lz + || D UHi;oL;},

which proves (3.25) with s > &, by summing over N.

To prove (3.26) we proceed in the same way. We eventually obtain for N > 1,
5 545 _l15,29
IDZ unllsrs S 11D 2 Pyl g rz + 1Ds 2772 Pa(u® = 3Po(u®)u)| s 12
with
7%6+£+ 3 2 < 2 K+
| Da Py (u” =3Py (u”)u)|rarz < ullpe D7 ullog 2 »

forall1 <p<2and2 < ¢ < oo satisfying %—i—% = % and 0 < k = —%54—;—14—% < 1.
Thus, the Sobolev embedding yields

—lls4 294
1D 2772 Py (u? = 3Py (u®)u) pa.2z < Nlully o s

if we choose k satisfying k =

% % — ﬁ. This implies that

1. 17 1 11. 53 1. 53
K==t d =0+ 2k > K=+ .
p

1
1
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Then, choosing § such that 1% + % = Kk which leads to

(5—9 m—g —z and —§
1 T’ PTG =%
we obtain (3.26) with s = g&+. O

Lemma 3.11. Assume that 0 < T < 1, s > & and u € L>(0,T; H*(T)) is a

solution to (2.1) emanating from ug € H*(T). Then,

(3.32) [[ul

23 S lullzgms + llullig g (1 + |ull g )

Proof. We have to extend the function v from ]0, 7] to R. For this we follow [13]
and introduce the extension operator pr defined by

(3.33) (pr)u(t) := U@)n(t)U (—pr (t))u(pr (1)) ,

where 7 is the smooth cut-off function defined in Section 2.1 and pr is the contin-
uous piecewise affine function defined by

0 for t¢]0,2T]
ur(t) = t for te€[0,T]
9T —t for te|[T,2T]
On one hand, the unitarity of the free group U(+) in H*(T) easily leads to

lor (e ns S llwlpr()leens S llullogems V |luollms

On the other hand, the definition of the X*°-norm and the continuity of pur lead
to

lor(@llxes = [0 (—pr()ulpr () e
< U=z Oulpr Ol zze + [0 (10 (—pr()uur ()|
< Nuoll e + U (=)l oorrs—) + 10/(=) (e + 02u) | ooriae

+ HU(T — )(—ut(T - ) - agu(T - )) ||L2(]T,2T[;H5*1)

S lwolls—r 4 [lull xomr -

L2Hs~1

Now, since according to Remark 2.2, a L3 H®-weak solution to (2.1) belongs to
Cy([0,T]; H3(T)), it is not too hard to check that [uol[ms < [Jul|Leems. Indeed,
assuming the contrary, there would exist ¢ > 0 and a decreasing sequence {t,} C
10, T'[ tending to 0 such that for any n € N, ||u(t,)||ms < ||uollgs — . But this
contradicts that u(t,) — ug in H*(T).

Gathering the two above estimates, we thus infer that for any (7', s) € R} xR,
pr is a bounded linear operator from C,,([0,77; H*(T)) N L§H* N X5 into
L H* N X~ 11 with a bound that does not depend on (T} s).

By using this extension operator, it is clear that we only have to estimate the
X~ 1 norm of pr(u) to prove (3.32). Now, using the Duhamel formula associ-
ated to (2.1), the standard linear estimates in Bourgain’s spaces and the fractional
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Leibniz rule (c.f. Theorem A.12 in [10]), we have that

3 2
lull oty S Nuoll gy + 192w o gy0 + IPO(w )l gy
s=15(, 3 2
(334) S lluoll yomgy +11Je 7 @)z 22 + lullzgrzllull , -4
; 2
S llullogeme + ||JSZ(U3)||L2TL§ +llullzgere llullcz ag
S lullzgers + ullzs pooll Zullgere + lullTge 2 lull cams -
which leads to (3.32) thanks to (3.25). O

Proposition 3.12. Assume that 0 <T <1, s > 2/9 and that u € Z% 15 a solution
to (2.1) with initial data ug € H*(T). Then,

(3.35) lullZse e S luollFre + T3 |ullZ:

Proof. By using (1.1), we have

2dtHPNU( HLZ :—§R /8 PN u® — 3P (u?)u )PNUCZ,T}.

which yields after integration in time between 0 and ¢ and summation over N

(3.36)
S IPvu) I3 S luoll + > N m[/ 9, Py (u3 - 3P0(u2)u)PNudxds] .
N ’ N TX[O,t]

In the case where N < 1, we easily get
(3.37)

.

In the following, we can then assume that N > 1 and we use the classical
decomposition of N (u) := 0, (u® — 3Py (u?)u) in a resonant and a non resonant part
by writing :

FINW)(k) = zk{ 3 ks )a(ks)i(ks)
ky+kot+kg=Fk
(k1+ko)(k1+k3)(ko+kg)#0

+3a(k)a(k)a(—k)}

= (rfz {A(u, u, u)] (k) + Fs [B(Uv u, U)} (k))}

0P (6 = 3Palu®)u) Paudeds| S lully g STl 3 S lully
] FTHS

(3.38) 0r(u® — 3Py (u?)u) = 0, (A(u, u,u) + B(u,u, u)) .

Now, we notice that, since u is real-valued, we have

(3.39) /a P Blu,u, u) Py = ik S [a(k) Plow (k)a(k)[ € iR .
kEZ
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Therefore (3.36) and (3.38) lead to

S Pvul®)ly S ol + R[>0 N

N>1 N>1

S luollFes + Y In(u).
N>1

0 PN (A(u, u, u)) Pyu dzds}

Tx[0,t]

By using the decomposition in (3.3), we get that Jy(u) = 213:1 J4 (v) with

J]lv(u) — N2s Z / aIPNHllD,]\/](U,U,U)PNU;
M>1 [0,t]xT

where D is defined in (3.11) and where we performed a dyadic decomposition in
1 < m ~ M. Thus, by symmetry, it is enough to estimate J3 (u) that still will be
denoted Jy (u) for sake of simplicity. We rewrite J3,(u) as

N2s Z ( Z + Z )/]o,t[TM’N(u,%u,U)dt

(3.40) M21  (ky,ka,ks)€D (kyka,ks)€D?
= In(u) + I (w),

where Ty n(u, u, u, u) is defined in (3.6) and A is defined in (3.12).

Estimate for 1% (u).
1. Npea > N2, Then (3.15) yields

N2sN _ o
TSI ACID SHD DU SR st R
NimazZN NY2SNmeaSNmaw 1<SMSNmea
| PN o el 22 (| PNl 22 | P 2= || ] 20
S TYENTHEG |u)lg.
which is acceptable for s > 1/5.

2. Npea < N2, Then Npgr ~ N and M, < N2, According to (3.7) we thus
can write

= Y MN2s/Hf’]S’M(u,u,uwN)PNudz,

I<SMSNL/2 T

where 73 is a function of (k1, ke, k3) whose L°°—norm is uniformly bounded in N
and M. Therefore, by (3.15), we get

12 < Tl/S NQS N*QS P 2 2
Il < > - [P vl [|ullZo
1<MZN1/2

TYEN=2|ul|L. .

A

Estimate for I%. According to (3.7) we have

Iy = Z MNQS/H237M(u,u,uNN)PNudx,
1<M<N R
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where 73 is a function of (k1, ke, k3) whose L°°—norm is uniformly bounded in N
and M. According to (3.14), we thus have

M| S TR N uan
1<M<KN
< TYENTETE o,

3

which is acceptable for s > %. This concludes the proof of the proposition. O

Combining Lemma 3.11 and Proposition 3.12 we can easily get an a priori esti-
mate on the H 3 (T)-norm of smooth solutions to (2.1). This will be done in Section
6.

4. THE SMOOTHING ESTIMATE

The aim of this section is to prove the proposition below that show a kind of
smoothing effect first observed in [20]. This smoothing effect is the only way we
know to treat some resonant terms involving B (see (3.38)) when estimating the
difference of two solutions. Note that, by symmetry, the terms involving B do
cancel in the proof of the energy estimate (3.35).

Theorem 4.1. Let s > 1/3 be fized. For any solution uw € Z5 of (2.1)-(1.2) and
any k € Z it holds

k\s—
41 kAtk:2—’\k:2‘< BN Pl (1 + [|P<yulls
@) sup k|fa k) - (@b N;%%[(N) | Penullly (14 | Pnullyy)]

where the implicit constant does not depend on k.

—

4.1. Notations. In this section we will widely use the following notations : k(3) =
(k1, k2, ks) . Let D, D' and D? be defined as in (3.11)-(3.12). We set

Fg(k) = {E(g) S ZB; kl + k2 + k3 = k}a

D(k) :=T3(k)nD, D'(k)= D(k)n D' and D*(k) = D(k) N D?,

m1 = |k + k3|, ma = |k1 + k3|, ms = |k1 + ka|, mumin = min(mq, ma, ms) and
Mmed =med(my, ma, ms).

Dy (k) = {k@) € D'(k), Mupin ~ M}, i=1,2.

My, Mo, M3, Mp,;n, and M,,.q are the dyadic integers associated with respectively
miy, M2, M3, Mmin and m'r_?}ed-
For i € {1, 2, 3,4}, we set ki(3) = (kila kio, kig),

M, min = min(|ki+kaol, ki1 +kis|, [kio+Eis]), mimea = med{|ki1+kizl, |ki1 +kisl, |kia+kis|}

M; i and M; peq are the dyadic numbers associated with respectively my; i, and
™M med-

4.2. Multilinear space-time estimates.
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4.2.1. Trilinear estimates.

Lemma 4.2. Let f; € 1*(Z), j =1,...,4. Then it holds

4
Bo= D emlk+ka) [ 1£(R)
E(S)EFB(k),]&;:—k‘ Jj=1
2
(4.2) S (2 fsll) A (M| fallioo ) falliee TT 0502 -
j=1
Proof. We can assume without loss of generality that f; > 0 for ¢ =1,--- ,4. Then,

we can write

T < |fa®)lloar(f1* f2)lli2 2 f3lli2 2y
< MY2||f1x ol @yl sl || fallie 2
3
1
< M: H I filliz |l falliee 2y
j=1
or
T < fa®)lloar(f1 % f2)llir 2l f3lli=z)
< M| f1* fallise @)l f3lli0 2) | fallioe (2)
2 4
< MH 1 £5ls2 H I fillie(z)
j=1 i=3
which proves (4.2). O

Proposition 4.3. Assume that 0 < T < 1, n is a bounded measurable function

_10
and u; are functions in Z% =X tln L%OLi. Assume also that k > 2°, M > 1

and j € {1,2,3}. We define

(4.3) Js:]’z}T(ul,uQ,u&m) = /[0 T]XTH%7M(U1,uQ,U3)PkU4d:Edt.
Then

1 4
(4.4) | Tt ap (i ug, ug, ua)| S ]\];—;10/2 TT il 2.

=1
and
(4.5) TotiT (s up, ug, ua)| S M2 ﬁ il 75, -
1=1

Moreover, the implicit constant in estimate (3.14) only depends on the L -norm
of the function n.

Proof. We proceed exactly as in the proof of Proposition 3.4 but with the help of
(4.2) instead of (3.10). O
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4.2.2. Quintic linear estimates. We use the following notations : E(5) = (k1, ko, .., k¢) €
78 and for any k € 7Z,

6
Us(k) = {k) € 28, ki =k} .
i=1
Before stating our quintic space-time estimates, let us define the resonance function
of order 5 for k(sy = (k1,--- ,ke) € [°(0) by
(4.6) (k) = k3 + k3 + k3 + k5 + kS + kS
It is worth noticing that a direct calculus leads to
(4.7) Q5 (k(s)) = Q3(kn, ko, k3) + Q3 (ka, ks, ko) -

In the sequel we set

—

ki) = (k11, k12, k13)
Lemma 4.4. Let f; € 1*(Z), j =1,...,6. Then it holds that

(4.8)
6 ) .6
1 3 b
Ot =Y bukith)onr (katks) [T 15 (ki) S (M2 MOANMM )] T 1£illee
E(s5) €05 (k), ke=—k j=1 j=1
and
(4.9)
2 5 3 5
8 < ol min (3 TT 1Y alle TT 050k, M Tl T el
i=1 j=3 j=1 i=4
(4.10)
6 ) 6
32 = ) dm((kr+hatks)+ka)dar (ko) [ 1506 S MM TN 50z -
@) €T3 (k), ke=—k j=1 j=1
) 6 ) 6
(4.11) 37 = Z o (k1+k2) e (kat+ks) H fi (k)| < M=z M2 H I1£5ll2z -
E(S)€F3(k) 7j=1 j=1
(kg k5, ke)ETS (—k)
Proof. We can assume without loss of generality that f; > 0 for ¢ = 1,--- 6.

Proceeding in the same way as in the proof of Lemma 4.2, we get

' | fo (ke )l f3lli2(z) min(||¢M(f1 * fo)llizzy | oaar (fa x f5)llirzys 1dnr (f1 % fo)llir 2y ldnar (fa f5)|\12(z))

IN

6
< [aEMy A e T e -

J=1

In the same way,

at | fo(K)| min(||f1 * fo x fallie @y ldnar (fa % f5)llin(zy, | oaa (1 % f2) izl f3 % fa f5||ll(z))

IN

A

5 3
| fo(k)] min(||f1 % fallizz | M H I filli2zy » [1fa * fsllizzyM’ H HfiHP(Z))

=3 i=1
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which leads to the desired result by using that

2
£ folley S TN Fille -

i=1
To derive (4.10), we notice that

B2 < Afolko)ll fslle|[on (1w x 2]« 15)] ..
S MY ko)l folliz || fall iz [daer (1 # £2)] * falliz )

which yields the desired estimate. Finally,
3 < 1®m(fr* 2@ fsliz@ [ @ar (fa * £5)] * follie(2)
< M2 fr = ol @yl falliz @ 100 (fa = f5) 2@ fslliz 2y
6
MEMYPTT N5l

J=1

A

IN

O

Proposition 4.5. Assume that 0 < T <1, n : Z°> — C is a bounded measurable
11

function and u; are functions in Z$ = X;ﬁ’l NL¥L2. Assume also that k > 2°,
M >1 and K > 1. We define

J5 T (1), ua, U3, )

3
= Z Z /[OT] (K13, k2, k3) 1:[ i(k1;) H i(ki)

k@ EDY (k) Fi@ep?tn) =2
123 (ky(3)) #1923 (k1 k2,k3)]

and
75,k,T
J’r],]\/I,K(ul(S)a U2, U3, ’LL4)

3 4
=y > /[OT] (ky(s), ko, k3) H i (kag) [T i (ks
5 j=1 1=2

E(gy€D3 (k) Eyi(3)€D(k1)
[k1 > k2| VIkg] [Q5(ky(3).k2,k3,ka)|ZK

with ky = —k and where iy 3y = (u11,u12,u13).
Then
3 4
KT - _9
(4.12) | TN (i1 s), uz, us, wa)| S MYPE0T T sl zo T il 20
and

’J M K PNuulla Py, u12, PN, u13, u2, us, U4)‘

1

u 1
Nimaa VY, H”UUHZOHHWHZ“

(4.13)

Nli

for any K satisfying K > Nf?mm
Moreover, the implicit constant in estimate (3.14) only depends on the L°-norm

of the function n.
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Proof. We first notice that (4.7) ensures that |25 (El(g), ko, ks, ka))| = |Q3(E1(3))| on
the support of JS:;CV’[T (u1(3), u2, uz, ug). According to this we may bound JS:fv’[T(ul(g), U, U3, Ug)
by

=2 2> 2

NuZ11<M' SN kg DY, (k) Fi(5)€D3 (k1)
1925 (k1 (3 .k2.k3,ka)) | ZM/ NE)

4
‘/[ ] k1(3)5k25k3)PN11u11 kll HP<N11 15 kl] H
0,7

Jj=2 =2

We proceed as in the proof of Proposition 3.4 to bound I. Setting R = M"Yt k1o NO+ <
M'N? and using (4.8), we can easily estimate the contribution of 1l°“’ PN, u11 to
I by

IIED DD 2

N1 >k 1<M'SN11 By €D, (k) K1(s)€D3 (k1)
1925 (ky(3)-k2.k3.ka)| 2 M/ NE;

3 4
n(ki(s), ko, ks) Py, ug (k) | Py, uy; (k1) TT 1 (k)
j=2

=2

17l ’Lg?

3 4
<> > MRENG) MM [T sl e [T luwillzg re

N11>211<M’'<N1p j=1 =2
3 4
9
SMY2E750 T lluaglloge e [T will gz -
j=1 i=2

Then we decompose the contribution of 1th Py, u11 in the same way as in (3.23).

The contribution of QZM’Nfl 1T,R Pn,,u11 can be estimated thanks to (4.8) by

2 4
S Y MUVAMOINE) TN HH ooz [ il
11 11 11 —% ulj L%OL% U; L%OL%

N112>2k 1<M’'<Nyy =2

S MR H [l zg H il zg

J=1

and the other contributions can be estimated in the same way.
Now to prove (4.13) we use (4.2) instead of (4.8). Actually, since |ki| > |ko|V|ks]
on the support of j};’fMT , we know that my,, = |k2 + k3| and |k1| ~ k. Therefore
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(4.2) and Bernstein inequalities lead to

4

‘ > > n(Fk1(3), ka2, ka) HPNM u, (k1)) 1T«

F(syeD2, (k) Fi(3y€D (k1) J=1 =2
[k1 > [k2 IVIks] Q5 (Fy 5y k2.k3.ka) | Z K

3 4
< M||T] P uss |, TT iz
'7 x '7

SM 1mzn]‘_[HPNIJ’U’U”LQI_IHUZHL2 .

With this estimate in hand, (4.13) follows from the same considerations as (4.12) by
taking R = N10 /K and using that Q5 > K > N20 ensures that R < Q5. [0

1,max 1,max

4.2.3. T-linear estimates. We use the following notations : E(7) = (k1, ko, .., ks) € Z8
and for any k € 7Z,

8
Tr(k) = {kr € 28, ki =k}.
1=1

The proof of the following lemma follows from exactly the same considerations as
the ones used in the proof of Lemma 4.4.

Lemma 4.6. Let f; € 1*(Z), j = 1,...,8. Setting

6
3;1 — Z oM (Z kq)d)Ml (k1 + k2)oar, (ks + ks) H |/ (k;
k(€D (k) ks=—Fk =
and
o 8
a7 = > a1 (D k), (kr + ka)dary (ka + ks) [T 1£5(ky)
K(r) €T (k) ks=—Fk 7=1 =
it holds
(4.14)
1 2 1 - :
) N 1 1/2
aT14g72 < m1n(M2M1M2 [T 155l MEaan2 TT I il ] Hfj||12) -
j=1 j=4

j=1

J#{4,5}

Proposition 4.7. Assume that 0 < T < 1, n : Z" — C is a bounded measurable

function. Assume also that ui;, us; with i = 1,2,3, and us, ug are functions in
_u

Z% = Xy 10! QL%OL?C and that k> 2°, M > 1 and My > 1. Fori=1,2, we set

Wi(3) = (wi1, Uiz, u;3) and define

J;:ﬁ?;&l (ﬁ1(3);ﬁ2(3),U3,u4> = Z Z Z

E(g)eD}w(k)El(g)eD}wl(kl)  FaggEPilh)
Q5(ky(3),k2,k3,k4) %3 (ky(3))

3

3 4
/[ | (kl (3)» k2 (3)s k3) H kla H a2m(k2m) H ﬂq(kq)
0,7 j=1 q=3

m=1
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with k4 = —k and where .

Then
(4.15)
3 4
7.k 1
| Tooian, (1), oy, us, ua)| S MY2Myko T lluasllzo lluzill 20 [T el 2o
j=1 q=3
and
(4.16)
3 4
k,T,2 _ 9
| Toiian (1), fiaay, us, ua)| S MY2Myk™ 0 [T lluajll g0 llugsl zo T lugll 2o -
j=1 q=3

Moreover, the implicit constant in estimate (3.14) only depends on the L°-norm
of the function n.

Proof. We define the resonance function of order 7 for E(7) = (k1,--- ,ks) € T7(0)
by

8
(4.17) O (k) =Y k.
=1
Again a direct calculation shows that
(4.18) 97(151(3)7 E2(3), ks, ky) = Q5(721(3), ko, k3, ka) + Qs(E2(3))

and thus |Q7(El(3), Eg(g), ks ka) 2 |Qg(E2(3))| on the support of J; J@Tj\jl with i €

{1,2}. (4.15)-(4.16) follow then from the same considerations as in the proof of
Propositions 4.3-4.5 by making use of (4.14). O

4.3. Proof of Theorem 4.1. To prove Theorem 4.1 we construct a modified en-
ergy in the same way as in [17]. Note that this way of construction of modified
energies has much in common with the I-method [4].

Let us first notice that (4.1) is obviously satisfied for £ < 1. Theorem 4.1 will
then be a direct consequence of Lemma 4.8 and Proposition 4.9 below.

Definition of the modified energy : For t > 0, we define the modified energy at the
mode k > 29 by

(4.19) Ex(t) = Ex(u(t)) = gm(t, )P+ a&pt (8) + BEL7 (1) + €L ()

where «, v and [ are real constants to be determined later.
In the sequel of this subsection, to simplify the formula, we set ky = —k.
eyt &%, €2 are then defined as follows :

831 ) = k2R [ Z Z

3
M<k?/3= g €D}, (k) (k) j=i

4
X2 (u) = K*R 1 a(ky)
m {’3<3>62D2<k) Qg(k@))j];[lu ’ }

Emed<k3
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where E(g) = (k1, k2, k3) and the dyadic decompositions in N; are nonhomogeneous,
(4.20)

4
. ) 3D VD VDS
5 . Q3(k
=1 M>1f. eDt (k) , Iii(g)ED{(ki) ( (3)> Z(5)
@3 (R(3)) <3 (i (3))

3
k) [T tkis)] -

q=1

[
‘#H 'S

with the notation

—
— =

kjs) = (kj(3), kj(z)) €T°
where Ej(g) is defined by

Ei(z) = (ko ks, ka), kagz) = (kv ks ka), kay = (k1, ko, ka), Kazy = (K, k2, ks) .

Next, we show that if s > i, then the non quadratic part of € (u) is controlled
by the H%-norm of u.

Lemma 4.8. Let s > 1/4 For any u € H*(T) it holds

(4.21) &0t (w)] + €07 (w)] S || Pegull
and
(4.22) €3 (u)] S I P<pul|%e

Proof. Since |Qg(E(3))| > MinMpeak on D(k), (4.2) leads to

mn

M in M,
1< Mpin SMipoq - TiRTmed

k2M1/2 ke~ 4s
& ()] S > T

~

||P~kuHL°°H5 kY Pyl

which is acceptable. In the same way, on D?(k), it holds |Q3(E(3))| > Mynink? and
thus (4.2) leads this time to

3.2 - k2M1/2k 2s - 0
€7 (W) S Z THPNICUHLOOHS||P<ku||L°°L2 k= HP<kU||Hs .
M>1

Now, fix i € {1,2,3,4}. For E(g) € D'(k) and Ei(g) € D'(k;) we have
k| ~ [ka| ~ [ks| ~ [ka ~ [kia| ~ [kig| ~ |kis| ~ k.
Moreover, for Ei(5) such that Q3(E(3)) < Q3(Ei(3)) we have
19 (Rigs)| = 9% (k) + @ (i) )| ~ 198 (Riga))| > 9% (kesy)| > 0.
Therefore €7 (u) is well defined and according to (4.8)-(4.11),
4 1/2 —6s
SO YD S > Mm’“ﬂjﬁﬁ:@mk Pl

i=1 1<Mmin<Mmed 1§Mi,7‘rLin§Mi,med
1—-6s 6
S kTN Pgkullhg

~

which is acceptable. O
Proposition 4.9. Let s > 1/3. Then for k > 29,

ks~
(4.23) €)= &x(0)] S sup[(5) IPenulldy (1 + [ Penuly)]
N>k



24 L. MOLINET, D. PILOD AND S. VENTO

Proof. Since u is real valued we can restrict ourself to positive k. As above, we
differentiate € with respect to time and then integrate between 0 and ¢ to get

Ex(t) = Ex(0) — ké}k[/t Pkax(A(u,u,u)fB(u,u,u))Pku} +a/ is“( t"dt’

dgaa "d s
+ 8 tdt' + v &t

(4.24) k:?ek ) + I + ad} + BJE + 7K, .

As in the preceding section, since u is real-valued, the contribution of 9, B(u,u, u)
is purely imaginary and thus vanishes. Recalling that we set k4 = —k, we can thus
rewrite I in Fourier variables as

Ik:k2%[ / t ST Ak )alke)a(ks)aa(ka)

0 -
ksy€eD(k)

with D(k) defined as in the beginning of this section. We denote by I} and I? the
contributions to I, of respectively D*(k) and D?(k). Finally, we decompose I} and
I in the following way :

¢
Soe X[ Y akatac)ak)
M>kT2  M<kiz O EweDl, (k)

:I;,high +I;,low

and

Y o+ X ows[[ X atkatatic)

2 2 o
kmecl>k3§ kWL€d<k§ k(s)EDz(k)
12 ,high + 12 low

1,high

e Estimate on I’ According to (4.4) we have

1,high < 2 k% —4s -
L s 1Y sk TPl
MzkllZ =1

< KR | Pogullde

which is acceptable for s >
1,low

160
+ OéJk.

By (2.1), we can rewrite %Sz’l

3+ k3 + k:3 k) a
2R [ Z i(ky T 1) Hu }
<kT3 k() €D, (k) @) j=l1

e Estimate on I’
as the sum of the “linear” contribution®

1By “linear” contribution, we mean the contribution of the linear part when substituting us
thanks to the equation
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and the “nonlinear” contribution

4 o 4 3
DS D V- | LIRS | ) 1E
=1 ks EyeD3, (k) ( (3)) 2 ki3 €D (ki) 1=1

Using the resonance relation (3.21), we see by choosing a = 1 that I;’low is canceled

out by the linear contribution of fot 4 ¢3,. Hence,

1
1,low o 7
Ik + Ji = E CjAk,
Jj=0

where, by symmetry,

A=Y kz%{/t > ;ﬁﬁ(ka)

. (k) 3
M<kT2 k(3) €D} (k) (k) i

(la-mPac-rmn+ > f[aau,q))}

Ki(s)€D(—k) 1=1

= A0+ A)
and
_ t k 4
A=3 Y kQS[/ 3 ﬁ]‘[a(kj)
M<k12 ® K@ eDk, () (k) joa
3
(BlatenPak) + > Jlatkg)]
ki(g)eD(kl)qzl
= A0+ AL

It thus remains to treat the terms zzlfc corresponding to the nonlinear contribution
of %S}O’V. Since |k;| ~ k, A? and A}, can be treated almost in the same way. Actually,
some estimates on A) are easier thanks to (4.11). We thus only consider fl,lc First,
thanks to (4.2) , A,lc’o can be easily estimated by

k3M1/2
1,0 _
|47 S Z Mij\;mkk 65||P~ku|\%g°Hg
1<Mpin<Mpeqa 0" med
S kRO |P§ku||6L,?°H;

which is acceptable for s > 1/3.
By symmetry we can assume that My < Mo < Miz. We set N1 g0 = max(N11, N1z, N13).
2.1 [Q3(k(3))| 2 [23(k1(3))|- Then we must have

Mmianedk

Mt <
M M, My
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2.1.1 k_i(g) € D?(ky). In this region it holds Miy = k and thus My; < %
On account of (4.8)-(4.10) we get

K3M 2 My,
Al < min Lk 3s SN
| k| ~ Z Z - Mmlanedk 1,max

7 M, i M,
1< My in <min( M eq, kT2 ) 1< My S mintimed N1maa 2

[Pl Boo s 1PNy maw el 5o m1s | P vy ol Foc 2

k

1/2 N

S OX X MERT G 1P el e

> 7 1,max
Ni,maaZk 1<Mpin<k12

M, . k

DY Yo ()RR V(1 Pyl 3o s
]{;12 1,max

NiymazZk 1< a0 s <k12

k
S ) KRG Peny o ullte s
Nl,maa:zk 1,max

which is acceptable for s > %.
2.1.2 ki3 € D'(k1). Then it holds

k11| ~ |k12| ~ |k1s| ~ K .

Since |Q3(E(3))| > |Qg(E1(3))|, we must have M,in Myeq = MZ . Therefore (4.8)-
(4.10) lead to

I{ZBMl/Q (Mmianed)1/2 k/,76s
sy M

PN 6
~ Moo M, ok [ kUHLch;

1<Mmin<Mmea
< k276s

~

|P~ku|‘%§°H;

which is acceptable for s > 1/3.
2.2. [Q3(k(3))| < [Q23(k1(3))|- Then, by (4.7), [Qs] ~ [Q3(k13))| > [Q3(k3))|-
2.2.1. ki(3) € D?(k1). According to (4.12) we then obtain

K3My /2 kTt 3 3 2

AU D X G RN Pl Pyl 2 P, il

Nl,mu,:czk 1SMmin§Mm,ed men med

k
(4.25) S Y RGPl
Nl,ma::zk 1,max

which is acceptable for s > i—é
2.2.2. El(g) € D'(k1). Then we must have
(4.26) k11| ~ |kio| ~ |kis| ~ [ki| ~ [ka| ~ [ks| ~ k.

and
Qs(k_i(g)) ~ Ml,mian,medk .

We call A,lc’low this contribution to A} and A%low the same contribution to AY.
t q 85

Using the equation and the resonance relation (4.6), we can rewrite Ky, := 0 @
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as
4

t 4 . ¢

3 II

0 =1 M>1 E(B)ED]I\/[(]C) k‘i(g)GDl(ki) Q (k(3)) 0 =1
Q3 (k(3)) <3 (K (3))

t 4 -

k.

2 . u

+/ E k E § : 93(1%‘ )95(]; )Hu(kiq)

(Ue— M>1 Es €D (k) Ei(S)eDl(ki) (3) 1(5)) g=1
@="M Q3 (K(3)) <23 (K (3))

4 4 3
> TT ate) (i) (31t Pace) + > T aks))

3
a(k;) [T ace

=1

Q

Jj#i

g kam kj(3) €D (k) P=1
t 4 k 4
2 [ ~
3D DL DR Sl | K0
0 =1 M>1 E(s)GD}W(k) K (3 €D (k) (3) i(5) J]z

Q3 (K (3)) <23 (K (3))

i f[ o) (ki) (3l Palhon) + > ﬁa(kiym,p))}

m=l ki m(3) €D (Ki,m) P=1

.= H} + H? + H}.

i
In

e Estimate on A,lc’l"w + A%low K,
By choosing v = 1, the above calculations lead to

(4.27) Aptow 4 A%ew LKy — HE + HP

Because of (4.26), ﬁ,f and I;T,f can be estimated in the same way. We thus only
consider H2. Tt thus suffices to H? of any fixed couple (i,m) € {1,2,3,4}* with
i # m. By symmetry, we can restrict ourselves to (i,m) € {(1,2),(1,4)} . Since
the case m = 4 is easier (see (4.11)), we only consider the case (i,m) = (1,2). We
thus have to bound

4
kik
2 12
wees[[ X0y Y e T
MZ1E 4 eDl, (k)  FieP k) ®3) 1(5)) j=3

23 (k(3)) <23 (k1 (3))

ko) (3fa(ko) Plka) + Y ﬁa<k2p>)]

gz(s)ep(kZ)p:1

QQ
W w
[

= HY' + H.
First by (4.8)-(4.10), we easily get

E*
H30 < M. minkigs P. 85
| | ]\4Z>1 M- Z MQkM%mznk b || kUHH
lm'L'n.

S BT Pl
which is acceptable for s > 1/4.

Now, to bound H} we separate different contributions.
2.2.2.1 [Q5(ky(5))] 2 [Q23(kaes))|- Then we must have [Q3(kaes))| S [23(k1(s))| since
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Q5 (k1(5))| ~ [Q3(k1(3))|- This forces Ma min < Mi,med-

~

2.2.2.1.1 Ny ped ~ Nomae- Then (4.14) leads to

|H3| < Z Z k4M1/2M1,mian,med
k
- 1<SM<M,, g Nomas >k MMmedle,mian,medk
1SM1 min <M1 med Sk ’ ~
k755N2_73;;zzHP~ku||EigoH; PNNz,mazu”QLfoH; HPSNgymamU”L,?OLi
_ k
S > RPN —)PPen, B
Nz,mazzk 2,mazx

which is acceptable for s > 2/7.
2.2.2.1.2 Ny med < Nomaz. On account of (4.26), it holds Na s ~ k& and
Q3 (ka(3))| ~ Ma,mink?. The inequality [Qs(ka(s))| < [Qs(k1(3))| then ensures that

Ml,mian,med

MZ,min ~ L
(4.14) thus leads for s > 1/4 to
|H}§| S Z k4M1/2M1,min(Ml,mian,medk_l)1/2 k_6s
1SM<M,, g MMmedle,mian,medk

LM min <M mea Sk

[ Poktl|2oe g | Perull? o o/a

t x Lt Hq,
k3/2k76s M i 1/2
< > s () Il e,
med 1,med

1<SM<M,,eq
1SM1 min <M1 med Sk

S R Pl L,
which is acceptable for s > 1/4.
2.2.2.2 |Q5(ki(5))| < [Q3(kaez)|- Then on account of (4.18) it holds [Q7] ~
923 (Ka(s) |- B
2.2.2.2.1 ky(3) € D?*(ka) . Then (4.16) gives

k4M1/2M X 3 B o
S ) Yo R T NG k10| Pogtu e || P el 20 1 Py el 5o

2 2 2,mazx
M>1 No >k M le,mink
My min =1 mars
—6s4+1L k s 6
S X G P,
N2 max 2k e

which is acceptable for s > %.
2.2.2.2.2 k/’_é(g) € D'(kz). Then we have

k21| ~ |kaa| ~ |kas| ~ K .
Therefore (4.15) leads to
k4M1/2M1 min

1
HEl < k™30 || Pl
- M>1 M2kM12,mink :
My g 21
S kT Pl 3
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which is acceptable for s > %.
e Estimate on I."""

By symmetry, in the sequel we assume |k1| > |k2| > |ks|. We note that on D?(k) it
holds |Qg(E(3))| Z Mmink%-

L. kx| ~ |ko| = [ks].

1.1. |k3| 2 k. Then by (4.5)

: k2k 1o
2,high _ _92g
M S 33 Sk N Pead | Por Py ul 2| Pl
NiZ2kM>1
1l _ 4y
S S MR Pl Pev,ul
N2k

which is acceptable for s > %.
1.2. |ks| < k. Tt forces myin = |k1 + k2| ~ k and thus (4.5) leads to

2,high _m —s =2
I N Z Z M1/2 Ny 7| Pl
N1Zk M~k

zel|PvyullZe | Py ull 20

3 o, k
SN kS 35(F)2s||P§N1U||5§s
N>k !

which is acceptable for s > %

2. |k1| > |ka| > |ks|. Then |k1| ~ k and min = |k2 + k3|. In this region we will
make use of the fact that |kq| > k3.

2.1. |ks| < |ka|. Then it holds 1, = |ka + ks| ~ |k2| > k3 and thus by (4.5),

; k2~
high _2s7.—28
et gy Ml/g k 255 || Pagul| 3. | P, <3 Pt ze | Pegull 20
M>k§
S k(_i_)HP<ku|Zs )

which is acceptable for s > 23
2.2. |kzo| ~ |ks|. Then (4.5) leads to

: K2k~ 10
,high _
IS ek 2w 7: 1P, , 3 P<iullZ-
M>1 ~
< kTS| Pl

which is acceptable for s > 100

Estimate on I2'°" 4+ fJ2. By (2.1), we can rewrite th as the sum of the
“linear” contribution

ik + k3 + k3 + kD) T al
k%}t[ Z o k(g) Hu }

F(3)€D2(k) Jj=1

Ikmedl<k3
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and the “nonlinear” contribution

4 . 4 3
—Zki ~ ~
k%ﬁ[z Z T U(kj)(3|“( )Pa(k:) + Z Hu b4 )}
i=1 iy ep?() (K(3) st Ki(s)€D (ki) 1=
Ikmedl<k3
4 k 4 3
=8y Y s Tlak(Earak) + 3 [[at.)]
i=1 R D2 (k) @)/ =1 Ki(s)€D (ki) =1
‘km,ed‘<k§

4
=) (B’ +Bj).
j=1

Using the resonance relation (3.21), we see by choosing @ = 1 that I;}'°" is

canceled out by the linear contribution of f td 83 2 Hence,
4 .
L+ I =Y (B + BY)
i=1

Note that since |kped| < k3 we must have |kmaz| ~ k. In the sequel, by symmetry
we assume that kp,q, = k1. This forces |k1| ~ k and My = My < k3.
Estimate on B}, j = 1,2,3,4
Let N; be the dyadic variable associated to the dyadic decomposition with respect
to k;. Note that N; < k. According to (4.2) it holds

. 2071/2 AT
B S Y Y %kiSNI%HPwUHL?H;HPNI-UHQL’gCH;

M>11<N,; <k

S kogmax(01789) HPSkUHGL,?OHS

ngUH%;CLg

which is acceptable for s > 1/4.
Estimate on B} and B}
By symmetry, these two contributions can be treated in exactly the same way. So
we only consider B,f. By symmetry we can assume that |kai| > |kaa| > |k2s|. For
i = 1,2,3, let No; be the dyadic variable associated to the dyadic decomposition
with respect to ko;. Recall also that |ka| < k3 on the contribution of B3.

|ko1| > k. Then we must have Nag ~ Naj. On account of (4.2) and Holder
and Sobolev inequalities, we have for s > 1/4,

BEEMY2 R
Be S 2 2 e KN
M>1 Noy >k

HP~kUHL°°Hs PN21U||L°°HSH <k ||2L39Lgo

DI PELEE
M>1N21>k
HP~kUHL°°Hs PN21U||L°°HSH <k2u||LooH1/4
Csrly, koo
S Z k4 ‘S+4)(N—21)2‘5||P§N21U||%39H;

N21>k
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which is acceptable for s > 1/4.

2. |k21| < k.

2.1 |ko| > |ks|. Then we must have my,;, = |ka + k3| ~ |ko| . Therefore, using
similar considerations as in (4.2), Holder and Sobolev inequalities, we get for s >
1/4,

k2N2M1/2 B
B < Z T k 2SHP~/€UH%%°H§HPSkUHi%cH;/‘l
M~Ny<k3

_ 1
S KD Py

which is acceptable for s > %.
2.2 |ka| ~ |k3|. Then, for s > 1/4, we have

k2N2M1/2 e r—2sAr1/2
B £ Y0 Y g RN RN Pl
M>1

1/4

Pyt iz s ||P,<J\72u”i§9Hac

2
N2<kB

5 k—25kmaX(07(1—%S)||P§kUH%§9H5 5

which is acceptable for s > %.
Estimate on B}
By symmetry we can assume that

|k11] > |k12| > |kis]

Fori =1,2,3, let Ni; be the dyadic variable associated to the dyadic decomposition
with respect to k1.

1. |93(E(3))| #* |93(E1(3))|- B
1.1, Mimea > 2 %ku1]. Then [Q5| 2 |[Qs(ki3)| 2 ki and (4.13) leads, for
s> 1/4to

KEMNY ™ o m
DD ID M=o SRR

M<k Ni1 2k N13<N12<N1y

By,

A

| Prul| 2o || Py, ull 2o 1Pyl 2 | Py wl 2o || P< el 5o

L1 k .o
S N kR () [Py, ull
N N1 ~
115

which acceptable for s > 2%.
1.2, M1 mea < 27%k11|. Then |kis| ~ |kia| ~ k11| ~ k and (4.8) leads to

E2EMY2 M 10
1 1,min ; —4g,; 10 4 2
By S Y. Y g bk | Pkl s lull Zo

M>1 M1 min>1 1,min
< RS TR Pogul| L llullGo

which acceptable for s > %.

2. [Q3(ke))| ~ [Q3(ki3))l-

2.1 |k11| ~ |k12]. Then we claim that |k13] 2 k. Indeed, recalling that ki1 + k12 +
kiz| ~ k, Niz < k would imply that [ki1 + kia| ~ k and thus |[Q3(ky(s))| ~ kk3 >
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k3 > |Q3(_» y)| since |Qg(E(3))| < k3. Therefore, noticing that M k2, ~ Mik>
forces My pmin < My < Jko| < k3), (4.8) leads, for s > 1/4, to

~

k2kMM? M,y
1 1,min s s 2s 1/4
B, < E E E Mk ——— 5 kT NN TNy
1< My min <My SN <k 3 N112N132

[Pyl oo s || Ponvyy | Foe s

k
—4s+—. 2s 6
Sk g (—Nu) ||P§N11U||L;>°H§c

Prygull e |1 Pvaull o /il Pz -ull e

which is acceptable for s > %

2.2 |k11| > |k12| > |k/’13|. Then |k11| ~k, Ml,min = Mi; and |Q3(k1(3))| ~ MH/{/’Q.
Therefore, [Q3(k())| ~ [Q3(k1(s))| forces My ~ My;.

2.2.1 kll 7& k. Let k' € {k12,l€13,l€2, kg} such that |l€/| = max(|k12|, |k13|, |]€2|, |k3|)
Then we have

(428) |Q3(k115kakl)| Z k2‘
2.2.1.1 Q5 2> k%. Then we have for 1/4 < s <1/2, (4.13) leads to
k3M N _
1 —2s B} 1
By 3 Z Z 7M1k4 k: N k1o 0

]\/IIS,]C% 1<N13<N12 Sk
| Poktel| %ol Py el 2+ || Povyg ull 2+ || P Zo

< kTS| Pl

~

which is acceptable for s > %

2.2.1.2 Q5 < k*. Then we have Qs(k)) ~ Qs(kiz) and thus My ~ M.
Moreover, let (z1, 22, 23) be such that {z1, 22,23} := {k12, k13, k2, ks} — {K'}. Tt
follows from (4.28) that 93(21,22,23) > k2. Since |ko| V k3| < k3 this forces
K € {kia, k13} and |kya| A |k1s] > k3. For s > 1/4, (4.9) thus yields

13 as
. 11, 24y —4s
B} /S Z M1k2k k™3
2
Mi1~MiSk3
||P~ku||%;?°H;szk%PSk“H%%"H; P<k3uHi°°Hl/4

S ki%HHHPSkUH%;CHS

~

which is acceptable for s > %
2.2.2 k13 = k. This is the more complicated case. Following [20] we first notice
that

(ko + k3)k — kok k k
(4.29) | \—] ) “]<|2|v|3|.
(k1 +k2) (k1 + ks3) (k1 + k2) (k1 + ks3) ||
We decompose the contribution of this region to B} as
k2 k1
B, = S — 1) 4+ 1| ————7(k)a(ki2)u(k13)u(ko)u(ks)u(—k
D 2[((k1+k2)(k1+k3) )+ }(k2+k3) (k)2 )i (ks Yz Y (s ()|

|k | V| ks | <k3

Ch+Cr.
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It is also worth noticing that since k12 + ki3 + ko + k3 = 0, in this region we must
have

(4.30) (k/’12 + k/’13) = —(kg + kg) = M1 =M.

Estimate on C}

1. |ka| V |kg| > |ko| A |k3]. By symmetry we can assume that |ko| > |k3| which
forces My ~ |k2|. According to (4.29) and (4.9), C} can be easily estimated for
s>1/4 by

. |
L H*

Pejull |P<pullpser2

k N2 — 4S8 —S
Gl S X MNPl | Pl e
2

No~M;<k3

< R P $ e
~ x

which is acceptable for s > i.

2. |]€2| ~ |k3|. Then |l€2|/\|k3| 2 M1 and since M1 = M111 we also have |l€12| z Ml.
Therefore, According to (4.29)-(4.30) and (4.9), C{ can be easily estimated for
s < 1/2 by

k N —z8 — 48 —S8
Cil < Z i, ?QMf/QMlk *Ny 2*Npy
My <No Ny 2<k3

1Petull oo prg || Pyl g prg | Pvioull e g || Pl e 2

1
V27 N1-2s)—2s 6
S E T Nk ||P§ku|‘L§°H;
2
M <N><k3

S k174SHP5kUH%g°H;

which is acceptable for s > 1/4.

Estimate on C?

Rewriting ky as k1 = ki1 + k12 + k13 we decompose C’,% as the sum of three terms
CH+CE+C3.

Estimate on C7? and C??

We only consider C,%Q which is the contribution of kj9 since Cig can be treated in
exactly the same way. We proceed as for C}.

1. |k1a| > |ki3|. This forces Myy ~ |kia|. According to (4.30) and (4.9), C} can be
easily estimated for s > 1/4 by

i%oHachHPSkUHL%"L_?E

~

Ni2 . 1/2, _95r—s
€25 Y g Pl o | Pl [ Pecu
Niaody <k3
12~M S

S ket HPSkUH%gCH;

which is acceptable for s > i.
2. |ki2| ~ |k13]. Then |kiz| A |k13| 2 My and since My = Mi 1 we also have
|ka| V |ks| = M. Therefore, according to (4.9), C} can be easily estimated for
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s < 1/2 by

N

22 12 1/2 —25 A\T—S5 \T—28
|Ci] S E ]\41]\41 Mik™** Ny "Ny,
]\/11§N27N125k%

[Pl Zoe s || Pasull Lo mrs | Paoull 2os are | Pl Lo 2

1_ 4
S Z My 5N112725k_2s”P5ku||fLsg°H;
My <N <k3
S KT Pegul 2o s

which is acceptable for s > 1/4.

Estimate on C?! We first notice that since |k1| > |ka| V k3| and |k11| > k12| V
|k13|, (k/’l + k?g)(kl + k/’3)(k/’2 + kg) 7é 0 if and only if ko + k3 75 0 and similarly,
(k11 + k12) (k11 + k1) (k12 4 k1s) # 0 if and only if k12 + ki3 = —(ka + k3) # 0. We
can thus rewrite C?! as

. . PN
CH = klu(k)]*S Z kiu(k’lg)u(km)u(kg)u(kg)
, 2+ k3
k1+ko+kg=k, |ka|V|kz|<k3 ko+k3#0
ktkigt+kiz=ki, |ki12|VIkig|<k

We now separate the contributions C; """ and C7 """ of the regions |k1a|V ki3] <

k% and |kio| V |kis| > k3. Let us start by bounding C;""". In the region
|k13] ~ |k12|, it can be bounded for s > 1/4 by

. kM N
(o I > 2 711’1752%_?||PkU||%;wH;HszcPE,C%UH%?H;HP gu
My 1~M;<k3
10s
S kT [ Pogull e n

which is acceptable for s > %.

On the other hand, in the region |ki2| o |k13], we must have |ki2| > |ki3| and
thus Mj 1 ~ |ki2|. Moreover, (4.30) forces |ka| V |k3| ~ |ki12|. Therefore, Sobolev
inequalities lead for s < 1/2 to

P§N12U||2L39H;

21,high| < EN{G > og i as 2 2
1Ch | = E TNy k™" Ny, HPkU”LfOH;HPleuHL;cH;
2
k3 <N12 <k
_ las
S KT Pgul e,

~

. . 3
which is acceptable for s > 7.

Finally, we claim that C’,fl’lm” = 0. Indeed, performing the change of variables :
(n1,n2,n3) = (—ki2, k2 + ks, k3) we first obtain

1 Iy A Iy

ct = k;|u(k)|2{ Z n—u(—nl)u(nl —ng)u(ne — ng)u(n3)}
2

\nzfns\\/\ns\\/\"1()\:\"1*"2&16%

But performing the change of variables (n},n5, n5) = (—n1, —n2, —ng) we infer that

C = (W3] > Al — ()| =

» T2
\n’zfné\\/\né\\/\nll\\/\nllfné\gkg

né;é()

2
<k3 HL%OHl/4
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which ensures that C}' = 0.

Estimates on B}

By symmetry we can assume |kq1| > |kao| > |kas|. B can be controlled exactly as
Bj and is even easier (see (4.2)) except for the treatment of the region (k41 = ky and
kao| V |kas| < k3) which is slightly different to the treatment of the region (k; = k
and |k12| V k13| < k§) for Bi. We thus only consider the region k; + k41 = 0 and
|kao| V |kas| < k3. In this region, according to (4.29) we can decompose B} as

4 ~ k?
By = “(Az(:k) [((kl T ha) (b + Fa) 1) +1]

_k
(/{32 + kg)

(ks )i~k s R )
— B;il +Bé2

with

A(k) = {(k1, ko, ks, kao, kaz) € Z°, kithotks =k, kuothas = —ka—ks # 0, [ka|V|ks|V|kaz|V|kas| <k} .

B! can be easily estimated as C} (actually it is is even easier) by using (4.11) and
the fact that |k42 + k43| = |k2 + k3|

Finally, we claim that B,%Q = 0. We start by performing the change of variables
(nl, no, ng) = (k/’g, ko + ks, k42) to obtain

k. . N - ~
B = —S(Z n—|u(kz —n2)|?u(n1)u(ny — n1)a(nz)a(—ng — ng))
Ak) 2
with
A(k) = {(nl,ng,ng) S ZB, no 7é 0, |7’L1| V |TL2 — n1| V |TL3| V |TL3 — TL2| S k%} .

Then we separate the contributions of the regions (ninz > 0), (ninz < 0), (n1n3 =
0,n1 +n3 #0) and (ny = 0,n3 = 0) to obtain

B2 = — Y Ejagnp]

2 n2
n27#0,|n2| SE3

fs( S @m)a(ng — m)a(n)a(—nz —n)

O<m,n<k%
+a(—m)u(ny + m)u(—n)u(—ng2 + n))
+s( 3 a(m)ans — m)a(—n)a(—ns + n)
0<m,n<k%
Fi(—m)a(ns + m)a(n)a(—ng — n))
+s( 3 a(m)a(ns — m)a()a(—ns)
O<|m\<k%
+H(0)T(n2 ) a(—m)@(—na + m))
+5(J(0) (o)) |
= D, +D}+Dj+Dj.
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Since u is real-valued, it is easy to check that D} = Di = Dﬁ = 0. Now, to compute
D? we separate the contributions of the regions (m # n) and (m = n) to obtain

k.
n2¢07|n2\5k%

+s( 3 G(m)i(ng — m)a(—n)a(—ns + n)

2
mn>0,0<|m|<|n|<k3

n 3 G(m)i(ne — m)a(—n)a(—ns + n))

2
mn>0,0<|n|<|m|<k3

+5( >l Patms - n)l?)]

2
n#0, |n|<k3

D SR S|

2
n270,|n2|Sk3

+s( 3 G(m)i(ng — m)i(—n)a(—ns + n)

2
mn>0,0<|m|<|n|<k3

Fi(n)a(ng — n)a(—m)a(—na + m))

(X Jatm)Plams - n)?)]

2
n#0, [n|<k3

This completes the proof of the proposition. O

Remark 4.10. For the same reasons explain in ([19], Remark 3.2) our method of
proof of the smoothing effect seems to break down for s < 1/3. The reason is that
the term A,lC can neither be controlled for s < 1/3 nor be canceled by adding a term
of order 7 in the modified energy. Indeed, it is shown in [19] that for any k large
enough one can find many couples of triplets (E(g), El(g)) such that E(g) € D(k),
El(g) € DY(ky) and Qs(El(3),k2, ks,—k) < 1. Therefore, a supplementary term in
the modified energy will not be useful to treat this term since we would not be
able to control this term for s < 1/3 and the "nonlinear contribution” of the time
derivative of this term would be even worst.

On the other hand, note that even if we only give an estimate of A" for s > 1/3,
we could lower the Sobolev index here by adding a supplementary term in the
modified energy. This is due to the fact that on the support of A'C we have
Q5(k1, —k1,kq, ko, k3, k4) = Qg(kl, ko, 1{33) Z k.

The following corollary of Theorem 4.1 will be crucial for the local well-posedness
result.

Corollary 4.1. Assume that s > 1/3,0<T <1 and u,v € Z% are two solutions
to (2.1) defined in the time interval [0, T]. Then, for all k € N* such that |u(0, k)| =
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[0(0, k)| and all 0 < s" < s it holds
(4.31)

sup K0t k)P [0(t B) | S Jlu—vl
t€]o,T|

4

23)° (1 ||ull zg + vl z;.)

z5 vl

Z;’(H“|

where the implicit constant is independent of k.

Proof. Proceeding as in the proof of Proposition 4.9 we obtain (4.24) for v and
for v. Taking the difference of these two identities and estimating the right-hand
side member as in Proposition 4.9 and estimating the non quadratic terms of the
modified energy as in Lemma 4.8, the triangular inequality leads for any k € N* to

N ~ ks~
sup_k|fa(t k)2~ (LK) S sup(5) " IPen(u—0)lz
te]0,T[ N>k

(IP<nullzs + [ P<nvllzs)* (1 + | P<nullzs + | P<nvllzs)*

This last inequality clearly yields (4.31) O

5. ESTIMATES ON THE DIFFERENCE
We will need the following multilinear estimate of order five.
Proposition 5.1. Assume that 0 < T < 1, n1, n2 are bounded functions and u;

are functions in Z° = X110 L°L2. Assume also that N > 1, M > 1 and
j€41,2,3}. We define

(5.1) G;M(Ul,UQ,U3,U4) ::/ HZ]’M(ul,uQ,w)mdxdt.
10,T[xT
Then
_ 6
(5.2) |GE ar(TE, g (un, g, us), way s, ug)| S TMM T il gz -
i=1

Let also N1, Na, N3 > 1 be dyadic integers and (K1, Ks) € (Ri)Q such that Ko >
K. Then it holds

T J
’G”h 1p1logk, M (HU2 los>K,
T1/8
<
~
Ky

v (Pnyun, Pryuz, Prgus), a, us, PNUG) ’

4
(5.3) MM’ max(Ny, Na, Ng) 1 ] ] [lu]| 20 .
=1

where D' is defined in (3.12). Moreover, the implicit constant in estimate (3.14)
only depends on the L°°-norm of the function 7.

Proof. (5.2) follows by using twice (3.10). To prove (5.3), we first notice that
K> > K and (4.7) ensure that Q5 (k)| ~ [Qs(k1, k2, k3)| > Ko. Then the result
follows by proceeding as in the proof of (4.13) with the help of (5.2) and by taking
R = max(Ny, Ny, N3)10 / max(K,, max(Ny, Na, N3)) . Note that |Qs(ky, ko, ks)| >
max(Ni, N, N3) ensures that |Q5(E(5))| > R. O
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5.1. Definition of the modified energy for the difference. Let Ny > 27, N
be a nonhomogeneous dyadic number and (u,v) € (H*(T))? with s € R. We define
the modified energy of the difference at the dyadic frequency N by

L1 Pn(u —v)||? for N < Ny
—J 2 L2 S
(5.4) eN[u,v,No]—{ 31PN (u = )72 + EXu,0] for N> N,

where

k
Exfwv] = D> D ek
kEeZ E(s)eﬂ Q(k(3))
ki+ko+kz=k

R[ (@l )(ks) + (k)0 (ka) + (k) (k) ) (i — 6) (ks) (@ — 0)(—h)
where E(g) = (k1, ka2, k3). The modified energy E* [u,v, No] of the difference u — v
is defined by
E* [u,v, No| = ZNQSENu Nyl .
N>1

The following lemma ensures that E* [u, v, Ng| is well-defined as soon as (u,v) €
(H*(T))? with s > 0. Moreover, for Ny > 2° large enough we have E* [u, v, No] ~
[l — [,

Lemma 5.2. Let (u,v) € (H*(T))? with s > 0.Then, for any s € R and any
No > (|ullms + vl m=)/*, it holds

1 o
(5:5) gllu = vl < B [u,v, NoJ < 2flu— o3

Proof. Let us recall that on D', it holds |k1| ~ |ka| ~ |k3| ~ |k|. Therefore, a direct
application of (3.10) leads to

N2 |e3 < NZe NMmianzs’Nfzs P 2 P 2 P )12
xS Y. S (1P~ vullzzs + [ Lol )l Poiv (u=) s
1<Mmin SN min

Summing over M,,;, and N > Ny, we obtain

> NFER I o)l S N P (fullFre + ol llu — oll. -
N>N
that clearly implies (5.5) for No > (||lullzs + ||v]| g )"/*. O

Let now (u,v) be a couple of solutions to the renormalized mKdV equation on
10, T[. The following proposition enables to control E [u, v, Np] on |0, T[.

Proposition 5.3. Let 0 < T < 1. Let u and v be two solutions of the renormalized
mKdV (2.1) belonging to L>°(0,T; H®) with s > 1/3 and associated with the same
initial data ug € H*(T). Then for s/2 < s' < s — {5 and any No > 1 it holds

(5.6) sup B [u(t), v(t), No] S TANG?(1 + Ifull z5. + [0l 23 )

zg!
te[0,7]

Proof. To simplify the notation, we denote & x[u(t), v(t), No| simply by En(t). Note
that u(t) and v(t) are well defined for any t € [0, T since, by the equation, (u,v) €
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(C([0,T); H¥=3))? and that, for any N € 2V | Ex(0) = 0 since u(0) = v(0) = uo.
For N < Ny, the definition of &y () easily leads to

%EN( t) = / [P (u? —v%) Py g+ P (Po(v?) = Py (u?)) Py ug+ P (u? — Py (u?)) Pyw,)
T

which yields after applying Bernstein inequalities, integrating on ]0, t[ and summing
over N < N,

3/2
S en(t) S N (ullse o + 013 o)l 3e
N<Np

Now for N > Ny, we first notice that the difference w = u — v satisfies
wi + 3w = —0,A(u,u,w) — OpA(u, v, w) — O A(v, v, w)
(5.7) —0y (B(u, u,w) + (B(u,u,v) — B(v, v, v))) ,

where A and B are defined in (3.38). Therefore, differentiating £y with respect to
time and integrating between 0 and ¢ we get

N>en(t) = N2'en(0) — N2 /tm /(%CPN[A(u,u,w)+A(u,v,w)+A(v,v,w)]PNw)
—N?% / /a PyB(u,u w)PNw)
/ /a Py (B(u,u,v) — B(v,v,v))PNw)

N25 / R 83
= On(t) +DN( )+FN( )+ Gn().
As in (3.39) we notice that, since v and v are real-valued,

/8 P B(u, u, w)Pyw = sz|u ) lon (k) (k)| € iR .
kez

and thus Dy (t) = 0. On the other hand, the smoothing effect (4.31) leads to

ToNGINE kz @, W) = [o(r, &) D)o (k)0 k)i (7, )|
kEZ
t
s s sup (Kl W - (o R]) [ ow (@) 6] ds
T€[0,T] ‘k’f“iZN 0
S N T+ e + 05wl gy ol s e ] e e

with [[(25);][;nqvy S 1. It thus remains to control Cn(t). We notice that Cy can
be decomposed as

oy = NS0 S 4 Y kdke)

kEZ k‘(g)EDl(k‘) k‘(g)EDQ(k)
s{(a(k;l)a(/@) + k) )o(ks) + @(kl)@(@))w(kg)w(—k)
— Clow Clh\u[igh )
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Estimate on Cj}f,lgh. We notice that Cj}f,lgh is composed of three terms of the form

NN k@?v(k)cpl\h(kl)SﬁNz(kQ)@Ns(kB)s[(él(kl)zb(kﬂ’d}(kg)ﬁ)(—k)

k€Z N1,N2,N3 k) € D2 (k)

with z; € Z7,. We separate different contributions of the sum over Ny, Na, N3. By
symmetry we can assume that N; > Ns.
1. Ny > Ns. Then, (3.15) leads to

25’
high 1/8N —snr—s AT—8nT—8
[SSHOINEY > T 5 NN N, Ny
leN 1§MSN2VN3§N1

| Py 21| z= | P, 22

S P P Y PR P

2o || Pnwl| gor [| Py w] zo0

which is acceptable for s > s’ + %.
2. Nj < N3. By symmetry, we assume that Ny > Ns.
2.1 N; > N'/2 Then (3.15) yields

2s’
|Chigh| < T1/8N NNis,Nis,Nists
N NS 3 1 2
N3zN1zNz2  1<M<SNg
N3>N,Ny>N1/2

1Pny 21| 24 | Py 22| 2 | Povg w]] o | Prw]]

T1/8N5/27T10 Hzl|

A

A zZs

A

wH2s’

22|

which is acceptable for s > 1/5.
2.2 N; < N'/2 Then N3 ~ N and M,,;, = M3 < N'/2. Then, according to (3.7)
we have

C]}\Lfigh = Z Z MN2 / H?ys,M(Plelv Py, z2, Py, w)Pywd,

N3=Ni>Nay 1< M<NL/2 T
N3~N, N <N1/2 = 7

where 73 is a function of (&1, &s,&3) whose L°°—norm is uniformly bounded in N
and M. Therefore, by (3.15), we get

’

; N2 M A
|Chlgh| < T1/8 N—25N SN
N Nl% 1 2

N3g>2N1=2N2 1<M<N1/2
Ng~N,N;<NL/2 = 7~
ZS

TYEN=3| 2|

1P 21| 24 [| Py 22| 2 | Pvg wll o | Praw]]

A

w||2s’

Zs 22| 7s
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which is acceptable.
Estimate on Cf\?w + G . We have

s'd
Gu(t) = N* ZEL

SN ST kR 0S| (alk)aks) + akn)o(ke) + 60k )i(kz) )t (ks )i (— )|

k€EZ k3yeD (k)

3 2
NN ZWN;(Q klo[%(kz)@(ks)@( k)

3
kEZ k(zy €D (k) i=1 Q3

3

(3|2171-(k:1)|2217i(k1) + II 31,1’(/@1,11))}

k1 (s)€D (k1) 971

N2 Z Z Zk(pN]% kso[ (Zzll (k1)%a.; kg))

kEZ k(3yeD (k) i=1

(ks 2 + [©0ks) )@ (ks) + @(—ks) (k3D (ko)

3
+ Z Z[a(ks,ﬁ(k?&z) + (ks 1)0(k32) + 5(k3,1)5(/€3,2)]@(/€3,3))}
Es(g)ED(kg) i=1
3

+N25 Z Z Z k? SQN g{ k3)(z Elyi(kl)gz,i(b))

kEZ k(3 €D (k) i=1 k(3) i=1
((|17(’<?)|2 +[0(k)|*)@(~k) + @ (k)u(-k)o(~k)
3
+ Z Z[a(k4,1a(k4,2) + (kg1)0(ka2) + 5(164,1)5@4,2)]@@4,3))}

E4(3) €D(—k) i=1

= —COK“+ A1+ As + A3,

where we set (21,1, 221) = (u,u), (21,2, 22.2) = (u,v) and (21,3, 22,3) = (v,v). Hence,
CkY + Gy = ZA

FOI‘ any sextuples]\_; = (Nlﬁl,NlﬁQ,leg,NQ,Ng,N) S (2N)6 and any,?: (2’171,2’172,2113,22,2’3,2’4) S
(Z°)8, we set

gs = NESOY kon kL | b (o) Py 5o (k) Py 21 (—k)

kEZ k(sy €D (k) Q3 (ks)

Py, ,z11(k1) PN, ,21,2(—Fk1) PN, 5 21,3(k1)
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and

L= MY Y #‘PNZEQ(kQ)PN323(/<:3)PN24(—k:)
k€Z k(3y€ D' (k) (k )

S -

2
L
|

Z Py, z1,1(k1,1) Py 21,2(K1,2) Py 521,3(F1,3)
k1 (s €ED(k1)

We observe that to get the desired estimates on the A; it suffices to prove that for
any sextuples N = (N11,N1,2,N13,Na, N3, N) € (2M)6 and any z = (21,1,21,2, 21,3, 72, 23, 24) €
(2°)°,

B 3 3
(58) Ry -+ Sy STVENC % Pyzallze [T I1Pvzillze [T 1P, 216012

i=2 j=1

where Nmaz = maX(NLl, NLQ, N173, NQ, Ng, N)
Indeed, the modulus of the Ajare controlled by sums of terms of this form where

w appears two times in the components of 2" and all the other components are u or
v. Therefore (5.8) leads to

(5.9) Ryg .+ Sy .z Tl/gNgM||P<N w

4
2o (1P ullze + 1P, vl

and (5. 6) then follows by summing over (Ny,1, N1,2, N1,3, N2, N3, N) thanks to the
factor N0~ .

To simplify the notation, we denote Py, z;, Pn, jz1,; and Pyzs by respectively
z; and z1,; and 24 in the sequel.
Estimate on R _: We recall that on D' we must have |kq| ~ |ko| ~ |k3| ~ |k| and
thus R - vamshes except if Nij ~ Nio ~ Niz~ Ny~ N3~ N. In particular,

Naz ~ N. (3.10) then leads to

25’
Re. s ST My GSHHZZHLWHSanUnL«aHs

M>1 j=1

e
< TN,20 S)NﬁmiéHHZiHLg?HsH|\21,j|

i=2 j=1

L Hs

which is acceptable since for s > 1/3 we have 1 —4s < 0.
Estimate on Sy .: We set ky3)y = (k1,1, k1,2, k1,3). By symmetry, we may assume

that N1 1 > Njo 2 Ni3. On A we must have Ny j ~ ]Vmaz. We separate different
contributions.

1. Mimea > 27°N.

1.1. Qg(kl(g)) > Qg(k(g)). Noticing that Qg(k(g)) ~ MpinMpeqN and Qg(kl(g)) pe
279 M min NNy 1 in this region, (5.3) leads to

25’ A2 .
CR T R N2 N H H || ||
Nz ~ D) maz mazx Zil|Zs Zl,] zZs
’ MmianedN
1<M1min SN1,2 Mied 2 Mmin>1
;4 4 3
1/8 AT—2(s—s") A7—28 + 15+ Ar2(s' —s
S TYSN,2 ™) Npas 07 N2 %) zo [ 1215l 2
i=2 j=1



UNCONDITIONAL WELL-POSEDNESS FOR MKDV 43

which is acceptable since for s’ > s/2 and s > 1/3 force s’ > 1/6 .
1.2 [Q3(k1(s))] S [Qs(ks))l-

1.2.1 M,,eq > Nﬁl. Then (3.10) and Sobolev embedding theorems lead, for s <
1/2, to

N2 N2Mpi 5o T
Sgr S T ——— "N |zl pee e | A(2115 21,2, 21.3) | oo 12
N,z T T
’ 1<M <N 2 MmianedN i—o
= min ~o MmedZNél -
4
: _2
< TN*HTYN PN 3‘51_I||Zz'||L%°HS 21l 2 llz12l ge e[| 21,3) e e

1=2

4 3
_2
< NN SNTENTET T zill g e [ 12 s]
i=2 j=1

L Hs

A

4 3
= 9(s—g') s —s—s/2' . _35_
TNmi(ms é/)N'r?LazS s/ N 3s s//2+1+H||Zi||L%°H5HHzl,j|
i=2 =1

L Hs

which is acceptable for s > 1/3 and s’ > s/2 > 0.
2
1.2.2 Mypea < NP°;. Then [Q3(ki(3))| S [Q23(k(s))| forces

Ml,mzn < MininMmeaN < M"l”n
M mealN1,1 N3,
1.2.2.1 Ny 1 ~ Ny12 > Ny 3. Then (5.2) leads to
N2S’N2M2 ) 2 5 4 3
Sve £ T Y ———=mN N [ aligne [] ez ae
1<Mpin<N My, NNiy =2 j=1

4 3
~ _ 70— _ 2
5 Tngi(vS S/)Ngw,zN 35+3+HH'%’HL%CHS H ||Zlaj||L39H5
i=2 =1

which is acceptable for s > 2/9.

1.2.2.2 N171 > N172 Z N173. Then Ml,’med ~ ]\71,1 and thus Ml,’min 5 ]\/InLi%n,N.
Nl,l
Therefore (5.2) leads to
N2S’N2M2 ) 4 3
Sgz ST Y, ———NSIN [ llzllegn: [] 1200l

1< Mpin<N M2

min

]\U\fﬁ1 i=2 =1

4 3
~ ~ oo 1 )
< TN~ Npar® N3 W20 I Yzl e e [ 21l nge e
=2 j=1

which is acceptable for 0 < s’ < s < 25'.
2. Ml,med < 279N. Then Nl,l ~ NLQ ~ N173 ~ Nog ~ N3~ N.
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2.1 M1 min < 2°Mypeq. Then (5.2) leads to

N2 N2Myin Momed « 6. 1 i
Sz S T > i .A;mdee N T zillegme TT 2050l g mre
1< Mmin <MmeaSN e i=2 j=1
4 3
_ e
S TN Nt T lzillogne [ Nznillosoms -
i=2 =1

which acceptable for s > 1/4.
2.2 Ml,min > 29Mmed- Then

QS(k1(3)) - Ml,mian,medMl,max z 218j\4minj\4med]v > QB(k(3)>
and thus (5.3) leads to

S 2 NN M i -y

Sa -
N,z X
VMt SN 1My MminMmedN M1 mea
4 3
1T 0=ilze T =l 2
i=2 j=1
AT 3
T
S TN Nmaz © [T lzillze [T I=04ll2
i=2 j=1
. . 11
which is acceptable for s > 5. O

Lemma 5.4. Assume that 0 < T <1, s > 1/3 and (u,v) € (L>(0; H*(T)))? are
two solution to (2.1) associated to the initial data (ug,vo) € H*(T)?. Then, setting

r_1_1_35
s'=3 — g5 =54 it holds

(5.10) [lu — v

2 S (U lullZg s + [0l1Zg )l = vl e gy

Proof. We proceed as in Lemma 3.11 so that we are reduced to estimate |ju —

U||XS,,%71. Setting w = w — v, the Duhamel formula associated to (1.1), the
T
standard linear estimates in Bourgain’s spaces and the fractional Leibniz rule (c.f.

Theorem A.12 in [10]) lead to
(5.11)

HWIIX;u%,l S Mo = voll gror + 110 (w(u® + uv + UQ))IIX;u%,o + ||Po(u2)wz|\x;u%,o
+ HPO(’LL2 — 'UQ)UzHX;’f%,O

r_ 1
Sl =l e pror + 1Je ™ (w(w® +wv +0*))|| 2.2 + HUH%;oL;HwIIL /Tlo

2 7S
THm

+ (lullzgrz + lollegr2)llvll |, oo gllwlizrs -

s/
L2.H,

Then, we notice that

s — & s’
17270 (w(® + v+ v*)gre S 17 (w? +uv+0?)]|
T

Beolon

’
< (lullZs 2o + 017 20) I wll e 2

5 5
2 (17ull |, e 2000, )

+ (lulla 20 + HU||L4TL§;))H@UHL%0 s p

L
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which leads to (5.10) thanks to (3.25)-(3.26) and Sobolev inequalities since H 21 (T) —»
L% (T) and for s > 1/3, it holds 8’ = s — 1/8 > 2 and 2% < 4. O

6. PROOF OF THEOREM 2.4

6.1. Unconditional uniqueness for the renormalized mKdV equation. Let
us start by proving the unconditional uniqueness of (2.1). Let T'> 0 and (vq,v2) €
L>=(0,T; HY3)2 be a couple of functions that satisfies (2.1) in the distributional
sense with v1(0) = v2(0) = ug € H*(T) . We first notice that Lemma 3.11 ensures

that (u,v) € Z;/3 with 7' = min(1,7) and, from Proposition 3.12, we infer that

lorll s + llvell s < oll s + T34 a3 g + o2 o)
Hence, taking 7 < min(1, T, (1 + ||uo]| g1/s) %), we get

||711|\Z;/S + |\Uz||Z;/3 S Nluoll grass -

5

Then, noticing that § < 2 < 1 — &, (5.5)-(5.6) and (5.10) lead to

3

lor = vall? 5 STVENG(1+ Iluoll gr/s)**[for = vel®

o 77 o 77
L H?21 X H?21

with No > [luol| ;3,5 - This forces
=0

lor = vall o 3,

with T ~ min(T", (14 ||uo|| g1/s)~3%°). Hence v; = vy a.e. on [0, T"]. Therefore there
exists {1 € [17/2,7"] such that vi(t1) = va(t1) and [Jvi(t1)|gs < |lorllpge s
Using this bound we can repeat this argument a finite number of times to extend
the uniqueness result on [0, T7].

6.2. Local well-posedness of the renormalized mKdV equation. It is known
from the classical well-posedness theory that an initial data ug € H*°(T) gives rise
to a global solution u € C'(R; H>°(T)) to the Cauchy problem (1.1). Then combining
Lemma 3.11 and Proposition 3.12 we infer that u verifies

4
(6.1) el sz S lwollee + T2 (g are + lulf o )

for any 0 < T < 1. Taking T = T(|lug||zs) ~ min(1, (1 + ||ug||zs) %), the
continuity of 7'+ ||ul| Lo+ ensures that

lullse mre S lluol| o
and Lemma 3.11 then leads to

(6.2) lull zg. < Iluoll = (1 + lluollZe) -

Moreover, we infer from Theorem 4.1 that for any K € 2~ it holds

1Ps ku®) | Zse e <Y sup [k[**[a(t, k)|
k> K te[O]

< 3 (WP )P + K2 e (1 +
E>K
(63) < |Porcuolffys + K211+ fluol ).

7))
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Now let us fix 1/3 < s < 1/2. For ug € H*(T) we set ug,, = P<nuo and we
denote by u, € C(R; H>*(T)) the solutions to (2.1) emanating from ug . In view
of (6.2) we infer that for any n € N*,

lunllzg < luolls (1 + lluoll7) -

and (6.3) ensures that

(64) lim sup HP>KUn( )”L%"HS =0.
K—=+oopnenN

This proves that the sequence {u,} is bounded in L*(0,T; H*(T)) and thus u3 is
bounded in L%°(0,T; L?(T)). Moreover, in view of the equation (2.1), the sequence
{0yuy,} is bounded in L>(0,T; H3(T)). By Aubin-Lions compactness theorem, we
infer that for any T' > 0, {u,,} is relatively compact in L?(]0, T[x T).Therefore, using
a diagonal extraction argument, we obtain the existence of an increasing sequence
{nr} C Nand u € L*>*(]0,T[; H*(T)) such that

(6.5) Up,, — u weak star in L*(]0,T'[; H*(T))
(6.6) Up, — win L*(0,T; L*(T)) N L3(0,T; L3(T))
(6.7) Up, — w a.e. in |0, T[xT
(6.8) ud — u®in L'(0,T; LN(T))

These convergences results enable us to pass to the limit on the equation and to
obtain that the limit function u satisfies (2.2) with F(u) = u® — 3P, (u?). Therefore
the unconditional uniqueness result ensures that u is the only accumulation point
of {u,} and thus {u,} converges to u in the sense (6.5)-(6.8). Now, using the
bounds on {u,} and {d:uy}, it is clear that for any ¢ € C°(T) and any T > 0,
the sequence {t — (un,¢)ys} is uniformly equi-continuous on [0,7]. By Ascoli’s
theorem it follows that

(Un, @)= — (u, @) in C([0,T]) .
In particular, for any fixed N > 1, it holds

lim sup ||[P<n(un—u)(t)||g=0.
N0 (0,7

This last limit combined with (6.4) ensures that
u, = u in C([0,T]; H*(T)) .

and thus v € C([0,T]; H*(T)).

Finally, to prove the continuity with respect to initial data, we take a sequence
(uf") € Bps(0,2||luo|lzs) that converges to ug in H*(T). Denoting by u" the
associated solutions to (2.1) that we have constructed above, we obtain in exactly
the same way as above that for T ~ min(1, (1 + |luol/z+)~1?) it holds

lmllzg < llwoll (1 + lluolF).— lim sup 1P et (8) 212 = 0.

and
(uma d))HS — u7¢) in C([OaT]) .

(
This ensures that w,, — wu in C([0,T]; H*(T)) and completes the proof of the
unconditional well-posedness of (2.1).
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6.3. Back to the mKdV equation. For s > 0 we define the application
LYyPH; — LPH
u=u(t,z) — Y(u)="Yw)(t,z)=ut,xz+ fot Py(u?(7)) dr)

It is easy to check that W is a bijection from L H; into itself and also from
C(]0,T); H*(T) into itself with inverse bijection defined by

v o

t

U l(u) = u(t,z /0 Py(u*(1)) dT) .

Moreover, for s > 1/3, it is not too hard to check that v € LFH? is a solution
of (2.2) with F(u) = u? if and only if ¥(u) € L¥HS is a solution to (2.2) with
F(u) = u® — 3Py(u?). Finally, we claim that ¥ and U1 are continuous from
C(]0,T); H*(T) into itself. Indeed, let (vy,)n>1 € C([0,T]; H*(T)) that converges to
v in C([0,T); H*(T)). Then denoting fot Py(v2)(s) ds by ay(t) and f(f Po(v?)(s)ds
by a(t) , it is easy to check that

(6.9) lim  sup (an(t) —a(t) =0
n— o0 tE[O,T]
and
sup  [Wa)(t) = W)l < sup |[oalt, -+ an(®)) = oty +an(t))|
te[o,1] t€[0,1] He
+ sup [|o(t, + an(®) = it +a@®)
te[0,1] Hs

It is clear that the first term of the right-hand side of the above estimate converges
to 0. Now, the second term can be rewritten as

. 24 1/2
I, = sup Z kS etFlan =)z ¢ k)‘ )
tel0,1] keZ

Since v € C([0,T]; H*(T)), {v(t), t € [0,T]} is a compact set of H*(T) and thus

lim  sup Z |k|**[ot, k)| =0,
N —o00 tE[O,T] |k|2N

which combined with (6.9) ensures that lim, ,~ I, = 0 and completes the proof
of the desired continuity result.

These properties of ¥ combined with the unconditional local well-posedness of
the renormalized mKdV equation in H*(T), clearly leads to Theorem 2.4.
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