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Veering of dispersion curves and prestress
effects in multi-wire helical waveguides

Fabien Treyssède

Abstract Guided wave based methods are of potential interest for the non destruc-

tive evaluation of cables. However, the understanding of mechanisms governing the

propagation of guided waves is particularly complicated owing to the helical and

multi-wire structure of strands, the basic elements constituting cables. The com-

plexity of the problem is further increased by the effect of high tensioning forces

applied on cables. A typical dispersion curve veering phenomenon, sensitive to the

applied loads, occurs in seven-wire strands, a common type of strands in modern

constructions. The main goal of this paper is to highlight the origin of this phe-

nomenon.

1 Introduction

Based on a semi-analytical finite element (SAFE) method, recent progress has been

made in the modeling of wave propagation in seven-wire strands [1, 2]. Neverthe-

less, some works are still required. A typical dispersion curve veering phenomenon

occurs for the fundamental longitudinal mode. This phenomenon, sometimes re-

ferred to as notch frequency, has been observed both experimentally [3] and numer-

ically [1] but its origin is still unexplained. Besides, the notch frequency significantly

increases with applied loads. This increase turns out to be essentially caused by in-

terwire contact effects, as shown by numerical tests [2]. However, the convergence

of numerical results has to be assessed. In particular, further works are needed to

quantitatively check the modeling of contact with reference solutions.
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2 Numerical method

SAFE modeling of helical waveguides under prestress. The application of a

SAFE method consists in assuming a axial harmonic dependence of acoustic fields

before finite element discretization, so that only the cross-section needs to be

meshed. With this technique, the axial variables must be separable. For helical

strands, this separation is possible with a specific curvilinear coordinate system,

called twisting coordinate system [1, 4], which has constant non zero torsion but

zero curvature. In order to acount for prestress effects, one starts from the so-

called linearized updated Lagrangian formulation of non-linear mechanics (see for

instance Ref. [5]). This formulation is here extended to twisting coordinates and

adapted to a SAFE formulation. The SAFE method finally leads to the following

kind of eigensystem, characterizing the elastic guided modes in prestressed strands:

{K1 −ω
2M+ ik(K2 −KT

2 )+ k2K3}U = 0, (1)

The matrices Ki (i=1,2,3) include geometric stiffness terms related to the Cauchy

prestress of the static state. Further details can be found in Refs. [2].

Static contact modeling. The first step of the analysis is to compute the static

prestress state. One starts from the homogenization method described in Ref. [6]. In

this paper, an iterative procedure is used to properly account for contact, based on a

node-to-node procedure together with a direct elimination method [7]. As the axial

load is incremented, contact pairs of nodes are formed on both sides of the initial

point-to-point interwire contact zone, until the prescribed axial strain ε is reached.

3 Results

Notch frequency phenomenon and interwire contact effects. The cross-section

of the seven-wire strand (steel) is meshed with six-node triangles and refined at

contact regions. Based on the static model, the contact half-width is computed as a

function of the normal contact force up to the prescribed axial strain ε=0.6%. Good

agreement is found with Hertz analytical solution for parallel cylinders (results not

shown for paper conciseness). Based on the SAFE model, Figure 1a shows the notch

frequency phenomenon of the fundamental longitudinal mode, usually denoted as

L(0,1). The notch frequency increases from 0.32 (62Hz) in the unloaded case to

0.42 (82Hz) in the loaded case. These values are in agreement with the experiments

of Refs. [3, 8]. The notch frequency corresponds to a curve veering phenomenon

between the dispersion curves of two distinct longitudinal-like wave modes [1], la-

beled as L(0,1)a and L(0,1)b. As recalled in Sec. 1, its increase is indeed mainly

due to the increase of interwire contact width rather than prestress itself [2]. In order

to briefly assess convergence, Fig. 1a also gives results with a refined mesh (46893

dofs): changes are negligible for the loaded case, thus indicating a good accuracy
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with the initial mesh. Convergence can yet hardly be achieved for the unloaded case,

somehow purely theoretical, because the contact width tends to zero.
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Fig. 1: (a) Curve veering for ε=0% (gray) and for ε=0.6% (black), continuous lines:

initial mesh (12369 dofs), dashed lines: refined mesh (46893 dofs). (b) Dispersion

curves in the (k,ω) plane for the uncoupled blocked peripheral wire.

The uncoupled peripheral wire. Following the analysis of Ref. [9], curve veering

phenomena usually occur in a weakly coupled system and may be predicted from the

uncoupled system. Let us consider an uncoupled peripheral wire, radially blocked

along its contact width. Blocking the radial displacement in such a narrow region

completely breaks the circular symmetry of the wire and, as opposed to the free

cylinder case, the compressional, flexural and torsional motions get fully coupled.

A curve veering actually occurs, in a very similar fashion as for the fully coupled

strand. This veering is due to the coupling between two modes, one of longitudinal

type and the other of flexural type, as shown in the (k,ω) plane by Fig. 1b. It can be

inferred that the origin of the notch frequency inside seven-wire strands lies in the

radial displacement constraint imposed on peripheral wires by the central one.
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