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Abstract

Helical multi-wire cables are widely used in bridges (suspended or prestressed) and anchored retaining wall construc-
tions. Such structures can be damaged or degraded due to corrosion and fatigue. Non destructive evaluation techniques
are required to reveal defects inside cable structures. Among these numerous techniques, elastic guided waves are of
potential interest owing to their ability to propagate over long distances. However in civil engineering, cables are
often buried or grouted in large solid media that can be considered as unbounded. Waves can strongly attenuate along
the guide axis due to the energy leakage into the surrounding medium, which reduces the propagating distance. This
energy leakage can be enhanced in helical structures, which further complicates their inspection. Searching modes
with low attenuation becomes necessary. The goal of this work is to propose a numerical approach to compute modes
in embedded helical structures, combining the so-called semi analytical finite element method and a radial perfectly
matched layer technique. Two types of radial perfeclty matched layer, centered and off-centered, are considered. Both
are implemented in a twisting coordinate system which preserves translational invariance. The centered configuration
is validated thanks to the twisted cylinder test case. The effect of twist on the eigenspectrum is briefly discussed. Then,
an embedded helical wire of circular cross-section is considered. The off-centered configuration is shown to give the
same results as the centered one. The effect of twist on modal attenuation is investigated. Finally, computations are
performed for a seven-wire strand embedded into concrete, widely used in civil engineering cables.

Keywords: waveguide, helical, embedded, leaky, finite element, perfectly matched layer

1. Introduction

Helical structures are present in various domains, such as electromagnetism and civil engineering. A typical exam-
ple in civil engineering is multi-wire cables, widely used in bridges (suspended or prestressed) and anchored retaining
wall constructions. Cables can be damaged or degraded due to corrosion and fatigue. Non destructive evaluation
(NDE) techniques are required to evaluate defects inside cable structures. Among these numerous techniques, elastic
guided waves are of particular interest owing to their ability to propagate over long distances. Because such waves
are multimodal and dispersive, modeling tools are required in practice for interpreting measurements and optimizing
inspection techniques.

Due to the complexity of equations in helical systems, analytical solutions are difficult or impossible to achieve.
Purely numerical approaches have to be adopted. A classical method that has been widely used for straight waveguides
is the so-called semi-analytical finite element (SAFE) method. This method restricts the FE discretization to transverse
directions only [1, 2, 3, 4]. It has been applied for modeling closed helical waveguides (guides in vacuum) in Ref. [5],
where the SAFE modeling of a free single helical wire has been presented based on helical coordinates. A particular
twisting coordinate system has then been proposed for the analysis of single helical wires as well as multi-wire strands
[6].

Regardless helicity, structural waveguides are often embedded in large solid media that can be considered as
unbounded. Waves can radiate energy into the surrounding medium and strongly attenuate along the guide axis, which
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reduces the propagation distance. Such wave modes are referred to as leaky modes [7, 8]. This energy leakage can be
enhanced in curved or helical structures, which makes their NDE more difficult. The curvature effect on radiation loss
has been thoroughly studied in electromagnetism [9, 10, 11, 12, 13] and sometimes investigated in elastodynamics
[14, 15]. In the context of NDE, searching the less attenuated modes is necessary in order to maximize the inspection
distance.

As opposed to closed waveguides, the numerical modeling of embedded waveguides encounters two difficulties:
the cross-section is unbounded and the amplitude of leaky modes transversely grows [16, 17, 18, 19]. In order to
overcome these difficulties, the SAFE method must be combined with other numerical techniques.

As far as straight waveguides are concerned, several techniques have been recently proposed to extend the SAFE
method to guides embedded in a solid matrix. A simple numerical procedure is the absorbing layer (AL) method
proposed in Refs. [20, 21], which consists in creating artificial viscoelastic layers in the surrounding medium for
absorbing waves. Instead of using artificial layers, Mazzotti et al. [22] have combined the boundary element method
(BEM) with the SAFE method, which avoids the discretization of the unbounded surrounding domain. An alter-
native technique is the perfectly matched layer (PML) method. Recently, the authors have presented and analyzed
SAFE-PML methods for modeling embedded solid multi-layer plates [23] and three dimensional waveguides of ar-
bitrary cross-section [24]. These works are yet limited to straight waveguides. In electromagnetism, a SAFE-PML
formulation has been proposed for the analysis of twisted microstructured optical fibers [25, 26]. Yet to the authors
knowledge, the modeling of embedded helical structures has not yet been considered in elastodynamics.

The goal of this paper is to propose a SAFE-PML technique to compute leaky modes in embedded helical struc-
tures. The twisted SAFE-PML method is described in Sec. 2. The equilibrum equations of elastodynamics are written
in twisting coordinates to account for the helical geomtery. In this coordinate system, a radial PML is applied. This
radial PML can be centered or off-centered. The method is validated in Sec. 3 thanks to the cylindrical bar test case,
which can support any arbitrary twist. The effect of twist on the eigenspectrum is briefly discussed. Two numerical
applications are then presented in Sec. 4. The first example consists in studying an embedded helical wire of circu-
lar cross-section. The effect of twist on the axial attenuation of modes is investigated. The second application is a
seven-wire strand embedded into concrete. Seven-wire strands are widely used in civil engineering cables. They are
typically made by one straight cylindrical wire surrounded by one layer of six helical wires.

2. Numerical method

2.1. Elastodynamics in twisting coordinates
Let us introduce a twisting coordinate system (x, y, z) defined from the Cartesian coordinates (X,Y,Z) [6]:

x = X cos(τZ) + Y sin(τZ)
y = −X sin(τZ) + Y cos(τZ)
z = Z

(1)

where τ denotes the torsion, which characterizes the rotation rate of the (x, y) plane along the z axis. In the Cartesian
basis (eX , eY , eZ), the twisting basis (ex, ey, ez) is expressed as follows:

ex = cos(τZ)eX + sin(τZ)eY

ey = − sin(τZ)eX + cos(τZ)eY

ez = eZ

(2)

One considers a three-dimensional helical waveguide Ω̃ = S̃×] −∞,+∞[ whose cross-section S̃ lies in the transverse
(x̃, ỹ) plane and is invariant along the z axis. The tilde notation will be explained through the introduction of PML in
Sec. 2.2.

The time harmonic dependence is chosen as e−iωt. Linear elastic materials are assumed. As this study focuses
on eigenmodes, acoustic sources and external forces are discarded. In the twisting coordinate system, the three-
dimensional variational formulation of elastodynamics is given by [6]:∫

Ω̃

δε̃T σ̃dΩ̃ − ω2
∫

Ω̃

ρ̃δũT ũdΩ̃ = 0 (3)
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(a) (b)

Figure 1: (a) Off-centered twisting cylindrical coordinates (xO′ , 0, yO′ = 0), (b) Truncated section with an off-
centered PML.

where dΩ̃ = dx̃dỹdz. The strain-displacement relation is:

ε̃ =

(
LS̃ + Lz

∂

∂z

)
ũ (4)

where the operators separating transverse from axial derivatives are:

LS̃ =



∂/∂x̃ 0 0
0 ∂/∂ỹ 0
0 0 ΛS̃

∂/∂ỹ ∂/∂x̃ 0
ΛS̃ −τ ∂/∂x̃
τ ΛS̃ ∂/∂ỹ


, Lz =



0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0


(5)

with ΛS̃ = τỹ
∂

∂x̃
− τx̃

∂

∂ỹ
.

The formulation (3) holds for any kinematically admissible displacement δũ = [δũx δũy δũz]T . The superscript
T denotes the matrix transpose. The notation δε̃ = [δε̃xx δε̃yy δε̃zz 2δε̃xy 2δε̃xz 2δεyz]T is the virtual strain vector.
Similarly, σ̃ = [σ̃xx σ̃yy σ̃zz σ̃xy σ̃xz σ̃yz]T denotes the stress vector. Vector components are expressed in the twisting
basis (ex, ey, ez). The stress-strain relation is given by σ̃ = C̃ε̃, where C̃ is the matrix of material properties. ρ̃ is the
material mass density. We assume that C̃ and ρ̃ depend only on the twisting transverse coordinates (x̃, ỹ), which means
that the problem is translationally invariant along the z axis.

2.2. Radial PML

Let us define the cylindrical representation (r, θ, z) of the twisting coordinates (x, y, z) from: x̃ = xO′ + r̃ cos θ,
ỹ = yO′ + r̃ sin θ. In the (x, y) plane, the point O′ of coordinates (xO′ , yO′ ) is the center of this cylindrical system. xO′

and yO′ are independent of the axial coordinate z. As shown by Fig. 1a, the point O′ thus defines a helix as it travels
in the z direction. A helix curve can be characterized by two parameters: Rh, the helix radius in the (x, y) plane and
Lh, the helix step along the z axis. The torsion of the twisting coordinate system attached to the helix is defined by
τ = 2π/Lh [6]. In the remainder of this paper, we will set yO′ = 0 without loss of generality.
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(a) (b)

Figure 2: (a) Centered twisting cylindrical coordinates (xO′ = yO′ = 0), (b) Truncated section with a centered PML.

For clarity, the Jacobian matrix of the transformation from (x̃, ỹ, z) to (r̃, θ, z) and its inverse are given by:

J =

 ∂x̃/∂r̃ ∂x̃/∂θ ∂x̃/∂z
∂ỹ/∂r̃ ∂ỹ/∂θ ∂ỹ/∂z
∂z/∂r̃ ∂z/∂θ ∂z/∂z

 =

 cos θ −r̃ sin θ 0
sin θ r̃ cos θ 0

0 0 1

 ,
J−1 =

 ∂r̃/∂x̃ ∂r̃/∂ỹ ∂r̃/∂z
∂θ/∂x̃ ∂θ/∂ỹ ∂θ/∂z
∂z/∂x̃ ∂z/∂ỹ ∂z/∂z

 =
1
r̃

 r̃ cos θ r̃ sin θ 0
− sin θ cos θ 0

0 0 r̃


(6)

The formulation (3) is now transformed into cylindrical coordinates, but with vectors and tensors still expressed
in the basis (ex, ey, ez). One has dΩ̃ = r̃dr̃dθdz. The operator Lz of the strain-displacement relation (4) is unchanged.
The operator LS̃ is rewritten, thanks to the Jacobian matrix J−1 in Eq. (6), by replacing ∂/∂x̃, ∂/∂ỹ and ΛS̃ with:

∂

∂x̃
= cos θ

∂

∂r̃
−

sin θ
r̃

∂

∂θ
,

∂

∂ỹ
= sin θ

∂

∂r̃
+

cos θ
r̃

∂

∂θ
, ΛS̃ = −τxO′ sin θ

∂

∂r̃
− τ

(
xO′

cos θ
r̃

+ 1
)
∂

∂θ
. (7)

The main difficulty for modeling an embedded waveguide is the unbounded nature of its cross-section. The basic
idea proposed in this paper consists in closing the cross-section thanks to a PML introduced along the transverse
directions, in the exterior domain to absorb waves. The unbounded section is hence truncated at a finite distance. In
this paper, S̃ denotes the truncated section including PML. The tilde notation used throughout this paper means that a
PML has been introduced along the transverse direction.

The PML technique for open waveguides consists in transforming real transverse coordinates [23, 24, 25] into
complex ones. With a PML applied in the radial direction, the formulation (3) can then be interpreted as the analytical
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continuation of equilibrium equations into the complex radial coordinate r̃ defined as:

r̃(r) =

∫ r

0
γ(ξ)dξ (8)

where γ(r) is a complex function satisfying:

• γ(r) = 1 for r ≤ d

• Im{γ} > 0 for r > d

d is the radius of the PML interface. In this paper, a twisted radial PML will be called off-centered if xO′ , 0 and
centered if xO′ = 0 (see Figs. 1a and 2a respectively). The centered PML is of particular interest and will be discussed
later in Secs. 2.4 and 3. The main advantage of the off-centered PML is that the computational domain can be greatly
reduced compared to the centered PML, as shown later in Sec. 4.1 for the analysis of a single helical wire.

As shown in Figs. 1b and 2b, the whole cross-section of the problem (including PML) is typically a circle of radius
d + h. On the exterior boundary of the PML, the boundary condition can be arbitrarily chosen (usually of Dirichlet
type).

From Eq. (8), the change of variables r̃ 7→ r yields for any function f̃ :

∂ f̃
∂r̃

=
1
γ

∂ f
∂r
, dr̃ = γdr (9)

where f̃ (r̃, θ, z) = f (r, θ, z). Applying this change of variables, the formulation (3) can be rewritten in real radial
coordinates. One has dΩ̃ = r̃γ/rdxdydz. Following Eqs. (7) and (9), the operator LS̃ given by Eq. (5) is transformed
by replacing ∂/∂x̃, ∂/∂ỹ and ΛS̃ with:

∂

∂x̃
=

cos θ
γ

∂

∂r
−

sin θ
r̃

∂

∂θ
,

∂

∂ỹ
=

sin θ
γ

∂

∂r
+

cos θ
r̃

∂

∂θ
, ΛS̃ = −

τ

γ
xO′ sin θ

∂

∂r
− τ

(
xO′

cos θ
r̃

+ 1
)
∂

∂θ
. (10)

Finally, the variational formulation and the strain-displacement relation must be transformed back to the initial
twisting coordinates (x, y, z). Thanks to the Jacobian matrix J of Eq. (6), replacing cos θ and sin θ by (x − xO′ )/r and
y/r respectively, the derivatives with respect to (r, θ) can be expressed in terms of (x, y) as follows:

∂

∂r
=

x − xO′

r
∂

∂x
+

y
r
∂

∂y
,

∂

∂θ
= −y

∂

∂x
+ (x − xO′ )

∂

∂y
. (11)

From Eqs. (10) and (11), the initial operator LS̃ is finally transformed into the following operator, denoted as LS :

LS =



Λx 0 0
0 Λy 0
0 0 ΛS

Λy Λx 0
ΛS −τ Λx

τ ΛS Λy


. (12)

with the notations:

Λx =

(
(x − xO′ )2

γr2 +
y2

r̃r

)
∂

∂x
+

(
1
γr2 −

1
r̃r

)
(x − xO′ )y

∂

∂y
, Λy =

(
1
γr2 −

1
r̃r

)
(x − xO′ )y

∂

∂x
+

(
y2

γr2 +
(x − xO′ )2

r̃r

)
∂

∂y
,

ΛS = τ

[
−

xO′

γ

y(x − xO′ )
r2 +

(
xO′

x − xO′

rr̃
+ 1

)
y
]
∂

∂x
− τ

[
xO′y2

γr2 +

(
xO′

x − xO′

rr̃
+ 1

)
(x − xO′ )

]
∂

∂y
.

(13)
As in any problem involving PML, the profile of the function γ influences the accuracy of numerical results. For

modeling embedded waveguides, this PML function has been usually set to a constant complex value [27, 28, 29, 26],
yielding a discontinuity at the PML interface. Due to FE discretization, this discontinuity may yield non negligible

5



reflection. As shown in Refs. [23, 30], a smooth profile can improve the accuracy. In this paper, a parabolic function
is set for both the real and the imaginary parts of γ:

γ(r) =


1 if r ≤ d

1 + 3(γ̂ − 1)
(

r − d
h

)2

if r > d
(14)

where γ̂ is the average value of γ inside the PML region:

γ̂ =
1
h

∫ d+h

d
γ(ξ)dξ (15)

The value γ̂ hence quantifies the PML absorption [23].

2.3. SAFE technique
The SAFE method consists in assuming the harmonic dependence of fields in the axial direction z before FE

discretization, which has the advantage to reduce the three dimensional problem to the two dimensional cross-section
of the waveguide.

Applying the SAFE technique, the displacement u and the virtual one δu are then expressed on one finite element
e as follows:

u(x, y, z) = Ne(x, y)Ueeikz, δu(x, y, z) = Ne(x, y)δUee−ikz (16)

where k denotes the axial wavenumber, Ue and δUe are the nodal displacement vectors and Ne is the matrix of
interpolating functions on the element e.

Replacing the axial derivative ∂/∂z of the trial and test functions with products by +ik and −ik respectively,
the formulation (3) is reduced from three dimensions (x, y, z) to a bidimensional problem written in the transverse
directions (x, y). The strain-displacement relation (4) and the virtual one become:

ε = (LS + ikLz) NeUeeikz, δε = (LS − ikLz) δNeUee−ikz (17)

The FE discretization of the cross-section yields finally:

{K1 − ω
2M + ik(K2 −KT

2 ) + k2K3}U = 0 (18)

with the elementary matrices:

Ke
1 =

∫
e

NeT LT
S̃ CLS̃ Ne γr̃

r
dxdy,Ke

2 =

∫
e

NeT LT
S̃ CLzNe γr̃

r
dxdy

Ke
3 =

∫
e

NeT LT
z CLzNe γr̃

r
dxdy,Me =

∫
e
ρNeT Ne γr̃

r
dxdy

Note that the SAFE-PML matrices are complex due to the functions γ and r̃ in the integrands.
Given the frequency ω, the formulation (18) corresponds to a quadratic eigenproblem with respect to k, which can

be transformed into the following linear form:

(A − kB)Û = 0 (19)

with :

A =

[
0 I

−(K1 − ω
2M) −i(K2 −KT

2 )

]
, B =

[
I 0
0 K3

]
, Û =

[
U
kU

]
(20)

In this paper, the ARPACK library [31] is used for solving the eigensystem (19). This library is based on an implicitly
restarted Arnoldi method. For each frequency, a specified number of eigenvalues is looked for around a user-defined
shift.

Note that the symmetry of K1, K3 and M implies that if k is an eigenvalue of (18), then −k is also an eigenvalue.
Thus, the eigenspectrum includes two families of solutions, (k j,U+

j ) and (−k j,U−j ), ( j = 1, . . . , n) representing n
positive-going and n negative-going waves.
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2.4. Case of centered PML

For the centered configuration (xO′ = 0), the radial PML centerline is the z-axis (see Fig. 2). As shown below,
this particular case is of interest because it allows to justify the absorption of waves inside a twisted PML thanks to
analytical wave solutions. Such a PML has been proposed for modeling embedded optical fibers in Refs. [25, 26].

Let us define the untwisting cylindrical coordinates (R̃,Θ,Z) from the Cartesian coordinates (X̃, Ỹ ,Z): X̃ =

R̃ cos Θ, Ỹ = R̃ sin Θ. The relation between twisting and untwisting cylindrical coordinates can be deduced from
Eq. (1) and yields:

r̃ = R̃, θ = Θ − τZ, z = Z (21)

One assumes negligible reflection from the exterior boundary of the truncated PML. In the untwisting coordinate
system, the radial dependence of wave fields in the PML region (R > d) is given by H(1)

n (krR̃(R)), where H(1)
n is

the Hankel function of the first kind and kr denotes the radial wavenumber (shear or longitudinal). According to the
relation (21), this radial dependence can be rewritten in twisting coordinates as H(1)

n (kr r̃(r)). Therefore for the centered
configuration, a radial PML with twist will act on wave absorption exactly in the same way as the standard radial PML
without twist, which has been thoroughly studied and validated in the literature [32, 33].

The particular case of a centered PML can thus be considered as the reference solution in order to validate the
off-centered configuration. A numerical comparison between centered and off-centered PML will be performed in
Sec. 4.1.

2.5. Modal filtering

As found for straight waveguides [23, 24], the SAFE-PML method provides many radiation modes in addition to
the modes of interest (i.e. leaky modes, in this paper). Since radiation modes mainly oscillate inside the PML, they are
strongly dependent on PML parameters: PML radiation modes cannot be considered as intrinsic to the physics and are
of no interest for NDE. However, a large number of radiation modes prevents a clear visualization of the dispersion
curves of leaky modes. A modal filtering technique must be post-processed to identify and remove these radiation
modes from the visualization.

Following previous works for straight waveguides [23, 24], the filtering criterion proposed in this paper is based
on the ratio of kinetic energy inside the PML region over the kinetic energy of the whole cross-section. Physical
modes are then identified if this ratio is smaller than a user-defined value ρmax:

|EPML|

|Etot|
< ρmax (22)

where Etot and EPML denote the modal kinetic energy of the whole cross-section (0 < r < d + h) and the modal kinetic
energy restricted to the PML region (d < r < d + h). Note that the modulus must be used in Eq. (22) since the kinetic
energy is complex due to the presence of PML. One points out that the computation of kinetic energy can be readily
performed from SAFE matrices and is similar to straight waveguides (see Ref. [6] for instance).

3. Validation

In order to validate the SAFE-PML method with twist, an embedded cylindrical bar is considered. Although the
geometry is straight, such a test case supports any twist because the cross-section of a cylinder is circular in the (x, y)
plane and centered at O (Fig. 3a). In other words, a twisted cylinder remains a straight cylinder for any value of the
torsion τ. Results obtained with τ , 0 can then be checked with the reference solution obtained without twist (τ = 0).

3.1. Test case description

One considers a steel cylinder of radius a = 10 mm buried in concrete. The material characteristics are given in
Tab. 1. This test case is taken from the paper of Castaings et al. [20].

The PML thickness is equal to h = 0.9a. Following the suggestions of Refs. [32, 27, 23], the PML interface is
set close to the core to reduce the effects of transverse growth of leaky modes on numerical results (d = 1.1a). The
cross-section of the steel-concrete cylindrical waveguide using PML is sketched in Fig. 3b. A Dirichlet condition is
applied at the exterior boundary of the PML. Finite elements are six-node triangles (Fig. 3c) whose average length le
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Material cl (m/s) cs (m/s) ρ (kg/m3)
Steel 5960 3260 7932
Concrete 4222.1 2637.5 2300

Table 1: Material characteristics.

(a) (b) (c)

Figure 3: a) Cross-section of a cylinder in the twisting (x, y) plane, b) cross-section of an embedded cylindrical bar, c)
FE mesh (gray: steel core, black: embedding medium including PML). Dashed line: PML interface.

is set to 0.2a, satisfying the meshing criterion: le ≤ λm/5 where λm = cs/max( f ) and cs is the bulk shear velocity in
the surrounding medium (concrete). 3975 dofs (degrees of freedom) have been generated.

At each frequency, 150 modes have been solved around the positive eigenvalue shift +ω/cl, where cl denotes
the bulk longitudinal velocity in the surrounding medium. In this way, only modes of positive phase velocity are
calculated.

3.2. Results

In order to outline the twist effect on axial wavenumbers, the SAFE-PML eigenspectrum is first briefly examined.
Figure 4a compares the spectrum of axial wavenumbers ka computed by the SAFE-PML method with twist for the
arbitrary torsion value τa = 0.134 with the reference spectrum, obtained without twist (τa = 0). Results are presented
for the dimensionless frequency ωa/cs0 = 1.5, where cs0 denotes the shear velocity of the core (steel).

As shown in Fig. 4a, the SAFE-PML method does not only compute leaky modes but also gives many radiation
modes. These radiation modes correspond to standing waves mainly oscillating in the PML region. As an example,
Fig. 5 depicts the axial displacement of a leaky mode and of a radiation mode. Without twist, radiation modes belong
to two spectra of origin (ω/cl, 0) and (ω/cs, 0). As explained in Refs. [23, 24], these modes correspond to the
discretization of two continua associated with compressional and shear waves respectively. With twist, the SAFE-
PML eigenspectrum appears to be spread over a larger region than without twist. This phenomenon will be explained
below.

For a clear visualisation of leaky modes, radiation modes must be filtered out by the criterion defined in Sec. 2.5.
Figure 4b shows the eigenspectrum obtained after modal filtering. The remaining modes corresponds to leaky modes,
which can be identified by inspecting their mode shapes. In Fig. 4b, the same labeling of modes as in Ref. [34]
is adopted: L(0,m) for compressional modes, T (0,m) for torsional modes and F(n,m) for flexural modes, where n
denotes the circumferential order and m is the radial index.
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(a) (b)

Figure 4: Spectrum at ωa/cs0 = 1.5 of the steel-concrete waveguide computed by the SAFE-PML method with
d = 1.1a, h = 0, 9a, le = 0.2a, γ̂ = 2 + 4i, (a) without filter and (b) after modal filtering of radiation modes
(ρmax = 0.9). Crosses: results for the twisting system (τa = 0.134), circles: reference results (τa = 0).

(a) (b)

Figure 5: Modulus of axial displacement of (a) a leaky mode (the L(0, 1) mode) and (b) of a radiation mode at
ωa/cs0 = 1.5.

It can be observed that the wavenumbers of axisymmetric modes, i.e. compressional L(0, 1) and torsional T (0, 1)
modes, are left unchanged by the twist. However, the wavenumbers of flexural modes F(n,m), which are non-
axisymmetric, turn out to be different in twisting coordinates. Without twist (τa = 0), it is well-known that the axial
wavenumbers of F(m, n) occur in pairs of double roots [34]. With twist, these roots indeed become distinct due to the
rotation of the (x, y) plane around the Z axis.

This phenomenon, which has already been found for closed waveguides [6, 35], can be explained analytically by
expressing the dependence of wave solutions in both cylindrical systems (untwisting and twisting). Let us denote
the axial wavenumbers in the untwisting and twisting systems by K and k respectively. For leaky modes (diverging
waves), the dependence of wave fields in terms of the untwisting cylindrical coordinates is in H(1)

n (krR)e±inΘeiKZ .
Inside the PML region, these solutions are rewritten in complex coordinates as H(1)

n (krR̃(R))e±inΘeiKZ . Thanks to
Eq. (21), the dependence of wave fields can be readily rewritten as a function of twisting cylindrical coordinates, in
H(1)

n (kr r̃(r))e±inθei(K±τn)z. This implies that:
k = K ± τn. (23)

With twist, the axial wavenumbers of leaky modes are therefore translated by ±τna.
The translation relation (23) also holds for radiation modes because the geometry of the whole cross-section is
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(a) (b)

Figure 6: Energy velocity dispersion curves of the steel-concrete waveguide computed by the SAFE-PML method
(d = 1.1a, h = 0, 9a, le = 0.2a), obtained after modal filtering (ρmax = 0.75). Crosses: results for the twisting system
(τa = 0.134), circles: reference results (τa = 0).

circular. This explains why the eigenspectrum of radiation modes extends to a larger region than without twist (see
Fig.4a). Compared to leaky modes, note that the radial dependence of radiation modes is a linear combination of
Hankel functions of the first and of the second kind (diverging and converging waves).

Figure 6 shows the energy velocity dispersion curves as well as the axial attenuation in dB/m (equal to 8.686 Im(k))
obtained from the twisting and the untwisting systems. It can be observed that the curves computed in both systems
are equal. This has been also found for closed waveguides [6] and confirms that the wavenumber translation in ±τna
does not change the physical nature of modes in cylinders.

One points out that the dispersion curves shown in Fig. 6 are in good agreement with those presented in Refs. [22].
This further validates the twisted SAFE-PML approach proposed in this paper.

4. Numerical applications

4.1. Embedded helical wire

One considers a steel helical wire buried in concrete with the same material characteristics as in Sec. 3. The helix
radius Rh and step Lh are respectively equal to 2a and 46.9a. These values yield a helix lay angle of φ = 15◦, defined
from the relation tan φ = 2πRh/Lh. The torsion of the twisting system is τa = 0.134a. Inside a plane cut normal to the
helix, the cross-section of the steel core is circular of radius a. In the (x, y) twisting plane, note that this cross-section
is not circular [6].

The interface position of the centered PML and the off-centered PML are set to d = 3.1a and d = 1.1a respectively.
The origin O′ of the off-centered PML lies on the helical axis of the wire (as in Fig. 1a). For both PMLs, the thickness
and the averaged value of the absorbing function are: h = 0.9a, γ̂ = 2 + 4i.

Due to the relatively close correspondence of modes in a straight cylinder, one keeps the same labeling of modes
as in Sec. 3.

4.1.1. Validation of the off-centered PML
Since the computational domain with a centered PML is quite large (see Fig. 2b), the off-centered configuration

should be preferred to model an embedded helical wire (see Fig. 1b). The goal of this subsection is to check that the
off-centered PML technique properly absorbs waves in a twisting system. Results are compared with those computed
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(a) (b)

Figure 7: Modulus of displacement of the L(0, 1) mode in a) y and b) z directions at ωa/cs0 = 1.5 computed from
a centered PML (left) and an off-centered PML (right). Continuous line: steel-concrete interface, dashed line: PML
interface.

with a centered PML method, which has been theoretically justified with twist in Sec. 2.4 and checked by numerical
results in Sec. 3.

Figure 7 compares some displacement components of the L(0, 1) mode obtained from the centered and the off-
centered PML at the dimensionless frequency ωa/cs0 = 1.5. Finite elements are six-node triangles of averaged length
le = 0.2a. The mode shapes inside the physical region, i.e. outside the PML, obtained by the off-centered PML are
in good agreement with those of the centered PML. The axial wavenumbers ka computed by both PMLs are also in
agreement: 0.9718 + 0.1222i for the centered PML and 0.9768 + 0.1218i for the off-centered PML.

In this example, 5775 dofs (degrees of freedom) have been generated with the off-centered PML method against
21579 dofs with the centered PML. Another advantage of the off-centered PML technique is that the PML interface
can be set closer to the core than with a centered PML, which allows to reduce numerical problems related to the
transverse growth of leaky modes [32, 27, 23].

4.1.2. Twist effects
In this subsection, dispersion curves computed by the off-centered PML method are computed in order to highlight

the influence of twist on the attenuation of leaky modes.
One focuses on L(0,m) compressional modes, which are of interest for NDE. In cylinders, it has been shown

that these modes have low axial attenuation and dispersion as well as high energy velocity [36, 37]. Such interesting
properties occur when the L(0,m) phase velocities are close to the longitudinal velocity cl0 of the core. In order to find
these modes and avoid calculating too many radiation modes, the computation of eigenvalues can thus be centered
around ω/cl0. In this way, only 25 modes are computed at each frequency.

Figure 8 compares the dispersion curves for the energy velocity and the modal attenuation along the z axis, com-
puted for a helical and for a cylindrical wire. Note that a large frequency range must be considered to get the dispersion
curves of higher order compressional modes (here, up to the L(0, 6) mode). The average length of finite elements has
been set to le = 0.05a in order to satisfy the meshing criterion le ≤ cs0/5 fmax. About 82000 dofs have been generated.
The number of dofs would have been tremendously larger with a centered PML.

Figure 8a shows that waves travel at slower energy velocity in the embedded helical wire than in a straight one. It
should yet be noted that compressional modes remain faster than the other modes.

As shown in Fig. 8b, the axial attenuation of L(0,m) modes is higher for the helical wire than for the straight
one. This difference becomes more significant as the order of modes increases. This result shows that the twist of the
helical geometry enhances the axial attenuation of modes. A similar effect has also been observed for twisted optical
fibers [25] as well as for curved electromagnetic waveguides [12, 13].

This phenomenon can be confirmed by comparing the displacement of compressional modes in the helical and
cylindrical wires. As an example, Fig. 9 gives the axial displacement of the L(0, 6) mode at its frequency of minimum
attenuation (ωa/cs0 ' 17.73). For the cylindrical wire, the displacement at the interface between the steel core and the
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(a) (b)

Figure 8: Dispersion curves for a) the energy velocity and b) the axial attenuation in an embedded cylinder (black)
and in a helical wire with φ = 15◦ and Rh = 2a (gray). ρmax is set to 0.9.

(a) (b)

Figure 9: Modulus of the axial displacement of the L(0, 6) mode at ωa/cs0 = 17.73 in an embedded a) cylinder and b)
helical wire (φ = 15◦,Rh = 2a).
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(a) (b)

Figure 10: a) Cross-section FE mesh for an embedded seven wire strand (φ = 7.9◦), b) zoom. Dashed line: PML
interface.

surrounding medium almost vanishes, which explains why the attenuation of this mode is low. For the helical wire,
the interface displacement turns out to be larger, and therefore the energy leakage is greater. As shown in Ref. [14],
the same phenomenon occurs in curved plates.

These results show that the propagating distance of leaky modes in helical waveguides can be limited, which
complicates the NDE of such structures.

4.2. Embedded seven-wire strand

One considers a steel seven-wire strand buried in concrete. The mechanical properties of steel are taken from
Ref. [6] and are as follows: E = 2.17e11 Pa, ν = 0.28, ρ = 7800 kg/m3, cl0 = 5963.7 m/s, cs0 = 3296.6 m/s. The
properties of concrete are the same as in Tab. 1. To model the embedded strand, a centered PML is used. The PML
parameters are: d = 3.1a, h = 0.9a and γ̂ = 2 + 4i. The cross-section of the structure, consisting of one central
cylindrical wire surrounded by six peripheral helical wires, has been meshed using Gmsh [38] (see Fig. 10a). The
central wire radius is a = 2.7 mm. The helical wire radius is equal to 0.967a. The helix pitch is Lh = 240 mm, yielding
a helix radius Rh = 1.967a and a lay angle φ = 7.9◦. The torsion of the twisting coordinate system is τa = 0.0705.

As shown in Fig. 10b, there is no contact between peripheral wires. However, each peripheral wire has a contact
point with the central wire. For simplicity, one assumes stick contact conditions (no slip, no separation and no friction
are considered). The continuity of displacement is enforced at the six contact points as well as at the interface between
the peripheral wires and the embedding medium (concrete). The region between two consecutive peripheral wires is
filled with concrete up to a certain level. The region without concrete is considered as vacuum. For a better accuracy
of numerical results, the mesh has been refined at contact points and in the concrete region between two consecutive
peripheral wires, yielding 13233 dofs.

Figure 11 gives the dispersion curves for the energy velocity and the axial attenuation computed by the SAFE-
PML method. 150 modes have been calculated, centered around +ω/cl (where cl is the bulk velocity of concrete).
Comparing Fig. 11a with the results of Ref. [6] obtained for a free strand (i.e. in vacuum), the modal behavior is
strongly modified due to the introduction of the surrounding medium. In addition to leakage effects, one points out
that the surrounding medium has the other effect to make peripheral wires almost in contact (as can be seen in Fig. 10),
which further modifies dispersion curves.
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(a) (b)

Figure 11: Dispersion curves for the embedded seven-wire strand for: a) the energy velocity and b) the axial attenu-
ation. PML parameters are: d = 3.1a, h = 0.9a and γ̂ = 2 + 4i. The arrow indicates the velocity drop of the L(0, 1)
mode.

Although the modal behavior of the strand is far more complex than in a single wire, a fundamental compressional
mode and a pair of flexural modes can be identified (by a visual inspection of mode shapes). These modes have a
global motion and are labeled as L(0, 1) and F(1, 1)± respectively. The notation ± for flexural modes is used to point
out the lack of axisymmetry of the structure, yielding distinct roots (instead of double roots with a cylinder).

For a free strand, it must be recalled that the L(0, 1) mode suffers a sudden energy velocity drop occuring at
ωa/cs0 ' 0.35 (see Ref. [6, 39]). This phenomenon is typical of seven-wire strands and is sometimes referred to as
notch frequency in the literature [40]. As can be observed in Fig. 11a, the presence of concrete embedment seems to
shift this velocity drop to a higher frequency (ωa/cs0 ' 0.6) and this phenomenon is entirely described by a single
continuous branch. Conversely, the velocity drop inside a free strand is the result of a curve veering phenomenon
between two distinct branches [6].

From Fig. 11b, it is interesting to note that the flexural F(1, 1)± and the so denoted L′(0, 1) modes have the lowest
attenuation in the frequency ranges [0, 1.5] and [2, 2.5] respectively. Such modes could be useful for the NDE of
embedded strands. As opposed to the global compressional L(0, 1) mode, the L′(0, 1) mode is a compressional mode
of local type. Its motion is essentially confined into the central wire, yielding low energy leakage into the surrounding
medium.

5. Conclusion

In this work, twisted SAFE-PML methods have been applied to compute the eigenmodes of embedded helical
structures. Two kinds of radial PML, centered and off-centered, have been implemented.

The centered PML method has been justified by theoretical considerations. It has also been validated by numerical
tests perfomed on an arbitrarily twisted cylindrical bar. Results have shown that the eigenspectrum with twist is spread
over a larger region than without twist. This phenomenon has been explained by the translation relation existing
between the axial wavenumbers of the twisting and the untwisting systems.

For the modeling of a single embedded helical wire, an off-centered PML has been proposed. The advantage of
this technique is that the PML interface is close to the wire cross-section. This allows to significantly reduce the
computational domain compared to the centered PML technique and avoid numerical problems with the transverse
growth of leaky modes. The off-centered PML method has been checked numerically from a comparison of results
with those computed with the centered PML method. From a physical point of view, numerical results show that the
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twist of helical wires enhances the axial attenuation of modes compared to straight guides. This can make the NDE
of helical waveguides more difficult.

Finally, the numerical study of an embedded seven-wire strand has shown that the dispersion curves are strongly
modified in the presence of the surrounding medium. Numerical results have allowed to identify two global flexural
modes and one local compressional modes that have the lowest attenuation in their respective frequency range. Such
modes could be useful for the NDE of embedded strands.
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