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Three-dimensional modeling of elastic guided waves excited by arbitrary sources
in viscoelastic multilayered plates

Fabien Treyssèdea,∗,

aLUNAM Université, IFSTTAR, Route de Bouaye, 44344 Bouguenais, France

Abstract

This paper provides a modal solution for the three-dimensional modeling of Lamb and SH waves excited by sources
of arbitrary shape. This solution is applicable to elastic and viscoelastic plates, in the far-field as well as in the near-
field regions, under the assumption of transverse isotropy about the thickness direction. The theoretical developments
are conducted based on a semi-analytical finite element formulation. This formulation yields a one-dimensional
modal problem, fast from a computational point of view, and allows to readily handle heterogeneous materials having
depth-varying properties (multilayered, piecewise or continuously varying, functionally graded). The modal solution
is shown to be expressed in terms of Hankel functions of multiple order thanks to a proper application of inverse
transforms and Cauchy residue calculus. The link between the proposed formulation and a fully analytical approach
is discussed. The solution of this paper is then successfully compared to literature results and degenerates to the
point source case. Formula are presented to calculate pointsource excitabilities from lines sources. These formula
remain valid for non-propagating modes, viscoelastic materials and account for the near-field contribution. Finally,
the example of a viscoelastic bilayer waveguide excited by arectangular source is considered in order to check the
theoretical results.

Keywords: waveguide, plate, excitation, three-dimensional modeling, viscoelastic, excitability

1. Introduction

Lamb waves are of great interest for the non-destructive testing and the health monitoring of plate-like structures.
Such waves are dispersive and multimodal, which complicates their practical use. Dispersion curves of phase and
group velocities as functions of frequency are useful to identify modes that propagate in a frequency range with low
dispersion and low attenuation [1]. These curves representmodal properties obtained regardless excitation. For a
practical inspection system, it is also essential to determine and control the amplitudes of each guided modes excited
by a given source. This information typically allows to optimize the type and location of sensors to be used.

The 2D modeling of Lamb wave excitation and propagation has been extensively studied. Two approaches can
mainly be distinguished in order to calculate the response of waveguides under excitation. A first approach consists
in using integral transform techniques [2, 3, 4, 5, 6, 7]. With this method, the response is obtained by contour
integration in the complex plane and residue calculus, or numerical integration, of the analytical solution expressedin
the wavenumber domain.

An alternative approach is based on modal analysis, which consists in expanding the excited field as a sum of
guided modes [8, 9, 10]. The contribution of each mode is obtained from an orthogonality relation between eigen-
modes. This second method appears to be more suitable to achieve a better interpretation and optimization of signals,
as it directly provides the contribution of each mode as a function of the excitation. Additionally, this method has
allowed to introduce the useful concept of modal excitability [11, 12, 13, 14]. For a given frequency, the excitability
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of a particular mode can be defined as the ratio of the displacement of that mode to a point force applied in a given
direction.

However, the plane-strain assumption inherently used for 2D modeling implies that guided waves are not geomet-
rically attenuated as they propagate and that any source actually extends infinitely along the out-of-plane direction (a
2D point force hence corresponds to an out-of-plane line source). A 3D formulation is required in order to account
for a finite length excitation, typically generated by transducers.

The 3D modeling of Lamb wave propagation generated by finite sources is more complex. Based on contour
integration and residue calculus, point source solutions can be found for isotropic plates [15, 16, 17, 18, 19]. Mainly
based on numerical integration, further works can be found for quasi-isotropic [20], multilayered isotropic [21] or
anisotropic [22, 23, 24] plates. However, numerical integration techniques usually require a large amount of com-
putation time to evaluate the double integral of the spatialinverse Fourier transform, which has extremely irregular
integrands [22, 23].

With modal techniques, a direct way of expressing 3D wave fields in terms of modal expansions has been formu-
lated by Achenbach [9] for an isotropic plate. This novel approach uses reciprocal identities as well as the concept of
carrier waves [25] and leads to analytical solutions both for normal and tangential point loads [26]. The advantage of a
fully modal technique is to replace the double integral of the inverse Fourier transform with a modal expansion, which
is much more efficient from a computational point of view. Based on the work ofAchenbach, Wilcox [27] has derived
asymptotic far-field 3D modal excitabilities. Under the assumption that no material damping is present, Velichko and
Wilcox [13] have further extended these results to generally anisotropic multilayered media. Based on Refs. [2, 18],
Moulin et al. [28] have proposed far-field modal solutions for an isotropic plate subjected to a normal surface load of
rectangular shape. More generally, problems involving arbitrary sources can be treated by two-dimensional convolu-
tion of the point source solution, but this can be costly froma computational point of view. Further improvements are
possible.

The purpose of this paper is to provide a 3D modal solution forLamb and SH waves generalized to sources of
arbitrary shape. This solution is restricted to transversely isotropic problems with symmetry axis normal to the plate
surface (quasi-isotropy), so that the modal features of theplate do not depend on the propagation angle. This key
property allows to achieve fully modal solutions (without integral), expanded as double sums over normal modes
and Fourier coefficients of the source. This paper generalizes previous 3D modal solutions usually restricted to point
sources [26, 27, 13]. Furthermore, the proposed modal solution is shown to be applicable to viscoelastic solids as
well as in the near field region. It should be mentioned that, while the integral transform approach still applies with
complex poles, and thereby to lossy waveguides [29, 24, 30],the validity of modal techniques with complex modes
might be unclear. Complex modes typically occur with viscoelastic materials or in near-field calculations, involving
evanescent or inhomogeneous modes. In case of 2D plate modeling, it has been recently shown in Ref. [14] that
complex modes can be handled with modal expansion techniques thanks to the use of Auld’s real biorthogonality
relation, instead of Auld’s complex relation [8] (the latter only holds for real wavenumbers, i.e. propagating modes in
lossless waveguides).

The theoretical developments of this paper are mainly basedon a so-called semi-analytical finite element (SAFE)
method. Although approximate by nature, such a numerical method allows to readily handle heterogeneous materials
having depth-varying properties (multilayered, piecewise or continuously varying). The SAFE modal approach has
been essentially developed for studying 3D cylindrical waveguides of arbitrary cross-section, viscoelastic or not (see
for instance Refs. [31, 32, 33, 34, 35]), and 2D anisotropic multilayered plates subjected to line loads [36, 37]. For
plate structures, the SAFE method restricts the finite element (FE) discretization to only one dimension (along the
depth) and is thus fast from a computational point of view. Wave modes can be solved from a matrix eigensystem
using standard eigensolvers, which avoids the use of complex root finding algorithms required with fully analytical
approaches [38, 39]. A one-dimensional SAFE approach has been specifically proposed by Bai et al. [40] for com-
puting the 3D response of layered isotropic plates. These authors yet restricted their calculation to Green’s solution
(point source). Besides, the solution was not expressed in terms of Hankel functions, which may limit its practical use.
In the present paper, the source is of arbitrary shape and thewavenumber domain of integration is chosen differently,
leading to Hankel type solutions.

This paper is organized as follows. Section 2 describes the SAFE formulation required for the 3D modeling of
elastic waves. In this formulation, the displacement field retains its three components. Section 3 gives the modal
solution. The response is first derived in the wavenumber domain. The response in the space domain is then obtained
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from the application of Cauchy residue theorem. It is shown that the solution is a double sum on Lamb modes and
on the Fourier coefficients of the excitation, involving Hankel functions of multiple order. The link between the
SAFE solution and a fully analytical approach is also established. In Sec. 4, the modal solution is validated with
literature results. Formula are presented to calculate point source excitabilities from lines sources. A discussion on
orthogonality relations is provided to highlight the closed link existing between the SAFE biorthogonality relation,
the real biorthogonality relation of Auld [8] and the relation of Fraser [41]. Section 5 finally shows some examples
of SAFE calculations for a rectangular source exciting a viscoelastic bilayer plate. Results are compared with those
obtained from a double convolution of the point source solution.

One points out that plate problems of more general anisotropy, including transverse isotropy with symmetry axis
parallel to the plate surface, cannot be considered by the proposed approach. In such problems, modal properties
depend on the propagation angle and, therefore, must be computed as a function of that angle. As shown in Ref. [42]
for point sources, the response can then be obtained as a sum over normal modes by application of Cauchy residue
theorem and a finite integral over a full circumferential sweep, which has to be approximated by numerical quadrature.
If attention is restricted to the far-field region in undamped media, this circumferential integral can be avoided thanks
to the stationary phase method [13, 43] (but the computationof modal properties as a function of the propagation
angle is still necessary in order to calculate the stationary point).

2. Equations of motion

2.1. Change of basis
One assumes a linear elastic material, small strains and displacements with a time harmonice−iωt dependence. In

a fixed reference Cartesian coordinate system (x, y, z), the elastodynamic equilibrium equation is:

∇ · σ + ρω2u = −f (1)

with the stress-strain relationshipσ = C : ǫ. u, ρ andf denote the displacement, mass density and volume sources
respectively. Following Refs. [40, 42], a coordinate transformation must first be applied to rewrite the equilibrium
equations in the direction of the traveling waves.

A two-dimensional Fourier transform is applied along the directionsx andy, defined for an arbitrary function
f (x, y) as:

f̃ (kx, ky) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)e−i(kxx+kyy)dxdy (2)

kx andky are the wavenumbers in thex andy directions, respectively. In this paper, the tilde is used to denote two-
dimensional Fourier transforms. With the assumption that material properties remain constant alongx andy, spatial
derivatives in Eq. (1) are thus transformed as follows:

∂

∂x
−→ ikx,

∂

∂y
−→ iky (3)

Note that the variation of properties is allowed in thezdirection (depth, see Fig. 1).
Let us apply a polar change of variable from (kx, ky) to (k, φ), with:

kx = kcosφ, ky = ksinφ (4)

A new coordinate system (x′, y′, z) is defined, (x′, y′) being oriented at angleφ from (x, y) (see Fig. 1). k hence
represents the wavenumber in the directionx′. Let us define the following matrix:

J =





















cosφ sinφ 0
− sinφ cosφ 0

0 0 1





















(5)

J is an orthogonal transformation matrix (J−1 = JT), representing a rotation of angleφ around the axisz. The
coordinate systems (x′, y′, z) and (x, y, z) are linked through:x′ = Jx, wherex = [x y z]T andx′ = [x′ y′ z]T . For
spatial derivatives, one has:

∂

∂x′
= J

∂

∂x
(6)
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Figure 1: Coordinate systems associated with a plate.z is the depth.x′ corresponds to the propagation direction in
the (k, φ) space.

Under this transformation, the equilibrium equation (1) becomes:

∇′ · σ′ + ρω2u′ = −f′ (7)

with u′ = Ju and f′ = Jf. Primes are used for denoting vectors and tensors expressedin the basis (ex′ , ey′ , ez),
attached to the (x′, y′, z) frame. Materials are assumed transversely isotropic about the thickness direction (that is
with symmetry axis normal to the plate surface) so that the elasticity tensorC remains invariant under the rotationJ
(C = C′). Hence the stress-strain relationship can be written as:

σ
′ = C : ǫ′ (8)

whereǫ′ = JǫJT andσ′ = JσJT.

2.2. SAFE formulation

In the remainder of this paper, tensors are rewritten under their vectorial form for commodity, i.e.ǫ′ = [ǫx′x′ ǫy′y′ ǫzz 2ǫx′y′ 2ǫx′z 2ǫy′z]
andσ′ = [σx′x′ σy′y′ σzzσx′y′ σx′z σy′z]T . One hasσ′ = Cǫ′, where the matrixC of a transverse isotropic material is:

C =



















































C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 (C11 −C12)/2 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55



















































(9)

The weak variational form associated with Eq. (7) is:
∫

V
δǫ′TCǫ′dV− ω2

∫

V
ρδu′Tu′dV =

∫

V
δu′T f′dV +

∫

S
δu′Tt′dS (10)

whereδ denotes virtual fields andt′i = σ
′
i j n j is the traction vector applied on the surfaceS.

Using the property (3) as well as Eq. (4) into Eq. (6), it can bechecked that the spatial derivatives alongx′ andy′

are transformed as:
∂

∂x′
−→ ik,

∂

∂y′
−→ 0 (11)

Accounting for the above property, the deformation vector is transformed into the Fourier domain as:

ǫ̃
′ =

(

ikLx′ + Lz
∂

∂z

)

ũ′ (12)
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with:

Lx′ =



















































1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0



















































, Lz =



















































0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0



















































(13)

From Eqs. (10) and (12), the two-dimensional Fourier transform of the equilibrium equations written in the
(x′, y′, z) coordinate system yields the following matrix eigenproblem after FE discretization alongz:

{K1 − ω2M + ik(K2 −KT
2 ) + k2K3}Ũ′ = F̃′ (14)

with the elementary matrices:

Ke
1 =

∫

z
NeTLT

x′CLx′Nedz, Ke
2 =

∫

z
NeTLT

x′CLzNe
,zdz,

Ke
3 =

∫

z
NeT
,z LT

z CLzNe
,zdz, Me =

∫

z
ρNeTNedz

(15)

On one element of the cross-section, the displacement is interpolated as̃u′ = NeŨ
′e, whereNe is the matrix of nodal

interpolating functions on the element.
In Eq. (14),Ũ′ is the column vector containing transversal nodal displacements in the wavenumber-frequency

domain, i.e. function ofk, φ andω. F̃′ is the excitation vector in the wavenumber-frequency domain, gathering the
contributions of both volume sourcesf̃′ and surface sourcest̃′.

2.3. Eigenproblem

Suppressing the excitation vector, Eq. (14) corresponds toa quadratic eigenvalue problem. The eigensolutions
(km,U′m) represent the wavenumber and the displacement vector associated with themth guided mode (the tilde onU′m
is dropped for conciseness of notations).

If km is an eigenvalue, then−km is also an eigenvalue due to the symmetry ofK1, K3 andM. Hence, the eigen-
problem has two sets of eigensolutions (km,U′m) and (k−m,U′−m), wherek−m = −km (m = 1, ...,M), representingM
positive-going andM negative-going wave modes. The number of modes 2M is theoretically equal to twice the
number of degrees of freedom (dofs) involved in the system (14), but the modal basis is usually truncated in practice.

A fundamental property is that displacement components (˜ux′ , ũz) andũy′ are uncoupled. This could be checked
from the particular form ofC in transverse anisotropy, recalled by Eq. (9), together with the expression of deformation
in the wavenumber domain in the (x′, y′, z) system, given by Eq. (12). As a consequence, the 2M eigensolutions of
Eq. (14) divide into two kinds of modes:

• 2ML modes corresponding to plane-strain motion in the (x′, z) plane, such that ˜uL
y′ = 0 (Lamb modes);

• 2MS H modes corresponding to anti-plane motion along they′ direction, such that ˜uS H
x′ = ũS H

z = 0 (SH modes),

where 2M = 2ML + 2MS H. Obviously, the eigenproblem (14) could be divided into twouncoupled eigenproblem
problems (as done in Ref. [40]). Yet in this paper, the globalformulation (14) is preferred in order to keep more
compact expressions.

3. Solution

3.1. Response in the wavenumber domain

In order to be solved by standard numerical solvers, quadratic eigenproblems must be transformed into linear
eigenproblems [44]. Equation (14) can be recast into the following generalized eigenproblem:

(A − kB)Û′ = F̂′ (16)
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with:

A =
[

0 K1 − ω2M
K1 − ω2M i(K2 −KT

2 )

]

,B =
[

K1 − ω2M 0
0 −K3

]

(17)

and:

Û′ =
{

Ũ′

kŨ′

}

, F̂′ =
{

0
F̃′

}

(18)

The solution to Eq. (16), which is the forced response under the excitationF̂′, is now expanded as a sum of guided
modes:Û′ =

∑2M
m=1αmÛ′m.

For the calculation of modal coefficients, both left and right eigenvectors are needed becausethe system (16) is
unsymmetric. DenotinĝU

′

m andV̂′n the right and left eigenvectors respectively, the following biorthogonality relations
hold [45, 32, 14]:

V̂′Tn BÛ′m = bmδmn, V̂′Tn AÛ′m = kmbmδmn (19)

wherebm is a normalization factor andδmn denotes Kronecker’s symbol.
Using the eigenmode expansion into Eq. (16) and taking advantage of biorthogonality relations (19), theαm’s can

be determined (see for instance Refs. [36, 32, 42]). The displacement response in the wavenumber-frequency domain
is then:

Ũ′ =
2M
∑

m=1

V̂′Tm F̂′

bm(km− k)
U′m (20)

The above expression can be rewritten in an interesting manner in terms of modal displacement and forces as shown
in the following.

The right eigenvectors are of the form̂U
′T
m = [U

′T
m kmU

′T
m ]T . The left eigenvectors require solving the left eigen-

problem. However, it can be proved that left eigenvectors are indeed given by [14]:

V̂′m =
{

U′−m

kmU′−m

}

(21)

which avoids solving the left eigenproblem. Note that a given opposite-going modeU′−m can be directly obtained from
its forward-going counterpartU′m thanks to the identity shown in Appendix A (from a computational point of view,
this allows to further reduce the number of modes to compute).

Furthermore, the normalization coefficient can be expressed as:

bm = −4kmQm,−m/ω (22)

where:

Qm,−m =
iω
4

(U′Tm F′−m− U′T−mF′m) (23)

F′m represents the modal force associated with the displacement U′m and is calculated from:F′m = (KT
2 + ikmK3)U′m [46,

14].
Using Eqs. (21)–(23), the forced response (20) becomes:

Ũ′ = −i
2M
∑

m=1

E′mF̃′

(k− km)
(24)

where:

E′m =
iω

4Qm,−m
U′mU′T−m (25)

As shown in Ref. [14], the above solution is general and stillhold for non-propagatingmodes and lossy waveguides. In
particular,C can be complex.E′m is the so-called excitability matrix for line sources (here, the line source is oriented
alongy′).

One points out that coupling terms inx′y, y′x, y′zandzy′ inside the matrixE′m vanish because modal displacement
components in (x′, z) and iny′ are uncoupled (see Sec. 2.3).

The expression (24) is preferred to the expression (20) because it is written only in terms of modal displacement
(no left eigenvectors needed) and allows a direct analogy with a fully analytical approach as shown later.
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3.2. Inverse transforms

Next, the solution written in the wavenumber domain (k, φ) must be transformed back to the space domain (x, y).
From the convention (2), the inverse two-dimensional Fourier transform is:

f (x, y) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
f̃ (kx, ky)e

i(kxx+kyy)dkxdky (26)

Let us introduce polar coordinates (x, y) = (r cosθ, r sinθ), as shown in Fig. 1. With this change of variables as well
as Eq. (4), the inverse transform can be rewritten as follows:

f (r, θ) =
1

(2π)2

∫ 2π

0

∫ +∞

0
f̃ (k, φ)eikr cos(φ−θ)kdkdφ (27)

The domain of integration used above is slightly different from Ref. [40] and leads to Hankel-type solutions as shown
in the following.

The components of the displacement and the excitation vectors involved in Eq. (24) are now expressed in the basis
(ex′ , ey′ , ez), which depends onφ. A proper application of the inverse transform (27) requires to express vectors in
a basis independent ofφ, namely the fixed Cartesian basis (ex, ey, ez) or the cylindrical basis (er , eθ, ez). With polar
variables (r, θ), the cylindrical basis appears to be a more natural choice.

In the remainder,̃U andF̃ will denote displacement and force vectors with componentsin the cylindrical basis.
FE vectors will be partitioned as follows:

Ũ′ =



















Ũx′

Ũy′

Ũz



















, F̃′ =



















F̃x′

F̃y′

F̃z



















, Ũ =



















Ũr

Ũθ

Ũz



















, F̃ =



















F̃r

F̃θ

F̃z



















(28)

The following rotation matrix is introduced:

Rϕ =





















cosϕI sinϕI 0
− sinϕI cosϕI 0

0 0 I





















(29)

whereϕ = φ − θ. Then, expressing the solution (24) in the cylindrical basis yields:

Ũ = −i
2M
∑

m=1

EmF̃
(k− km)

(30)

with Em = RT
ϕE′mRϕ. Em is explicitly given in terms ofϕ by:

Em =





















Emx′ x′ cos2 ϕ + Emy′y′ sin2 ϕ (Emx′ x′ − Emy′y′ ) cosϕ sinϕ Emx′z cosϕ
(Emx′ x′ − Emy′y′ ) cosϕ sinϕ Emx′ x′ sin2 ϕ + Emy′y′ cos2 ϕ Emx′z sinϕ

Emzx′ cosϕ Emzx′ sinϕ Emzz





















(31)

Note that the eigenvectorsU′m do not depend onφ, and so doesE′m, thanks to the assumption of transverse isotropy
about the thickness direction.

The excitation vector̃F generally depends onφ and must be expanded as a Fourier series:

F̃(k, φ) = 2π
+∞
∑

p=−∞
i−pF̃p(k)eipφ, (32)

where thepth coefficient can be calculated from:

F̃p(k) =
ip

(2π)2

∫ 2π

0
F̃(k, φ)e−ipφdφ (33)
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Given the expansion form (32),F̃p(k) is also equal to the Hankel transform of orderp of Fp(r), which is defined by

the expansion:F(r, θ) =
∑+∞

p=−∞ Fp(r)eipθ whereFp(r) = 1
2π

∫ 2π

0
F(r, θ)e−ipθdθ (see Appendix B).

The expression (30) becomes:

Ũ = −2πi
2M
∑

m=1

+∞
∑

p=−∞
i−p EmF̃p

k− km
eipφ (34)

Applying the inverse transform (27) to Eq. (34) yields:

U = − i
2π

2M
∑

m=1

+∞
∑

p=−∞
i−p

∫ +∞

0

∫ 2π

0
Emeikr cos(φ−θ)+ipφdφ

F̃p

k− km
kdk (35)

Then, the following Bessel formula is recalled:

∫ 2π

0
eikr cosψ+iqψdψ = 2πiqJq(kr) (36)

From this formula, it can be noticed that the integrals onk in Eq. (35) indeed correspond to inverse Hankel transforms,
the inverse Hankel transform of orderq of an arbitrary functionf̃q(k) being defined as:

f (r) =
∫ +∞

0
f̃q(k)Jq(kr)kdk (37)

Now let the functionf̃q(k) have one pole so that:̃fq(k) = g̃q(k)/(k−km), whereg̃q(k) is supposed to be holomorphic
(no pole). The application of Cauchy residue theorem yields(see Appendix C):

f (r) = iπkmg̃q(km)H(1)
q (kmr) (38)

whereH(1)
q denotes theqth order Hankel Function of the first kind.

Finally, the application of Eqs. (36)–(38) to the expression (35) yields after tedious calculations:



















Ur

Uθ

Uz



















=

M
∑

m=1

+∞
∑

p=−∞























G(m,p)
rr G(m,p)

rθ G(m,p)
rz

G(m,p)
θr G(m,p)

θθ
G(m,p)
θz

G(m,p)
zr G(m,p)

zθ G(m,p)
zz









































F̃pr (km)
F̃pθ (km)
F̃pz(km)



















πkmeipθ (39)

with:

G(m,p)
rr = Emx′ x′H

(1)
p (kmr) − (Emx′ x′ − Emy′y′ )

(

H(1)
p+1(kmr)

kmr + p(p− 1)
H(1)

p (kmr)
(kmr)2

)

,

G(m,p)
rθ = G(m,p)

θr = i(Emx′ x′ − Emy′y′ )

(

p
H(1)

p+1(kmr)

kmr − p(p− 1)
H(1)

p (kmr)
(kmr)2

)

,

G(m,p)
rz = iEmx′z

(

H(1)
p+1(kmr) − p

H(1)
p (kmr)
kmr

)

,G(m,p)
zr = iEmzx′

(

H(1)
p+1(kmr) − p

H(1)
p (kmr)
kmr

)

,

G(m,p)
θθ
= Emy′y′H

(1)
p (kmr) − (Emy′y′ − Emx′ x′ )

(

H(1)
p+1(kmr)

kmr + p(p− 1)
H(1)

p (kmr)
(kmr)2

)

,

G(m,p)
θz = Emx′z p

H(1)
p (kmr)
kmr , G(m,p)

zθ = Emzx′ p
H(1)

p (kmr)
kmr , G(m,p)

zz = EmzzH
(1)
p (kmr)

(40)

For clarity, the calculation ofG(m,p)
rr is detailed in Appendix D. The other components ofG(m,p) can be obtained in

the same manner. The identitiesG(m,p)
rθ = G(m,p)T

θr , G(m,p)
rz = −G(m,p)T

zr andG(m,p)
θz = −G(m,p)T

zθ result from the reciprocity
principle. The terms of order 1/kmr and (1/kmr)2 represent near field contributions and can be negligible in the
far-field.

In practice, the sum over theM guided modes is truncated [14] (one retains less modes than the number of dofs),
as well as the infinite sum over the Fourier coefficientsp. The response in the time domain can finally be obtained
from the inverse time Fourier transform ofU, given by 1

2π

∫ +∞
−∞ Ue−iωdω.
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In order for the waves to be diverging, it is emphasized that only the positive-going modes must be retained in
the expansion (this results from the proper application of the Cauchy residue theorem). As a consequence, the sum in
Eq. (39) is over the positive-going modes, excluding the negative-going ones. Note that one must be careful to select
the proper backward modes (if any), having positive energy velocities but negative phase velocities. Similarly to the
2D modeling of Lamb waves [14], the expansion (39) is valid for any point lying outside the source region, i.e. such
thatr > rs wherers denotes the maximum distance at which the excitationF(r, θ) is non-zero.

One recalls that the sum overm in Eq. (39) can be decomposed into a sum over Lamb modes, satisfying Emy′y′ = 0,
and a sum over SH modes, for which the only non zero component isEmy′y′ (as already mentioned, this decomposition
is not applied here in order to keep compact expressions). Then from Eq. (39), it can be checked that a force normal
to the plate (i.e. alongz) does not generate any SH modes for anyp. Note that the expression ofG(m,p)

zz is quite simple
and yields a straightforward solution for the normal displacement excited by a force normal to the plate.

3.3. Expression with force components in the Cartesian basis

For sources defined in the Cartesian coordinate system, it isuseful to rewrite the previous solution in terms of
force components expressed in the Cartesian basis instead of the cylindrical one. One has:



















F̃pr

F̃pθ
F̃pz



















=





















cosθI sinθI 0
− sinθI cosθI 0

0 0 I







































F̃px

F̃py

F̃pz



















(41)

Using Eq. (41) into Eq. (39) yields after calculations:



















Ur

Uθ

Uz



















=

M
∑

m=1

+∞
∑

p=−∞

























G(m,p)
rx G(m,p)

ry G(m,p)
rz

G(m,p)
θx G(m,p)

θy G(m,p)
θz

G(m,p)
zx G(m,p)

zy G(m,p)
zz











































F̃px(km)
F̃py(km)
F̃pz(km)



















πkmeipθ (42)

with:

G(m,p)
rx = Emx′ x′H

(1)
p (kmr) cosθ −

Emx′ x′ −Emy′y′

2

(

(p+ 1)
H(1)

p+1(kmr)

kmr eiθ + (p− 1)
H(1)

p−1(kmr)

kmr e−iθ

)

,

G(m,p)
ry = Emx′ x′H

(1)
p (kmr) sinθ + i

Emx′ x′ −Emy′y′

2

(

(p+ 1)
H(1)

p+1(kmr)

kmr eiθ − (p− 1)
H(1)

p−1(kmr)

kmr e−iθ

)

,

G(m,p)
θx = −Emy′y′H

(1)
p (kmr) sinθ + i

Emx′ x′ −Emy′y′

2

(

(p+ 1)
H(1)

p+1(kmr)

kmr eiθ − (p− 1)
H(1)

p−1(kmr)

kmr e−iθ

)

,

G(m,p)
θy = Emy′y′H

(1)
p (kmr) cosθ +

Emx′ x′ −Emy′y′

2

(

(p+ 1)
H(1)

p+1(kmr)

kmr eiθ + (p− 1)
H(1)

p−1(kmr)

kmr e−iθ

)

,

G(m,p)
zx = iEmzx′

(

H(1)
p+1(kmr) cosθ − p

H(1)
p (kmr)
kmr e−iθ

)

,

G(m,p)
zy = iEmzx′

(

H(1)
p+1(kmr) sinθ − ip

H(1)
p (kmr)
kmr e−iθ

)

(43)

Equations (39), (40), (42) and (43) are the central results of this paper. One points out that no specific assumption
has been made except transverse isotropy and invariance of material properties in the (x, y) plane. The solutions remain
applicable whenC is complex (case of viscoelastic materials) and when the properties arbitrarily depend onz. Also,
the modal expansions account for the near field contribution, resulting from terms in 1/kmr as well as non-propagating
modes, evanescent or inhomogeneous. The modal responses thus remain applicable close to the source (provided that
the truncated expansions include enough modes).

3.4. Expressions in the far field

In the far field, the following asymptotic expression holds:

H(1)
p (kmr) =

√

2
πkmr

ei(kmr−(p+ 1
2 ) π2 ) +O(r−3/2) (44)
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In the solution (39), the sums overp are in the form:

+∞
∑

p=−∞
πkmF̃p(km)H(1)

p (kmr)eipθ (45)

Thanks to the identity
∑

i−pF̃p(km)eipθ = F̃(km, θ)/2π (see Eq. (32)), the use of Eq. (44) into (45) yields:

√

km

2π
e−iπ/4 eikmr

√
r

F̃(km, θ) +O(r−3/2) (46)

This avoids to perform the sum overp.
The expression (39) can then be remarkably simplified in the far field as:



















Ur

Uθ

Uz



















=

M
∑

m=1

√

km

2π
e−iπ/4E′mF̃(km, θ)

eikmr

√
r
+O(r−3/2) (47)

It should be kept in mind that̃F = [F̃r F̃θ F̃z]T is expressed in the cylindrical basis. For a force expressedin the
Cartesian basis, the above far field approximation holds by replacingF̃ with Rθ[F̃x F̃y F̃z]T .

3.5. Fully analytical solution

The solutions presented insofar are semi-analytical in thesense that thezdirection has been discretized with finite
elements. These expressions can be readily rewritten in a fully analytical form. From Eqs. (10) and (14), it can be
shown that the following identity holds:

δŨ′TF̃′ =
∫

z
δu′T f′dz+

[

δu′Tt′
]z2

z1
(48)

wherez = z1 andz = z2 are the plate boundaries. For brevity, let us consider the solution (42) (the solution (39) can
be handled in the same manner). The discretized terms are written under the form:

Emi′ j′ F̃pl =
iω

4Qm,−m
Umi′α

(−m,p)
j′ l , with: α(−m,p)

j′ l = UT
−mj′

F̃pl (49)

wherei′ = (x′, y′, z), j′ = (x′, y′, z) andl = (x, y, z).
The fully analytical solution, written in terms of (r, θ, z;ω), can be deduced from its discretized counterpart (42)

thanks to the following substitutions:

[

Ur Uθ Uz
]T −→

[

ur uθ uz
]T
,

Emi′ j′ F̃pl (km) −→
iω

4Qm,−m
umi′ (z)α

(−m,p)
j′ l (km)

(50)

where from Eq. (48), one has:

α
(−m,p)
j′ l (km) =

∫

z
u−mj′ (z) f̃pl (z; km)dz+

[

u−mj′ (z)t̃pl (z; km)
]z2

z1
(51)

and from Ref. [14]:

Qm,−m =
iω
4

∫

z
(u′m · t′−m− u′−m · t′m)dz (52)

with ti′ = σi′x′ .
Note that a fully analytical approach has the advantage to beexact in the frequency-wavenumber domain [38, 39,

6, 7]. However, each layer must be homogeneous and complex root finding algorithms are usually required to get
modal wavenumbers.
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Figure 2: Example of an internal three-dimensional source of complex shape.V denotes the source region. The plane
surfaceS(ζ) corresponds to the intersection of the three-dimensionalregionV and the horizontal planez = ζ. The
curveC(ζ) delimits the surfaceS(ζ).

3.6. Source term calculation

The method is applicable to internal or surface sources of arbitrary shape. For clarity, Fig. 2 depicts the example
of an internal sourcef(x, y, z;ω) localized into a finite three-dimensional regionV. We drop theω dependence for
conciseness. One assumes thatf(x, y, z) is expressed in the Cartesian basis. Let us consider that the source regionV is
delimited by a surface parametrized by the implicit equation s(x, y, z) = 0 so thatV = {(x, y, z) ∈ R3 : s(x, y, z) ≤ 0}.

In the modal solution of this paper, the volume source term appears as the vector functionf̃p(z; k) evaluated at
k = km, which can be calculated by two methods. From Eqs. (2) and (33), f̃p(z; k) is equal to thepth Fourier coefficient
of the spatial two-dimensional Fourier Transform off(x, y, z) and can be obtained from the following triple integral:

f̃p(z; k) =
ip

(2π)2

∫ 2π

0

∫∫

S(z)
f(x, y, z)e−i(kxcosφ+kysinφ+pφ)dxdydφ (53)

whereS(ζ) = {(x, y) ∈ R2 : s(x, y, ζ) ≤ 0} is the plane surface resulting from the intersection of the volumeV and
the horizontal planez = ζ. The equations(x, y, ζ) = 0 parametrizes the curveC(ζ) enclosingS(ζ) (see Fig. 2). As
proved in Appendix B,̃fp(z; k) is also equal to the Hankel transform of orderp of the pth Fourier coefficient of
f(x, y, z) = f(r cosθ, r sinθ, z), yielding the double integral:

f̃p(z; k) =
1
2π

∫∫

S(z)
f(r cosθ, r sinθ, z)Jp(kr)e−ipθrdrdθ (54)

whereS(ζ) = {(r, θ) ∈ R+ × [0, 2π] : s(r cosθ, r sinθ, ζ) ≤ 0}. From a mathematical point of view, both expressions
give the same result. However in case of numerical integration, the expression (53) can suffer from round-off errors
asp increases (see Sec. 5).

The numerical evaluation of these multiple integrals for each value ofkm might be relatively costly compared to
the other fast operations required by the modal solutions ofthis paper. This cost can yet be reduced by carrying out
analytical calculations as far as possible (see example in Sec. 5). Note that with a SAFE method, internal sources of
complex shape must be carefully handled. In general, the SAFE force vector must be recomputed for eachkm from
the following elementary vector:























F̃e
px

(km)
F̃e

py
(km)

F̃e
pz

(km)























=

∫

z
NeTf̃p(z; km)dz (55)

Surface sourcest(x, y;ω) (applied tractions) are treated in the same way as internalsources, the only difference
being that such source terms do not depend onzand are hence simpler to implement.

11



4. Validation with literature results

4.1. Solution for a point source

Let us consider a source concentrated atr = 0. The source can be arbitrarily distributed along thezdirection. The
force vector has the following form:

f(x, y, z;ω) =
(

fx(z;ω)ex + fy(z;ω)ey + fz(z;ω)ez

)

δ(x)δ(y) (56)

where fx, fy and fz denotes the force components in the Cartesian basis. The corresponding discretized FE force is:



















Fx(x, y)
Fy(x, y)
Fz(x, y)



















= δ(x)δ(y)



















Fx

Fy

Fz



















(57)

Theω dependence is dropped for conciseness.
The source expression in cylindrical coordinates is readily obtained by substitutingδ(x)δ(y) with δ(r)/2πr [47],

which does not depend onθ. Hence,F0 = F andFp = 0 for p , 0 (the only remaining term in the sum overm in
Eq. (42) isp = 0). The Hankel transform of order 0 ofδ(r)/2πr is equal to 1/2π, which yields:



















F̃0x(k)
F̃0y(k)
F̃0z(k)



















=
1
2π



















Fx

Fy

Fz



















(58)

Now, the sum overm in Eq. (42) is decomposed into a sum over Lamb modes, satisfyingEmy′y′ = 0, and a sum over
SH modes, for which the only non zero component isEmy′y′ . After rearrangements, the solution (42) finally becomes:



















Ur

Uθ

Uz



















=

























ML
∑

m=1

























km
2 Emx′ x′ Ĥ

(1)
0 (kmr) cosθ km

2 Emx′ x′ Ĥ
(1)
0 (kmr) sinθ i km

2 Emx′zH
(1)
1 (kmr)

− km
2 Emx′ x′

H(1)
1 (kmr)
kmr sinθ km

2 Emx′ x′
H(1)

1 (kmr)
kmr cosθ 0

i km
2 Emzx′H

(1)
1 (kmr) cosθ i km

2 Emzx′H
(1)
1 (kmr) sinθ km

2 EmzzH
(1)
0 (kmr)

























+

MS H
∑

m=1

























lm
2 Emy′y′

H(1)
1 (lmr)
lmr cosθ lm

2 Emy′y′
H(1)

1 (lmr)
lmr sinθ 0

− lm
2 Emy′y′ Ĥ

(1)
0 (lmr) sinθ lm

2 Emy′y′ Ĥ
(1)
0 (lmr) cosθ 0

0 0 0



































































Fx

Fy

Fz



















(59)

with the notationĤ(1)
0 (·) = H(1)

0 (·) − H(1)
1 (·)
(·) . km and lm denote the wavenumbers of Lamb modes and SH modes

respectively.
As a side remark, a force directed alongz does not generate any displacement component inθ for p = 0. This is

not true forp , 0 as shown by the expression ofG(m,p)
θz .

4.2. Interpretation in terms of excitabilities

Each component in the two matrices of Eq. (59), associated with Lamb and SH modes respectively, involves a
product of three terms:

• the first term, given by the product betweenEmi′ j′ and± km
2 or ± lm

2 (possibly×i), can be viewed as the modal
excitability for point sources, as explained below;

• the second term, given bŷH(1)
0 (kmr) or

H(1)
1 (kmr)
kmr , represents the propagator (it gives the radial dependenceof the

field) including the near field effect, in 1/kmr;

• the third term gives the directivity (1, sinθ or cosθ).
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The excitability of a mode is defined as the ratio of the displacement of that mode to a point force applied in a
given direction [11, 12, 13]. With a SAFE method, the excitability becomes a matrix whose components represents
the modal displacement dofs when a unit force acts at a singledof [14]. As already mentioned in Sec. 3.1,Emi′ j′

is equal to the excitability matrix for line sources (along the y′ direction). Hence, Eq. (59) indeed gives useful
formula to calculate the excitabilities of point sources from lines sources. One emphasizes that these excitabilitiesand
propagators remain valid for non-propagating modes, viscoelastic materials and include the near-field effect.

For instance, the radial displacement generated by a force in thex directionFx is expressed as:

Ur =

ML
∑

m=1

km

2
Emx′ x′FxĤ

(1)
0 (kmr) cosθ +

MS H
∑

m=1

lm
2

Emy′y′Fx
H(1)

1 (lmr)

lmr
cosθ (60)

In the above expression,km
2 Emx′ x′ and lm

2 Emy′y′ are the radial excitabilities due to point forces in thex direction, for
Lamb and SH modes respectively.

Similarly, the excitability for a displacement and a point force both directed alongz is given by km
2 Emzz for Lamb

modes (the propagator beingH(1)
0 (kmr)), and is0 for SH modes. This result is checked by comparing the solutions of

Viktorov [2] (for line sources) and Ditri [18] (for point sources).
Following the work of Velichko et al. [13], one can also definemodal excitabilities in the far field, with propagators

in eikmr/
√

r. If the displacement and the force vectors are both expressed in the Cartesian basis, Eq. (47) yields:
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
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
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



=

M
∑

m=1

√

km

2π
e−iπ/4RT

θ E′mRθ

eikmr

√
r


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+O(r−3/2) (61)

This result precisely corresponds to the discretized version of the relation found in Ref. [13] for the special case of an
isotropic or transversely isotropic layered medium. The slight difference with Ref. [13] is that, in this paper, Eq. (61)
constitutes a generalization to lossy waveguides and to anykind of modes, propagating or not, because the line source
excitability defined by Eq. (25) is not restricted to propagating modes in lossless waveguides [14].

4.3. Comparison with Achenbach’s result

In Refs. [9, 26], a modal solution had been proposed for the wave motion of an isotropic layer generated by a
point load of arbitrary direction. The approach of Achenbach and co-workers is fully analytical, based on the concept
of carrier waves [25] together with a novel application of elastodynamic reciprocity based on appropriate dummy
solutions.

First, let us rewrite the solution proposed in the present paper. Using Eqs. (A.2) and (A.4) into Eq. (23), one has:

Qm,−m =
ω

2
Imm (62)

with the notation:
Imm= i(UT

mz
Fmz − UT

mx′
Fmx′ − UT

my′
Fmy′ ) (63)

Using Eqs. (A.2) and (62) into Eq. (25), the line source excitabilities can be rewritten as follows:

Emx′ x′ = i
Umx′U

T
mx′

2Imm
, Emx′z = −i

Umx′U
T
mz

2Imm
, Emzx′ = i

UmzU
T
mx′

2Imm
,

Emzz = −i
UmzU

T
mz

2Imm
, Emy′y′ = i

Umy′U
T
my′

2Imm

(64)

Note thatET
mx′ x′
= Emx′ x′ , ET

mzz
= Emzz, ET

my′y′
= Emy′y′ andET

mx′z
= −Emzx′ . These symmetry properties are a consequence

of the reciprocity principle.
Let us consider a point source localized atz= z0. In Eq. (56), the force components are now given by:fl(z;ω) =

fl(ω)δ(z− z0). From Sec. 3.5, one hasα(−m,0)
j′ l (km) = u−mj′ (z0) fl(ω)/2π, and the fully analytical forms of the line source
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excitabilities given by Eq. (64) are:

emx′ x′ = i
umx′ (z)umx′ (z0)

2Imm
, emx′z = −i

umx′ (z)umz(z0)

2Imm
, emzx′ = i

umz(z)umx′ (z0)

2Imm
,

emzz = −i
umz(z)umz(z0)

2Imm
, emy′y′ = i

umy′ (z)umy′ (z0)

2Imm

(65)

with:

Imm= i
∫

z
(umzσmzx′ − umx′σmx′ x′ − umy′σmy′ x′ )dz (66)

For clarity, the displacement and stress components are redenoted in Achenbach’s work as follows:ux′ = iV, uz =W,
σx′x′ = T11, σzx′ = iT1z, uy′ = U andσy′x′ = T12. Then, it can be checked that the analytical form associatedwith
Eq. (59) agrees with the solution of Refs. [9, 26], obtained with fy = 0 for an isotropic plate. Reciprocally, this
somewhat shows that the elegant approach followed by Achenbach and his co-workers – though not fully justified by
mathematical considerations as stated in Ref. [48] – indeedleads to exact results, applicable in the near field, in the
viscoelastic case and to non-propagating modes.

4.4. Case of rectangular sources

Let us assume an excitation represented by separable variable functions:
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(67)

Such an assumption is often applicable for rectangular sources [28]. Dropping theω dependence for conciseness, the
2D Fourier transform of the excitation is:
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(68)

Then in the far field, Eq. (47) can be rewritten as:


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M
∑
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√
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e−iπ/4Ỹ(km sinθ)U2D

m
eikmr

√
r
+O(r−3/2) (69)

with:

U2D
m = X̃(km cosθ)E′mRθ


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(70)

U2D
m can be viewed as the modal contribution calculated from a 2D line source problem (i.e. with infinite length

excitation alongy′). For thez displacement excited by a force alongz, Eq. (69) coincides with the result of Moulin
et al. [28]. The solution (69) can be viewed as a generalization to any displacement component excited by sources of
arbitrary direction.

As an example, let us consider a unit excitation uniform overthe directionsx andy, over finite lengthsa and
b respectively. Then, the Fourier transforms are given by:X̃(kcosφ) = 2 sin(ka

2 cosφ)/kcosφ and Ỹ(ksinφ) =
2 sin(kb

2 sinφ)/ksinφ. If attention is restricted to the far field, then Eq. (69) canbe used. If one is interested in the
near field, then there isa priori no other way than using the general solution (42). In this case, the source term can be
calculated from the expression (33), yielding:
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

(71)
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where:

f̃p(k) =
ip

(2π)2

∫ 2π

0

4 sin(ka
2 cosφ) sin(kb

2 sinφ)

k2 cosφ sinφ
e−ipφdφ (72)

Note that the above expression, which derives from Eq. (53),is not recommended for numerical integration as dis-
cussed in Sec. 5.

4.5. Note on the orthogonality relation used in this paper
This subsection aims at clarifying the reason why the SAFE approach corresponds to a discretized version of

a fully analytical approach. The fundamental property usedin the SAFE approach is the discrete biorthogonality
relation (19). As shown in Ref. [14], the relationV̂′Tn BÛ′m = bmδmn can be rewritten as:

iω
4

(U′Tm F′−n − U′T−nF′m) = Qm,−mδmn (73)

and the corresponding analytical form is:

Qm,−n =
iω
4

∫

z
(u′m · t′−n − u′−n · t′m)dz= 0 if m, n (74)

The above relation indeed represents a slightly modified version of the real biorthogonality relation of Auld [8].
Unlike Auld’s complex orthogonality relation, the real relation remains valid for non-propagating modes and for lossy
waveguides [14].

The above relation can also be written asQmn = 0 for m , −n. As a consequence, one hasQm,−n + Qm,n = 0 if
m, ±n. Let us defineImn, from: Qm,−n + Qm,n = ωImn/2. Using the relation for the transverse isotropic case between
forward and opposite-going modes (Appendix A), one has:

Imn = i
∫

z
(umzσnzx′ − unx′σmx′ x′ − uny′σmy′ x′ )dz= 0 if m, ±n (75)

For Lamb modes (uy′ = 0), the relation (75) corresponds to Fraser’s relation [41]. For SH modes (ux′ = uz = 0),
it corresponds to the well-known orthogonality relation:

∫

z
uny′umy′dz = 0 if m , ±n (becauseσmy′ x′ = ik(C11 −

C12)umy′ /2). These orthogonality relations for Lamb and SH modes are indeed the fundamental relations used in
Achenbach’s work [9].

As a consequence, the procedure followed with the SAFE method in this paper is in fact quite analogous to modal
analytical approaches based on Auld’s or Fraser’s relations. This further justifies the direct link existing between
numerical and analytical solutions described in Sec. 3.5.

5. Example

In this section, the example of a bilayer viscoelastic waveguide is considered to illustrate the method. Each layer
is homogeneous although this is not a limitation of the SAFE method.

5.1. Test case description
The bilayered plate is taken from the work of Simonetti [49].The relevant material parameters are summarized in

Table 1. Complex bulk wave velocities are defined from:

c̃s,l =
cs

1+ i αs,l

2π

(76)

The matrix of elasticity coefficientsC is complex. As already explained, the solutions proposed inthis paper remain
valid in this case.

As shown in Ref. [49], this test case yields strong viscoelastic effects upon dispersion curves compared to the loss-
less case. Additionally, the viscoelastic excitabilitieshave already been calculated with a SAFE method in Ref. [14]
for the 2D line source problem.

Figure 3 shows the dispersion curves for the phase velocity and the attenuation computed with the SAFE method
of this paper, for three modes of interest: two Lamb modes denotedM0 andM1 and one SH mode. For both Lamb
modes, the numerical dispersion curves coincide with the analytical results of Ref. [49]. For the SH mode, the curves
are found to have a behavior analogous to theM1 mode, with lower velocity and stronger attenuation.
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cs (m/s) cl (m/s) ρ (kg/m3) αs (Np/λ) αl (Np/λ) thickness (mm)

Layer 1 (elastic) 900 1700 1250 1 1 9
Layer 2 (metallic) 3260 5960 7930 0 0 8

Table 1: Characteristics of the bilayered plate
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Figure 3: Dispersion curves in terms of frequency for: (a) phase velocity, (b) attenuation. Black: Lamb modes
(denotedM0 andM1), gray: SH mode.

5.2. Source description

The excitation is a uniform rectangular source of lengtha = 20mm and widthb = 40mm positioned at the surface
of Layer 1 and centered at (x, y) = (0, 0). Thepth coefficient of the space 2D Fourier transform of the source profile
has been given by Eq. (72), where the integral can be evaluated numerically by a trapezoidal method. However, such
an expression is not suitable due to round-off errors that prevent convergence as the number of Fourier coefficients
retained in the series is increased. These round-off errors are due to the fact that the integrand in Eq. (72) does not
tend to zero asp increases.

Instead, we can use a double integral analogous to Eq. (54) for calculating the surface source term. As shown in
Appendix B, the functionf̃p(k) is also equal to the Hankel transform of orderp of the pth coefficient of the Fourier
series off (r, θ):

f̃p(k) =
1
2π

∫ ∞

0

∫ 2π

0
f (r, θ)e−ipθdθJp(kr)rdr (77)

In our example,f (r, θ) is equal to one inside the rectangular region delimited by|x| 6 a/2 and|y| 6 b/2, and is equal to
zero outside. As a consequence, the integration onθ can be performed analytically, with integration bounds depending
on r (several regions must be distinguished). Assuminga 6 b, cumbersome calculations yield the following result:

f̃p(k) =



























∫ rs

0
J0(kr)rdr − 2

π

∫ rs
a
2
θa(r)J0(kr)rdr − 2

π

∫ rs
b
2
θb(r)J0(kr)rdr for p = 0

− 2
pπ

∫ rs
a
2

sin(pθa(r))Jp(kr)rdr − 2ip

pπ

∫ rs
b
2

sin(pθb(r))Jp(kr)rdr for p , 0 even

0 for p odd

(78)

wherers =
√

a2 + b2/2, θa(r) = arccos(a/2r) andθb(r) = arccos(b/2r). For a givenr, each integrand of the above
expression vanishes as|p| → ∞ thanks to Bessel function properties. From a computation point of view, this ensures
the convergence of series as the number of coefficientsp increases in the expansion.

5.3. Reference method (2D convolution)

In the point source solution given by Eq. (59), the whole matrix inside the parentheses of the left-hand side can
be identified as the Green’s matrix, denoted asH in the following. By definition, the response displacement to a force
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arbitrarily distributed in the (x, y) plane is given by the two-dimensional convolution productbetween the Green’s
matrix and that force.

The convolution must be written with respect to Cartesian coordinates and tensors must be written with respect to
the Cartesian basis (convolution theory in polar coordinates can be found in Ref. [47] but tools are hardly available).
The response in the Cartesian basis is hence calculated as follows:
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(79)

where the 2D convolution product of arbitrary functionsf andg is defined as:

f (x, y) ∗ ∗g(x, y) =
∫ +∞

−∞

∫ +∞

−∞
f (x− ξ, y− η)g(ξ, η)dξdη (80)

The response in the cylindrical basis is obtained by left multiplying the response (79) by the matrixRθ.
Since analytical calculations are not achievable, the response is approximated thanks to a discrete two-dimensional

convolution. A rectangular (x, y) grid of 512 by 512 points is defined. The Green’s solution corresponding to a
given displacement dof generated by a point force in a given direction is evaluated from Eq. (59) at each point of
the rectangular grid. This Green’s solution is projected onto the Cartesian basis, yielding a first matrix grid. The
excitation is discretized on the same grid, yielding a second matrix grid. Then, the Cartesian displacement response is
obtained from the discrete two-dimensional convolution between both grids. This response must be finally projected
on the cylindrical basis to be compared with the solution (42).

Owing to the validation of Eq. (59) with the analytical solution presented in Sec. 4.3, results obtained from the
convolution method can be considered as reference solutions. Yet the two-dimensional convolution method may be
time-consuming (depending on the typical wavelengths to bediscretized, on the source size...). With such a method,
calculations are necessarily performed on the whole grid, even if attention is restricted to some points only.

Conversely, the solution given by Eq. (42) is particularly interesting from a computational point of view as it
allows to perform single point calculations.

5.4. Comparison between modal and convolution solutions

Figure 4 shows the displacement fieldsuz anduθ at 50kHz for an applied stress oriented normal to the plane (z
direction). In this case,Fx=Fy=0: according to Eq. (42), no SH waves occur and only Lamb modes are present.

In the modal expansions, 10 positive-going modes and 10 Fourier coefficients (|p| ≤ 10) are retained. Numerical
tests have shown that this truncation is sufficient to ensure convergence of results with good accuracy. As outlined in
Sec. 3.2, one recalls that results calculated with the modalmethod are valid outside the source region (i.e. forr > rs).
This restriction also applies with the convolution method because the Green’s solution (59) is singular atr=0. The
region inside the source (r ≤ rs) is hence not displayed.

As shown by Fig. 4, results computed with the modal and the convolution methods are in quite good agreement
in the far field as well as near the source. Thez displacement exhibits a wide-angle radiation pattern (Fig. 4a), as
opposed to itsθ counterpart (Fig. 4c). Note thatuθ is not equal to zero, unlike for a normal point source, because
the rectangular source generatesp , 0 coefficients. It can be observed that the radiation pattern foruθ mainly occurs
for p=2. In fact, the coefficientG(m,p)

θz always vanishes forp=0 (see Eq. (43)), whilẽfp is zero if p is odd owing to
Eq. (78) (p=1 also vanishes).

Figure 5 shows the displacement fieldsur anduθ at 50kHz for an applied stress oriented along thex direction.
Results obtained with the modal method again coincide with those of the convolution method. For an excitation along
x, the examination of Eq. (42) tells us that both Lamb and SH waves are generated in the near-field but Lamb waves
are predominant in the far field ofur , while SH waves dominate the far-field ofuθ. This can be clearly observed in
Figs. 5a and 5c. Lamb waves are preferentially emitted in thex direction (Fig 5a), while the SH wave (of longer
wavelength) is rather emitted alongy (Fig 5c).

The results of modal and convolution methods have been compared for every other possible combination of dis-
placement and source directions, with very good agreement (results not shown for conciseness). This further validates
the theoretical developments presented in this paper.
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(a) (b)

(c) (d)

Figure 4: Response at 50kHz for an excitation normal to the plane (zdirection) and evenly distributed on a rectangular
surface 20x40mm, calculated for: (a)uz from modal expansion (i.e. Eq. (42)), (b)uz from convolution, (c)uθ from
modal method, (d)uθ from convolution. The response is shown at the surface of Layer 1, where the excitation is
applied.
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(a) (b)

(c) (d)

Figure 5: Response at 50kHz for an excitation tangent to the plane (x direction) and evenly distributed on a rectangular
surface 20x40mm, calculated for: (a)ur from modal method, (b)ur from convolution, (c)uθ from modal expansion,
(d) uθ from convolution. The response is shown at the surface of Layer 1, where the excitation is applied.
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Figure 6: Same caption as Fig. 5c but for 100kHz.

In order to illustrate the change of radiation pattern with frequency, Fig. 6 gives the displacement fielduθ computed
with the modal approach at 100kHz (excitation alongx). The number of wave modes retained in the expansion is equal
to 20. As can be observed, the directivity pattern has strongly evolved compared to Fig. 5c.

5.5. Time response

In this section, the applied stress is oriented along thex direction. The time excitation is a Hanning-windowed
5 cycles sinusoidal toneburst centered at 50kHz. Computations are performed from the modal approach for 100
frequencies evenly spaced up to 100kHz and the inverse Fourier transform is processed.

Figure 7 gives the time response forur anduθ in the directionθ = π/4 at two distances,r = 45mm andr =
900mm, calculated from the exact solution (42) and from the far field approximation (47) (also given by Eq. (69)
for a rectangular source). Note that the convolution methodwould yield cumbersome calculations here because the
computation of the complete field in the (x, y) plane would be required at each frequency step.

At r = 45mm, it can be observed that the far field approximation fails. Of course, the error committed by the
far-field approximation would further increase closer to the source. Note that the error appears to be greater foruθ
(Fig. 7b), for which the SH wave mainly contributes as already explained in Sec. 5.4.

At r = 900mm, the far field solution yields accurate results. Time signals are superimposed with the exact
solutions. Forur , the main contribution is given by Lamb modes and two wave packets can be distinguished (Fig. 7c).
The fastest packet corresponds to theM1 mode, the slowest one to theM0 mode. Foruθ, the response is dominated by
the SH wave. The time of flight of the SH mode is found to lie between those ofM0 andM1 modes (compare Figs. 7d
with 7c), as expected from the dispersion curves in Fig. 3.

6. Conclusion

In this paper, a 3D modal solution for Lamb and SH waves excited by sources of arbitrary shape has been de-
rived under the assumption of transverse isotropy about thethickness direction. This solution is valid for elastic or
viscoelastic media and in the far-field as well as in the near-field, including non-propagating modes (evanescent or
inhomogeneous). It is written in terms of Hankel functions of arbitrary orders thanks to a proper application of in-
verse transforms and Cauchy residue calculus. The proposedsolution has been simplified in the far field. Theoretical
developments have been conducted on the basis of a SAFE method, which allows to readily handle heterogeneous ma-
terials having depth-varying properties (multilayered, piecewise, or continuously varying as in the case of functionally
graded materials) with fast computations (the SAFE modal problem being one-dimensional).

The link with a fully analytical approach has also been established. It has been shown that the procedure followed
with the SAFE method is in fact quite analogous to modal analytical approaches based on Auld’s or Fraser’s relations.

The solution proposed in this paper has been successfully compared to various literature results obtained in special
cases. The general expression degenerate to Achenbach’s point source solution. Useful formula have been presented
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Figure 7: Time response calculated atθ = π/4 for: (a)ur at r = 45mm, (b)uθ at r = 45mm, (c)ur at r = 900mm,
(d) uθ at r = 900mm.. Black continuous lines: exact solution given by Eq.(42), gray dashed lines: far-field solution
given by Eq. (47) (black lines are superimposed on gray linesin Figs. (c) and (d)). The excitation is oriented in thex
direction and uniformly distributed on a rectangular surface 20x40mm. Excitation and response are both at the surface
of Layer 1.

to calculate point source excitabilities from lines sources. These excitabilities remain valid for non-propagatingmodes
and viscoelastic materials and the associated propagatorscan account for the near field effect.

Finally, the example of a bilayer waveguide excited by a rectangular source has been considered. The theoret-
ical developments have been checked by comparing numericalresults with those obtained by the two-dimensional
convolution of the point source solution.

Appendix A. Calculation of opposite-going modes from forward-going ones

The following relation can be obtained between pairs of forward and opposite-going modes, denoted (km, u′m) and
(−km, u′−m) respectively:

u−mx′ = umx′ , u−my′ = umy′ , u−mz = −umz (A.1)

These identities can be checked from Eqs. (7) and (8) by accounting for the particular expression ofC in the transverse
isotropic case. Hence with the SAFE method, an opposite-going eigenvector can be deduced from the forward one
by:

U′−m =



















U−mx′

U−my′

U−mz



















=



















Umx′

Umy′

−Umz



















(A.2)

For the stress tensor, the following identities can be shown:

σ−mx′ x′ = −σmx′ x′ , σ−my′ x′ = −σmy′ x′ , σ−mzx′ = σmzx′ (A.3)

which yields for SAFE modal forces:

F′−m =



















F−mx′

F−my′

F−mz



















=



















−Fmx′

−Fmy′

Fmz



















(A.4)
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Appendix B. Link between the 2D Fourier transform and the Hankel transform

Let us start from Eq. (2), the 2D Fourier transform of an arbitrary function f (x, y). The application of a polar
change of variable yields:

f̃ (k, φ) =
∫ 2π

0

∫ ∞

0
f (r, θ)e−ikr cos(θ−φ)rdrdθ (B.1)

The functionf (r, θ) is expanded as a Fourier series:

f (r, θ) =
+∞
∑

p=−∞
fp(r)eipθ (B.2)

where fp(r) = 1
2π

∫ 2π

0
f (r, θ)e−ipθdθ. Using this expansion into Eq. (B.1) and the property (36), one obtains:

f̃ (k, φ) = 2π
+∞
∑

p=−∞
ipeipφ

∫ ∞

0
fp(r)Jp(−kr)rdr (B.3)

From the propertyJp(−kr) = (−1)pJp(kr), the 2D Fourier transform off (x, y) in polar variables is finally:

f̃ (k, φ) = 2π
+∞
∑

p=−∞
i−p f̃p(k)eipφ (B.4)

where f̃p(k) =
∫ ∞
0

fp(r)Jp(kr)rdr denotes the Hankel transform of orderp of fp(r). More details on Fourier transforms
in polar coordinates can be found in [47].

Appendix C. Application of Cauchy residue theorem to inverse Hankel transforms

Forkr ≥ 0, the following identity holds:

Jq(kr) =
1
2

H(1)
q (kr) +

1
2

H(2)
q (kr) =

{

1
2H(1)

q (kr) − 1
2H(1)

q (−kr) for q even
1
2H(1)

q (kr) + 1
2H(1)

q (−kr) for q odd
(C.1)

Besides, the Hankel transform of orderq of a function f (r), denotedf̃q(k), is always an even function whenq is even,
and an odd function forq odd. As a consequence, the inverse Hankel transform of orderq can be rewritten as:

f (r) =
1
2

∫ +∞

−∞
f̃q(k)H(1)

q (kr)kdk (C.2)

for any integerq. The inverse Hankel transform of orderq given by Eq. (37) can hence be rewritten as follows:

f (r) =
1
2

∫ +∞

−∞

g̃q(k)

k− km
H(1)

q (kr)kdk (C.3)

The above form is well suited for the application of the Cauchy residue theorem, which yields the result given by
Eq. (38).

Appendix D. Calculation of G(m,p)
rr

To calculateG(m,p)
rr , let us write the radial displacement vectorUr excited by the radial excitation vectorF̃r (we set

F̃θ = F̃z = 0). From Eqs. (35) and (31), one has:

Ur = −
i

2π

2M
∑

m=1

+∞
∑

p=−∞
i−peipθ

∫ +∞

0

∫ 2π

0
(Emx′ x′ cos2 ϕ

+Emy′y′ sin2 ϕ)eikr cosϕ+ipϕdϕ
F̃pr

k− km
kdk

(D.1)
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From the identities cos2 ϕ = (2+e2iϕ+e−2iϕ)/4 and sin2 ϕ = (2−e2iϕ −e−2iϕ)/4, the above expression becomes thanks
to Eq. (36):

Ur = −
i
4

2M
∑

m=1

+∞
∑

p=−∞
eipθ

∫ +∞

0

(

Emx′ x′ (2Jp(kr) − Jp+2(kr) − Jp−2(kr))

+Emy′y′ (2Jp(kr) + Jp+2(kr) + Jp−2(kr))
) F̃pr

k− km
kdk

(D.2)

Then applying the Cauchy residue theorem (Appendix C), one gets:

Ur =
1
4

M
∑

m=1

+∞
∑

p=−∞

(

2(Emx′x′ + Emy′y′ )H
(1)
p (kmr)

−(Emx′ x′ − Emy′y′ )(H
(1)
p+2(kmr) + H(1)

p−2(kmr))
)

F̃pr (km)πkmeipθ

(D.3)

In order to explicit far-field terms, the functionH(1)
p+2(kmr) andH(1)

p−2(kmr) are rewritten as follows:

H(1)
p−2(kmr) =

2(p− 1)
kmr

{

2p
kmr

H(1)
p (kmr) − H(1)

p+1(kmr)

}

− H(1)
p (kmr) ,

H(1)
p+2(kmr) =

2(p+ 1)
kmr

H(1)
p+1(kmr) − H(1)

p (kmr)

(D.4)

Finally, using Eq. (D.4) into (D.3), the following result isobtained:

Ur =

M
∑

m=1

+∞
∑

p=−∞

{

Emx′ x′H
(1)
p (kmr)

−(Emx′ x′ − Emy′y′ )




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









H(1)
p+1(kmr)

kmr
+ (p− 1)p
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
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























F̃pr (km)πkmeipθ

(D.5)

Identifying Eq. (39) with (D.5) leads to the expression ofG(m,p)
rr .
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