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Three-dimensional modeling of elastic guided waves edditearbitrary sources
In viscoelastic multilayered plates

Fabien Treyssedé

aLUNAM Université, IFSTTAR, Route de Bouaye, 44344 Bowsighrance

Abstract

This paper provides a modal solution for the three-dimeradimodeling of Lamb and SH waves excited by sources
of arbitrary shape. This solution is applicable to elastid giscoelastic plates, in the far-field as well as in the hear
field regions, under the assumption of transverse isotrbputahe thickness direction. The theoretical developsient
are conducted based on a semi-analytical finite elementulation. This formulation yields a one-dimensional
modal problem, fast from a computational point of view, alioves to readily handle heterogeneous materials having
depth-varying properties (multilayered, piecewise ortcmrously varying, functionally graded). The modal sabuti

is shown to be expressed in terms of Hankel functions of pleltorder thanks to a proper application of inverse
transforms and Cauchy residue calculus. The link betweeprtbposed formulation and a fully analytical approach
is discussed. The solution of this paper is then succegsfolinpared to literature results and degenerates to the
point source case. Formula are presented to calculate gmimte excitabilities from lines sources. These formula
remain valid for non-propagating modes, viscoelastic nteand account for the near-field contribution. Finally,
the example of a viscoelastic bilayer waveguide excited bgcgangular source is considered in order to check the
theoretical results.

Keywords: waveguide, plate, excitation, three-dimensional modehMscoelastic, excitability

1. Introduction

Lamb waves are of great interest for the non-destructiveteand the health monitoring of plate-like structures.
Such waves are dispersive and multimodal, which compkctiteir practical use. Dispersion curves of phase and
group velocities as functions of frequency are useful taifig modes that propagate in a frequency range with low
dispersion and low attenuation [1]. These curves repraseudial properties obtained regardless excitation. For a
practical inspection system, it is also essential to ddategrand control the amplitudes of each guided modes excited
by a given source. This information typically allows to apize the type and location of sensors to be used.

The 2D modeling of Lamb wave excitation and propagation leentextensively studied. Two approaches can
mainly be distinguished in order to calculate the respofiseaweguides under excitation. A first approach consists
in using integral transform techniques [2, 3, 4, 5, 6, 7]. Wihis method, the response is obtained by contour
integration in the complex plane and residue calculus, ararical integration, of the analytical solution expresised
the wavenumber domain.

An alternative approach is based on modal analysis, whicisists in expanding the excited field as a sum of
guided modes [8, 9, 10]. The contribution of each mode isinbthfrom an orthogonality relation between eigen-
modes. This second method appears to be more suitable vachbetter interpretation and optimization of signals,
as it directly provides the contribution of each mode as ation of the excitation. Additionally, this method has
allowed to introduce the useful concept of modal excitbjil1, 12, 13, 14]. For a given frequency, the excitability
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of a particular mode can be defined as the ratio of the displanéof that mode to a point force applied in a given
direction.

However, the plane-strain assumption inherently usedBomddeling implies that guided waves are not geomet-
rically attenuated as they propagate and that any souragalpogxtends infinitely along the out-of-plane directi@n (
2D point force hence corresponds to an out-of-plane linecg)u A 3D formulation is required in order to account
for a finite length excitation, typically generated by trdnsers.

The 3D modeling of Lamb wave propagation generated by firdteces is more complex. Based on contour
integration and residue calculus, point source solutiamshe found for isotropic plates [15, 16, 17, 18, 19]. Mainly
based on numerical integration, further works can be foumdjtiasi-isotropic [20], multilayered isotropic [21] or
anisotropic [22, 23, 24] plates. However, numerical indign techniques usually require a large amount of com-
putation time to evaluate the double integral of the spatiadrse Fourier transform, which has extremely irregular
integrands [22, 23].

With modal techniques, a direct way of expressing 3D wavddial terms of modal expansions has been formu-
lated by Achenbach [9] for an isotropic plate. This novelmagh uses reciprocal identities as well as the concept of
carrier waves [25] and leads to analytical solutions botmémal and tangential point loads [26]. The advantage of a
fully modal technique is to replace the double integral efitiverse Fourier transform with a modal expansion, which
is much more #fiicient from a computational point of view. Based on the worRofienbach, Wilcox [27] has derived
asymptotic far-field 3D modal excitabilities. Under thewasption that no material damping is present, Velichko and
Wilcox [13] have further extended these results to gengaalisotropic multilayered media. Based on Refs. [2, 18],
Moulin et al. [28] have proposed far-field modal solutionsda isotropic plate subjected to a normal surface load of
rectangular shape. More generally, problems involvindgtety sources can be treated by two-dimensional convolu-
tion of the point source solution, but this can be costly faoomputational point of view. Further improvements are
possible.

The purpose of this paper is to provide a 3D modal solutiorLonb and SH waves generalized to sources of
arbitrary shape. This solution is restricted to transugrisetropic problems with symmetry axis normal to the plate
surface (quasi-isotropy), so that the modal features opthte do not depend on the propagation angle. This key
property allows to achieve fully modal solutions (withoatdgral), expanded as double sums over normal modes
and Fourier coféicients of the source. This paper generalizes previous 30ahsoiutions usually restricted to point
sources [26, 27, 13]. Furthermore, the proposed modalisolig shown to be applicable to viscoelastic solids as
well as in the near field region. It should be mentioned théijeathe integral transform approach still applies with
complex poles, and thereby to lossy waveguides [29, 24,tB88]yalidity of modal techniques with complex modes
might be unclear. Complex modes typically occur with vidaetc materials or in near-field calculations, involving
evanescent or inhomogeneous modes. In case of 2D plate impdiélhas been recently shown in Ref. [14] that
complex modes can be handled with modal expansion techsitpaeks to the use of Auld’s real biorthogonality
relation, instead of Auld’s complex relation [8] (the lattanly holds for real wavenumbers, i.e. propagating modes in
lossless waveguides).

The theoretical developments of this paper are mainly basedso-called semi-analytical finite element (SAFE)
method. Although approximate by nature, such a numerict#hoaeallows to readily handle heterogeneous materials
having depth-varying properties (multilayered, piecenss continuously varying). The SAFE modal approach has
been essentially developed for studying 3D cylindrical @guides of arbitrary cross-section, viscoelastic or nex (s
for instance Refs. [31, 32, 33, 34, 35]), and 2D anisotropittilayered plates subjected to line loads [36, 37]. For
plate structures, the SAFE method restricts the finite efer{feE) discretization to only one dimension (along the
depth) and is thus fast from a computational point of view.véVmodes can be solved from a matrix eigensystem
using standard eigensolvers, which avoids the use of compt# finding algorithms required with fully analytical
approaches [38, 39]. A one-dimensional SAFE approach has $gecifically proposed by Bai et al. [40] for com-
puting the 3D response of layered isotropic plates. Thetd®eaalyet restricted their calculation to Green’s solution
(point source). Besides, the solution was not expressexgiimstof Hankel functions, which may limit its practical use.
In the present paper, the source is of arbitrary shape andabhenumber domain of integration is chosefietently,
leading to Hankel type solutions.

This paper is organized as follows. Section 2 describes #teESormulation required for the 3D modeling of
elastic waves. In this formulation, the displacement figthins its three components. Section 3 gives the modal
solution. The response is first derived in the wavenumberaitonThe response in the space domain is then obtained
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from the application of Cauchy residue theorem. It is showat the solution is a double sum on Lamb modes and
on the Fourier co@cients of the excitation, involving Hankel functions of riple order. The link between the
SAFE solution and a fully analytical approach is also esthbd. In Sec. 4, the modal solution is validated with
literature results. Formula are presented to calculatetoiurce excitabilities from lines sources. A discussion o
orthogonality relations is provided to highlight the clddak existing between the SAFE biorthogonality relation,
the real biorthogonality relation of Auld [8] and the retatiof Fraser [41]. Section 5 finally shows some examples
of SAFE calculations for a rectangular source exciting aaétastic bilayer plate. Results are compared with those
obtained from a double convolution of the point source $oiut

One points out that plate problems of more general anisgtinopluding transverse isotropy with symmetry axis
parallel to the plate surface, cannot be considered by thegsed approach. In such problems, modal properties
depend on the propagation angle and, therefore, must beutethas a function of that angle. As shown in Ref. [42]
for point sources, the response can then be obtained as avarmarmal modes by application of Cauchy residue
theorem and a finite integral over a full circumferential epewhich has to be approximated by numerical quadrature.
If attention is restricted to the far-field region in undardpeedia, this circumferential integral can be avoided tisank
to the stationary phase method [13, 43] (but the computatfanodal properties as a function of the propagation
angle is still necessary in order to calculate the statippamt).

2. Equations of motion

2.1. Change of basis

One assumes a linear elastic material, small strains apthdaments with a time harmoréc! dependence. In
a fixed reference Cartesian coordinate system, ¢), the elastodynamic equilibrium equation is:

V.o +pwlu = —f (1)

with the stress-strain relationship= C : €. u, p andf denote the displacement, mass density and volume sources
respectively. Following Refs. [40, 42], a coordinate tfan®ation must first be applied to rewrite the equilibrium
equations in the direction of the traveling waves.

A two-dimensional Fourier transform is applied along theediionsx andy, defined for an arbitrary function
f(x,y) as:

+00 oo
(ke k) = f f F(x, y)e k) dxdy 0

kx andky are the wavenumbers in theandy directions, respectively. In this paper, the tilde is usedénote two-
dimensional Fourier transforms. With the assumption thatiemial properties remain constant alongndy, spatial
derivatives in Eq. (1) are thus transformed as follows:
0 . 0 .
6_)( 4 |kx, a/ — |ky (3)
Note that the variation of properties is allowed in #direction (depth, see Fig. 1).
Let us apply a polar change of variable frokg, k) to (k, ¢), with:

ke = kcosp, ky =ksing 4)

A new coordinate systenx(y’,2) is defined, ¥,y’) being oriented at angle from (x,y) (see Fig. 1). k hence
represents the wavenumber in the directtar_et us define the following matrix:

cosp sing O

=|-sing cosp O
0 0 1

()

J is an orthogonal transformation matrid—¢ = J7), representing a rotation of angfearound the axiz. The
coordinate systems( y’,2) and .y, 2) are linked throughx’ = Jx, wherex = [x y 4T andx’ = [xX' y Z". For
spatial derivatives, one has:

_39 (6)



Figure 1: Coordinate systems associated with a plaie.the depth.x’ corresponds to the propagation direction in
the K, ¢) space.

Under this transformation, the equilibrium equation (1ydres:
V' o+ puPu = —f’ (7

with v = Ju andf’ = Jf. Primes are used for denoting vectors and tensors expr@sskd basis €., ey, e,),
attached to thex, Yy, 2) frame. Materials are assumed transversely isotropic tatheuthickness direction (that is
with symmetry axis normal to the plate surface) so that thstality tensoiC remains invariant under the rotatidn
(C = C’). Hence the stress-strain relationship can be written as:

o =C:¢€ (8)
wheree’ = JeJT ando”’ = JoJ7.

2.2. SAFE formulation

In the remainder of this paper, tensors are rewritten urdgrvectorial form for commodity, i.6e” = [exx €y €7 26xy 26x7 26y
ando”’ = [oxx Oyy 0220xy Oxz 0y7]'. One hasr’ = Ce’, where the matrix of a transverse isotropic material is:

Ci1 Cio Cu3 0 0 0

Cio Cip Cu3 0 0 0

_|C13 Ci3 Cass 0 0 0
=10 0 0 Cu-Cw2 0 o ©)

0O 0 O 0 Css O

0 0 0 0 0 GCss

The weak variational form associated with Eq. (7) is:

f s€TCedV - w? f psuTudV = f suTHdV + f suTt'ds (10)
\% \ \% S

wheres denotes virtual fields antd = o, n; is the traction vector applied on the surfsge
Using the property (3) as well as Eq. (4) into Eq. (6), it carchecked that the spatial derivatives alotigndy’
are transformed as: 5 5
ik, — 0 11
K oy (11)
Accounting for the above property, the deformation vectdransformed into the Fourier domain as:

- 0\ .,
€ = (|k|_xr + Lza—z)u (12)
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with:

10 00
0 00 0 00
0 00 0 0 1
Lx=1o0 1 o'*2=]o 0 o (13)
0 0 1 1 0 0
0 00 010

From Egs. (10) and (12), the two-dimensional Fourier trammsfof the equilibrium equations written in the
(X,Y, 2) coordinate system yields the following matrix eigenpesblafter FE discretization alorzy

(K1 — ™M +ik(K2 — KJ) + KK )0 = F (14)
with the elementary matrices:

K= [NeTL] CL,Nedz K§= [ N®TL] CL,N%dz (15)
K¢ = [N'L]CL,N%dz M® = [ pN°TNedz
On one element of the cross-section, the displacementimioiated agi’ = NeU'¢, whereNe is the matrix of nodal
interpolating functions on the element.
In Eq. (14),0’ is the column vector containing transversal nodal disptees in the wavenumber-frequency
domain, i.e. function ok, ¢ andw. F’ is the excitation vector in the wavenumber-frequency domgathering the
contributions of both volume sourc&sand surface sourcés

2.3. Eigenproblem

Suppressing the excitation vector, Eq. (14) correspondsdoadratic eigenvalue problem. The eigensolutions
(km, Ur)) represent the wavenumber and the displacement vectaiatsbwith themth guided mode (the tilde ady,
is dropped for conciseness of notations).

If ki is an eigenvalue, thenk, is also an eigenvalue due to the symmetrKaf K3 andM. Hence, the eigen-
problem has two sets of eigensolutiofg,Ur,) and (m, U’ ), wherek_, = —ky (M = 1,..., M), representingv
positive-going andvl negative-going wave modes. The number of modekig theoretically equal to twice the
number of degrees of freedom (dofs) involved in the systef), @ut the modal basis is usually truncated in practice.

A fundamental property is that displacement componentsil;) andu are uncoupled. This could be checked
from the particular form o€ in transverse anisotropy, recalled by Eq. (9), togethdr thié expression of deformation
in the wavenumber domain in th&'(y’, 2) system, given by Eq. (12). As a consequence, tflleeigensolutions of
Eq. (14) divide into two kinds of modes:

e 2M" modes corresponding to plane-strain motion in tiezf plane, such thal;,”z 0 (Lamb modes);

e 2MsH modes corresponding to anti-plane motion alongyttairection, such that$™ = @3 = 0 (SH modes),

where M = 2M" + 2MSH. Obviously, the eigenproblem (14) could be divided into twwoupled eigenproblem
problems (as done in Ref. [40]). Yet in this paper, the gldbahulation (14) is preferred in order to keep more
compact expressions.

3. Solution

3.1. Response in the wavenumber domain

In order to be solved by standard numerical solvers, quadegdenproblems must be transformed into linear
eigenproblems [44]. Equation (14) can be recast into tHevirhg generalized eigenproblem:

(A-kB)U =F (16)



with:

A=

— W2 _ 2
0 K1 (uM]B:[Kl wM 0 (17)

Kl—wZM I(Kz—K-Zr) ’ 0 —K3

~ (UY) ~ (O
o-{5)#-(9

The solution to Eq (16), which is the forced response unitelekcitation™’, is now expanded as a sum of guided
modes:U’ = hop amU’

For the calculation of modal céicients, both left and right eigenvectors are needed bedhasgystem (16) is
unsymmetric. Denotinﬁl}n and\7;] the right and left eigenvectors respectively, the follogvinorthogonality relations
hold [45, 32, 14]:

and:

VITBUL, = budmn VITAU! = KnbmSmn (19)
whereby, is a normalization factor angl,, denotes Kronecker's symbol.

Using the eigenmode expansion into Eq. (16) and taking adgarof biorthogonality relations (19), thg’'s can
be determined (see for instance Refs. [36, 32, 42]). Thdatisment response in the wavenumber-frequency domain

is then:
i’l: V/T F/ , (20)
4 bim(Km — k)
The above expression can be rewritten in an interesting eranrierms of modal displacement and forces as shown
in the following.
The right eigenvectors are of the folty! = [UT knUT]T. The left eigenvectors require solving the left eigen-
problem. However, it can be proved that left eigenvectogsragteed given by [14]:

~ Ul

Vim = {kmwm} (1)
which avoids solving the left eigenproblem. Note that a giwpposite-going mode’_,, can be directly obtained from
its forward-going counterpald;, thanks to the identity shown in Appendix A (from a computagibpoint of view,

this allows to further reduce the number of modes to compute)
Furthermore, the normalization dtieient can be expressed as:

bm = —4kam,—m/(U (22)
where:

Iw ’ ’ ’ 4
Qm,—m = I(Unr':—m - U—TmFm) (23)

F;, represents the modal force associated with the displaddeand is calculated fronf), = (K] +ikmK 3)U7, [46,
14].
Using Egs. (21)—(23), the forced response (20) becomes:

My
0 =i m (24)
;(k—kno
where:
S CERyAYY) (25)
m 4Qn'],7m m~-m

As shown in Ref. [14], the above solution is general andistiltl for non-propagating modes and lossy waveguides. In
particular,C can be complexE}, is the so-called excitability matrix for line sources (hehe line source is oriented
alongy’).

One points out that coupling termsxfy, y'x, y'’zandzy inside the matriX;, vanish because modal displacement
components inX/, 2) and iny’ are uncoupled (see Sec. 2.3).

The expression (24) is preferred to the expression (20)useci is written only in terms of modal displacement
(no left eigenvectors needed) and allows a direct analogly aviully analytical approach as shown later.
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3.2. Inverse transforms

Next, the solution written in the wavenumber domain#) must be transformed back to the space domaiw)(
From the convention (2), the inverse two-dimensional Fenuransform is:

1 —+00 +00 - i
f(xy) = W f f f(Ky, ky)e'(kXXJrkyy)dkxdky (26)

Let us introduce polar coordinates Y) = (r cosd, r sind), as shown in Fig. 1. With this change of variables as well
as Eq. (4), the inverse transform can be rewritten as fotlows

_ 1 G ikr cos@—6)
f(r,0) = g fo fo f(k, ¢)d kdkdp (27)

The domain of integration used above is slightlffelient from Ref. [40] and leads to Hankel-type solutions asvsh
in the following.

The components of the displacement and the excitation kitteolved in Eq. (24) are now expressed in the basis
(ex. &y, &), which depends op. A proper application of the inverse transform (27) regsliit@ express vectors in
a basis independent gf namely the fixed Cartesian bas&, (g, €;) or the cylindrical basise, &, ;). With polar
variables(, 6), the cylindrical basis appears to be a more natural choice.

In the remainder) and F will denote displacement and force vectors with componintie cylindrical basis.
FE vectors will be partitioned as follows:

B 1 N (2 I 1A I
U/ = L!y’ > F/ = Ey’ > U= LJ(" > F=
U, F; U,

The following rotation matrix is introduced:

z

Fr
ﬁe} (28)
E

cosyl singl 0
R, = [-singl cosypl 0 (29)
0 0 I
whereyp = ¢ — 6. Then, expressing the solution (24) in the cylindrical baselds:
2M =~
~ . EmF
U=-i (30)
; (k— k)
with Ep, = Rl ER,. Emis explicitly given in terms ofp by:
Emy, COS ¢ + Em,, Silf o (Emy — Em,, ) COSpsing Em,, COSp
Em=|(Em,, — Em,,)COSpSiNg  Em,, Sif¢+Em,, coge Em,, Sing (31)
Emzx COSy Emzx Sintp Emzz

Note that the eigenvectots, do not depend om, and so doeg;/,, thanks to the assumption of transverse isotropy
about the thickness direction.
The excitation vectoF generally depends afand must be expanded as a Fourier series:

F(k,¢) = 2n i iPFEL(K)EP?, (32)
p=—o0

where thepth codficient can be calculated from:
iP

Fo(k) = @

2” N
f F(k, p)eP?dg (33)
0
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Given the expansion form (32?,p(k) is also equal to the Hankel transform of orgeof Fp(r), which is defined by

the expansionE(r,0) = 33 Fp(r)eP’ whereF(r) = 5 fOZ" F(r, 9)eP’dg (see Appendix B).

The expression (30) becomes:
2M  +co

2y, 3 ek g (34)

m=1 p=—co
Applying the inverse transform (27) to Eq. (34) yields:

i 2M  +oo +00 F
Z Z iP f f E el cost- 9>+'P¢d¢ 'Lmkdk (35)

m:l p=—c

Then, the following Bessel formula is recalled:
271' " .
f T oA dy = 279, (kr) (36)
0

From this formula, it can be noticed that the integral&a@mEq. (35) indeed correspond to inverse Hankel transforms,
the inverse Hankel transform of ordgof an arbitrary functiorfy(k) being defined as:

f(r) = fo - (k) Jq(kr)kdk (37)

Now let the functioanq(k) have one pole so thafgl(k) = 0q(K)/(k—km), wheredy(K) is supposed to be holomorphic
(no pole). The application of Cauchy residue theorem yigdde Appendix C):

£(r) = izkanGo(km) H{ (ke (38)

WhereHél) denotes thgth order Hankel Function of the first kind.
Finally, the application of Egs. (36)—(38) to the expresg®b) yields after tedious calculations:

U, M e [GITP G(mp) cmp F (k)
Uy G(Srrnp) G(mp) G(mp) |: ,(Km) & k€ (39)
U] mis|gime glne gl E (k)

with:

5 (km ) HO (k)
ngp) =Em,, Hf)l)(kmr) - (Em,, - EmN)( prl +p(p-1) (kmr)zr

(kmr)?

HS (kmr)

GP = G = i(En,, - Em,y)(p *’“‘"“) ~p(p-1)% (““”),
i) (40)

HE (ke
G = iEm,, (HE o) - pHiled) 6o = (H‘“l(kmo
HY) (km) HE (ki
Gy = Emy, S>(w>—(EnW—me,x,)( el p(p-1) Kfaz”)’

H(l) H( )
G(”lp) Em,,P pkikrmr)’ G(m-P) Em, P pk:‘rmr)’ G(m’p) Em, H(l)(kmr)

s

For clarity, the calculation o6 is detailed in Appendix D. The other component<afP can be obtained in
the same manner. The identiti@%“p) = Ggr“p)T, cmn — _gme’ andGS;"p) = —Gg"p)T result from the reciprocity
principle. The terms of order/k,r and (Vkur)? represent near field contributions and can be negligiblénén t
far-field.

In practice, the sum over thd guided modes is truncated [14] (one retains less modes llgamumber of dofs),
as well as the infinite sum over the Fourier fla@entsp. The response in the time domain can finally be obtained
from the inverse time Fourier transformof given by 2 [ Ue“dw.

8



In order for the waves to be diverging, it is emphasized tmdy the positive-going modes must be retained in
the expansion (this results from the proper applicatiomefGauchy residue theorem). As a consequence, the sum in
Eq. (39) is over the positive-going modes, excluding theatieg-going ones. Note that one must be careful to select
the proper backward modes (if any), having positive enerdgaities but negative phase velocities. Similarly to the
2D modeling of Lamb waves [14], the expansion (39) is validdiy point lying outside the source region, i.e. such
thatr > rs wherers denotes the maximum distance at which the excitdfi@) is non-zero.

One recalls that the sum overin Eq. (39) can be decomposed into a sum over Lamb modedysai€nm,,, = 0,
and a sum over SH modes, for which the only non zero composEny i, (as already mentioned, this decomposition
is not applied here in order to keep compact expression®n Tfiom Eq. (39), it can be checked that a force normal
to the plate (i.e. along) does not generate any SH modes for aniNote that the expression G‘ZT"’ is quite simple
and yields a straightforward solution for the normal displaent excited by a force normal to the plate.

3.3. Expression with force components in the Cartesiansbasi

For sources defined in the Cartesian coordinate systemugegil to rewrite the previous solution in terms of
force components expressed in the Cartesian basis inst#fael @ylindrical one. One has:

Fo coshl singl 0] (F,
Fp, ¢t = |- sindl cosl O|1Fp, (42)
Fp, 0 0 I (Fp,

Using Eq. (41) into Eqg. (39) yields after calculations:

U, M e Gﬁr;w) Gﬁgw) Gsrznp) |~: (k)
Upp=> > |G? GJP GIHP E, oy (Km) ¢ k€™ (42)
U, m=1 p=—oco G(mp) Gg‘»p) Gglp) Fp (km)
with:
G = En,, HE (knr) 0080 -~ ( )l (p - 1(kmr)e'9)
G = By, HO(Ker) Sing + | =0r (( 4 1)l p*l(““’) ~(p- 1)l 'H)
G = —Epy,, HP (ko) SinG + | " (( 4 1)Renled) P*l("m) ~(p-Dtepte '9) @3
G = By, HEO (k) cOS + 2700 ( + 1) '“(““’) +(p-1)2 l‘k'”r)e'f*)
G(mp)=|EmZ>( (H(l)l(kmr) coSO — pH () _|9)

G = iEm, (HY,(kar) sing - ip ™ (‘W) e )

Equations (39), (40), (42) and (43) are the central restilfisi® paper. One points out that no specific assumption
has been made except transverse isotropy and invariancaefial properties in thex(y) plane. The solutions remain
applicable wherC is complex (case of viscoelastic materials) and when thpepti@s arbitrarily depend an Also,
the modal expansions account for the near field contributesulting from terms in Akr as well as non-propagating
modes, evanescent or inhomogeneous. The modal respoasesttiain applicable close to the source (provided that
the truncated expansions include enough modes).

3.4. Expressions in the far field
In the far field, the following asymptotic expression holds:

[ 2 hx
(1) — _“  dlknr=(p+3)3) -3/2
Hp (kmr) = o e +O(r=) (44)



In the solution (39), the sums ovprare in the form:

+00

2, TP p(ken) HE (k) (45)

p=—c

Thanks to the identity i-PFp(kn)€’ = F(km, 6)/27 (see Eq. (32)), the use of Eq. (44) into (45) yields:

ﬁ fin/4@~ -3/2
2ﬂe N F(km, 0) + O(r—/<) (46)

This avoids to perform the sum ovpr
The expression (39) can then be remarkably simplified indhééld as:

Ur iKmr
Ut = i \/Ee‘i”/“E;nf:(km 0) e +0(r3/?) (47)
U, m=1 2n vr

It should be kept in mind thaf = [F, F, F]" is expressed in the cylindrical basis. For a force expresstie
Cartesian basis, the above far field approximation holdeplacingF with Rg[Fx Fy F,]T.

3.5. Fully analytical solution

The solutions presented insofar are semi-analytical is#mse that thedirection has been discretized with finite
elements. These expressions can be readily rewritten itlyagfualytical form. From Eqgs. (10) and (14), it can be
shown that the following identity holds:

SOTE = f suTf dz+ [5u'Tt’]f (48)
z 1
wherez = z andz = z are the plate boundaries. For brevity, let us consider thdisa (42) (the solution (39) can
be handled in the same manner). The discretized terms atemuinder the form:
g _lw M \ith: o™ _ UT_ B
Em Fp = 4Qm7mUm,aj,,mp, with: a’qu’p =Uln, Fp (49)

wherei’ = (X,Y,2), |’ = (X,Y,2 andl = (XY, 2.
The fully analytical solution, written in terms of, @, z, w), can be deduced from its discretized counterpart (42)
thanks to the following substitutions:

[Ur Up U]" — [ur U ug]",

. 50
Er k) — g5t @™ (50)
where from Eq. (48), one has:
ag/—lmra)(kng = f U-m, (2 fo ( km)dz+ [u,mi, 2t (z kng]z (51)
and from Ref. [14]: _
Qm-m = '% f (upy -t = Uy - th)dz (52)

with ti/ =0jx-

Note that a fully analytical approach has the advantage &xhet in the frequency-wavenumber domain [38, 39,
6, 7]. However, each layer must be homogeneous and compbexinaing algorithms are usually required to get
modal wavenumbers.
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z

Figure 2: Example of an internal three-dimensional souf@®mplex shapeV denotes the source region. The plane
surfaceS(¢) corresponds to the intersection of the three-dimensimgbnV and the horizontal plane= /. The
curveC(¢) delimits the surfac&(?).

3.6. Source term calculation

The method is applicable to internal or surface sourceshifrary shape. For clarity, Fig. 2 depicts the example
of an internal sourcé(x,y, z w) localized into a finite three-dimensional regign We drop thew dependence for
conciseness. One assumes fifaty, 2) is expressed in the Cartesian basis. Let us consider thabtlrce regiol is
delimited by a surface parametrized by the implicit equasx, y, 2) = 0 so thatv = {(x,y,2) € Rf D 8(X, Y, 2) < 0.

In the modal solution of this paper, the volume source terpeaps as the vector functidg(z k) evaluated at
k = km, which can be calculated by two methods. From Egs. (2) and{d3; k) is equal to thepth Fourier coéficient
of the spatial two-dimensional Fourier Transfornf @f, y, 2) and can be obtained from the following triple integral:

- ip 21 . )
foz k) = A f f f(x, y, 2)e " (kxcoso+kysing+pd) oy qy dlp (53)
(271’)2 0 S(2

whereS(2) = {(x.y) € R? : §(x,y,) < 0} is the plane surface resulting from the intersection of thiemeV and
the horizontal plane = . The equatiors(x,y, ) = 0 parametrizes the cun@(() enclosingS(¢) (see Fig. 2). As
proved in Appendix pr(z; k) is also equal to the Hankel transform of orgeof the pth Fourier coéicient of
f(x,y,2) = f(r cosy, r sing, 2), yielding the double integral:

fp(z; k) = 2—1 f S(Z)f(r €osh, r sind, z)Jp(kr)e’ip"rdrdH (54)

whereS(¢) = {(r,6) € R* x [0,27] : S(r cosd, r sing, ) < 0}. From a mathematical point of view, both expressions
give the same result. However in case of numerical integmathe expression (53) canfier from round-d errors
aspincreases (see Sec. 5).

The numerical evaluation of these multiple integrals fazhegalue ofk,, might be relatively costly compared to
the other fast operations required by the modal solutiorikisfpaper. This cost can yet be reduced by carrying out
analytical calculations as far as possible (see exampledn®. Note that with a SAFE method, internal sources of
complex shape must be carefully handled. In general, theESAFce vector must be recomputed for e&ghfrom
the following elementary vector:

F5, (ki) i
F (k) b = f NCTFo(z kn)dlz (55)
Fo k)]

Surface sourcefx, y; w) (applied tractions) are treated in the same way as inteaaices, the only éierence
being that such source terms do not depend @nd are hence simpler to implement.
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4. Validation with literatureresults

4.1. Solution for a point source

Let us consider a source concentrated-at0. The source can be arbitrarily distributed alongzll@ection. The
force vector has the following form:

0y, 7 w) = (K(z wex + f(Z w)ey + (z w)e) 5(X)o(y) (56)
wherefy, f, andf, denotes the force components in the Cartesian basis. Thesponding discretized FE force is:
Fx(x.y) Fx
Fy(%.y) p = 6(x)3(y) | Fy (57)

FAX.Y) F,

Thew dependence is dropped for conciseness.

The source expression in cylindrical coordinates is rgaalitained by substituting(x)s(y) with 6(r)/2xr [47],
which does not depend ah Hence,Fq = F andF, = 0 for p # O (the only remaining term in the sum overin
Eq. (42) isp = 0). The Hankel transform of order 0 6fr)/2xr is equal to Y2, which yields:

5’?3 L e (58)
5
falo] 2 |

Now, the sum ovemin Eq. (42) is decomposed into a sum over Lamb modes, satig,,, = 0, and a sum over
SH modes, for which the only non zero componertiig, . After rearrangements, the solution (42) finally becomes:

Uy (me —Em“ H (k) ot $Em,, Hg(kat) siné %5 Em, H{P(kar)
(1) H®
{Ua} Z Emxx Ay k(':“r) sind kmEmxx k::‘“r) cosd 0

U, kmEmMH(l)(kmr) cost % En, HO (k) sing  52Em, HO (knr) 59)
MSH Im Em” H (Imr) cosd Im Em/y’ Hllnslrmr) sing 0 FX
+ Z "”Emfy H( (Imr) sing gEmy H( J(mr)coss 0 Ey
m=1 O 0 0 z

with the notationH{P() = H() - . km andly, denote the wavenumbers of Lamb modes and SH modes

respectively.
As a side remark, a force directed alandoes not generate any displacement componeihfan p = 0. This is

not true forp # 0 as shown by the expressmn(éj,"’”p

4.2. Interpretation in terms of excitabilities

Each component in the two matrices of Eq. (59), associatélul lveimb and SH modes respectively, involves a
product of three terms:

e the first term, given by the product betwegg, , andi% Em (possiblyxi), can be viewed as the modal
excitability for point sources, as explained below;

(1)
e the second term, given b‘y(l)(kmn or w represents the propagator (it gives the radial dependsribe
field) including the near fieldféect, in 1/kqr;

e the third term gives the directivity (1, séhor cost).
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The excitability of a mode is defined as the ratio of the disphaent of that mode to a point force applied in a
given direction [11, 12, 13]. With a SAFE method, the exditgbbecomes a matrix whose components represents
the modal displacement dofs when a unit force acts at a stfafi¢l4]. As already mentioned in Sec. 3By, ,
is equal to the excitability matrix for line sources (alomge /' direction). Hence, Eq. (59) indeed gives useful
formula to calculate the excitabilities of point sourcemfrlines sources. One emphasizes that these excitalalitaes
propagators remain valid for non-propagating modes, eigsic materials and include the near-fiefibet.

For instance, the radial displacement generated by a fortei directionFy is expressed as:

HO (1
& cosH

> (60)

ML MSH
km 5 I
Ur = D 5 Eme, Pt (kar) cost + 3" ZEm, Fix
m=1

m=1

In the above expressio@ﬂEWx, and 'ngnW are the radial excitabilities due to point forces in thdirection, for
Lamb and SH modes respectively.

Similarly, the excitability for a displacement and a poiotde both directed alongis given by'%m En,, for Lamb
modes (the propagator beilhiil)(kmo), and isO for SH modes. This result is checked by comparing the saistad
Viktorov [2] (for line sources) and Ditri [18] (for point soces).

Following the work of Velichko et al. [13], one can also definedal excitabilities in the far field, with propagators
in €k / . If the displacement and the force vectors are both expigsshe Cartesian basis, Eq. (47) yields:

0, i \/m in/4RT ghor [0 32
Uyr = —e ""RyELRy Fyt +O(r9) (61)
U, m=1 2n Vr F;

This result precisely corresponds to the discretized oarsf the relation found in Ref. [13] for the special case of an
isotropic or transversely isotropic layered medium. Thghsldifference with Ref. [13] is that, in this paper, Eq. (61)
constitutes a generalization to lossy waveguides and t&iadyof modes, propagating or not, because the line source
excitability defined by Eq. (25) is not restricted to prop@ggmodes in lossless waveguides [14].

4.3. Comparison with Achenbach'’s result

In Refs. [9, 26], a modal solution had been proposed for theewaotion of an isotropic layer generated by a
point load of arbitrary direction. The approach of Achertband co-workers is fully analytical, based on the concept
of carrier waves [25] together with a novel application adistbdynamic reciprocity based on appropriate dummy
solutions.

First, let us rewrite the solution proposed in the presepepaJsing Eqgs. (A.2) and (A.4) into Eq. (23), one has:

w

with the notation:
linm = 1(Ug, Fm, = Upy, Fm, = Uy Fm,) (63)
Using Egs. (A.2) and (62) into Eq. (25), the line source @fiilities can be rewritten as follows:
Unm, Up, Unm, Up, UmUp,
Em,,=|7x, my = -l N rnb(:' X,
o 2|mm XZ 2|mm 2|mm (64)
£ Un U, Um, UrTn,
= — =|—
i Dm ~ T 2l

Note thatl_EIjX,x, = Em,, ,_Eﬁh = Em,, En,, = Em, andEy, = —En, . These symmetry properties are a consequence
of the reciprocity principle.

Let us consider a point source localizedzat 7. In Eq. (56), the force components are now given Hi{z, w) =
fi(w)6(z—z0). From Sec. 3.5, one ha#,‘l”"o)(kno = U-m, (20) fi(w)/ 2, and the fully analytical forms of the line source
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excitabilities given by Eq. (64) are:

. Um,, (D)Um, (20) . Um, (2)Um,(20) . Um,(2)Um, (20)
X! :I—’ X/Z:_I—’ X :I—’
2lmm 2lmm 2lmm (65)
_ U, (2)Um, (20) i U, (2)Um, (20)
with:
o = i f (Un0my — Uy T — Uy Oy )01Z (66)
z

For clarity, the displacement and stress components aemotéed in Achenbach’s work as followsy =iV, u, = W,

oxx = T11, 0zx = iT15 Uy = U andoyy = T12. Then, it can be checked that the analytical form associattd
Eq. (59) agrees with the solution of Refs. [9, 26], obtaingthv, = O for an isotropic plate. Reciprocally, this
somewhat shows that the elegant approach followed by Adwnénd his co-workers — though not fully justified by
mathematical considerations as stated in Ref. [48] — indkgadk to exact results, applicable in the near field, in the
viscoelastic case and to non-propagating modes.

4.4. Case of rectangular sources
Let us assume an excitation represented by separable ledfialctions:

Fx(X,y; w) Fx(w)
Fy(x Y, w) ¢ = X(X)Y(Y) { Fy(w) (67)
FX,Y; w) Fz(w)

Such an assumption is often applicable for rectangulaices@8]. Dropping the» dependence for conciseness, the
2D Fourier transform of the excitation is:

F(K, ky) Fx Fx
{ﬁy(kx, ky)} = X(ky) Y(ky) {Fy} = X(kcosg)Y(ksing) {Fy} (68)
Fa(k, ky)

F; F;

Then in the far field, Eqg. (47) can be rewritten as:

Ur iKmr
Ugt = i \/Ee‘i”/“\?(km :e,ina)uéDﬂ +0(r™%/?) (69)
U, m=1 2n vr

with:
Fx
Fy (70)

U2 = X(kn COSH)E;nRg{
F,

U2P can be viewed as the modal contribution calculated from ai@® source problem (i.e. with infinite length
excitation alongy’). For thez displacement excited by a force alongeq. (69) coincides with the result of Moulin
et al. [28]. The solution (69) can be viewed as a generatinath any displacement component excited by sources of
arbitrary direction.

As an example, let us consider a unit excitation uniform dlerdirectionsx andy, over finite lengthsa and
b respectively. Then, the Fourier transforms are given Kgkcos¢) = 2$,in(k—2a cosp)/kcosy and Y(ksing) =
Zsin(k—zb sing)/ksing. If attention is restricted to the far field, then Eq. (69) ¢enused. If one is interested in the
near field, then there & priori no other way than using the general solution (42). In thig cee source term can be
calculated from the expression (33), yielding:

Fo)  (Fx
{Epy(lo} = fp(K) {Fy} (71)
Fp.(K) F;
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where:
e 'Pdg (72)

" ip 2r 4 sin(,8 cosg) sin(% sing)
p(k) = (27)2 fo k2 cos¢ sing

Note that the above expression, which derives from Eq. (§3)pt recommended for numerical integration as dis-
cussed in Sec. 5.

4.5. Note on the orthogonality relation used in this paper

This subsection aims at clarifying the reason why the SAFE@gch corresponds to a discretized version of
a fully analytical approach. The fundamental property usethe SAFE approach is the discrete biorthogonality
relation (19). As shown in Ref. [14], the relatic;ﬁ,TBLAJ;n = bmdmn CaN be rewritten as:

Iw ’ ’ ’ U
Z(Un}ran - ULFm) = Qm-mdmn (73)
and the corresponding analytical form is:
Qm-n= I% f(u;n L, -u, - t)dz=0ifm#n (74)
z

The above relation indeed represents a slightly modifiedioerof the real biorthogonality relation of Auld [8].
Unlike Auld’s complex orthogonality relation, the realatbn remains valid for non-propagating modes and for lossy
waveguides [14].

The above relation can also be written@g, = 0 for m # —n. As a consequence, one h@s_n + Qmn = O if
m # £n. Let us defindyy, from: Qm-n + Qmn = wlmn/2. Using the relation for the transverse isotropic case eetw
forward and opposite-going modes (Appendix A), one has:

ln =i f(umﬁnzx —Un, Oy, — Un,0m,,,)dz=01if m# +n (75)
z

For Lamb modesuyy, = 0), the relation (75) corresponds to Fraser’s relation.[Adr SH modesuy = u, = 0),
it corresponds to the well-known orthogonality relatioﬁuny, Um,dz = 0 if m # +n (becauserm,, = iK(Ci1 -
Ci2)um, /2). These orthogonality relations for Lamb and SH modes rdeéd the fundamental relations used in
Achenbach’s work [9].

As a consequence, the procedure followed with the SAFE nddthihis paper is in fact quite analogous to modal
analytical approaches based on Auld’s or Fraser’s relgtidrhis further justifies the direct link existing between
numerical and analytical solutions described in Sec. 3.5.

5. Example

In this section, the example of a bilayer viscoelastic waneg is considered to illustrate the method. Each layer
is homogeneous although this is not a limitation of the SAF&huod.

5.1. Test case description
The bilayered plate is taken from the work of Simonetti [4Bfe relevant material parameters are summarized in

Table 1. Complex bulk wave velocities are defined from:

Cs

P sl
1+|27T

The matrix of elasticity co@cientsC is complex. As already explained, the solutions proposedignpaper remain
valid in this case.

As shown in Ref. [49], this test case yields strong viscaelafects upon dispersion curves compared to the loss-
less case. Additionally, the viscoelastic excitabilifiewe already been calculated with a SAFE method in Ref. [14]
for the 2D line source problem.

Figure 3 shows the dispersion curves for the phase velooihtlze attenuation computed with the SAFE method
of this paper, for three modes of interest: two Lamb mode®telMy andM; and one SH mode. For both Lamb
modes, the numerical dispersion curves coincide with tla¢yéinal results of Ref. [49]. For the SH mode, the curves
are found to have a behavior analogous tokhemode, with lower velocity and stronger attenuation.
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cs(m/s) ¢ (mys) p(kg/m3 as(Np/A) a (Np/d) thickness (mm)
Layer 1 (elastic) 900 1700 1250 1 1 9
Layer 2 (metallic) 3260 5960 7930 0 0 8

Table 1: Characteristics of the bilayered plate
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Figure 3: Dispersion curves in terms of frequency for: (ajgehvelocity, (b) attenuation. Black: Lamb modes
(denotedMp andMy), gray: SH mode.

5.2. Source description

The excitation is a uniform rectangular source of leregth 20mm and widthb = 40mm positioned at the surface
of Layer 1 and centered a%,(y) = (0,0). Thepth codtficient of the space 2D Fourier transform of the source profile
has been given by Eq. (72), where the integral can be evauat@erically by a trapezoidal method. However, such
an expression is not suitable due to rourfflesrors that prevent convergence as the number of Fourid¢ficeats
retained in the series is increased. These roufidroors are due to the fact that the integrand in Eq. (72) doés n
tend to zero ap increases.

Instead, we can use a double integral analogous to Eq. (B4afoulating the surface source term. As shown in
Appendix B, the functiorfp(k) is also equal to the Hankel transform of orgeof the pth codficient of the Fourier
series off(r, 6):

fo(k) = % fo ) fo hf(r,e)e’ipede\]p(kr)rdr (77)

In our examplef(r, 6) is equal to one inside the rectangular region delimitefkpy a/2 andly| < b/2, and is equal to
zero outside. As a consequence, the integratiohaam be performed analytically, with integration boundsateting
onr (several regions must be distinguished). Assunairgb, cumbersome calculations yield the following result:

Jo° Jo(kr)rdr — 2 [1°6a(r) Jo(kr)rdr — 2 [;° 6(r)Jo(kr)rdr forp=0
fo(k) = =2 [2°sin(poa(r))Ip(kr)rdr — 2 [3°sin(pen(r)Ip(kn)rdr  for p# 0 even (78)
2 2
0 for p odd

wherers = Va2 + b?/2, 6,(r) = arccosé/2r) andéy(r) = arccosb/2r). For a giverr, each integrand of the above
expression vanishes g8 — oo thanks to Bessel function properties. From a computatiamt o view, this ensures
the convergence of series as the number offadentsp increases in the expansion.

5.3. Reference method (2D convolution)

In the point source solution given by Eq. (59), the whole imatrside the parentheses of the left-hand side can
be identified as the Green’s matrix, denotedHas the following. By definition, the response displacemerd force
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arbitrarily distributed in theX,y) plane is given by the two-dimensional convolution prodoetween the Green’s
matrix and that force.

The convolution must be written with respect to Cartesiaordimates and tensors must be written with respect to
the Cartesian basis (convolution theory in polar coordisaan be found in Ref. [47] but tools are hardly available).
The response in the Cartesian basis is hence calculatetiavgsfo

Uy Fyx
{uy} = (RJH) * * {Fy} (79)
U, F,

where the 2D convolution product of arbitrary functiohandg is defined as:

F(x.y) * g(x.y) = f ) f " f(x— £,y - (e n)dedy (80)

The response in the cylindrical basis is obtained by lefttiplying the response (79) by the matiRg.

Since analytical calculations are not achievable, theaespis approximated thanks to a discrete two-dimensional
convolution. A rectangularx(y) grid of 512 by 512 points is defined. The Green'’s solutiorregponding to a
given displacement dof generated by a point force in a givettion is evaluated from Eq. (59) at each point of
the rectangular grid. This Green'’s solution is projectetbdhe Cartesian basis, yielding a first matrix grid. The
excitation is discretized on the same grid, yielding a sdaeuoatrix grid. Then, the Cartesian displacement response is
obtained from the discrete two-dimensional convolutiotween both grids. This response must be finally projected
on the cylindrical basis to be compared with the solution (42

Owing to the validation of Eq. (59) with the analytical sadut presented in Sec. 4.3, results obtained from the
convolution method can be considered as reference sotutiéet the two-dimensional convolution method may be
time-consuming (depending on the typical wavelengths tdiberetized, on the source size...). With such a method,
calculations are necessarily performed on the whole gvieh & attention is restricted to some points only.

Conversely, the solution given by Eq. (42) is particularjeresting from a computational point of view as it
allows to perform single point calculations.

5.4. Comparison between modal and convolution solutions

Figure 4 shows the displacement fielggsandu, at 50kHz for an applied stress oriented normal to the plane (
direction). In this caserx=Fy=0: according to Eq. (42), no SH waves occur and only Lamb modeprasent.

In the modal expansions, 10 positive-going modes and 10iéroeodticients (p| < 10) are retained. Numerical
tests have shown that this truncation igigient to ensure convergence of results with good accurasypullined in
Sec. 3.2, one recalls that results calculated with the moeé#hod are valid outside the source region (i.erfsrrs).
This restriction also applies with the convolution meth@tduse the Green'’s solution (59) is singular-ed. The
region inside the source K rg) is hence not displayed.

As shown by Fig. 4, results computed with the modal and theaation methods are in quite good agreement
in the far field as well as near the source. Tdisplacement exhibits a wide-angle radiation pattern.(&&, as
opposed to it® counterpart (Fig. 4c). Note tha is not equal to zero, unlike for a normal point source, beeaus
the rectangular source generapes 0 codficients. It can be observed that the radiation patternifonainly occurs
for p=2. In fact, the coﬁicientGgfp) always vanishes fop=0 (see Eq. (43)), whilefp is zero if p is odd owing to
Eq. (78) (p=1 also vanishes).

Figure 5 shows the displacement fielgsandu, at 50kHz for an applied stress oriented along xdirection.
Results obtained with the modal method again coincide wiitisé of the convolution method. For an excitation along
X, the examination of Eq. (42) tells us that both Lamb and SHesare generated in the near-field but Lamb waves
are predominant in the far field of, while SH waves dominate the far-field of. This can be clearly observed in
Figs. 5a and 5c. Lamb waves are preferentially emitted inxtd@ection (Fig 5a), while the SH wave (of longer
wavelength) is rather emitted alogdFig 5c).

The results of modal and convolution methods have been cadfar every other possible combination of dis-
placement and source directions, with very good agreemeslfs not shown for conciseness). This further validates
the theoretical developments presented in this paper.
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y(m)

X {m)

(©

Figure 4: Response at 50kHz for an excitation normal to taegk direction) and evenly distributed on a rectangular
surface 20x40mm, calculated for: (&) from modal expansion (i.e. Eq. (42)), (b) from convolution, (c)u, from

modal method, (d, from convolution. The response is shown at the surface oty where the excitation is
applied.
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Figure 5: Response at 50kHz for an excitation tangent tolreeg direction) and evenly distributed on a rectangular
surface 20x40mm, calculated for: (@&)from modal method, (b)) from convolution, (c)u, from modal expansion,
(d) ug from convolution. The response is shown at the surface oét.aywhere the excitation is applied.
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Figure 6: Same caption as Fig. 5¢ but for 100kHz.

In order to illustrate the change of radiation pattern widgfiency, Fig. 6 gives the displacement figJdomputed
with the modal approach at 100kHz (excitation aloigThe number of wave modes retained in the expansion is equal
to 20. As can be observed, the directivity pattern has styaglved compared to Fig. 5c.

5.5. Time response

In this section, the applied stress is oriented alongxth&ection. The time excitation is a Hanning-windowed
5 cycles sinusoidal toneburst centered at 50kHz. Compuigatare performed from the modal approach for 100
frequencies evenly spaced up to 100kHz and the inversedtdrainsform is processed.

Figure 7 gives the time response fgrandu, in the directiond = /4 at two distances, = 45mm andr =
900mm, calculated from the exact solution (42) and from #refield approximation (47) (also given by Eq. (69)
for a rectangular source). Note that the convolution methodld yield cumbersome calculations here because the
computation of the complete field in thg, §) plane would be required at each frequency step.

At r = 45mm, it can be observed that the far field approximatios fa®f course, the error committed by the
far-field approximation would further increase closer te ource. Note that the error appears to be greatarfor
(Fig. 7b), for which the SH wave mainly contributes as alseexplained in Sec. 5.4.

At r = 900mm, the far field solution yields accurate results. Tingmas are superimposed with the exact
solutions. Fou,, the main contribution is given by Lamb modes and two wavéetsacan be distinguished (Fig. 7c).
The fastest packet corresponds to kitemode, the slowest one to thé, mode. Fory, the response is dominated by
the SH wave. The time of flight of the SH mode is found to lie tE#wthose oMy andM; modes (compare Figs. 7d
with 7c¢), as expected from the dispersion curves in Fig. 3.

6. Conclusion

In this paper, a 3D modal solution for Lamb and SH waves eddite sources of arbitrary shape has been de-
rived under the assumption of transverse isotropy abouthiiskness direction. This solution is valid for elastic or
viscoelastic media and in the far-field as well as in the rieddl; including non-propagating modes (evanescent or
inhomogeneous). It is written in terms of Hankel functiosditrary orders thanks to a proper application of in-
verse transforms and Cauchy residue calculus. The propodaibn has been simplified in the far field. Theoretical
developments have been conducted on the basis of a SAFE dnethich allows to readily handle heterogeneous ma-
terials having depth-varying properties (multilayeredcpwise, or continuously varying as in the case of funetilgn
graded materials) with fast computations (the SAFE modatblem being one-dimensional).

The link with a fully analytical approach has also been dithéd. It has been shown that the procedure followed
with the SAFE method is in fact quite analogous to modal ditlapproaches based on Auld’s or Fraser’s relations.

The solution proposed in this paper has been successfutipared to various literature results obtained in special
cases. The general expression degenerate to Achenbadait'sparce solution. Useful formula have been presented
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Figure 7: Time response calculateddat n/4 for: (a)u; atr = 45mm, (b)ug atr = 45mm, (c)u, atr = 900mm,

(d) up atr = 900mm.. Black continuous lines: exact solution given by @§), gray dashed lines: far-field solution
given by Eq. (47) (black lines are superimposed on gray lim&sgs. (c) and (d)). The excitation is oriented in the
direction and uniformly distributed on a rectangular scef20x40mm. Excitation and response are both at the surface
of Layer 1.

to calculate point source excitabilities from lines sogtCEnese excitabilities remain valid for non-propagatirgles
and viscoelastic materials and the associated propagaton@ccount for the near fieldfect.

Finally, the example of a bilayer waveguide excited by aaegtlar source has been considered. The theoret-
ical developments have been checked by comparing numeesalts with those obtained by the two-dimensional
convolution of the point source solution.

Appendix A. Calculation of opposite-going modes from forwar d-going ones

The following relation can be obtained between pairs of Bmdhand opposite-going modes, denoted (;,) and
(—km, U’,)) respectively:
ufn\/ = Urn/,, (A.l)
These identities can be checked from Egs. (7) and (8) by aticgufor the particular expression Gfin the transverse
isotropic case. Hence with the SAFE method, an oppositeegeigenvector can be deduced from the forward one

Ufmx, = umx/, U-m, = —Um,

by:
U_m, Um,
U/,m = U_rn/ = Umy, (A2)
U_m, —Um,
For the stress tensor, the following identities can be shown
O—*mx’x’ = _O—mx’x” o—*rnfx’ = _O—rn)/x” o—*mzx = o—mz>( (A3)
which yields for SAFE modal forces:
Fom, —Fm,
F’_m = Ffrn/, = _Frn/, (A4)
F*mz sz
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Appendix B. Link between the 2D Fourier transform and the Hankel transform

Let us start from Eq. (2), the 2D Fourier transform of an aabjt functionf(x,y). The application of a polar
change of variable yields:

21 oo )
f(k ¢) = f f f(r, 0)e K ost-9rdrdg (B.1)
0 0
The functionf(r, 8) is expanded as a Fourier series:
f(r,0) = Z fo(r)eP’ (B.2)
p:—oc

wherefp(r) = % fOZ” f(r, #)e'P?ds. Using this expansion into Eq. (B.1) and the property (36} obtains:

+00 00
f(k ¢) = 2n Z iPelP? f fo(r)Jp(=kr)rdr (B.3)
p=—co 0
From the propertylp(—kr) = (-=1)PJy(kr), the 2D Fourier transform of(x, y) in polar variables is finally:
f(k ¢) = 2n Z i"Pfo(k)eP’ (B.4)
p=—oo

Wherefp(k) = fooo fo(r)Jp(kr)rdr denotes the Hankel transform of orgeof fy(r). More details on Fourier transforms
in polar coordinates can be found in [47].

Appendix C. Application of Cauchy residue theorem to inver se Hankel transforms

Forkr > 0, the following identity holds:

LR (kr) — 1HP(~kr) for g even

1O (k) + THO(—kr) for q odd (1)

Jq(kr) = —H(l)(kr)+ H(Z)(kr) {

Besides, the Hankel transform of ordpof a functionf(r), denotedfq(k), is always an even function wheyis even,
and an odd function fog odd. As a consequence, the inverse Hankel transform of grcdan be rewritten as:

1 +00 -
f(r) = > I } fa(QHP (kr)kdk (C.2)
for any integeig. The inverse Hankel transform of ordeggiven by Eq. (37) can hence be rewritten as follows:
1 K)o
f(r) = Iw i ka (kr)kdk (C.3)

The above form is well suited for the application of the Cauadsidue theorem, which yields the result given by
Eq. (38).

i i (m,p)
Appendix D. Calculation of G,

. To calculateGﬁ“p), let us write the radial displacement vectfrexcited by the radial excitation vectby (we set
F¢ = F, = 0). From Eqgs. (35) and (31), one has:

2M  +o0

! Z Z i pe'pef f (Em,, cOS ¢

2 et e (D.1)
=
+Em,, sir? )&’ Cos‘p“p‘pdtp km kdk
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From the identities c8sp = (2+ €2¢ + e2%)/4 and sik ¢ = (2 €2¥ — e 2¥) /4, the above expression becomes thanks
to Eq. (36):

-ZM +00

22, 2 € f (Emy (23p(kr) = Jpsa(kr) = Jp-a(kr))
4 (D.2)

£
+Emyy (23p(kr) + Ipi2(k) + Jp (k) 1=

Then applying the Cauchy residue theorem (Appendix C), @& g

2Em,, E H<1>
4;;% Enmeye + Eny, JHP (ko) 03

~(Emye = Emyy JHS (k) + HE (k) ) P, (o) i€

In order to explicit far-field terms, the functidmélfz(kmo andHf)l_)z(kmn are rewritten as follows:

2(p-1) (2
HY, o) = 2022 {K‘;Hé”(kmn - Hﬁﬁl(kmr)} - H (k) 0o
HO, (ko) = 2(p+ 1)H(1)1(kmr) H (k)
Finally, using Eq. (D.4) into (D.3), the following resultdbtained:
M +00
Ur = Z Z {EmX/X/Hél)(kmr)
m=1 p=—co
(D.5)
HE: (k) H(ka) )| .
~(Ene = Emy)| e+ (P 1P 5 | o (k™

Identifying Eq. (39) with (D.5) leads to the expressiorGyf*P.
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