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Abstract

Among the numerous techniques of non destructive evaluation, elastic guided waves are of particular interest
to evaluate defects inside industrial and civil elongated structures owing to their ability to propagate over long
distances. However for guiding structures buried in large solid media, waves can be strongly attenuated along the
guide axis due to the energy radiation into the surrounding medium, usually considered as unbounded. Hence,
searching the less attenuated modes become necessary in order to maximize the inspection distance. In the
numerical modeling of embedded waveguides, the main difficulty is to account for the unbounded section. This
paper presents a numerical approach combining a semi-analytical finite element method and a perfectly matched
layer (PML) technique to compute the so-called trapped and leaky modes in three-dimensional embedded elastic
waveguides of arbitrary cross-section. Two kinds of PML, namely the Cartesian PML and the radial PML,
are considered. In order to understand the various spectral objects obtained by the method, the PML parameters
effects upon the eigenvalue spectrum are highlighted through analytical studies and numerical experiments. Then,
dispersion curves are computed for test cases taken from the literature in order to validate the approach.

Keywords:

1. Introduction

Among the numerous techniques of non destructive evaluation (NDE), elastic guided waves are of particular
interest to evaluate defects inside industrial and civil elongated structures due to their ability to propagate over
long distances. Two categories of waveguides can be distinguished: closed waveguides (guides in vacuum) and
open waveguides (embedded waveguides).

In closed waveguides, waves can propagate along the guide axis without attenuation. However in practice,
guides are often embedded in large solid media that can be considered as unbounded. In this case, waveguides are
called open because of the energy radiation into the surrounding medium. Three kinds of wave modes can occur in
open waveguides: radiation modes, trapped modes and leaky ones. Their characteristics are briefly recalled in the
following paragraphs. These modes are obtained by assuming a dependence of wave fields in ei(kz−ωt), wherek is
the axial wavenumber,ω is the angular frequency andz is the coordinate along the waveguide axis. The following
dispersion relations holds:k2 + k2

l/s = ω
2/c2

l/s, wherecl andcs are the longitudinal and shear wave speeds,kl and
ks denote the longitudinal and shear transverse wavenumbers of the unbounded medium respectively.

Radiation modes are standing waves in the transverse directions and can be either oscillating or evanescent in
the longitudinal direction,i.e. kl/s ∈ R andk is real or pure imaginary. They constitute a continuous spectrum [1,
2], resulting from the unbounded nature of the problem. Resonating mainly in the surrounding medium, radiation
modes are of little interest for the NDE of elongated structures.

Conversely, trapped modes are of particular interest. These modes exponentially decay in the transverse di-
rections (kl/s ∈ iR) and propagate along the axis without attenuation (k ∈ R) in non-dissipative waveguides. Their
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energy is confined into the core of waveguides without energyleakage into the surrounding medium allowing
long inspection distances. Nevertheless, trapped modes donot always occur. For scalar open waveguides (char-
acterized by a scalar field such as the acoustic pressure or the SH wave displacement), trapped modes exist only if
the bulk velocity in the core is lower than in the surroundingmedium [3]. In the elastic case, both compressional
and shear bulk waves occur and, unless Stoneley waves are allowed on the interface between materials, no trapped
modes are present when the shear velocity is faster in the core [4, 5]. Unfortunately, such a configuration is often
encountered in civil structures because the guiding structures are usually embedded in soft solid media such as
concrete, cement or grout for instance.

As opposed to trapped modes, leaky modes always exist in openwaveguides. Their energy leakage into
the surrounding medium yields attenuation along the guide axis (k ∈ C/R, Im(k) being positive for positive-
going modes and negative for negative-going ones), which can strongly limit their propagation distance. An
unusual behavior of leaky modes is that, while decaying along the axis, their amplitudes increase in the trans-
verse directions. This feature is well-known in electromagnetism [3, 6] and has sometimes been mentioned in
elastodynamics [7, 8, 9, 10, 11].

From a mathematical point of view, leaky modes are not spectral objects because they belong to the forbidden
Riemann sheet [3, 12]. They constitute a discrete set which is not part of the complete set constituted by the
continuum of radiation modes and the discrete set of trappedmodes [1, 2]. The mathematical characterization of
leaky modes requires a complicated analytical continuation [13] which is out of scope here. From a physical point
of view, leaky modes can constitute a good approximation of the continuum of radiation modes in the excited
field over a restricted area, near the core region [6]. Through the imaginary part of their axial wavenumbers,
leaky modes allow to directly evaluate the ability of waves to propagate far away along the axis. With radiation
modes, such an information is hidden into the continuum. Therefore, an accurate determination of leaky modes
is essential for the NDE of embedded waveguides in order to find modes and frequencies of lowest attenuation.

In the literature, many researches have been conducted on embedded waveguides based on analytical ap-
proaches [14, 15]. Analytical models are mainly based on transfer matrix or global matrix methods [14, 15] and
allow to plot the dispersion curves of solid embedded waveguides. Methods based on Debye series have also
been proposed in Ref. [16]. Yet, these techniques are limited to simple geometries such as plates and cylin-
ders [17, 18, 19].

The modeling of more complex geometries usually relies on numerical approaches. A powerful technique
is the so-called Semi-Analytical Finite Element (SAFE) method [20, 21, 22, 23], which restricts the FE dis-
cretization on transverse directions only. The SAFE methodhas been mainly used for the simulation of closed
waveguides. The numerical modeling of open waveguides encounters two difficulties: the cross-section is un-
bounded and the amplitude of leaky modes transversely increases. In order to overcome these difficulties, the
SAFE method must be associated with other techniques.

A simple numerical procedure is the absorbing layer (AL) method proposed in Refs. [24, 25], which consists
in creating artificial viscoelastic layers in the surrounding medium for absorbing waves. Instead of using artificial
layers, Mazzotti et al. have recently combined the boundaryelement method (BEM) with the SAFE method to
model three-dimensional elastic waveguides embedded in a solid [26] or in a fluid [27]. The BEM expresses
the solution in the exterior domain by integral formula on the core boundary. Analogously to the SAFE-BEM
method, Hayashi et al. [28] have proposed a formulation for open plate waveguides. An alternative technique is
the perfectly matched layer (PML) method, which consists inanalytically extending real coordinates of physical
equations into the complex ones. The SAFE-PML method has already been applied to scalar wave problems [29,
30, 31]. More recently, the authors have presented this method to model open solid plate waveguides [32, 33]
(one-dimensional modal problems).

Among these three techniques, the SAFE-AL method is the simplest to implement as it does not require spe-
cific programming in existing codes. However, the AL artificial viscoelasticity must be slowly growing in order
to minimize reflection so that large layers can be required inpractice, hence increasing the computational cost.
Compared to AL, the PML thickness is expected to be significantly reduced. Theoretically, the PML can strongly
attenuate waves without artificial reflection thanks to the analytical extension of coordinates (perfectly matched
property). Contrary to SAFE-AL and SAFE-PML methods, the SAFE-BEM method avoids the discretization
of the unbounded medium, which significantly reduces the computational domain. Yet, the SAFE-BEM eigen-
problem is highly non linear and difficult to solve. To avoid the eigenproblem non-linearity withSAFE-BEM
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Figure 1: (a) Arbitrary cross-section of an open waveguide,(b) introduction of Cartesian PML in the surrounding medium, (c) PML truncation.

methods, some modified formulations have been proposed. Hayashi et al. [28] have successfully transformed the
non linear eigenproblem into a linear one for the special case of a surrounding fluid (scalar waves). Gravenkamp
et al. [34] have proposed a simplified boundary condition, namely dashpot boundary condition, which amounts
to neglect transverse wavenumbers in the exact radiation condition. This dashpot condition is usually no longer
accurate for low frequency or for low contrast of acoustic impedance. Unlike the SAFE-BEM approach, both the
SAFE-AL and SAFE-PML methods yield a linear eigenvalue problem.

In this paper, the SAFE-PML technique is proposed as an alternative to SAFE-AL and SAFE-BEM methods
to compute modes in three-dimensional elastic waveguides of arbitrary cross-section embedded in an unbounded
solid matrix. Two kinds of PML, Cartesian and radial, are considered. This yields two formulations referred to
as the SAFE-Cartesian PML (SAFE-CPML) method and the SAFE-radial PML (SAFE-RPML) method. It is
pointed out that both kinds of PML have been analyzed mathematically for computing the acoustic resonances of
open cavities [35, 36], which constitutes a problem close tothat of the present paper. Note also that the SAFE-
CPML formulation of this paper is indeed similar to the 2.5D displacement-based PML formulation recently
proposed in Ref. [37] (yet in this reference, the discretized problem was not considered as an eigenvalue problem,
but rather inverted by considering a source term for fixed transverse wavenumbers).

This paper focuses on the implementation and the validationof the SAFE-PML method. The comparative
study between this technique and other techniques such as SAFE-AL or SAFE-BEM methods is out of scope of
this paper and left for further studies.

The SAFE-CPML and SAFE-RPML formulations are presented in Secs. 2 and 3 respectively. In order
to understand the various spectral objects obtained from these formulations and to clarify the effects of PML
parameters, the eigenvalue spectrum is analyzed for each formulation based on analytical studies and numerical
experiments. In Sec. 4, the computation of modal properties(group velocity, energy velocity and kinetic energy)
is introduced and dispersion curves are computed for several test cases taken from the literature to validate both
formulations.

2. SAFE - CPML method

2.1. Initial formulation of 3D elastodynamics
One considers a three-dimensional waveguideΩ̃ = S̃×] −∞,+∞[. Linear elastic materials are assumed. The

waveguide cross-sectioñS lies in the (x̃, ỹ) plane. The tilde notation will be explained through the introduction
of PML in Sec. 2.2. The time harmonic dependence is chosen as e−iωt. The study is focused on eigenmodes.
Acoustic sources and external forces are then discarded.

The variational formulation of the elastodynamic problem for the displacement fieldu is given by
∫

Ω̃

δǫ̃Tσ̃dΩ̃ − ω2
∫

Ω̃

ρ̃δũT ũdΩ̃ = 0 (1)
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where d̃Ω = dx̃dỹdz. This formulation holds for any kinematically admissible displacementδũ = [δũx δũy δũz]T .
The notationδǫ̃ = [δǫ̃xx δǫ̃yy δǫ̃zz 2δǫ̃xy 2δǫ̃xz 2δǫyz]T is the virtual strain vector, ˜σ = [σ̃xx σ̃yy σ̃zz σ̃xy σ̃xz σ̃yz]T

denotes the stress vector. The stress-strain relation is given by σ̃ = C̃ǫ̃, whereC̃ is the matrix of material
properties. ˜ρ is the material mass density. The superscriptT denotes the matrix transpose. We assume thatC̃
and ρ̃ depend only on the transverse coordinates ( ˜x, ỹ), which means that we consider translationally invariant
waveguides along thez axis. Moreover we assume that the medium is homogeneous outside a bounded region
which represents the core of the waveguide.

Separating transverse from axial derivatives, the strain-displacement relation can be written as follows:

ǫ̃ =

(

LS̃ + Lz
∂

∂z

)

ũ (2)

whereLS̃ = Lx
∂

∂x̃
+ Ly

∂

∂ỹ
and

Lx =
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. (3)

LS̃ and Lz∂/∂z are the operators of derivatives with respect to the transverse directions ( ˜x, ỹ) and the axisz
respectively.

2.2. Combining SAFE and Cartesian PML techniques

The SAFE method consists in assuming a harmonic axial dependence of fields and applying the FE method
to the transverse directions. The problem is then reduced from three dimensions to the two dimensions of the
waveguide cross-section. The SAFE method has been widely used for modeling closed waveguides (guides in
vacuum), for which the cross-section is bounded (see for instance [20, 21, 22, 23]).

The modeling of open waveguides requires to combine the SAFEmethod with another technique due to the
unbounded nature of the section. We assume that outside a possibly inhomogeneous region representing the core
of the waveguide, the medium is homogeneous. The basic idea consists in closing the waveguide section by
replacing the unbounded homogeneous region with a PML of finite thickness. As shown in Fig. 1, a PML is
introduced along the Cartesian transverse coordinates in order to attenuate waves in the surrounding medium. By
truncating the cross-section to a sufficiently large distance, the problem becomes closed and the SAFE method
can be applied. In this case,S̃ denotes the truncated section including the PML.

The basic principle of PML can be readily understood in a one-dimensional situation. Consider for instance
the case of a longitudinal wave traveling in the positive ˜x direction. Such a wave can be expressed as an ex-
ponential function exp(ikl x̃), which extends to an entire function for complex values of ˜x. Hence, instead of
considering real ˜x, one can choose a particular path ˜x(x) in the complex plane parametrized by a real variablex
such that exp(ikl x̃(x)) decays exponentially asx tends to+∞. The same considerations apply in the ˜y direction or
for a shear wave. The Cartesian PML method consists in extending the initial equilibrium equations to complex
coordinates ˜x and ỹ, properly parametrized to attenuate waves (the PML parametrization will be discussed in
Sec. 2.4). Here we define

x̃(x) =
∫ x

0
γx(ξ)dξ, ỹ(y) =

∫ y

0
γy(ξ)dξ (4)

whereγx(x), γy(y) are complex functions satisfying

• γx(x) = 1 for |x| ≤ dx ; γy(y) = 1 for |y| ≤ dy,

• Im{γx} > 0 for |x| > dx ; Im{γy} > 0 for |y| > dy.
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dx anddy are positive parameters chosen such that the rectangle [−dx,+dx] × [−dy,+dy] contains the inhomoge-
neous part of the medium. Thus ˜x andỹ become non-real in the homogeneous surrounding medium.

Since waves are attenuated, the PML can be truncated at a finite distance. We denote byhx andhy the PML
thicknesses in thex andydirections respectively (see Fig. 1c). Thus, in the (x, y) plane, the truncated cross-section
including the PML is the rectangle of half-thicknessesdx + hx anddy + hy. On the exterior boundary of the PML,
the boundary condition can be arbitrarily chosen (usually of Dirichlet type).

From Eq. (4), the change of variables ˜x 7→ x, ỹ 7→ y yields for any functionf̃ :

∂ f̃
∂x̃
=

1
γx

∂ f
∂x
,
∂ f̃
∂ỹ
=

1
γy

∂ f
∂y
, dx̃ = γxdx, dỹ = γydy (5)

where f̃ (x̃(x), ỹ(y), z) = f (x, y, z).
Applying this change of variable to Eq. (2) leaves the operator Lz unchanged while the operatorLS̃ has to be

replaced with

LS =
1
γx

Lx
∂

∂x
+

1
γy

Ly
∂

∂y
. (6)

Now applying the SAFE method, the displacementu and the virtual displacementδu are expressed on one
elemente as follows:

u(x, y, z) = Ne(x, y)Ueeikz, δu(x, y, z) = Ne(x, y)δUee-ikz (7)

wherek is the axial wavenumber,Ue is the displacement vector andNe is the matrix of interpolating functions on
the elemente.

Replacing the axial derivative∂/∂z of the trial and test functions with products by+ik and−ik respectively,
the formulation (1) is reduced from three dimensions (x, y, z) to a bidimensional problem written in the transverse
directions (x, y). The strain-displacement relation becomes

ǫ = (LS + ikLz) NeUeeikz. (8)

The FE discretization of the truncated cross-section finally yields

{K1 − ω2M + ik(K2 −KT
2 ) + k2K3}U = 0 (9)

with the elementary matrices:

Ke
1 =

∫

e
NeTLT

SCLSNeγxγydxdy,Ke
2 =

∫

e
NeTLT

SCLzNeγxγydxdy

Ke
3 =

∫

e
NeTLT

z CLzNeγxγydxdy,Me =

∫

e
ρNeTNeγxγydxdy.

Note that the SAFE-CPML matrices are complex due to the functionsγx andγy in the integrands.

2.3. Linear eigenvalue problem
Given the frequencyω, the formulation (9) is quadratic with respect tok, which can be linearized as [33, 38]

(A − kB)Û = 0 (10)

with

A =
[

0 I
−(K1 − ω2M) −i(K2 −KT

2 )

]

, B =
[

I 0
0 K3

]

, Û =
[

U
kU

]

. (11)

The symmetry ofK1, K3 and M implies that if k is an eigenvalue of (9), then−k is also an eigenvalue.
Thus, the eigenspectrum includes two families of solutions, (k j ,U+j ) and (−k j ,U−j ), ( j = 1, . . . , n) representingn
positive-going andn negative-going waves.

In the presence of PML,K1, K2, K3 andM are complex.A andB are not Hermitian, which somewhat
complicates the numerical treatment of the eigensystem (10). As outlined in Ref. [35, 30], the non-hermitian
character of matrices may yield spurious eigenvalues whichare associated with large values of the norm of
resolvent. This problem can be reduced by setting the PML nottoo far from the core.

In this paper, the ARPACK library [39] is used for solving theeigensystem (10). This library is based on the
implicitly restarted Arnoldi method. For each frequency, aspecified number of eigenvalues is looked for around
a user-defined shift.
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2.4. PML absorbing functions

In each directionx andy, the PML depends on three user-defined parameters: the position of the interface
(dx, dy), the thickness (hx, hy) and the absorbing function (γx,γy). For a given interface position and PML thick-
ness, the optimal choice of absorbing functions is crucial for maximizing the attenuation of waves with minimal
reflections.

In scattering problems (source problems), the PML functionis usually frequency dependent [40, 41] and
chosen as:γx(x) = 1+ iσx(x)/ωwhereσx(x) is a continuous function, parabolic inside the PML region (a similar
expression holds forγy(y)). In modal problems, the proper choice of PML functions is slightly different.

As mentioned in the preceding section, if we consider a longitudinal or shear wave exp(ikl/sx̃) for real x̃
(wherekl andks denote the transverse longitudinal and shear wavenumbers), the effect of an infinite PML in the
positivex direction is to transform this function into an exponentially decaying function exp(ikl/sx̃(x)) asx tends
to +∞. From (4), it is easily seen that the total attenuation across a layer of finite thicknesshx is given by

exp(−Im(kl/sγ̂xhx)) = exp(−|kl/s||γ̂x|hx sin(argkl/s + argγ̂x)) (12)

whereγ̂x denotes the average values ofγx in the layer :

γ̂x =
1
hx

∫ dx+hx

dx

γx(ξ)dξ. (13)

One recalls that leaky modes decay along the axial directionz (Im k > 0) but grow in the transverse direction,
i.e. Im kl/s < 0 or equivalently argkl/s < 0. From Eq. (12), leaky waves can be attenuated by the PML if ˆγx is such
that argkl/s > − argγ̂x (in this paper, arg denotes the principal argument and lies in the interval ]−π,+π]). Hence,
increasing arg ˆγx will enlarge the region of the complex plane where leaky modes can be computed. Increasing
|γ̂x|hx will increase the PML absorption.

For trapped modes, waves propagate without axial attenuation (Imk = 0) and exponentially decay in the
transverse direction so that: Rekl/s = 0 and Imkl/s > 0, or equivalently argkl/s = π/2. In the presence of PML,
trapped waves will thus remain decaying if arg ˆγx < π/2. The PML will be able to enhance the natural decay of
trapped modes if Im(kl/sγ̂x) > Im kl/s, or equivalently Reˆγx > 1.

Note that|γ̂x| cannot be too high in practice for a givenhx, otherwise waves will attenuate too fast to be well
approximated by the FE discretization. This phenomenon is well-known in the PML literature [40].

For a PML introduced in they-direction, the above considerations also holds with ˆγy defined by

γ̂y =
1
hy

∫ dy+hy

dy

γy(ξ)dξ. (14)

For open waveguide modal problems, the PML functions have been usually set to a constant complex value [30,
42, 43, 44], yielding a discontinuity at the PML interface. However a smooth profile can improve the accuracy
of modes, as recently shown in Refs. [32, 33]. In this paper, aparabolic function is set for both the real and the
imaginary parts ofγx andγy:

γx(x) =























1 if |x| ≤ dx

1+ 3(γ̂x − 1)

(

|x| − dx

hx

)2

if |x| > dx
, γy(y) =























1 if |y| ≤ dy

1+ 3(γ̂y − 1)

( |y| − dy

hy

)2

if |y| > dy
. (15)

γ̂x and γ̂y quantify the PML absorption. Note that the PML functionsγx andγy are independent ofω, which
avoids the calculation of SAFE-CPML matrices at each frequency.

2.5. Eigenspectrum

The goal of this subsection is to get a better understanding of the influence of each PML parameter upon each
type of modes. First, the analytical solution of a homogeneous medium is derived and compared with numerical
results obtained with the SAFE-CPML method. Second, a more complex case corresponding to a steel cylinder
buried in a solid medium is considered. Numerical experiments are performed to understand how the Cartesian
PML acts on the eigenspectrum.
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2.5.1. Homogeneous medium
An isotropic elastic homogeneous medium in three dimensions can be viewed as an open homogeneous

waveguide of unbounded section in the (x, y) plane (z being the axial direction). Introducing a PML of finite
thickness in both directionsx andy, the problem becomes closed. A boundary condition, defined later, must be
applied at the PML ends. Let us denoteℓx andℓy the half thicknesses of the whole cross-section (ℓx = dx + hx,
ℓy = dy + hy). ℓ̃x andℓ̃y are the complex half thicknesses, defined as follows:

ℓ̃x =

∫ ℓx

0
γx(ξ)dξ = dx + γ̂xhx, ℓ̃y =

∫ ℓy

0
γy(ξ)dξ = dy + γ̂yhy. (16)

Analytical solution. Applying the Helmholtz decomposition [45], the displacement vectorũ is written as ˜u =
∇̃φ̃+ ∇̃ ∧ ψ̃ (with ∇̃ · ψ̃ = 0), whereφ̃ andψ̃ = [ψ̃x ψ̃y ψ̃z]T are scalar and vector potentials corresponding to lon-
gitudinal (l) and shear (s) waves respectively. The equilibrium equations of elastodynamics yield the uncoupled
differential equations for potentials:

∂2φ̃

∂x̃2
+
∂2φ̃

∂ỹ2
+













ω2

c2
l

+ λ













φ̃ = 0 and
∂2ψ̃

∂x̃2
+
∂2ψ̃

∂ỹ2
+

(

ω2

c2
s
+ λ

)

ψ̃ = 0, (17)

whereλ = −k2. cl andcs are the bulk velocities of longitudinal and shear waves respectively.
Free or Dirichlet boundary conditions couple the potentials φ̃ andψ̃ so that fully analytical solutions are not

achievable. Instead, the following mixed boundary conditions are considered:

ũx = 0, σ̃xy = 0, σ̃xz = 0 at x̃ = ±ℓ̃x and ũy = 0, σ̃xy = 0, σ̃yz = 0 at ỹ = ±ℓ̃y. (18)

It can be shown that such boundary conditions yield uncoupled boundary conditions for̃φ andψ̃:






























∂φ̃

∂x̃
= 0 at x̃ = ±ℓ̃x

∂φ̃

∂ỹ
= 0 at ỹ = ±ℓ̃y



















∂ψ̃x

∂x̃
= 0 at x̃ = ±ℓ̃x

ψ̃x = 0 at ỹ = ±ℓ̃y























ψ̃y = 0 at x̃ = ±ℓ̃x

∂ψ̃y

∂ỹ
= 0 at ỹ = ±ℓ̃y















ψ̃z = 0 at x̃ = ±ℓ̃x

ψ̃z = 0 atỹ = ±ℓ̃y

. (19)

By separating the variables ˜x andỹ, the eigenvalues of the problem (17) and (19) are given by

λ
(p,q)
l = −ω

2

c2
l

+

(

pπ

2ℓ̃x

)2

+













qπ

2ℓ̃y













2

, λ(m,n)
s = −ω

2

c2
s
+

(

mπ

2ℓ̃x

)2

+













nπ

2ℓ̃y













2

(20)

wherem, n, p, qare integers. These apparently formal calculations can be easily justified following the same ideas
as in [33].

From Eq. (20), it can be seen that two spectra occur instead ofone with scalar waveguides [30, 43]. These
two spectra correspond to compressional and shear waves respectively.

Without PML, the eigenvalues are real (ℓ̃x = ℓx, ℓ̃y = ℓy). In the initial unbounded problem,ℓx andℓy tend to
infinity: the spectra in terms ofλ = −k2 tend to two real continuous half-lines [−ω2/c2

l ,+∞[ and [−ω2/c2
s,+∞[.

These continua of eigenmodes are the so-called radiation modes, which are standing waves oscillating in the
transverse directions. As simply shown by Eq. (20), each continuum is discretized by the truncation of cross-
section at some finite distance.

With PML, the eigenvaluesλ are no longer real. The associated modes are still referred to as radiation
modes since they are oscillating inside the PML. In the complex λ-plane, the eigenvalues of Eq. (20) belong to
two angular sectors of origins−ω2/c2

l and−ω2/c2
s. Each sector is limited by two half-lines of rotation angles

−2 argℓ̃x and−2 argℓ̃y. For clarity, these half-lines are denoted as

(

∆l/s
x

)

: − ω2/c2
l/s+ R

+/ℓ̃2
x,

(

∆l/s
y

)

: − ω2/c2
l/s + R

+/ℓ̃2
y. (21)

Each sector reduces to half-lines if argℓ̃x = argℓ̃y. When|ℓ̃x| and|ℓ̃y| increase, each spectrum of radiation modes
gets denser and becomes continuous when|ℓ̃x| and|ℓ̃y| tend to∞.
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Material cl (m/s) cs (m/s) ρ (kg/m3) βl (Np/wavelength) βs (Np/wavelength)
Steel 5960 3260 7932 0.003 0.008
Concrete 4222.1 2637.5 2300 0.0 0.0
Stiff stone 5720 3300 2200 0.0 0.0
Grout 2810 1700 1600 0.043 0.100

Table 1: Material characteristics.

From Eq. (16), the rotation angles of
(

∆
l/s
x

)

and
(

∆
l/s
y

)

are respectively

−2 argℓ̃x = −2 arg(dx + γ̂xhx), − 2 argℓ̃y = −2 arg(dy + γ̂yhy). (22)

This shows that each angle does not depend on the PML functionprofile itself (only its average value has an
effect). It is noteworthy that the result given by Eq. (22) agrees with that obtained in Ref. [46] from a mathematical
study of the scalar acoustic PML problem.

Numerical example.A concrete medium is considered. The material characteristics are given in Tab. 1. The
PML interface positions are chosen asdx = dy = d and the PML thicknesses are set tohx = hy = 3d. The whole
section is a square of half-thicknessesℓx = ℓy = 4d.

Figure 2 shows the dimensionless spectrumλd2 at the dimensionless angular frequencyΩ = ωd/cs = 1 with
different values of ˆγx andγ̂y.

As shown in Figs. 2a and 2c, the analytical eigenvalues givenby Eq. (20) belong to two angular sectors. They
are limited by two half-lines

(

∆
l/s
x

)

and
(

∆
l/s
y

)

defined in Eq. (21), rotated from the real axis by angles of−74◦

and−113◦ respectively, in agreement with Eq. (22). As can be seen fromFigs. 2b and 2d, the angular sectors are
reduced to half-lines when PML parameters are identical in both directions.

Numerical eigenvalues computed by the SAFE-CPML method arealso shown in Fig. 2 (crosses). The fi-
nite elements are six-node triangles, whose average lengthis denoted byle. The PML functionsγx andγy are
parabolic, as defined by Eq. (15).

Numerical results are in agreement with the analytical ones, except for poles that are far from the real axis.
Such poles indeed correspond to higher order modes (higher values ofp, q, m, n in Eq. (20)), which have high
transverse wavenumbers,i.e. small transverse wavelengths. As in conventional eigenvalue FE problems, these
modes are not well approximation due to the FE discretization. Refining the mesh allows to improve numerical
results, as confirmed by Figs. 2c and 2d.

2.5.2. Embedded cylindrical elastic waveguides
In this subsection, numerical experiments are conducted ona cylindrical waveguide embedded into a softer

solid matrix (the bulk velocities of the core are greater than in the surrounding medium). The test case is taken
from the paper of Castaings et al. [24]. It consists of a steelcylinder of 10 mm radius buried in concrete. The
material characteristics are given in Tab. 1. The steel is considered as elastic in this test (βl = βs = 0, whereβl

andβs denote the longitudinal and shear bulk wave attenuations inNeper per wavelength).
Contrary to the previous subsection, the eigenspectrum nowincludes leaky modes in addition to radiation

modes (note that no trapped modes occur in this test case).

Numerical parameters.The radius of the circular core section is denoted bya. A Dirichlet condition is applied
at the exterior boundary of the truncated section. As shown in Fig. 3, finite elements are six-node triangles. PML
functions are parabolic. The PML parameters in thex andy directions are identical:dx = dy, hx = hy, γ̂x = γ̂y.
The PML thicknesses are equal to 0.9a.

Numerical eigenspectrum.Figure 4 represents the dimensionless numerical spectrumλa2 for various PML pa-
rameters at the dimensionless frequencyΩ = ωa/cs0 = 3.86 (wherecs0 is the shear wave velocity of the core).
Two kinds of modes can be distinguished.
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(a) (b)

(c) (d)

Figure 2: Spectrum of homogeneous concrete medium with section truncated by Cartesian PML atΩ = 1 (dx = dy = d, hx = hy = 3d) for:
(a) γ̂x = 1+ i, γ̂y = 1+ 2i, le = 0.4d, (b) γ̂x = γ̂y = 1+ i, le = 0.4d, (c) γ̂x = 1+ i, γ̂y = 1+ 2i, le = 0.2d and (d)γ̂x = γ̂y = 1+ i, le = 0.2d.

Crosses: SAFE-CPML results, circles: analytical results.Dashed lines:
(

∆
l/s
x

)

, continuous lines:
(

∆
l/s
y

)

.
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Figure 3: Cross-section mesh of an embedded cylindrical barusing Cartesian PML (le = 0.2a).

(a) (b)

(c) (d)

Figure 4: Numerical spectrum of steel-concrete waveguide obtained atΩ = ωa/cs0 = 3.86 by the SAFE-CPML method (hx = hy = 0.9a) for:
(a) γ̂x = γ̂y = 2+ 4i, dx = dy = 1.1a, le = 0.2a, (b) γ̂x = γ̂y = 5+ 4i, dx = dy = 1.1a, le = 0.2a, (c) γ̂x = γ̂y = 2+ 4i, dx = dy = 3a, le = 0.2a,
(d) γ̂x = γ̂y = 2+ 4i, dx = dy = 1.1a, le = 0.1a
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The first kind corresponds to radiation modes, yielding two spectra of origins (−ω2/c2
l , 0) and (−ω2/c2

s, 0),
wherecl andcs denote the bulk longitudinal and shear wave velocities of the embedding medium (concrete).
Similarly to Sec. 2.5.1, these spectra correspond to the discretized continua of longitudinal and shear waves.
Modes near the origins approximately form straight lines rotated from the real axis with angles equal to 107◦ in
Fig. 4a and 61◦ in Fig. 4b. These angles are in agreement with the analyticalformula given by Eq. (22). Far from
their origins, radiation modes deviate from straight lines. Such modes are high order modes which the FE mesh
can no longer approximate. This is confirmed by Fig. 4d, obtained with a refined mesh (the deviation occurs at a
greater distance from the origins).

The rotation of radiation modes indeed allows to discover a second kind of modes, hidden in the original
problem without PML. These modes are leaky modes. As observed in Fig. 4, the number of discovered leaky
modes grows as the rotation angle is increased: compared to Fig. 4a (γ̂x = γ̂y = 2+ 4i), two leaky modes are not
present in Fig. 4b (ˆγx = γ̂y = 4+ 4i). As expected from Sec. 2.4, more leaky modes can be found by increasing
the argument of ˆγx andγ̂y.

The rotation angles can also be modified by adjusting the PML interface positiondx and dy. Comparing
Fig. 4c with 4a shows that high values ofdx anddy reduce the rotation angles, in agreement with Eq. (22). In
Fig. 4c, note that two leaky modes are spoiled by the deviation of high order radiation modes.

In practice for computing leaky modes, the PML interface should be set close to the core as suggested in
Refs. [33, 30, 35]. From a physical point of view, a PML interface too far from the core allows leaky modes to
significantly grow before entering the PML, which can deteriorate their computation. This has been mathemati-
cally justified by the increase of the norm of the resolvent ofthe eigenproblem [30, 35].

The spectra of radiation modes can be densified by choosing higher values of PML parameters (dx, dy), (hx, hy)
or (γ̂x, γ̂y), which increases the complex half-thicknesses|ℓ̃x| and|ℓ̃y| as explained in Sec. 2.5.1. As an example,
compared to Figs. 4a, these spectra get denser in Figs. 4b and4c, for which the parameters Reˆγx = Reγ̂y and
dx = dy have been increased respectively.

3. SAFE - RPML method

In this section, the SAFE-RPML formulation is introduced. Following the same approach as in Sec. 2, the
associated eigenspectrum is briefly studied through analytical and numerical experiments.

3.1. Combining SAFE and radial PML techniques

The formulation (1) is rewritten in cylindrical coordinates as follows:
∫

Ω̃

δǫ̃Tσ̃r̃dr̃dθdz− ω2
∫

Ω̃

ρ̃δũT ũr̃dr̃dθdz= 0 (23)

wherex̃ = r̃ cosθ, ỹ = r̃ sinθ. The tilde notation represents the introduction of a PML along the radial direction.
Note that in the above formulation, vectors and tensors are written in cylindrical coordinates but still expressed
in the Cartesian basis. In cylindrical coordinates, the operatorLS̃ of the strain-displacement relation (2) is

LS̃ = Lx

(

cosθ
∂

∂r̃
− sinθ

r̃
∂

∂θ

)

+ Ly

(

sinθ
∂

∂r̃
+

cosθ
r̃

∂

∂θ

)

. (24)

Applying the PML technique in the radial direction, the formulation (23) can be interpreted as the analytical
continuation of the equilibrium equations into the complexradial coordinate ˜r, with

r̃(r) =
∫ r

0
γ(ξ)dξ (25)

whereγ(r) is a complex function satisfying

• γ(r) = 1 for r ≤ d

• Im{γ} > 0 for r > d.
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Figure 5: Open waveguide with cross-section truncated by radial PML.

d is the position of the PML interface. As shown in Fig. 5, the cross-section of a SAFE-RPML problem is
typically a circle of radiusd + h, h denoting the PML thickness. Similarly to Cartesian PML, theboundary
condition applied at the PML exterior boundary can be arbitrarily chosen.

From Eq. (25), the change of variable ˜r 7→ r yields for any functionf̃ :

∂ f̃
∂r̃
=

1
γ

∂ f
∂r
, dr̃ = γdr (26)

where f̃ (r̃ , θ, z) = f (r, θ, z). Applying this change of variable and the SAFE method to Eqs. (24) leads to an
expression identical to Eq. (8), with

LS = Lx

(

cosθ
γ

∂

∂r
−

sinθ
r̃

∂

∂θ

)

+ Ly

(

sinθ
γ

∂

∂r
+

cosθ
r̃

∂

∂θ

)

. (27)

Before FE discretization, the formulation must be transformed back to Cartesian coordinates. The operatorLS

then becomes

LS = Lx

[(

x2

γr2
+

y2

r̃r

)

∂

∂x
+

(

1
γr2
− 1

r̃r

)

xy
∂

∂y

]

+ Ly

[(

1
γr2
− 1

r̃r

)

xy
∂

∂x
+

(

y2

γr2
+

x2

r̃r

)

∂

∂y

]

. (28)

Finally, the FE discretization of the formulation along thecross-section yields the same form of eigenproblem
as Eq. (9), but with the following elementary matrices:

Ke
1 =

∫

e
NeTLT

SCLSNe r̃γ
r

dxdy,Ke
2 =

∫

e
NeTLT

SCLzNe r̃γ
r

dxdy

Ke
3 =

∫

e
NeTLT

z CLzNe r̃γ
r

dxdy,Me =

∫

e
ρNeTNe r̃γ

r
dxdy.

3.2. PML absorbing function

As suggested for Cartesian PML, a parabolic profile independent of frequency is chosen for the radial PML
functionγ, expressed as follows:

γ(r) =























1 if r ≤ d

1+ 3(γ̂ − 1)

(

r − d
h

)2

if r > d
(29)

whereγ̂ is the average value ofγ in the radial PML region:

γ̂ =
1
h

∫ d+h

d
γ(ξ)dξ (30)

For radial PML, the influence of ˆγ on wave absorption can be illustrated by considering wave solutions in
cylindrical coordinates. In the PML region (r > d), the wave fields can be expressed by a combination of Hankel
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functions. Assuming negligible refection from the PML exterior boundary (r = ℓr = d+h), the radial dependence
of wave fields is written asH(1)

n (kl/sr̃), whereH(1)
n is the Hankel function of first kind andkl/s denotes the radial

wavenumber (shear or longitudinal).
Let us denote the complex radiusℓ̃r by

ℓ̃r =

∫ ℓr

0
γ(ξ)dξ. (31)

For simplicity, we assume that the radial wavelength is small enough compared tod and|ℓ̃r | (i.e. |kl/sd| ≫ 1 and
|kl/sℓ̃r | ≫ 1). Then, the wave solutions at the PML interface and at the PML end, written in terms ofH(1)

n (kl/sd)

andH(1)
n (kl/sℓ̃r ) respectively, asymptotically behave like eikl/sd/

√

kl/sd and eikl/sℓ̃r /

√

kl/sℓ̃r =

(

eikl/sd/

√

kl/sℓ̃r

)

eikl/sγ̂h

respectively. Therefore, the total attenuation from the interface to the PML end can then be approximated by

|H(1)
n (kl/sℓ̃r )|
|H(1)

n (kl/sd)|
≃

exp(−|kl/s||γ̂|hsin(argkl/s + argγ̂))
√

∣

∣

∣

∣

∣

1+
γ̂h
d

∣

∣

∣

∣

∣

. (32)

Concerning the numerator (exponential term), it can be noticed that the radial wavenumberkl/s plays the same
role as in Eq. (12). Therefore, the influence of ˆγ is similar to the effect of γ̂x and γ̂y with the Cartesian PML
method, already described in Sec. 2.4.

The slight difference with radial PML is that this exponential term is modulated by an attenuation factor given
by 1/

√

|1+ γ̂h/d|. Without PML (γ̂ = 1), this attenuation factor corresponds to the geometricalattenuation of
cylindrical waves and is equal to 1/

√
1+ h/d. A radial PML enhances this attenuation factor as|γ̂| increases.

3.3. Eigenspectrum (homogeneous medium)

The SAFE-RPML eigenspectrum is now briefly analyzed in orderto understand how a radial PML acts
on the eigenspectrum. The analytical solution of a homogeneous medium is derived. Compared to Cartesian
coordinates, it is difficult with cylindrical coordinates to find appropriate boundary conditions leading to fully
analytical solutions of the elastic problem. Therefore, the analytical solution of this section is obtained for the
scalar wave equation of acoustics. The elastic problem willbe handled through numerical experiments. For
conciseness, this section is limited to the case of a homogeneous medium. The reader is referred to Appendix
A for the analysis of a cylindrical core waveguide embedded into an infinite medium, where similarly to the
homogeneous case, the analytical solution for an acoustic waveguide is first studied and numerical experiments
in the elastic case are then performed.

A homogeneous medium can be considered as an open homogeneous waveguide of unbounded cross-section.
Introducing a radial PML of finite thicknessh and of positiond, the cross-section becomes bounded and of radius
ℓr = d+ h.

Analytical solution for a scalar problem.The acoustic wave equation written in cylindrical coordinates is

d2φ̃

dr̃2
+

1
r̃

dφ̃
dr̃
− n2

r̃2
φ̃ +

(

ω2

c2
− k2

)

φ̃ = 0 (33)

whereφ̃ denotes the acoustic variable,n is the circumferential order andc is the acoustic wave velocity.
The solution of Eq. (33) is̃φ(r̃) = AJn(kr r̃) + BYn(kr r̃), wherekr is the radial wavenumber satisfying the

relationk2
r + k2 = ω2/c2. Jn andYn are Bessel functions of the first kind and of the second kind respectively.

SinceYn(kr r̃) tends to infinity when|r̃ | tends to 0,B must vanish. A Dirichlet conditioñφ(ℓ̃r) = 0 is applied at the
PML exterior boundary, yielding the characteristic equation: Jn(kr ℓ̃r ) = 0. The eigenvalues are hence

λnm = −k2
nm = −

ω2

c2
+

(

χnm

ℓ̃r

)2

(34)

whereχnm denotes themth zero ofJn(x).
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Figure 6: Dimensionless spectrum of homogeneous concrete medium computed with the SAFE-RPML method atωd/cs = 1. PML parame-
ters areh = 3d, γ̂ = 2+ 4i (le = 0.2d).

Without PML (ℓ̃r = ℓr), the eigenvalues are real. In the initial problem of infinite section,R tends to infinity
and theλ spectrum becomes a real continuous half-line [−ω2/c2,+∞[. This continuum can be referred to as the
essential spectrum of radiation modes [30, 35].

With a radial PML, the eigenvaluesλ of radiation modes become complex. In the complex plane, they belong
to a discretized half-line of rotation angle

−2 argℓ̃r = −2 arg(d+ γ̂h). (35)

This coincides with the result obtained in Ref. [35] for the computation of acoustic resonances with a radial PML
method. Similarly to the Cartesian PML (see Sec. 2.5.1), thediscretized half-line gets denser when|ℓ̃r | increases
and the rotation angle is independent of the radial PML function profile.

Numerical solution for an elastic problem.The radiation modes of a homogeneous elastic problem are now
computed by the SAFE-RPML method. A concrete medium is considered. Finite elements are six-node triangles,
whose average lengthle is chosen as 0.1d. The PML functionγ is parabolic, as defined by Eq. (29). The PML
thickness is set toh = 3d. The radius of the whole cross-section isℓr = 4d.

Figure 6 shows the spectrum at the dimensionless frequencyΩ = ωd/cs = 1 with γ̂ = 2 + 4i. Instead of
one half-line with the scalar problem, the eigenvalues belong to two discretized half-lines starting from−ω2/c2

l
and−ω2/c2

s. As already found in Sec. 2.5.1, these two spectra of radiation modes correspond to longitudinal and
shear waves respectively (their deviation from straight lines being due to the poor FE approximation of higher
order modes).

The half-lines are rotated from the real axis with equal rotation angles, approximately equal to 118◦. This
angle is in agreement with the acoustic formula (35).

4. Dispersion curves

In this section, the dispersion curves of leaky and trapped modes are computed by both the SAFE-CPML and
the SAFE-RPML methods for three test cases taken from the literature. The calculation of modal properties in
open waveguides is presented first (kinetic energy, energy velocity and group velocity).

4.1. Kinetic energy

By analytical continuation into complex coordinates, the cross-section and time averaged kinetic energy can
be defined asEk =

1
2

∫

S̃
ρ̃ṽ · ṽdS̃, whereṽ = dũ/dt is the velocity vector and bars denote time averaging over one

period. As already mentioned in Sec. 2.2,S̃ denotes the waveguide cross-section including the truncated PML.
This definition is rewritten by using the change of variablesfrom complex to real coordinates, as

Ek =
1
4

∫

S
ρRe(v∗ · v)dS̃ =

ω2

4

∫

S
ρRe(u∗ · u)dS̃ =

ω2

4

∫

S
ρu∗ · udS̃ (36)
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where d̃S = γxγydxdy for the SAFE-CPML method and dS̃ = r̃γ/rdxdy for the SAFE-RPML method. The
superscript∗ refers to the complex conjugate transpose.

The FE expression of kinetic energy is given by

Ek =
ω2

4

∑

e

∫

Se
ρue∗ · uedS̃ =

ω2

4

∑

e

Ue∗
(∫

Se
ρNeTNedS̃

)

Ue =
ω2

4
U∗MU. (37)

This result is the same as for closed waveguides (without PML) [21, 47]. In the presence of PML, the slight
difference is thatM is no longer real and the kinetic energy becomes complex.

4.2. Energy velocity
For closed waveguides, the energy velocity is defined as follows [45]:

ve =
Re

(∫

S
P · ndS

)

Re(Ek) + Re(Ep)
(38)

whereP is the complex Poynting vector given byP j = − 1
2v∗i σi j . Ep denotes the cross-section and time averaged

potential energy, given byEp =
1
2

∫

S
ǫ∗σdS. n is the unit vector normal to the cross section (in thez direction).

The potential energyEp and the complex power flow
∫

S
P ·ndS can be post-processed from SAFE matrices thanks

to the following formula [47], here modified for complex wavenumbers:
∫

S
P.nds= − iω

2
U∗c (K2 + ikK3) U, Ek =

ω2

4
U∗MU, Ep =

1
4

U∗
(

K1 + ikK2 − ik∗KT
2 + k∗kK3

)

U. (39)

For open waveguides, the definition ofve is similar to Eq. (38). However the integrals on the cross-section
are usually restricted to the core region [48, 49], which avoids the transverse growth of leaky modes at infinity.
Hence, Eqs. (38) and (39) still apply for open waveguides butS must be replaced withS0, which denotes the
cross-section of the core.

4.3. Group velocity
The group velocity is usually defined byvg = ∂ω/∂k. The calculation ofvg can be achieved from the derivative

of the SAFE eigensystem with respect tok, as done in Refs. [21, 50]. However, the definitionvg = ∂ω/∂k only
applies when the axial wavenumberk is real. In open waveguides, the axial wavenumber of leaky modes is
complex. The proper definition of group velocity for damped modes is [48, 51]

vg =
dω

dRe(k)
=

[

Re

(

dk
dω

)]−1

. (40)

Let (k j ,U+j ) denote an eigensolution of Eq. (9):
(

K1 − ω2M + ik j(K2 −KT
2 ) + k2

j K3

)

U+j = 0. (41)

Taking the derivative of Eq. (41) with respect toω yields
(

−2ωM + i
dk j

dω
(K2 −KT

2 ) + 2k j
dk j

dω
K3

)

U+j = −
(

K1 − ω2M + ik j(K2 −KT
2 ) + k2

j K3

) dU+j
dω

. (42)

As mentioned in Sec. 2.2, (−k j,U−j ) is also a solution of Eq. (9). Left-multiplying Eq. (42) by the transpose of
U−j allows the right-hand term to vanish, which leads to the group velocity of thejth mode:

vgj =



















Re



















2ωU−T
j MU+j

U−T
j

(

i(K2 −KT
2 ) + 2k jK3

)

U+j





































−1

. (43)

The calculation ofvg for a given mode hence requires its opposite-going counterpart.
As opposed to the energy velocity, it should be noticed that the group velocity may generally be not appro-

priate for attenuated waves [48] (including leaky waves). Yet, the group velocity still applies for trapped modes,
which are non-attenuated (in non-dissipative media).
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4.4. Modal filtering

According to Secs. 2.5, 3.3 and Appendix A, the SAFE-PML methods provide many radiation modes in
addition to the modes of interest (leaky or trapped). Since radiation modes mainly oscillate inside the PML, they
are dependent on the choice of PML parameters and cannot be considered as intrinsic to the physics. A large
number of radiation modes perturbs the visualization of dispersion curves of trapped and leaky modes. A modal
filtering must be processed to identify and remove these radiation modes. The filtering criterion proposed in this
paper is based on the ratio of kinetic energy in the PML regionover the kinetic energy of the whole cross-section.
Physical modes are then identified if this criterion is smaller than a user-defined valueηmax:

|EkPML |
|Ek|

< ηmax (44)

whereEkPML is defined from Eq. (36) by replacingS with SPML, which denotes the cross-section restricted to the
PML region. Note that the modulus must be used in Eq. (44) since the kinetic energy is complex in the presence
of PML. Note thatηmax is independent of frequency in this paper. For a given FE mesh, the appropriate value
of ηmax essentially depends on the PML parameters, which have been assumed as constant with frequency (see
Secs. 2.4 and 3.2).

4.5. Results

Three examples of open waveguides are considered. The first one has already been described in Secs. 2.5.2
and Appendix A (steel cylinder in concrete). The second testcase is taken from the work of Pavlakovic [19] and
is a 1mm radius steel cylinder in stiff stone. This case is of interest due to the existence of one trapped mode. The
third example, taken from Ref. [26], is a steel square bar buried in a viscoelastic grout, for which no analytical
solution is available. Material characteristics are givenin Tab. 1. The steel is considered as elastic for the first
two examples (βl = βs = 0) and as viscoelastic in the last one (βl = 0.003,βs = 0.043).

The PML position and thickness are set tohx = hy = h = 0.9a anddx = dy = d = 1.1a, wherea denotes the
radius of the cylindrical core for the first two test cases andthe half-thickness of the squared core for the third
case. Note that with the SAFE-RPML formulation, the PML could be set tod = a when the core is cylindrical.
A Dirichlet condition is applied at the PML exterior boundaries (numerical tests have shown that other boundary
conditions yield small differences on trapped and leaky modes). The finite elements are six-node triangles whose
length satisfies the following meshing criterion:le ≤ λm/5, whereλm = min(cs)/max(f ) (min(cs) is the lowest
shear velocity of the problem). The SAFE-PML dispersion curves are shown after modal filtering, the parameter
ηmax being specified for each example.

Let us consider the first test case. The FE meshes are shown in Figs. 3 and 7. According to the eigenspectrum
analyses in Secs. 2.5.2 and Appendix A, the eigenvalues of leaky modes are located around|ω/cl | in the complex
plane. The computation has been centered around+ω/cl in order to reduce the number of eigenvalues to solve.
In this way, only positive-going modes are calculated. 300 modes have been computed at each frequency with
the SAFE-CPML method, against 150 modes with the SAFE-RPML method. Actually, the SAFE-RPML method
appears more advantageous from a computational point of view for this example because the core is of circular
shape: the PML region can be smaller, which also decreases the number of radiation modes to solve. Besides,
5139 dofs (degrees of freedom) are generated with the SAFE-CPML method against 3975 dofs with the SAFE-
RPML method.

In order to illustrate the efficiency of the filtering criterion proposed in Sec. 4.4, Fig. 8shows the phase
velocity dispersion curves obtained by both SAFE-PML methods without modal filtering. Clearly, the presence
of many radiation modes in the dispersion curves prevents the identification of leaky modes.

Figure 9 represents the kinetic energy ratio of modes obtained by the SAFE-RPML method at 200 kHz. It can
be observed that radiation modes yields a ratio approximatively equal to 1 because they mainly oscillate in the
PML region, as opposed to leaky modes. Figure 9 shows that theenergy kinetic ratio allows to well distinguish
the radiation modes from the others and that an appropriate value of the thresholdηmax is rather easy to choose
(here, a threshold value of 0.75 turns out to be satisfying).

Figure 10 represents the dispersion curves with modal filtering. The curves of leaky modes are now clearly
observed (compare Figs. 10a and 8). We point out that other energy ratio, based on Poynting vector or potential
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Figure 7: Cross-section mesh of an embedded cylindrical barusing radial PML (le = 0.2a).

Figure 8: Phase velocity dispersion curves of steel-concrete cylindrical waveguide without filter (ηmax = 1). Crosses: SAFE-CPML results,
circles: SAFE-RPML results. PML parameters are: ˆγx = γ̂y = γ̂ = 2+ 4i, dx = dy = d = 1.1a, hx = hy = h = 0.9a.

energy, have been experimented. However, our numerical tests have not shown any improvement in the filtering of
radiation modes (results not shown for paper conciseness).Therefore, the kinetic energy based ratio is preferred
owing to its simpler post-processing.

The axial attenuation expressed in dB/m (Fig. 10b) is defined byα = 8.686 Imk. Note that for calculating the
group velocity (Fig. 10d), it was also necessary to compute the negative-going modes by searching eigenvalues
around−ω/cl .

The dispersion curves obtained with the SAFE-CPML and the SAFE-RPML methods are superimposed,
which tends to show that both methods yield the same order of accuracy. The curves shown in Fig. 10a, b and c
are in good agreement with the results obtained by the SAFE-AL technique [24] or the SAFE-BEM method [26].
This validates the SAFE-PML approaches proposed in this paper. Note that the AL thickness used in Ref. [24] is
16 times larger than the core radius, so approximately 16 times larger than the PML used in this paper, yielding
dispersion curves that are not so accurate as those obtainedby the PML method.

It can be observed that the group velocity curves differ quite significantly from the energy velocity (compare
Fig. 10c and d). One recalls that Bernard et al. [48] have shown that this difference disappears for modes with no
attenuation but always exists for attenuated modes (such asleaky modes).

Figure 11 shows the axial displacement field of a given mode, here the leaky compressional L(0,1) mode,
obtained with each method at 103.8 kHz. In the PML region, it can be observed that the CPML absorption
strength is non-axially symmetric, as opposed to the RPML method. However, the modeshapes are found to be
identical in the physical region (i.e. excluding the PML zone).
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Figure 9: Kinetic energy ratio of modes in steel-concrete cylindrical waveguide obtained by the SAFE-RPML method at 200kHz. PML
parameters are: ˆγ = 2+ 4i, d = 1.1a, h = 0.9a.

(a) (b)

(c) (d)

Figure 10: Dispersion curves of steel-concrete cylindrical waveguide for: (a) phase velocity, (b) axial attenuation,(c) energy velocity and (d)
group velocity. Crosses: SAFE-CPML results (ηmax= 0.9), circles: SAFE-RPML results (ηmax= 0.75). PML parameters are: ˆγx = γ̂y = γ̂ =

2+ 4i, dx = dy = d = 1.1a, hx = hy = h = 0.9a.
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(a) (b)

Figure 11: Modulus of axial displacement of the L(0,1) mode at 103.8 kHz (steel-concrete cylindrical waveguide) obtained by (a) SAFE-
CPML and (b) SAFE-RPML methods. Dashed line: PML interface,continuous line: material interface.

From a physical point of view, it can be noticed that the L(0,1) and F(2,1) curves are discontinuous around
163 kHz and 135 kHz respectively. These discontinuities arephysical and occur when the phase velocityvp

crosses the bulk wave velocitiescl or cs of the surrounding medium (concrete) – see Fig. 10a for instance. For
a given mode, the partial longitudinal (or shear) wave actually changes from leaky to trapped whenvp becomes
lower thancl (or cs) [19].

In practice, the calculation of modes having a phase velocity at the vicinity ofcl andcs can be difficult due to
the undefined nature of partial waves (Fig. 10) [19, 24, 26]. This problem is also encountered with SAFE-PML
methods because the transverse wavenumbers become small whenvp is close tocl or cs. According to Eqs. (12)
and (32), large values of PML thickness or PML function wouldbe required to sufficiently attenuate waves.

The same problem is also encountered for the computation of modes at low frequencies. For instance, in
Fig. 10, leaky modes are still found to exist for phase velocities of a given mode smaller than the bulk shear
velocity of the surrounding media, which does not seem physically correct. These low frequency modes are
indeed not properly computed. Restricting the analysis to alow frequency range, one remedy would be to enhance
the PML absorption strength by increasing the PML thicknessor the average value of PML functions.

Figure 12 represents the phase velocity and the attenuationfor the second test case (steel-stiff stone waveg-
uide). The FE meshes used with Cartesian and radial PML methods are the same as in the first test case. In this
example, the F(1,1) mode is trapped (Imk = 0) while the other modes are leaky. In the initial problem without
PML, trapped modes are located on the real axis of the complexplane. Their wavenumber in absolute value is
larger thanω/cs [4, 52]. Hence in this test case, the computation has been centered aroundω/cs instead ofω/cl .
For each frequency, 265 and 180 modes have been solved for theSAFE-CPML and the SAFE-RPML methods
respectively.

Since both trapped and leaky modes exist, the real and imaginary parts of ˆγx, γ̂y and γ̂ have been set to a
sufficiently large value (ˆγx = γ̂y = γ̂ = 4+4i) in order to attenuate both kinds of modes. Results are in agreement
with those of Ref. [19] calculated by an analytical approach. In particular, the trapped mode is well approximated
by SAFE-PML methods (except for lowest frequencies, for thesame reason as mentioned in the previous test
case).

For the third test case (viscoelastic steel-grout squared waveguide), the SAFE-CPML method has been pre-
ferred because the cross-section of the core is of rectangular shape. The FE mesh is shown in Fig. 13, generating
5127 dofs. 600 modes have been solved, centered roundω/cl . Figure 14 shows the dispersion curves in phase
velocity and attenuation. The modes have been labeled as in Ref. [26]. Here again, numerical results are in
good agreement with literature results, obtained in Ref. [26] with a SAFE-BEM technique. Note that a poor
approximation of lowest frequency modes possibly occurs for the same reasons as in the previous test case.
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(a) (b)

Figure 12: Dispersion curves of steel-stiff stone cylindrical waveguide for: (a) phase velocity and (b)axial attenuation. Crosses: SAFE-
CPML results (ηmax = 0.75), circles: SAFE-RPML results (ηmax = 0.7). PML parameters are: ˆγx = γ̂y = γ̂ = 4+ 4i, dx = dy = d = 1.1a,
hx = hy = h = 0.9a.

Figure 13: Cross-section mesh of an embedded square bar using Cartesian PML (le = 0.2a).

(a) (b)

Figure 14: Dispersion curves of a viscoelastic rectangularsteel bar buried in grout computed by the SAFE-CPML method for: (a) phase
velocity and (b) axial attenuation. PML parameters are: ˆγx = γ̂y = γ̂ = 2+ 4i, dx = dy = d = 1.1a, hx = hy = h = 0.9a (ηmax= 0.9).
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5. Conclusion

In this work, SAFE-PML methods have been applied to compute the eigenmodes of three-dimensional open
elastic waveguides. Two kinds of PML, Cartesian and radial,have been implemented.

The spectral objects obtained from the proposed numerical approach have been clarified and the effects of
PML parameters on radiation and leaky modes have been highlighted through analytical solutions and numerical
experiments. The radiation modes of open elastic waveguides are shown to belong to two continua corresponding
to longitudinal and shear waves respectively. The PML rotates these continua in the complex plane. The trunca-
tion of the PML discretizes them, with a densification by increasing the so-called complex thickness (or radius).
The rotation angle of radiation modes are shown to be independent of PML function profiles and must be large
enough to discover the leaky modes of interest.

For three test cases taken from the literature, the dispersion curves computed by both SAFE-CPML and
SAFE-RPML methods provide satisfying results, for leaky modes as well as trapped modes. A modal filtering
criterion has been proposed. This criterion is based on the ratio of kinetic energy in the PML region over the
whole section and allows to efficiently remove the radiation modes in the visualization of dispersion curves. As
far as the computational time is concerned, the SAFE-RPML appears to be more suitable for modeling open
waveguides of circular cross-section. Conversely, the Cartesian PML should be preferred when the cross-section
of the core is rectangular.

The main drawback of the approach is the presence of many radiation modes, which significantly increases
the computational time. These modes are not intrinsic to thephysics (since they depend on PML parameters) and
are not of interest for NDE. Another drawback is the appropriate choice of PML parameters. Such a drawback
is inherent to any problem involving PML and is also encountered with the AL technique. When the reference
results are not knowna priori, a convergence study is necessary. For instance for a given profile of PML function,
the convergence of numerical results can be investigated byrefining the finite element size and increasing the PML
thickness. Note that the appropriate PML interface position is rather straightforward to choose as the PML should
be set as close as possible to the core in order to limit the transverse growth of leaky waves.

Appendix A. Eigenspectrum of embedded cylindrical waveguides with radial PML

Analytical solution of scalar problem.In this analytical study, one considers a cylindrical acoustic waveguide of
radiusa embedded into an infinite medium. A radial PML of finite thicknessh is introduced at the positiond ≥ a.
The total radius of cross-section including PML isℓr = d+ h.

The system of equations in radial complex coordinates is given by two Helmholtz equations (one for each
medium). Continuity conditions are applied at the interface r = a between both media and a Dirichlet condition
is applied at the PML exterior boundary:

φ0(a) = φ̃(a),
1
ρ0

dφ0

dr
(a) =

1
ρ

dφ̃
dr̃

(a), φ̃(ℓ̃r) = 0. (A.1)

φ0 andφ̃ denote the acoustic variables in the core and in the surrounding medium respectively.ρ0 andρ are the
mass densities of the core and of the exterior medium. We assume that the core and the surrounding medium are
homogeneous: fluid properties are constant (the tilde has been dropped for conciseness).

It can be readily shown that the dispersion relation associated to this problem is

J′n(kr0a)
[

Yn(kra)Jn(kr ℓ̃r ) − Yn(kr ℓ̃r )Jn(kra)
] kr0

ρ0
− Jn(kr0a)

[

Y′n(kra)Jn(kr ℓ̃r ) − Yn(kr ℓ̃r )J
′
n(kra)

] kr

ρ
= 0 (A.2)

wherekr0 =

√

ω2/c2
0 − k2 andkr =

√

ω2/c2 − k2 are the transverse wavenumbers in each medium (c0 andc

denote the velocities of the core and of the exterior medium respectively).
The above equation cannot be solved analytically. Concerning radiation modes, further insight can be gained

from an asymptotic point of view. Assuming a large complex radius (|ℓ̃r/a| ≫ 1), the transverse wavelength of
low order radiation modes can be considered as sufficiently large to neglect the influence of the core: such modes
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(a) (b)

Figure A.15: Analytical spectrum of an embedded cylindrical acoustic waveguide atΩ = ωa/c0 = 3.86 (ρ = 0.29ρ0, c = 0.81c0) with
d = 1.1a, h = 0.9a for: (a) γ̂ = 2+ 4i and (b)γ̂ = 4+ 4i. Dashed line: (∆1), continuous line: (∆2).

almost satisfy the homogeneous medium equation derived in Sec. 3.3,i.e. Jn(kr ℓ̃r) ≃ 0, yielding a first asymptote
(∆1):

(∆1) : − ω2/c2 + R+/ℓ̃2
r (A.3)

which is a half-line of origin−ω2/c2 rotated by−2 argℓ̃r in the complex plane.
Conversely, it can be shown that for a givenn, the eigenvaluesλ of high order radiation modes (low transverse

wavelength) tend toward a second asymptote (∆2) defined by

(∆2) : − ω2/c2 + R+/(ℓ̃r − a)2 (A.4)

yielding a half-line of origin−ω2/c2 rotated by−2 arg(̃ℓr − a). Details are not shown for paper conciseness.
Similar asymptotic developments can be found in Ref. [30].

Figure A.15 shows an example of eigensolutions of Eq. (A.2) for d = 1.1a, h = 0.9a and different values of ˆγ.
In this example, (ρ0, c0) and (ρ, c) are the mass densities and the shear velocities of steel andconcrete respectively
(see Tab. 1). The circumferential ordern varies from 0 to 10. As expected, the eigenspectrum containsboth leaky
modes and radiation modes. It can be observed that the radiation modes appear to be included inside a sector
delimited by (∆1) and (∆2). More precisely, radiation modes are found to be located onone branch asymptotic to
(∆1) and sub-branches. In each sub-branch, the radiation modesget closer to (∆1) as the circumferential ordern
increases.

Note that the rotation angles of (∆1) and (∆2) are also independent of the PML function profileγ because one
has

−2 argℓ̃r = −2 arg(d+ γ̂h), − 2 arg(̃ℓr − a) = −2 arg(d+ γ̂h− a). (A.5)

Compared to Fig. A.15a, the angular sector of radiation modes is reduced in Fig. A.15b. This is due to the
fact that increasing Re ˆγ increases Rẽℓr , which reduces the difference between the rotation angles of (∆1) and
(∆2) (this can be readily shown from Eq. (A.5)). Given that leakymodes are discovered in the region where
argλ < −2 argℓ̃r , more leaky modes are found in Fig. A.15a than in Fig. A.15b thanks to a greater rotation angle
of (∆1).

Without core (a = 0), note that Eqs. (A.3) and (A.4) yields equal rotation angles for (∆1) and (∆2): the
radiation modes sector is reduced to one discretized half-line rotated by−2 argℓ̃r , which coincides with the result
of Sec. 3.3.
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(a) (b)

Figure A.16: Numerical spectrum of steel-concrete waveguide obtained by the SAFE-RPML method atΩ = 3.86 with d = 1.1a, h = 0.9a
(le = 0.1a) for: (a) γ̂ = 2+ 4i and (b)γ̂ = 4+ 4i. Dashed line: (∆l/s

1 ), continuous line: (∆l/s
2 ).

Numerical experiments on an elastic waveguide.The same test case as in Sec. 2.5.2 is considered (elastic steel-
concrete waveguide). Figure 7 shows the example of a cross-section mesh used with the SAFE-RPML method
(le = 0.2a). Note that the effects of radial PML interface position and mesh size on eigenspectrum are identical to
Cartesian PML (see Sec. 2.5.2). Therefore this subsection focuses on the effects ofγ̂ specific to the SAFE-RPML
method.

Figure A.16 represents the eigenspectrum computed by the SAFE-RPML method at the dimensionless fre-
quencyΩ = 3.86. As suggested for Cartesian PML, the radial PML interfaceis set close to the core (d = 1.1a).
The average length of finite elements isle = 0.1a.

As shown for the scalar problem in the previous subsection, it can be noticed that the radiation elastic modes
are included in sectors. Instead of one, the elastic problemyields two sectors, associated with longitudinal and
shear waves respectively. Each sector is limited by two half-lines, denoted as (∆l/s

1 ) and (∆l/s
2 ), of rotation angles

approximately equal to 100◦ and 120◦ in Fig. A.16a (73◦ and 88◦ in Fig. A.16b). These angles are closed to the
acoustic formula (A.5). Similarly to the acoustic case, each sector is formed by one branch asymptotic to (∆

l/s
1 )

and sub-branches and angular sectors are reduced as Re ˆγ increases (compare Figs. A.16b with A.16a). Similarly
to the SAFE-CPML method, increasing|γ̂| densifies the spectrum of radiation modes.

Concerning leaky modes, only those of arguments lower than the angle of (∆l/s
1 ) can be discovered (i.e.

argλ < −2 argℓ̃r ), which explains why less leaky modes are found in Fig. A.16bthan in Fig. A.16a.
To conclude this section, it is worth noting that the leaky modes shown in Fig. A.16 are in agreement with

those of Fig. 4, obtained the SAFE-RPML method.
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[30] B. Goursaud,́Etude mathématique et numérique de guides d’ondes ouverts non uniformes, par approche modale (Mathematical and

numerical study of non uniform open waveguides, modal approach, in French), Ph.D. thesis,École Polytechnique (2010).
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[40] A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodrı́guez, An optimal perfectly matched layer with unbounded absorbing function for

time-harmonic acoustic scattering problems, Journal of Computational Physics 223 (2) (2007) 469–488.
[41] E. A. Skelton, S. D. M. Adams, R. V. Craster, Guided elastic waves and perfectly matched layers, Wave Motion 44 (2007)573–592.
[42] A. Pelat, S. Felix, V. Pagneux, A coupled modal-finite element method for the wave propagation modeling in irregularopen waveguides,

Journal of the Acoustical Society of America 129 (3) (2011) 1240–1249.
[43] A.-S. Bonnet-BenDhia, B. Goursaud, C. Hazard, A. Prieto, Finite element computation of leaky modes in stratified waveguides, in:

Ultrasonic Wave Propagation in Non Homogeneous Media, Springer Proceedings in Physics, Vol. 128, 2009, pp. 73–86.

24



[44] Y. Ould Agha, F. Zolla, A. Nicolet, S. Guenneau, On the use of PML for the computation of leaky modes. An application tomicrostruc-
tured optical fibres, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 27 (1) (2008)
95–109.

[45] J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.
[46] S. Kim, J. E. Pasciak, Analysis of the spectrum of a cartesian perfectly matched layer (PML) approximation to acoustic scattering

problems, Journal of Mathematical Analysis and Applications 361 (2) (2010) 420 –430.
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