M Rubin 
  
K Altwegg 
  
H Balsiger 
  
A Bar-Nun 
  
J.-J Berthelier 
  
A Bieler 
  
P Bochsler 
  
C Briois 
  
U Calmonte 
  
M Combi 
  
J De Keyser 
  
F Dhooghe 
  
P Eberhardt 
  
B Fiethe 
  
S A Fuselier 
  
S Gasc 
  
T I Gombosi 
  
K C Hansen 
  
M Hässig 
  
A Jäckel 
  
E Kopp 
  
A Korth 
  
L Le Roy 
  
U Mall 
  
B Marty 
  
O Mousis 
  
T Owen 
  
H Rème 
  
T Sémon 
  
C.-Y Tzou 
  
J H Waite 
  
P Wurz 
  
Molecular nitrogen in comet 67P/Churyumov-Gerasimenko as an indicator of its low formation temperature

The first direct detection of dinitrogen in a cometary coma by Rosetta/ROSINA indicates a low formation temperature of comet 67P/Churyumov-Gerasimenko.

Abstract: Molecular nitrogen (N 2 ) is thought to have been the most abundant form of nitrogen in the protosolar nebula. N 2 is also the main N-bearing molecule in the atmospheres of Pluto and Triton, and was probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered as the most primitive bodies in the solar system, N 2 has not been detected. Here we report the direct in situ measurement of N 2 in the Jupiter family comet 67P/Churyumov-Gerasimenko made by the ROSINA mass spectrometer aboard the Rosetta spacecraft. A N 2 /CO ratio of 5.70 ± 0.66 ( ) !10 "3 was measured, corresponding to depletion by a factor of ~25.4 ± 8.9 compared to the protosolar value. This depletion suggests that cometary grains formed at low temperature conditions below ~30 K, and that the amount of N 2 delivered by comets to the terrestrial planets was a small fraction of that contributed by the other N-bearing species.

Main text: Thermochemical models of the protosolar nebula (PSN) suggest that molecular nitrogen N 2 was the principal nitrogen species during the disk's phase [START_REF] Fegley | Solar nebula chemistry --Implications for volatiles in the solar system[END_REF] and that the nitrogen present in the giant planets was accreted in this form [START_REF] Mousis | Scientific rationale for Saturn's in situ exploration[END_REF].

Moreover, Pluto and Triton, which are both expected to have formed in the same region of the PSN as Jupiter family comets (JFCs), have N 2 -dominated atmospheres and surface deposits of N 2 ice [START_REF] Cruikshank | Ices on the surface of Triton[END_REF][START_REF] Owen | Surface ices and the atmospheric composition of Pluto[END_REF]. However, so far, this molecule has never been firmly detected in comets while CN, HCN, NH, NH 2 , and NH 3 among others have been observed spectroscopically [START_REF] Rousselot | Toward a Unique Nitrogen Isotopic Ratio in Cometary Ices[END_REF][START_REF] Bockelée--Morvan | The composition of cometary volatiles[END_REF]. The abundance of N 2 in comets is therefore a key to understanding the conditions in which they formed. Condensation or trapping of N 2 in ice occurs at similar thermodynamic conditions as those needed for CO in the PSN [START_REF] Bar--Nun | Trapping of N2, CO and Ar in amorphous ice-Application to comets[END_REF][START_REF] Mousis | The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating[END_REF]. This requires very low PSN temperatures and implies that the detection of N 2 in comets and its abundance ratio with respect to CO would put strong constraints on comet formation conditions [START_REF] Bar--Nun | Trapping of N2, CO and Ar in amorphous ice-Application to comets[END_REF][START_REF] Mousis | The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating[END_REF]. Ground-based spectroscopic observations of the N 2 + band in the near UV are very difficult due to the presence of telluric N 2 + and other cometary emission lines. Searches conducted with high-resolution spectra of comets 122P/de Vico, C/1995 O1 (Hale-Bopp) and 153P/2002 C1 (Ikeya-Zhang) have been unsuccessful and yielded upper limits of 10 -5 to 10 -4 for the N 2 + /CO + ratio [START_REF] Cochran | N2 + and CO + in Comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale--Bopp)[END_REF][START_REF] Cochran | A Search for N2 + in Spectra of Comet C/2002 C1 (Ikeya--Zhang)[END_REF].

Only one N 2 + detection in C/2002 VQ94 (LINEAR) from ground-based observations is convincing because the comet was at sufficient distance from the Sun to prevent C 3 contamination [START_REF] Korsun | Distant activity of Comet C/2002 VQ94 (LINEAR): Optical spectrophotometric monitoring between 8.4 and 16.8 au from the Sun[END_REF]. The in situ measurements made by Giotto in 1P/Halley did not help: the resolution of the mass spectrometers aboard the spacecraft (12) was insufficient to separate the nearly identical masses of N 2 and CO during the 1P/Halley encounter and only an upper limit could be derived for the relative production rates (Q(N 2 )/Q(CO) ≤ 0.1) [START_REF] Eberhardt | The CO and N2 Abundance in Comet P/Halley[END_REF].

Here we report the direct in situ measurement of the N 2 /CO ratio by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) in the JFC 67P/Churyumov-Gerasimenko (hereafter 67P). ROSINA is the mass spectrometer suite on the European Space Agency's Rosetta spacecraft [START_REF] Glassmeier | The Rosetta Mission: Flying Towards the Origin of the Solar System[END_REF] and measures the gas density and composition at the location of the spacecraft [START_REF] Balsiger | ROSINA --Rosetta Orbiter Spectrometer for Ion and Neutral Analysis[END_REF]. The Double Focusing Mass Spectrometer (DFMS) has a high mass resolution of m/∆m about 3000 at the 1% level (corresponding to ~9000 half peak width at the 50% level) at atomic mass per unit charge 28 u/e, allowing the separation of N 2 from CO (∆m = 0.011 u) by numerical peak fitting. Neutral gas is ionized by electron-impact and then deflected through an electrostatic, then magnetic, filter onto a position-sensitive micro-channel plate (MCP) detector. The peak shape of a single species on the MCP is well known and therefore numerical fitting can distinguish overlapping contributions from different atoms and molecules. A detailed description of the instrument and the data treatment can be found in the supplementary material.

Starting on August 5, 2014, ROSINA observed the cometary gas flux rise above spacecraft background for the major species including H 2 O, CO, and CO 2 . For N 2 , which has a higher relative spacecraft background, the cometary signal became apparent a few days later. The spacecraft background signal ( 16) for both species, CO and N 2 , was derived at different times before detecting the coma and shown to be temporally quite stable (see discussion in supplementary material). The second mass spectrum, a representative for the measurements within a distance of 10 km from the nucleus, was obtained on October 18, 2014 (B). The spacecraft background obtained in May is indicated in the October observation and has subsequently been removed from all spectra, leaving therefore only cometary CO and N 2 . Furthermore CO from dissociative electron-impact ionization of cometary CO 2 inside DFMS' ion source has been removed and the signal has been corrected for the instrument alignment with respect to the comet (see supplementary material for details).

This procedure has been carried out for 138 spectra over two terminator orbits of the Rosetta spacecraft from October 17 to October 23, 2014. Fig. 2 shows clear diurnal variations in the detector signal of both species associated to the 12.4 h rotation period of the comet (A). The signal is to first order correlated to the comet's cross-section exposed to the Sun and depending on the position of Rosetta (thus also peaks at half rotation can be seen). The resulting mean N 2 /CO ratio of 5.70 ± 0.66 ( ) !10 "3 corresponds to the mean ratio of each individual measurement and includes the 2-σ standard deviation of the sampled mean. The position of Rosetta with respect to the comet is indicated in plates (B-D). Higher outgassing is found at positive latitudes corresponding to the summer hemisphere. Other species also show significant diurnal variations: the CO/H 2 O ratio changes depending on the location of the spacecraft with respect to the position of the comet and to nucleus surface illumination conditions [START_REF] Hässig | Time variability and heterogeneity in the coma of 67P/Churyumov--Gerasimenko[END_REF]. Over the sun-lit hemisphere the CO/H 2 O ratio varies between 0.1 to 0.3, which is in agreement to variations observed at other comets [START_REF] Bockelée--Morvan | The composition of cometary volatiles[END_REF].

Since these measurements were achieved when the comet was at a heliocentric distance of 3.1 AU, the water production rate may increase relative to both CO and N 2 as the comet approaches the Sun. We therefore expect the N 2 /CO ratio to be more representative of the N 2 content in the coma than N 2 /H 2 O. Fig. 3 shows the correlation between the N 2 signal and the CO signal. The measurements exhibit a significant variation depending on the position of Rosetta above the surface of the comet nucleus, masking a potential increase in the production rate of either species as the comet approaches the Sun. The black line shows the average N 2 /CO ratio and the variation of the individual measurements is indicated by the two bracketing lines.

With a protosolar ratio N/C of 0.29 ± 0.10 ( 18) and assuming to first order that all of N and C were in the form of N 2 and CO in the PSN (1), we derive an N 2 /CO ratio of 0.145 ± 0.048 in the PSN gas phase. The comparison with the N 2 /CO measurement performed in the near coma of 67P shows that the cometary N 2 /CO ratio is depleted by a factor of about 25.4 ± 8.9 compared to the value derived from protosolar N and C abundances. This depletion of N 2 relative to CO in comet 67P may be a consequence of how cometary ice formed. According to one model, comets agglomerated from pristine amorphous water ice grains originating from the interstellar medium (ISM) [START_REF] Owen | Bar--Nun, Noble gases in atmospheres[END_REF]. In this case, the low N 2 /CO ratio in 67P is the result of inefficient trapping of N 2 in amorphous water ice compared to CO. This possibility is supported by laboratory experiments in which a mixture of water vapor with N 2 and CO was directed onto a cold plate in the 24-30K temperature range [START_REF] Bar--Nun | Trapping of N2, CO and Ar in amorphous ice-Application to comets[END_REF]. In these experiments, gases initially trapped in growing amorphous ice were later released when ice warmed up, and the evolved gases were measured by mass spectrometry.

Results show that N 2 is trapped in the ice much less efficiently than CO in this temperature range. For instance, at 24 K, the depletion factor for the N 2 /CO ratio was found to be ~19, a value within the range of the one observed in 67P of 25.4 ± 8.9.

This yields a lower limit for the temperature experienced by the grains agglomerated by 67P because the N 2 /CO ratio in amorphous ice would increase for temperatures lower than 24 K due to increasing efficiency of N 2 trapping.

An alternative interpretation of the low N 2 abundance in 67P is that the comet agglomerated from grains consisting of clathrates, which are ice-like crystalline solids formed by cages of water molecules that contain small non-polar molecules [START_REF] Mousis | Constraints on the Formation of Comets from D/H Ratios Measured in H2O and HCN[END_REF]. This hypothesis is based on models showing that the vaporization distance of ISM ices could have been as high as about 30 AU from the Sun when they entered the PSN [START_REF] Chick | Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment[END_REF]. With time, the decrease of the gas temperature and pressure allowed water to condense at ~140-150 K in the form of crystalline ice, leaving negligible water in the gas phase to condense at low temperatures where amorphous ice is expected to form [START_REF] Kouchi | Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices[END_REF]. During the cooling period of the PSN, isotopic exchange took place between gaseous water, which was initially extremely deuterium-rich as it came from the ISM, and protosolar hydrogen with much lower D/H. This isotopic exchange allowed the deuterium-to-hydrogen ratio in water to decrease to the values observed in comets until it condensed again in the form of crystalline ice [START_REF] Mousis | Constraints on the Formation of Comets from D/H Ratios Measured in H2O and HCN[END_REF][START_REF] Kavelaars | On the Formation Location of Uranus and Neptune as Constrained by Dynamical and Chemical Models of Comets[END_REF][START_REF] Altwegg | 67P/Churyumov--Gerasimenko, a Jupiter family comet with a high D/H ratio[END_REF]. Depending on the nature of the entrapped species, clathrates formed from preexisting crystalline water ice when the PSN temperature was lower than about 80 K, provided that the slow kinetics of the process is balanced by sufficient formation time [START_REF] Mousis | The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating[END_REF]. As in the case of trapping in amorphous ice, experiments and models suggest that N 2 is poorly trapped in clathrate cages, because of its small size [START_REF] Mousis | The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating[END_REF][START_REF] Herri | Carbon dioxide, argon, nitrogen and methane clathrate hydrates: Thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping[END_REF][START_REF] Sloan | Clathrate Hydrates of Natural Gases[END_REF][START_REF] Iro | An interpretation of the nitrogen deficiency in comets[END_REF]. In particular, statistical thermodynamics models (28) used to compute the composition of clathrates formed from a protosolar composition gas in the PSN show that an N 2 /CO ratio in the comet's nucleus is consistent with the measured value in the coma if the nucleus agglomerated from grains formed in the 26-56 K temperature range [START_REF] Mousis | The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating[END_REF].

Both interpretations are consistent with the idea that 67P agglomerated from grains formed at about 30 K or below. The detection of noble gases in JFCs will be important to further constrain their formation temperature. However, the measured N 2 /CO ratio may reflect in whole or in part the comet's post-formation evolution. A possibility is that 67P agglomerated from grains formed at a lower temperature (around 20 K) in the PSN, favoring the trapping of significantly more N 2 in its building blocks, in a way consistent with the known compositions of the atmospheres and surfaces of Pluto and Triton [START_REF] Cruikshank | Ices on the surface of Triton[END_REF][START_REF] Owen | Surface ices and the atmospheric composition of Pluto[END_REF]. This possibility would be consistent with an inferred Kuiper Belt origin for 67P and its high D/H ratio [START_REF] Altwegg | 67P/Churyumov--Gerasimenko, a Jupiter family comet with a high D/H ratio[END_REF]. In these conditions, 67P could have been initially N 2 -rich but subsequent post-accretion heating due to the radiogenic decay of nuclides and/or thermal cycles during its transit from the Kuiper Belt and its subsequent history in a short period orbit could have been sufficient to trigger the outgassing of N 2 [START_REF] Mousis | The Dual Origin of the Nitrogen Deficiency in Comets: Selective Volatile Trapping in the Nebula and Postaccretion Radiogenic Heating[END_REF]. A scenario like this may explain how initial nitrogenrich cometesimals similar to Triton and Pluto evolved to nitrogen-depleted comets.

Because N 2 trapped in 67P is presumably protosolar nebula gas, its 14 N/ 15 N ratio should be about 441, the value found in Jupiter and the solar wind (29). This is much higher than values measured in other cometary N-bearing species like NH 3 and HCN (~130) [START_REF] Rousselot | Toward a Unique Nitrogen Isotopic Ratio in Cometary Ices[END_REF]. Thus depending on the proportions of N 2 relative to other N-bearing species, the terrestrial 14 N/ 15 N ratio of 272 could possibly be cometary in origin, given an appropriate mix of the different nitrogen species in the comets that contributed to terrestrial volatiles. Our initial ROSINA measurement for N 2 /CO of 0.57% may be compared with NH 3 /CO of 6% and HCN/CO of ~2% in the Oort cloud comet Hale-Bopp (6). The production rates of volatiles relative to water vary from one comet to another one, but their values normalized to CO remain close to those measured in Hale-Bopp [START_REF] Bockelée--Morvan | The composition of cometary volatiles[END_REF]. If 67P is a typical JFC, then the ROSINA value for N 2 /CO implies that the amount of N 2 reaching the surface of a solid body in the inner solar system 

  Figure 1 depicts two atomic mass per unit charge 28 u/e spectra, the first represents Rosetta spacecraft background on May 11, 2014 (A), while the spacecraft was still at a distance of 1.65 x 10 6 km from the comet. A comparable N 2 background was measured on August 1, 2014, at almost 800 km from the nucleus before the cometary signal became apparent.

Fig. 1 .

 1 Fig. 1. Background mass per charge 28 u/e spectrum obtained on May 11, 2014, 03:43 UTC at 1.65 x 10 6 km from the comet (A) and representative spectrum in the coma of the comet on October 18, 2014, 00:47 UTC at almost 10 km from the center of mass of the nucleus (B).

Fig. 2 .Fig. 3 :

 23 Fig. 2. Detector signal of CO and N 2 during two full terminator orbits of the Rosetta spacecraft (A). Spacecraft background is subtracted, the contribution of CO generated by electron-impact dissociation of CO 2 in the ion source is removed, and the geometrical area of the ion source exposed to the comet is corrected for off-pointing. Both signals show significant diurnal variations associated with the comet's 12.4 h rotation period (6.2 h half rotation). The points have been connected except where gaps indicate times when ROSINA is off due to thruster operations. The plates below show phase angle and local time (B), latitude and longitude of the sub-spacecraft point (C) in the Cheops coordinate system (30), and the distances of Rosetta to the comet and the comet to the Sun (D). The summer hemisphere is at positive latitudes.
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from a JFC impact was almost 15 times less than the amounts of NH 3 , HCN, and certain organic compounds [START_REF] Bockelée--Morvan | The composition of cometary volatiles[END_REF]. This comparison suggests that JFC comets were not the main source of the Earth's nitrogen.