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Nitrogen isotope fractionation  
during terrestrial core-mantle separation

Y. Li1,2*, B. Marty3, S. Shcheka1, L. Zimmermann3, H. Keppler1

Abstract	 doi: 10.7185/geochemlet.1614

The origin and evolution of the terrestrial nitrogen remains largely unresolved. In order to 
understand the potential influence of core-mantle separation on terrestrial nitrogen evolu-
tion, experiments were performed at 1.5 to 7.0 GPa and 1600 to 1800 °C to study nitrogen 
isotope fractionation between coexisting liquid Fe-rich metal and silicate melt. The results 
show that the metal/silicate partition coefficient of nitrogen DN

metal/silicate ranges from 1 to 150 
and the nitrogen isotope fractionation d15Nmetal–silicate is −3.5 ± 1.7 ‰. Calculations show that 
the bulk Earth is more depleted in δ15N than the present-day mantle, and that the present-
day mantle δ15N of −5 ‰ could be derived from an enstatite chondrite composition via 
terrestrial core-mantle separation, with or without the addition of carbonaceous chondrites. 
These results strongly support the notion that enstatite chondrites may be a main component 
from which the Earth formed and a main source of the terrestrial nitrogen. Moreover, in the 
deep reduced mantle, the Fe-rich metal phase may store most of the nitrogen, and partial 
melting of the coexisting silicates may generate oceanic island basalts (OIBs) with slightly 
positive δ15N values.

Received 3 September 2015 | Accepted 1 April 2016 | Published 21 April 2016

Introduction

Nitrogen isotopes may constrain the origin of terrestrial volatiles (Javoy, 1997; 
Marty, 2012), as well as the evolution and interaction of different terrestrial reser-
voirs (Marty and Dauphas, 2003). However, the origin and evolution of terrestrial 
nitrogen isotopes remains poorly understood. The present-day upper mantle 
δ15N, inferred from fibrous diamonds and mid-ocean ridge basalts (MORBs) is 
−12 to 0 ‰ and converges towards a globally uniform value of −5 ‰ (Marty and 
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Dauphas, 2003; Cartigny and Marty, 2013). The δ15N value of the organic matter 
and metasediments is overall positive, and the δ15N value of Earth’s surface (crust 
+ atmosphere) is approximately +2 ‰ (Cartigny and Marty, 2013; Thomazo and 
Papineau, 2013). The oceanic island basalts (OIBs), thought to be derived from 
the lower mantle (e.g., Shen et al., 1998; Stuart et al., 2003), have δ15N of −2 to 
+8 ‰, with a mean value of about +3 ‰ (Dauphas and Marty, 1999; Marty and 
Dauphas, 2003). However, diamonds derived from the mantle transition zone 
and lower mantle show similar δ15N values to the upper mantle (Palot et al., 
2012). Therefore the positive δ15N values of OIBs were interpreted to be results 
of addition of recycled sediments to the OIB source region (Dauphas and Marty, 
1999; Marty and Dauphas, 2003). Nevertheless, most diamond populations with 
Archean ages define a δ15N range of −12 to +5 ‰, with a mode around −5 ‰ 
(Cartigny et al., 2009), indicating no obvious secular change in mantle δ15N 
and thus limited nitrogen recycling compared to the nitrogen abundance in the 
mantle. Li et al. (2013) show that the silicate mantle may still contain an amount 
of nitrogen one to two orders of magnitude larger than the present atmospheric 
reservoir. Accordingly, the uniform δ15N value of −5 ‰ of Earth’s mantle may 
have been established before Archean. Because enstatite chondrites have δ15N of 
−45 to −15 ‰ (Grady et al., 1986), while carbonaceous chondrites have δ15N of +15 
to +55 ‰ (Kerridge, 1985), the extremely negative δ15N values down to −25 ‰ 
and −40 ‰ observed in a few mantle diamonds are interpreted to be relicts of 
primordial nitrogen and are used to argue for an enstatite chondrite origin of 
Earth’s nitrogen (Javoy, 1997; Palot et al., 2012; Cartigny and Marty, 2013). If this 
is correct, then one open question is how the Earth’s nitrogen isotopes evolved 
from the initial δ15N values of enstatite chondrites to the present-day mantle value 
of −5 ‰ and the positive values observed for OIBs.

A significant fraction of nitrogen may have been segregated into the core 
during core-mantle separation (Roskosz et al., 2013). However, so far the potential 
influence of core-mantle separation on Earth’s mantle nitrogen isotope evolution 
has never been investigated. Here we experimentally show that a significant 
nitrogen isotope fractionation occurs between liquid Fe-rich metal and coexisting 
silicate melt, and terrestrial core-mantle separation may have greatly enriched 
the silicate mantle in δ15N.

Results and Discussion

Experimental results obtained at 1.5 to 7.0 GPa and 1600 to 1800 °C are given 
in Table 1. The nitrogen metal/silicate melt partition coefficient DN

metal/silicate 
ranges from 1 to 150. Figure 1 shows that regardless of pressure or temperature, 
DN

metal/silicate increases with increasing oxygen fugacity, as calculated from the 
composition of the coexisting quenched metal and silicate (Table S-1). The trend 
in Figure 1 can be rationalised if one assumes that under these very reducing 
conditions below the iron-wüstite buffer, nitrogen is mostly dissolved as N3- ion 
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in the silicate melt (Kadik et al., 2011, 2013; Li et al., 2015), while it dissolves as 
interstitial N atoms in the metal (Häglund et al., 1993). This would imply that the 
exchange reaction between silicate melt and metal may be written as

	 2 N3- (silicate) + 3/2 O2 = 2 N (metal) + 3 O2- (silicate) 	 (Eq. 1)

This equation would imply that logDN
metal/silicate should increase with 

0.75 logfO2, in very good agreement with the overall trend in Figure 1. We noticed 
that the silicates recovered from the multi-anvil experiments performed at 5.0 to 
7.0 GPa were not completely glassy, but contained fine-grained quench crystals. 
Since nitrogen solubility in silicate minerals is much lower than in silicate melts, 
we cannot completely rule out that some nitrogen might have been lost from the 
silicate melt during quench, so that the measured partition coefficients from these 
experiments may be too high. However, considering that nitrogen solubility in 
reduced silicate melt ranges up to a few wt. % (Kadik et al., 2011, 2013; Roskosz 
et al., 2013) and only a few hundred ppm nitrogen was present in our silicate melt, 
partial crystallisation during quench may not have caused exsolution of nitrogen. 
The observed systematic dependence of DN

metal/silicate on oxygen fugacity (Fig. 1) 
also precludes any significant exsolution of nitrogen during quench.

Figure 1 	 Nitrogen partition coefficients between liquid Fe-rich metal and silicate melt 
(DN

metal/silicate). The published DN
metal/silicate data (Kadik et al., 2011, 2013; Roskosz et al., 2013) are 

plotted for comparison. DN
metal/silicate is a function of oxygen fugacity, regardless of pressure 

or temperature. The slope of the trend line is moderately lower than 0.75 expected based on 
Eq. 1, which could be due to a small fraction of nitrogen present as N2 in the silicate melt. 
Errors of DN

metal/silicate in this study are at 95 % confidence interval.

Table 1 	 Experimental results on nitrogen partitioning and isotope fractionation between 
liquid Fe-rich metal and silicate melt.
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Piston Cylinder Experiments

Y-1 2.0 1600 120 -0.84 ± 0.07 3.7E-04 ± 1.3E-05 2.2E-05 ± 7.9E-07 9.2 ± 1.6 13.3 ± 1.8 17 ± 1 -4.1 ± 2.4

A-659 1.5 1600 90 -1.2 ± 0.17 4.9E-04 ± 1.8E-05 6.2E-05 ± 2.3E-06 -1.1 ± 2.0 2.6 ± 1.6 8 ± 0.4 -3.8 ± 2.5

A-666 2.5 1700 30 n.d. 2.6E-06 ± 9.4E-08 3.4E-06 ± 1.3E-07 -3.3 ± 2.4 -2.2 ± 1.4 1 ± 0.04 -1.1 ± 2.8

Multi-Anvil Experiments

YS-5 5.0 1700 90 -0.66 ± 0.11 2.4E-03 ± 8.7E-05 1.6E-05 ± 5.8E-07 1.7 ± 1.5 7.2 ± 1.7 149 ± 8 -5.5 ± 2.3

YS-1 7.0 1700 90 n.d. 7.2E-04 ± 2.6E-05 3.6E-05 ± 1.3E-06 -0.6 ± 1.9 1.4 ± 1.7 20 ± 1 -2.0 ± 2.5

YS-2 7.0 1800 90 -0.83 ± 0.11 1.0E-03 ± 3.8E-05 2.5E-05 ± 6.8E-07 -2.0 ± 2.1 2.6 ± 1.5 42 ± 2 -4.6 ± 2.6

a: The logfO2(∆IW) was calcualted using this equilibrium: FeO (silicate melt) = Fe (liquid metal) + 1/2O2,  from 
which the fO2 of the experiment relative to f O2 of the iron-wüstite buffer (IW) can be defined as:  ΔIW = 2 log 
(XFeOgFeO/XFegFe), XFeO and XFe are the mole fractions of FeO in silicate melt and Fe in liquid metal, respectively; 
gFeO and gFe are the activity coefficients of FeO in silicate melt and Fe in liquid metal, respectively. Calculation of 
logfO2(∆IW) was performed assuming gFeO = 1.2 in the silicate melt (O’Neill and Eggins, 2002) and ideal solution 
of liquid Fe-C-Pt-N metal (gFe = 1). 
For major element compositions of silicate melt and liquid metal, see Supplementary Table 1.
n.d.: not determined.
Errors for DN

metal/silicate and Δ15Nmetal-silicate are at 95 % confidence interval.

The measured nitrogen metal/silicate melt isotope fractionation D15DN
metal–

silicate ranges from −1.1 to −5.5 ‰ (Table 1; Fig. 2), with a mean value of −3.5 ± 1.7 ‰, 
indicating 15N-enrichment in the silicate melt relative to the coexisting liquid 
Fe-rich metal. Within the analytical uncertainties, there is no apparent tempera-
ture dependence of D15Nmetal–silicate over the interval of 1600-1800 °C, which might 
be partially due to the covariation of pressure and temperature. The consistent 
D15Nmetal–silicate values from piston cylinder and multi-anvil experiments (Table 1) 
rule out the possibility that a significant change in D15Nmetal–silicate occurred during 
quench of the multi-anvil experiments. The nearly constant D15Nmetal–silicate values, 
independent on the run duration (30 to 120 mins; Table 1), also demonstrate that 
isotopic equilibrium was reached during the run and any kinetic fractionation 
should be within the analytical error.
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Figure 2 	 Nitrogen isotope fractionation between liquid Fe-rich metal and silicate melt 
(Δ15Nmetal-silicate). Temperature has a very limited effect on Δ15Nmetal-silicate in the P-T range 
studied. Errors of Δ15Nmetal-silicate are at 95 % confidence interval.

Implications

The DN
metal/silicate and D15Nmetal–silicate obtained here have important implications 

for the origin and evolution of Earth’s nitrogen. The DN
metal/silicate values of 1 to 

150 demonstrate that a large fraction of nitrogen in the magma ocean may have 
segregated into the core, while the D15Nmetal–silicate values of −1.1 to −5.5 ‰ imply 
that terrestrial core-mantle separation may have enriched the silicate mantle in 
15N. There are two endmember models for terrestrial core formation. The first 
one is the single stage model or equilibrium model, in which chemical equilib-
rium between the core and the mantle is thought to be achieved at certain P-T 
conditions at the base of the magma ocean (Li and Agee, 1996; Righter, 2011). 
This equilibrium model leads to the below mass balance for the segregation of 
nitrogen in the core

	 d15Nmantle × XN
mantle + d15Ncore × XN

core = d15NBE	 (Eq. 2)

	 DN
metal/silicate × CN

mantle  = CN
core	 (Eq. 3)

	 d15Ncore – d15Nmantle = D15Nmetal–silicate	 (Eq. 4)

where d15Nmantle, d15Ncore, d15NBE are the isotopic composition of the silicate mantle, 
the core, and the bulk Earth, respectively; XN

mantle and XN
core are the fraction of 

carbon in Earth’s mantle and core, respectively; CN
mantle and CN

core are the nitrogen 

concentration in the silicate mantle and core, respectively. As D15Nmetal–silicate is 
between −1.1 ‰ and −5.5 ‰, the d15Ncore should be −1.1 ‰ to −5.5 ‰ lower 
than the d15Nmantle (Eq. 4). If a DN

metal/silicate of 5-20 is used in Equation 3, the d15NBE 
needs to be between −6 ‰ and −10 ‰ in order to achieve a d15Nmantle value of 
–5 ‰ (Eq. 2). In this case, if the CN

mantle of 0.8 ppm constrained by Marty (2012) 
is used, then the CN

core would be 4-16 ppm.

The second endmember mode is the continuous core formation model 
(Wood et al., 2006, 2013). In this model, Earth accretion and the delivery of core-
forming metal occur in small steps of 1 % mass with constant metal/silicate 
ratio. In each step the metal equilibrates with the silicate magma ocean, and it 
remains chemically isolated once it segregates in the core. The fractionation of 
light element isotopes in this model can best be described by the Rayleigh distil-
lation model (Wood et al., 2013; Horita and Polyakov, 2015)

	 d15Nmantle = d15NBE + D15Nmetal–silicate × lnfN
mantle	 (Eq. 5)

where fN
mantle is the remaining fraction of nitrogen in the silicate mantle just after 

complete core-mantle separation. By combining DN
metal/silicate and mass balance, 

fN
mantle can be determined using the equations

	 fN
mantle = (CN

mantle × Mmantle) / (CN
BE × MBE)	 (Eq. 6)

	 CN
mantle = CN

BE × (Mmantle / MBE)(DN
metal/silicate – 1)	 (Eq. 7)

where CN
BE is the nitrogen concentration in the bulk Earth; Mmantle and MBE are 

the mass of the silicate mantle and bulk Earth, respectively. For different d15NBE 
values that represent the δ15N range of enstatite chondrites (Grady et al., 1986), 
this model implies that core-mantle separation may cause a significant increase 
in d15Nmantle and may reproduce the d15Nmantle range, if DN

metal/silicate is between 5 
and 20 (Fig. 3). Using the CN

mantle of 0.8 ppm by Marty (2012) and a DN
metal/silicate 

of 5-15, the calculated CN
BE is 4-220 ppm (excluding surface nitrogen) and the 

CN
core is 10-660 ppm. However, if a DN

metal/silicate of 15-20 is used, the calculated 
CN

BE is 220-1600 ppm and the CN
core is 660-5000 ppm. The high end of these 

CN
BE values may be higher than the nitrogen concentration in any known chon-

drites (Krot et al., 2014), which thus indicates that a hybrid Rayleigh-equilibrium 
model may be more realistic for the segregation of nitrogen in Earth’s core if 
DN

metal/silicate is 15-20. Such a hybrid model (Rubie et al., 2015) assumes that during 
the early stages of accretion, the impacting objects are relatively small and their 
metal phase sequentially extracts nitrogen from the magma ocean according to 
a Rayleigh model; however, towards the end of accretion, large, differentiated 
planetesimals collide with the growing Earth. The cores of these large objects 
are in bulk equilibrium with their mantles, but due to their large size, they do 
not exchange nitrogen with the silicate magma ocean anymore.

In a hybrid Rayleigh-equilibrium model, the d15Nmantle after complete core-
mantle separation should be between the d15Nmantle constrained by the Rayleigh 
model and the d15Nmantle constrained by the equilibrium model. For example, in 
a 90 % Rayleigh and 10 % equilibrium model, the resulting d15Nmantle would be 
–17 ‰ at a DN

metal/silicate of 15, a D15Nmetal–silicate of –5 ‰, and the average enstatite 
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Figure 3 	 The modelled δ15N value of the silicate mantle as a function of DN
metal/silicate, just after 

complete core-mantle separation, using the Rayleigh distillation model (Eq. 5) and the rela-
tionship between fN

mantle and DN
metal/silicate (Eqs. 6 and 7). Three different d15NBE values are used: 

the lowest value (−45 ‰) is the lowest value observed so far for Earth’s mantle and enstatite 
chondrites (Grady et al., 1986; Palot et al., 2012); the values of −25 ‰ and −15 ‰ correspond to 
the average and highest δ15N values of enstatite chondrites (Grady et al., 1986), respectively. 
Two different D15Nmetal–silicate values of −2 ‰ and −5 ‰ are used for the dashed lines and solid 
lines, respectively. The gray box represents the main range of δ15N values observed for the 
silicate mantle (Marty and Dauphas, 2003; Palot et al., 2012; Cartigny and Marty, 2013), which 
may be produced from the average nitrogen isotopic composition of enstatite chondrites by 
core-mantle separation with DN

metal/silicate between 5 and 20.

chondrite δ15N value of –25 ‰. The CN
BE required to achieve the CN

mantle of 0.8 ppm 
by Marty (2012) would be about 40 ppm. According to Rubie et al. (2015), 80-100 
% of the core-forming metal may have equilibrated with the silicate magma ocean 
according to the Rayleigh model. However, it should be noted that the resulting 
d15Nmantle of –17 ‰ in the hybrid model above is still significantly lower than the 
present-day mantle δ15N of −5 ‰, which indicates a much reduced efficiency of 
the hybrid Rayleigh-equilibrium model in increasing d15Nmantle compared to the 
pure Rayleigh model.

Our above calculations demonstrate that: (1) the bulk Earth δ15N value has 
to be significantly negative to produce the present-day mantle δ15N of −5 ‰; (2) 
core-mantle separation alone may be sufficient to cause the present-day mantle 
δ15N of −5 ‰ even if the Earth accreted only from the enstatite chondrites, if the 
Rayleigh model is used for describing the segregation of nitrogen in Earth’s core; 
(3) as has been suggested previously (Javoy, 1997), a small fraction of carbona-
ceous chondrites with δ15N of +15 to +55 ‰ may have to be added to the Earth to 

achieve the present-day mantle δ15N of −5 ‰, if the Earth accreted mainly from 
enstatite chondrites and if the equilibrium or the hybrid Rayleigh-equilibrium 
model is used for describing the segregation of nitrogen in Earth’s core. These 
results support previous models (Javoy, 1997; Palot et al., 2012; Cartigny and 
Marty, 2013) that assumed enstatite chondrites to be the main source of Earth’s 
nitrogen. These results are also consistent with several other isotopic systems 
that point towards enstatite chondrites as a main source of the material from 
which the Earth formed (Javoy, 1997; Trinquier et al., 2007; Regelous et al., 2008; 
Javoy et al., 2010).

The Earth’s deep mantle below 250 km is reducing with oxygen fugacity 
lower than the iron-wüstite buffer (Frost and McCammon, 2008). Recent experi-
mental studies (Frost et al., 2004; Rohrbach and Schmidt, 2011) suggest that about 
1 wt. % Fe-rich metal may be stable in the mantle below this depth, because of the 
incorporation of significant Fe3+ in majoritic garnet and bridgmanite according 
to the disproportion reaction 3Fe2+ = 2Fe3+ + Fe0, which produces metallic Fe. 
The moderately siderophile nature of nitrogen together with the relatively low 
nitrogen solubility in mantle minerals (Li et al., 2013) implies that 1 wt. % Fe-rich 
metal may store more than 99 % of the nitrogen in the deep mantle. If one 
assumes negligible nitrogen isotope fractionation between silicate minerals 
and silicate melt at temperatures corresponding to the deep mantle, the silicate 
minerals should be enriched in δ15N by +1 to +5.5 ‰ relative to the Fe-rich metal. 
Partial melting of the deep mantle with δ15N of −5 ‰, in the presence of 0.5 to 
1.5 wt. % Fe-rich metal (Rohrbach et al., 2014), may therefore generate OIBs with 
very slightly positive δ15N values; however, generating OIBs with δ15N up to +8 
‰ may need the source region δ15N > +0 ‰.
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Methods

Starting materials for high-pressure experiments included high-purity iron 
powder, ammonium nitrate (NH4NO3), and a synthetic silicate glass with a 
chemical composition similar to that of the global MORB. A mixture of iron 
powder and finely-ground silicate glass was loaded together with about 0.1 to 
1.5 wt. % ammonium nitrate into a graphite-lined platinum capsule. Experi-
ments were conducted at 1.5 to 7.0 GPa and 1600 to 1800 °C in a piston cylinder 
or multi-anvil high-pressure apparatus, such that only liquid Fe-rich metal and 
basaltic melt were coexisting in the sample charge. Experiments were quenched 
to room temperature within a few seconds after about 90 mins. The coexisting 
Fe-rich metal and silicate of the recovered samples were carefully separated for 
analyses of nitrogen concentration and isotopic composition, using a static gas 
mass spectrometer.

Individual chips of glass and metal weighting a few micrograms to a few 
milligrams were loaded in a laser heating cell consisting of a metal sample holder 
covered by a ZnSe window. The cell was baked at about 100 °C and pumped under 
high vacuum (10-8-10-9 mbar) for several days. Individual samples were then 
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incrementally heated in static vacuum using a CO2 laser (wavelength = 10.6 mm). 
Evolved gases including N compounds were purified for carbon and hydrogen 
bearing species using a combination of a CuO furnace, Pt catalyst and cold trap 
held just above the liquid N2 temperature. Purified N2 was then introduced in a 
static mass spectrometer where masses 28 and 29 were analysed on a Faraday cup 
detector and masses 29 and 30 were counted on an electron multiplier (Humbert 
et al., 2000). Potential CO contamination, checked with the measured 29/30 ratio, 
was found to be always negligible. The abundances of nitrogen and the 15N/14N 
ratios were then computed from the data and from runs with our in-house N2 
standard (purified atmospheric N2). Blanks were found to be less than 0.1 % of the 
signals for all runs. Errors on the isotopic ratios are computed from the standard 
deviation of in-house N2 standard runs and from the internal precision of the 
respective sample runs.

Nitrogen metal/silicate partition coefficients DN
metal/silicate were calculated 

according to DN
metal/silicate = CN

metal/CN
silicate, where CN

metal and CN
silicate are the nitrogen 

concentrations in the liquid Fe-rich metal and silicate melt, respectively. Nitrogen 
metal/silicate isotope fractionation D15Nmetal–silicate was calculated according to 
D15Nmetal–silicate = D15Nmetal – D15Nsilicate, where D15Nmetal and D15Nsilicate are the 
nitrogen isotopic composition of the liquid Fe-rich metal and silicate melt, 
respectively.

Table S-1 	 Major and minor element contents in silicate melt and liquid Fe-rich metal (in wt. %).

silicate metal

Exp.
ID SiO2 TiO2 Al2O3 Cr2O3 FeO MgO CaO Na2O K2O Total Fe Pt C O Total 

YS-1 43.4 1.3 12.9 0.0 25.4 6.4 9.3 2.2 0.2 101.1 79.7 14.2 6.2 0.1 100.2

1-σ 0.7 0.1 0.2 0.0 1.1 0.1 0.2 0.1 0.1 0.4 1.7 2.1 0.6 0.1 0.6

A-659 47.4 1.4 14.6 0.0 15.4 6.9 10.2 2.6 0.2 98.9 92.4 0.0 10.5 0.1 103.1

1-σ 0.2 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.3 1.9 0.0 4.5 0.0 1.8

YS-5 40.3 1.1 12.3 0.0 30.4 6.0 8.9 1.8 0.0 101.0 76.0 17.7 6.3 0.4 100.4

1-σ 1.5 0.2 0.5 0.0 2.4 0.3 0.6 0.2 0.0 0.6 1.8 1.8 0.5 0.3 0.7

YS-2 43.5 1.3 13.1 0.0 25.0 6.3 9.3 2.4 0.2 101.1 77.5 16.1 6.8 0.2 100.5

1-σ 0.7 0.1 0.3 0.0 1.2 0.1 0.2 0.1 0.1 0.3 3.3 4.8 0.9 0.5 0.7

All the major and minor elements were measured by electron microprobe.
1-σ is the standard deviation based on replicate analyses of 10-20 spots.
The Pt in the metal is due to contamination by the Pt capsule used.
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