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Abstract

In a context of sustainable development, interest for concentrating solar power and concentrating photovoltaic technologies is growing
rapidly. One of the most challenging topics is to improve solar resource assessment and forecasting in order to optimize power plant
operation. Since clear sky defines the nominal operating conditions of the plants, improving their management requires the use
in real-time of clear-sky direct normal irradiance (DNI) models. Typically, accuracy is best achieved by considering water vapor
and aerosol concentrations in the atmosphere separately. However, measuring such physical quantities is not easy and requires a
weather station close to the considered site. When these data are not available, the attenuating effects can be modelled by atmospheric
turbidity factors which can be obtained from DNI under clear-sky conditions. So, the main purpose of the present paper is to propose
an efficient approach to assess the clear-sky DNI in real time. This approach combines an existing empirical model, proposed by
Ineichen and Perez, with a new methodology for the computation of atmospheric turbidity. It takes advantage of the fact that changes
in atmospheric turbidity are relatively small throughout the day in comparison to changes in DNI, even when the sky is free of clouds.
In the present study, we considered data from two experimental sites (Golden, in the USA, and Perpignan, in France) and used a
wavelet-based multi-resolution analysis as a clear-sky DNI detection tool. In addition, we compared the proposed approach with
several combinations of empirical models and ways of computing atmospheric turbidity. The first model is a polynomial of the cosine
of the solar zenith angle, whereas the two other models use atmospheric turbidity as an additional input. Regarding its calculation,
monthly and daily mean values have been considered. Moreover, we defined a procedure in order to evaluate the accuracy of all the
considered approaches. This procedure allows changes in DNI caused by clouds to be simulated using a noisy signal applied to
clear-sky periods. In both sites, our approach to the real-time assessment of the clear-sky DNI outperforms the other approaches. In
the worst case, the mean absolute error is reduced by 8 W m−2 in comparison to the approaches based on monthly mean values of
atmospheric turbidity, and reduced by about 30 W m−2 when taking the polynomial-based model as a reference.

Keywords: clear-sky DNI model, atmospheric turbidity, solar zenith angle, real-time assessment, concentrating solar power.

1. Introduction

Nowadays, solar technologies like concentrating solar power
(CSP) are becoming an important source of renewable energy
in countries like Spain and USA and can potentially be used at
a very large scale in many other countries (Arvizu et al., 2011).
However, the main drawback of CSP remains its cost. A better
real-time management of the CSP plants is therefore essential in
order to improve their competitiveness against classical power
plants. So, one of the most challenging topics is to improve
the solar resource assessment and forecasting so as to optimize
power plant operation. Indeed, in CSP plants, electricity genera-
tion is directly impacted by the availability and variability of the
solar resource and, more specifically, by direct normal irradiance
(DNI). DNI can be defined as the direct irradiance received on a
plane normal to the Sun (Blanc et al., 2014). It is the relevant
component of the solar irradiance for CSP applications and can
be split into two multiplicative terms: the clear-sky DNI (Ics) and
the clearness index (kt). Ics represents the solar power received
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at ground level per unit of area, at a specific location, when there
is no cloud occulting the Sun. This is a key information since it
is directly related to the upper limit of the available solar energy.
kt is derived from the attenuation of the clear-sky DNI caused
by clouds. It spans from 0, when a thick cloud is occulting the
Sun, to 1, when there is no cloud occulting the Sun.

Having access to forecasted values of DNI could help op-
erators to improve the operational strategies of the plants, for
instance by adapting in real time the flow rate of the heat transfer
fluid in parabolic trough power plants. This flow rate must be
kept above a minimum level to avoid overheating the tubes and
damaging them significantly. Regarding CSP towers, having
access to forecasted values of DNI could have a part in the im-
provement of the aim point strategies used in that plants. This
could also contribute to lower the cost related to grid integration.
In both cases, operators are often willingly overestimating the
solar resource to prevent possible damage to the plants, which
results in a reduced efficiency. Consequently, efficient forecast-
ing tools are needed to optimize power plant operation.

In the field of real-time solar resource assessment and fore-
casting, sky-imaging systems are of particular interest due to
their ability to provide information about the sky conditions
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Nomenclature
b Coefficient defined as a function of the altitude of the considered site -
d Sun-Earth distance km
d0 Mean Sun-Earth distance km
dec Decision coefficient (equal to 1 when there is no cloud occulting the Sun, 0 otherwise) -
doy Day of year, ranging from 1 (January 1st) to 365 (December 31) -
h Altitude of the considered site m
krand Random value used in the evaluation of the considered approaches (between 0 and 1) -
kt Clearness index -
m Relative optical air mass -
mp Relative optical air mass corrected by the altitude of the site -
p Number of data used in the evaluation of the considered approaches -
tpast Time of the last trustworthy atmospheric turbidity value s
tw Length of the temporal window used in the detection process of clear-sky DNI data min
v Pseudo-random binary sequence used in the evaluation of the considered approaches -
w Pseudo-random binary sequence containing only a part of the detected clear-sky periods -
z Solar zenith angle °
CT Coefficient of turbidity -
D Sum of all details coefficients for the clear-sky DNI data detection process W m−2

I Direct normal irradiance (DNI) W m−2

Ics Clear-sky DNI W m−2

Icsmax Maximum value of the clear-sky DNI in the considered database W m−2

Icsmin Minimum value of the clear-sky DNI in the considered database W m−2

Îcs Estimated clear-sky DNI W m−2

Ig Generated sequence of DNI values W m−2

I0 Extraterrestrial solar irradiance W m−2

I′0 Solar constant W m−2

L Level of decomposition -
MAE Mean absolute error W m−2

N Polynomial order -
NRMSE Normalized root mean square error %
R0/1 Ratio of data kept among the detected clear-sky DNI data -
Tmax Maximum value of atmospheric turbidity (specific to the considered database) -
Tmin Minimum value of atmospheric turbidity (specific to the considered database) -
TL Atmospheric turbidity, as defined by Linke (Linke, 1922) -
TLI Atmospheric turbidity, as defined by Ineichen and Perez (Ineichen and Perez, 2002) -
TLK Atmospheric turbidity, as defined by Kasten (Kasten, 1980) -
TLK2 Atmospheric turbidity, as defined by Kasten, for an air mass equal to 2 -
T?

LI Atmospheric turbidity, as computed using the methodology described in Section 6 -
〈TLI〉m/d Monthly/daily mean value of atmospheric turbidity -
α Maximum growth rate of atmospheric turbidity s−1

β Threshold value involved in the computation of T?
LI -

δcda Optical thickness of a water- and aerosol-free atmosphere (clean and dry atmosphere) -
ηcs Index of clear-sky data detection %
ηmd Percentage of clear-sky data missed by the detection algorithm %
ηid Percentage of data incorrectly considered as clear-sky data %
µ Moving average value computed from the detail signal of DNI W m−2

µmax Maximum accepted value of µ for the selection of clear-sky DNI data W m−2

τ Optical depth of the atmosphere -
∆Tmax Largest admissible change in atmospheric turbidity -

at high temporal and high spatial resolutions (Bernecker et al.,
2014; Chauvin et al., 2014). These systems are mainly used to
forecast the clearness index (kt). Regarding the clear-sky DNI
(Ics), on which the present paper focuses, models are divided into
two categories: radiative transfer models and empirical models
(Gueymard, 2012a; Engerer and Mills, 2015; Gueymard and

Ruiz-Arias, 2015). In radiative transfer models, the clear-sky
DNI is usually derived from the Beer-Lambert law (Eq. (1)):

Ics = I0 · e−mτ (1)

where m is the relative optical air mass and τ is the optical
depth of the atmosphere. Note that τ is a key parameter in accu-
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rately assessing the state of the atmosphere and, consequently,
the amount of solar energy reaching the ground (Davies and
McKay, 1982; Gueymard, 2008; Gueymard and Myers, 2008).
It is expressed as the sum of the broadband transmittances due
to Rayleigh scattering (τRa), uniformly mixed gases absorp-
tion (τg), ozone absorption (τO3 ), nitrogen dioxide absorption
(τNO2 ), water vapor absorption (τH2O), and aerosol extinction
(τA). Among all the radiative models one can find in the litera-
ture, REST2 (Gueymard, 2008) has proven to assess DNI with
unsurpassed accuracy. Highly complex phenomena that involve
interactions between atmospheric particles (e.g. aerosols and
water vapor) and sunbeams are considered in that model. In
addition, REST2 includes two spectral bands with distinct trans-
mission and scattering properties. Although radiative transfer
models often produce better estimates of the clear-sky DNI than
empirical models, they need input data that might be not avail-
able at any time. Indeed, aerosol optical depth data are required
but happen to be difficult to obtain, as well as rarely available
(Gueymard, 2012c). As a consequence, radiative transfer models
are not suitable for real-time applications.

Regarding empirical models, several levels of complexity can
be distinguished. First, in a recent work on the forecasting of
intra-hour DNI, the clear-sky DNI was simply assumed to be con-
stant over the tested period and equal to 900 W m−2 (Marquez
and Coimbra, 2013a). Excluding this, the simplest clear-sky DNI
models are usually based on the solar zenith angle and empirical
correlations derived from experimental measurements. As an ex-
ample, one can mention the Daneshyar-Paltridge-Proctor model
(Paltridge and Proctor, 1976; Daneshyar, 1978) or the Meinel
Model (Meinel and Meinel, 1976). The clear-sky DNI can also
be computed from an eight-order polynomial of the cosine of
the solar zenith angle (Chu et al., 2013; Quesada-Ruiz et al.,
2014) but, using this kind of expression, two different years
are necessarily modelled in the same way. Due to changes in
climate and atmospheric conditions from a year to another, this
is of course not representative of what truly happens. Another
model, proposed by Laue (Laue, 1970), takes the altitude of the
site into consideration, in addition to the solar zenith angle. In
general terms, accuracy of these models is negatively impacted
by the lack of information about the state of the atmosphere.
So, these past few years, several studies have been dedicated to
developing more efficient models (Chow et al., 2011; Yang et al.,
2014; Chu et al., 2015). Basically, these models use atmospheric
turbidity, which can be determined from broadband beam radia-
tion measurements, as an additional input (Ineichen and Perez,
2002). However, in these models, information about the state
of the atmosphere is not real-time information and is generally
derived from mean values or approximations provided by solar
energy services (SoDa, 2015). Because atmospheric turbidity
can be quite variable over the days, accuracy of the models can
be unsatisfactory, especially at high solar zenith angles.

In either case, models need to be validated through a compari-
son between the estimates they produce and measurements. This
is an offline phase and, as a consequence, a set of clear-sky DNI
data must be available. These data can be manually selected
within a database of DNI measurements or collected using a
detection algorithm. Typically, one can use direct filtering of

cloud conditions in the DNI time series (Long and Ackerman,
2000) or back-end filtering (Gueymard, 2013). Using the latter,
all of the DNI data is considered and observations that provide
physically-unreasonable clear-sky conditions are removed. An-
other possibility lies in using the andogenous statistical model
developed by Reno et al. (Reno et al., 2012). In this sense,
Inman et al. proposed a clear-sky detection algorithm based
on this model (Inman et al., 2015). The authors focused on
the sensitivity of day-ahead clear-sky DNI forecasts to local
fluctuations in atmospheric turbidity. They used average daily
Linke turbidity factors to correct for temporally and spatially
local aerosol loading and water vapor content.

In a previous work (Nou et al., 2014), a multi-resolution anal-
ysis based on the discrete wavelet transform has been devoted to
the same purpose. Such a methodology has proven to be relevant
for offline detection of clear-sky DNI data in large datasets and is
therefore useful for data preprocessing and model development.
However, the algorithm did not perform well when only the first
hours of the day are available: the whole day is needed. Lim-
itations of the algorithm occured in case of some very cloudy
periods. That is why some improvements have been realized in
order to detect clear-sky DNI data with higher accuracy.

The main purpose of the present paper is to propose an effi-
cient approach to the real-time assessment of the clear-sky DNI.
It combines an existing empirical model with a new methodology
for the computation of atmospheric turbidity. This methodology
relies on a persistence of atmospheric turbidity at short notice
and takes advantage of the fact that changes in this quantity are
relatively small throughout the day in comparison to changes
in DNI, even when the sky is free of clouds. So, atmospheric
turbidity is computed using the last detected clear-sky DNI mea-
surement. Data from two experimental sites (Golden, in the
USA, and Perpignan, in France) are used to compare the pro-
posed approach with several combinations of empirical clear-sky
DNI models and ways of computing atmospheric turbidity. A
polynomial of the cosine of the solar zenith angle is also included
in the comparative study. An evaluation procedure, allowing
changes in DNI caused by clouds to be simulated using a noisy
signal applied to clear-sky periods, is proposed.

The paper is organized as follows: Section 2 introduces some
considerations on the computation of the position of the Sun,
the extraterrestrial irradiance, and the relative optical air mass.
In particular, several functional forms one can use for approx-
imating the relative optical air mass are presented. Section 3
discusses all the considered combinations of empirical models
and ways of calculating atmospheric turbidity, including the
proposed approach. The databases of DNI measurements are
presented in Section 4, as well as the characteristics of the two
experimental sites. Section 5 details how clear-sky DNI data
are extracted from these databases by using a multi-resolution
analysis based on the discrete wavelet transform. As mentioned
above, this step is essential in the development and validation of
the proposed approach. Section 6 focuses on the methodology
proposed for the computation of atmospheric turbidity. Section
7 is about the evaluation procedure when both the tuning of the
models and results are presented in Section 8. The paper ends
with a conclusion and an outlook to future work.
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Table 1: Characteristics of existing algorithms for computing the Sun’s angles.

Characteristics SPA SG MICH ENEA SG2

Validity range (years) [−2000 ; 6000] [1980 ; n/a] [1950 ; 2050] [2003 ; 2022] [1980 ; 2030]
Uncertainty [°] 0.0003 0.2 0.01 0.001 < 0.001
Additions 1000 25 20 40 –
Multiplications 1300 35 35 40 –
Calls 300 25 25 25 –
Computation time [s] tSPA tSPA/15 tSPA/20 tSPA/20 < tSPA/20

2. Opening remarks

2.1. Position of the Sun

The knowledge of the Sun-Earth geometry is essential in the
developement of a clear-sky DNI model. Location (latitude,
longitude and altitude) and time are required to determine the
solar azimuth and zenith angles (Figure 1). Computing these
two angles is not trivial because it involves multiple phenomena
(Earth rotation and declination, spatial coordinates, etc.).

Sun 

Zenith 

East 

North 

Zenith angle 

Azimuth angle 

Figure 1: Representation of azimuth and zenith angles.

The existing algorithms show differences in terms of com-
putation time, accuracy and time period definition to compute
these solar angles. Among the best known algorithms developed
for computing the Sun’s angles, one can cite the Sun Position
Algorithm, called SPA (Reda and Andreas, 2003, 2004) and de-
veloped at the National Renewable Energy Laboratory (NREL).
This algorithm calculates the solar azimuth and zenith angles for
a very large period (from the year −2000 to 6000) with uncertain-
ties of about 1” (0.0003°). However, due to approximately 2300
operations, and more than 300 calls of trigonometric functions
needed to calculate one solar position, the computation cost is
high. A faster algorithm, called SG for Solar Geometry (Wald,
2007), has been developed for the European Solar Radiation At-
las. It can be applied during the time period starting from 1980
and requires, for one solar position, approximately 60 operations,
and 25 calls of trigonometric functions. The SG algorithm is
about 15 times faster than SPA. Two other algorithms, more than
20 times faster than SPA have been developed with acceptable
uncertainties. Indeed, the algorithm called MICH (Michalsky,
1988), taken from The Astronomical Almanac, offers a root mean

square error of approximately 40” (0.01°). It can be applied dur-
ing the period 1950-2050 and requires, for one solar position,
approximately 55 operations and 25 calls of trigonometric func-
tions. Regarding the algorithm proposed by Grena (Grena, 2008)
and called ENEA, it can be applied during the period 2003-2022
and requires, for one solar position, approximately 80 opera-
tions, and 25 calls of trigonometric functions. It offers a root
mean square error of approximately 4” (0.001°). Finally, another
algorithm called SG2 (Blanc and Wald, 2012), faster than the
SPA, MICH, and ENEA algorithms, provides the same level of
accuracy achieved by ENEA but extended to the period 1980-
2030. Each algorithm offers acceptable computation speed and
accuracy with regard to the application needs.

In this work, we decided for the SG2 algorithm because it is
accurate and fast enough (Table 1). In addition, it allows the
Sun-Earth distance, which is essential in the developed approach,
to be computed at each time step.

2.2. Extraterrestrial solar irradiance
The extraterrestrial solar irradiance I0 is defined as the power

per square meter reaching the top of the Earth’s atmosphere on
a surface normal to the beam. Due to the elliptical orbit of the
Earth, the extraterrestrial solar irradiance I0 is not constant and
varies through the year as follows (Eq. (2)):

I0 = (d0/d)2 · I′0 (2)

where I′0 is the solar constant defined as the average ex-
traterrestrial solar irradiance at mean Sun-Earth distance
(d0 = 149 597 871 km). The ratio d0/d comes from the con-
servation of flux and is given by the SG2 algorithm. Regard-
ing the solar constant I′0, Gueymard proposed in 2004 a value
of 1366.1 W m−2 by using the most recent composite time se-
ries of total solar irradiance spaceborne measurements (Guey-
mard, 2004). In 2012, this value has been corrected after de-
tecting a systematic bias in the data. So, I′0 is now set to
1361.2 W m−2 (Gueymard, 2012b). Several empirical expres-
sions, available in the literature, approximate Eq. (2). As an
example, I0 can be computed using a very simple expression
given by Eq. (3) (Duffie and Beckman, 1980):

I0 = (1 + 0.0334 cos (2π · doy/365)) · I′0 (3)

where doy is the day of year, ranging from 1 (January 1st) to 365
(December 31). Although this formulation may be employed
for most engineering and technological applications, the first ex-
pression has been preferred due to the availability of the variable
d in the used databases.
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2.3. Relative optical air mass
The relative optical air mass, noted m, is also a key parameter

in clear-sky DNI models. It corresponds to the ratio of the
optical path length of the solar beam through the atmosphere to
the optical path through a standard atmosphere at sea level with
the Sun at the zenith. In addition, both the Earth’s curvature and
the variable density of the atmosphere induce a longer path for
the beam, especially with high solar zenith angles (when the Sun
is near the horizon), where the path length increases (Figure 2).

Air mass  m         1 

z 
m 

Figure 2: Representation of the air mass.

The solar position must be known in order to calculate the
relative optical air mass. If the Earth’s curvature and the atmo-
sphere optical effects are neglected, the relative optical air mass
can be expressed using Eq. (4), where z is the solar zenith angle
(parallel plate approximation):

m =
1

cos z
(4)

This formulation is wrong at high zenith angles because, in that
case, air mass increases dramatically, and even tends to infinity
at 90°. That is why many formulations based on both measured
data and solar zenith angle have been proposed. In 2011, Rapp-
Arrarás and Domingo-Santos made a very exhaustive review and
systematic comparison of functional forms for approximating
the relative optical air mass at any solar zenith angle (Rapp-
Arrarás and Domingo-Santos, 2011). Four of the most famous
are recalled below.

First, Young and Irvine proposed a formulation which is more
appropriate than the parallel plate approximation for zenith an-
gles between 83° and 87° (Young and Irvine, 1967). However,
at 90°, this functional form still diverges (Eq. (5)):

m =
1

cos z

[
1 − 0.0012

(
1

cos2 z
− 1

)]
(5)

In spite of this limitation, it led to the development of several
other formulations, among which two that Young was involved
in developing. The first one (Kasten and Young, 1989) is defined
as follows (Eq. (6)):

m =
1

cos z + 0.50572 · (96.07995 − z)−1.6364 (6)

The second one (Young, 1994) is expressed by Eq. (7), with a
the cosine of the solar zenith angle:

m =
1.002432 a2 + 0.148386 a + 0.0096467

a3 + 0.149864 a2 + 0.0102963 a + 0.000303978
(7)

Gueymard also proposed a modified formulation of the relative
optical air mass (Gueymard, 1993). He defined in the following
way this key parameter in clear-sky DNI models (Eq. (8)):

m =
1

cos z + 0.00176759 · z · (94.37515 − z)−1.21563 (8)

Figure 3 provides an overview of these five functional forms.
Overall, they present very similar results for solar zenith angles
below 80° (which corresponds to the operating conditions of a
solar power plant). As a result, a simple formulation like the
parallel plate approximation (Eq. (4)) could have been enough.
However, for its accuracy at all zenith angles and because the
computations are very fast (a few milliseconds), the formulation
proposed by Kasten and Young has been selected (Eq. (6)).
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Figure 3: Overview of five air mass formulations.

3. Real-time assessment of the clear-sky DNI

In this section are presented the selected empirical models, the
approaches included in the comparative study, and the approach
proposed to the real-time assessment of the clear-sky DNI.

3.1. Selected empirical models

Among all the empirical clear-sky DNI models highlighted
in the introduction section, we selected first a polynomial of the
cosine of the solar zenith angle (Chu et al., 2013; Quesada-Ruiz
et al., 2014). It is defined by Eq. (9):

Îcs =

N∑

n=0

an · (cos z)n (9)

where the coefficients {an}06n6N can be obtained by using the
least-squares method (Section 8.1.2). Note that in this paper Îcs

stands for estimates of the clear-sky DNI whereas Ics represents
the clear-sky DNI, in a more general way. The other models
considered in the comparison study are derived from works
realized by Linke. In 1922, he proposed to express DNI as a
function of the total optical thickness of a cloudless atmosphere
(Linke, 1922), which is defined as the product of the optical
thickness of a water- and aerosol-free atmosphere (a clear and
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dry atmosphere) (δcda) and the Linke turbidity coefficient (TL)
(Eq. (10)):

Îcs = I0 · exp (−δcda · TL · m) (10)

As a result, depending on the way the theoretical value of δcda

is computed, the evaluation of TL can be different. Note that
TL is the number of clean dry atmospheres leading to the ob-
served attenuation of solar irradiance. In 1980, Kasten proposed
the following formulation (Kasten, 1980), which is known as
the Kasten’s pyrheliometric formula and widely used by the
scientific community (Eq. (11)):

δK
cda = (9.4 + 0.9 · m)−1 (11)

The corresponding Kasten-reviewed Linke turbidity coefficient
(TLK) is then obtained as follows (Eq. (12)):

TLK = ln (I0/Ics) · (9.4 + 0.9 · m) /m (12)

After new measurement campaigns, other formulations of δcda

have been proposed. All of them are based on a fourth-order
polynomial of the air mass (Louche et al., 1986; Grenier et al.,
1994; Kasten, 1996). Among these works, one can highlight
the new formulation proposed by Kasten. It is used to estimate
the solar radiation at ground level from satellite images in the
framework of the new digital European Solar Radiation Atlas
(ESRA) (Rigollier et al., 2000) and is given by Eq. (13):

δES RA
cda =

104

66296 + 17513mp − 1202m2
p + 65m3

p − 1.3m4
p

(13)

where mp is equal to the relative optical air mass defined by Eq.
(6) corrected by the altitude of the considered site (Eq. (14)):

mp = m · exp (−h/8434.5) (14)

The corresponding clear-sky DNI model is given by Eq. (15):

Îcs = I0 · exp
(
−0.8662 · mp · δcda · TLK2

)
(15)

where TLK2 is the Kasten-reviewed Linke turbidity coefficient for
an air mass equal to 2. Although the Kasten-reviewed Linke tur-
bidity coefficient is easy to calculate, it has a strong dependence
on air mass (Kasten, 1988; Kasten and Young, 1989; Grenier
et al., 1994; Eltbaakh et al., 2012), which is problematic. That
is why Ineichen and Perez proposed in 2002 a new formulation
of the atmospheric turbidity coefficient in order to limit this
dependence (Ineichen and Perez, 2002). In this work, they also
defined b as a function of the altitude of the considered site. The
model they developed is given by Eq. (16):

Îcs = b · I0 · exp (−0.09 · m (TLK2 − 1)) (16)

where b is expressed as follows (Eq. (17)):

b = 0.664 +
0.163

exp (−h/8000)
(17)

So, the atmospheric turbidity coefficient revised by Ineichen and
Perez (TLI) (Eq. (18)) can be computed by inverting Eq. (16):

TLI = 1 +

[
11.1

m
· ln

(
b · I0

Ics

)]
(18)
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Figure 4: Evolution of both the Kasten-reviewed Linke turbidity coefficient
(TLK ) and Ineichen atmospheric turbidity coefficient (TLI) during a clear-sky
day (PROMES-CNRS database).

As illustrated in Figure 4, TLI , which is relatively stable through-
out the day, is less dependent on air mass than TLK . As a result,
TLI has been chosen as an input of the models in which the
state of the atmosphere is taken into consideration (Section 3.2).
Because, in the proposed approach, estimation of the clear-sky
DNI is based on the persistence of atmospheric turbidity during
the day, TLI is also the best candidate (Section 3.3). In case of
clear-sky conditions, it can be easily derived from broadband
beam irradiance measurements.

3.2. Approaches included in the comparative study
Overall, we considered five approaches with four of them

based on the selected clear-sky DNI models (Section 3.1) and
different ways of computing TLI . The first one is the polynomial
expression described by Eq. (9), with Îpoly

cs the corresponding
clear-sky DNI (Eq. (19)):

Îpoly
cs =

N∑

n=0

an · (cos z)n (19)

The next two approaches are based on the ESRA model (Eq.
(15)), with monthly (〈TLI〉m ) or daily (〈TLI〉d ) mean values of
atmospheric turbidity serving as inputs of the model (Eq. (20)):

ÎES RA
cs = I0 · exp

(
−0.8662 · mp · δcda · 〈TLI〉m/d

)
(20)

Two other approaches based on the model developed by Ineichen
and Perez (Eq. (16)) are considered in the present study. As in
the approaches based on the ESRA model, monthly (〈TLI〉m ) or
daily (〈TLI〉d ) mean values of atmospheric turbidity are used as
inputs of the model (Eq. (21)):

ÎIneichen
cs = b · I0 · exp

(
−0.09 · m

(
〈TLI〉m/d − 1

))
(21)

3.3. Proposed approach
The approach proposed to the real-time assessment of the

clear-sky DNI comes from the combination of the same model,
developed by Ineichen and Perez (Eq. (16)), with a new method-
ology for the computation of atmospheric turbidity at each time
step (this methodology is described in Section 6). The corre-
sponding atmospheric turbidity is called T?

LI (Eq. (22)):

ÎIneichen
cs = b · I0 · exp

(
−0.09 · m

(
T?

LI − 1
))

(22)
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4. Experimental data

To evaluate the accuracy of the considered approaches, we
used one-minute data from two experimental sites, covering
twelve-month periods. The first database comes from the Mea-
surement and Instrumentation Data Center (MIDC). The MIDC
makes available irradiance and meteorological data from more
than thirty stations in the United States. In the present study, we
focused on data from the BMS (Baseline Measurement System)
station which is located near Golden (Colorado), at the NREL
(National Renewable Energy Laboratory) (Andreas and Stoffel,
1981). This station is situated on a high plain (elevation is about
1800 m), near mountains reaching about 3000 m high.

Table 2: Characteristics of the two experimental sites.

Characteristics Golden, USA Perpignan, France

Laboratory NREL PROMES-CNRS
Time zone GMT-7 GMT+1
GPS 39.74 N, 105.18 W 42.66 N, 2.91 E
Altitude 1829 m 50 m
Period of acquisition 01/01/13–31/12/13 01/11/13–31/10/14
Time step 60 s 60 s
Device used for
DNI measurement

Pyrheliometer
Rotating shadowband
irradiometer

Typical uncertainty ±2% ±5%
Yearly turbidity 2.37 2.61

1. Experimental data

In order to evaluate accuracy of the proposed model, data
from two experimental sites have been used. The first database is
from the Measurement and Instrumentation Data Center (MIDC)
which provides irradiance and meteorological data from more
than thirty stations in USA. For our study, we focused on data
from the BMS station located near Golden (USA) (Andreas and
Stoffel, 1981) at the NREL (National Renewable Energy Labo-
ratory). This station is situated on a high plain (about 1800 m),
near mountains reaching about 3000 m. The second database
is derived from measurements realized at the PROMES-CNRS
laboratory in Perpignan (France). This station is located at about
20 km from the Mediterranean sea in south of France. Generally,
winter is mild and summer is hot and dry. In addition, wind
is very present in this region that is why the atmosphere is fre-
quently clean and the sky often cloudless. Some characteristics
of these two sites are presented in Table 1. Note that the DNI

Table 1: Characteristics of the two experimental sites.

Characteristics Golden, USA Perpignan, France

Laboratory NREL PROMES-CNRS
Time zone GMT-7 GMT+1
GPS 39.74 N, 105.18 W 42.66 N, 2.91 E
Altitude 1829 m 50 m
Range 01/01/13–31/12/13 01/11/13–31/10/14
Period of acquisition 60 s 60 s
Device used for
DNI measurement

Pyrheliometer
Rotating shadowband
irradiometer

Typical uncertainty ±2% ±5%
Yearly turbidity 2.37 2.61

measurements have been obtained from different devices of the
same company (CSP Services, 2015). The NREL uses a pyrhe-
liometer (Figure 1.a) whereas the PROMES-CNRS laboratory
uses a rotating shadowband irradiometer (Figure 1.b). The typi-
cal uncertainties are about ±2% for the pyrheliometer and about
±5% for the RSI. However, they are clearly higher at sunrise and
sunset when irradiances are relatively low. Other data like the
air mass or solar angles have been directly extracted from the
database (NREL) or computed (PROMES-CNRS). One-minute
data have been used from these two sites during twelve succes-
sive months. Due to the different locations, they present different
dynamics of DNI and different atmospheric turbidity fluctua-
tions. For the studied period, about 850 h of clear-sky DNI have
been detected and about 700 h for the Perpignan site. From these
measurements, monthly mean values of atmospheric turbidity
have been computed. Results of the two sites are presented on
Figure 2. One can observe for both sites, an annual behavior of
the atmospheric turbidity with a higher value in summer than
in winter. The fact that turbidity is higher in Perpignan than
in Golden seems to be consistent because Golden is located in
altitude where concentration in particles is a priori lower. In ad-
dition, excepted for the Perpignan site in January and February,
the number of clear-sky data available to compute TLI is higher
than 2000, enough to compute representative monthly mean val-
ues of atmospheric turbidity. As mentioned in Section ??, these

(a) Pyrheliometer
(Golden, USA)

(b) RSI
(Perpignan, France)

Figure 1: Overview of the devices used to measure the direct normal irradiance
in both sites.
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which provides irradiance and meteorological data from more
than thirty stations in USA. For our study, we focused on data
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is derived from measurements realized at the PROMES-CNRS
laboratory in Perpignan (France). This station is located at about
20 km from the Mediterranean sea in south of France. Generally,
winter is mild and summer is hot and dry. In addition, wind
is very present in this region that is why the atmosphere is fre-
quently clean and the sky often cloudless. Some characteristics
of these two sites are presented in Table 1. Note that the DNI
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measurements have been obtained from different devices of the
same company (CSP Services, 2015). The NREL uses a pyrhe-
liometer (Figure 1.a) whereas the PROMES-CNRS laboratory
uses a rotating shadowband irradiometer (Figure 1.b). The typi-
cal uncertainties are about ±2% for the pyrheliometer and about
±5% for the RSI. However, they are clearly higher at sunrise and
sunset when irradiances are relatively low. Other data like the
air mass or solar angles have been directly extracted from the
database (NREL) or computed (PROMES-CNRS). One-minute
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sive months. Due to the different locations, they present different
dynamics of DNI and different atmospheric turbidity fluctua-
tions. For the studied period, about 850 h of clear-sky DNI have
been detected and about 700 h for the Perpignan site. From these
measurements, monthly mean values of atmospheric turbidity
have been computed. Results of the two sites are presented on
Figure 2. One can observe for both sites, an annual behavior of
the atmospheric turbidity with a higher value in summer than
in winter. The fact that turbidity is higher in Perpignan than
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(b) RSI
(Perpignan, France)

Figure 5: The pyrheliometer and rotating shadowband irradiometer (RSI) used
to measure direct normal irradiance in Golden and Perpignan, respectively.

The second database is derived from measurements realized
in Perpignan, at the PROMES-CNRS laboratory. This station
is located in Southern France, approximately 20 km west of the
Mediterranean sea. Winter is mild and summer is hot and dry. In
addition, there is a lot of wind, resulting in a clean atmosphere
and a cloudless sky. The main characteristics of these two sites
are presented in Table 2. Note that the DNI measurements have
been obtained using different devices from the same company
(CSP Services, 2015): the NREL uses a pyrheliometer, whereas
the PROMES-CNRS laboratory uses a rotating shadowband
irradiometer (Figure 5). The typical uncertainties are about
±2% for the pyrheliometer and ±5% for the RSI. However, they
are clearly higher at both sunrise and sunset, i.e. when DNI is

relatively low. Other data like the air mass or solar angles have
been directly extracted from the database (NREL) or computed
(PROMES-CNRS).

1. Experimental data

In order to evaluate accuracy of the proposed model, data
from two experimental sites have been used. The first database is
from the Measurement and Instrumentation Data Center (MIDC)
which provides irradiance and meteorological data from more
than thirty stations in USA. For our study, we focused on data
from the BMS station located near Golden (USA) (?) at the
NREL (National Renewable Energy Laboratory). This station is
situated on a high plain (about 1800 m), near mountains reaching
about 3000 m. The second database is derived from measure-
ments realized at the PROMES-CNRS laboratory in Perpignan
(France). This station is located at about 20 km from the Mediter-
ranean sea in south of France. Generally, winter is mild and
summer is hot and dry. In addition, wind is very present in
this region that is why the atmosphere is frequently clean and
the sky often cloudless. Some characteristics of these two sites
are presented in Table 1. Note that the DNI measurements

Table 1: Characteristics of the two experimental sites.

Characteristics Golden, USA Perpignan, France

Laboratory NREL PROMES-CNRS
Time zone GMT-7 GMT+1
GPS 39.74 N, 105.18 W 42.66 N, 2.91 E
Altitude 1829 m 50 m
Range 01/01/13–31/12/13 01/11/13–31/10/14
Period of acquisition 60 s 60 s
Device used for
DNI measurement

Pyrheliometer
Rotating shadowband
irradiometer

Typical uncertainty ±2% ±5%
Yearly turbidity 2.37 2.61

have been obtained from different devices of the same company
(?). The NREL uses a pyrheliometer (Figure 1.a) whereas the
PROMES-CNRS laboratory uses a rotating shadowband irra-
diometer (Figure 1.b). The typical uncertainties are about ±2%
for the pyrheliometer and about ±5% for the RSI. However, they
are clearly higher at sunrise and sunset when irradiances are
relatively low. Other data like the air mass or solar angles have
been directly extracted from the database (NREL) or computed
(PROMES-CNRS). One-minute data have been used from these
two sites during twelve successive months. Due to the different
locations, they present different dynamics of DNI and different
atmospheric turbidity fluctuations. For the studied period, about
850 h of clear-sky DNI have been detected and about 700 h for
the Perpignan site. From these measurements, monthly mean
values of atmospheric turbidity have been computed. Results
of the two sites are presented on Figure 2. One can observe for
both sites, an annual behavior of the atmospheric turbidity with
a higher value in summer than in winter. The fact that turbidity
is higher in Perpignan than in Golden seems to be consistent
because Golden is located in altitude where concentration in
particles is a priori lower. In addition, excepted for the Perpig-
nan site in January and February, the number of clear-sky data
available to compute TLI is higher than 2000, enough to compute
representative monthly mean values of atmospheric turbidity. As
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Figure 1: Overview of the devices used to measure the direct normal irradiance
in both sites.
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1

Figure 6: Monthly mean values of atmospheric turbidity (〈TLI〉m ) and number
of clear-sky DNI data involved in the computation.

Depending on the location, the dynamics of direct normal
irradiance as well as the fluctuations one can observe in atmo-
spheric turbidity are rather different. During the twelve-month
periods we considered (see Table 2), about 850 h and 700 h of
clear-sky DNI data have been detected in Golden and Perpignan,
respectively. Note that, with the exception of both January and
February months in Perpignan, the number of clear-sky DNI data
involved in the computation of TLI is higher than 2000, which
is enough to obtain representative monthly mean values of at-
mospheric turbidity (Figure 6). One can also observe that this
quantity is higher in summer than in winter, wathever the site.
Overall, atmospheric turbidity is higher in Perpignan, probably
because of a higher concentration in particles than in Golden (re-
member that the BMS station elevation is about 1800 m whereas
Perpignan is more or less at sea level).

5. Detection of clear-sky DNI data

To develop and validate the proposed approach, performing an
effective detection of clear-sky DNI data in each database is nec-
essary. In a previous work (Nou et al., 2014), a multi-resolution
analysis has been used to perform the data detection. This analy-
sis is based on the discrete wavelet transform and allows a signal
to be decomposed into approximations (i.e. low-frequency co-
efficients) and details (i.e. high-frequency coefficients) using a
bank of filters composed of low-pass and high-pass filters (Mal-
lat, 2009). Using the discrete wavelet transform, the temporal
characteristics of the signal are preserved. This process can be
repeated L times, which produces L levels of decomposition, but
decomposing the approximations only.

Figure 7 shows the decomposition of level L of a signal x.
This signal is first decomposed into an approximation A1 and
a detail D1 (level 1 of the decomposition). Then A1 can be
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Figure 3: Index of clear-sky data selection efficiency as a function of the level
of decomposition.
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Figure 4: Multi-resolution analysis leading to the n-level decomposition of a
signal x.

3

Figure 7: Wavelet-based multi-resolution analysis leading to the decomposition
of level L of a signal x.

decomposed into an approximation A2 and a detail D2 (level
2 of the decomposition) and so on. As a result, considering
L levels of decomposition, the signal x is decomposed into
L approximations and L details. The clear-sky data detection
process is mainly based on D, defined as the sum of all details
(Eq. (23)):

D(t) = D1(t) + D2(t) + · · · + DL(t) (23)

Because D reflects the DNI variability, its value is useful to
detect small changes in DNI and, as a result, the clear-sky peri-
ods. Different families of wavelets may be chosen for analyzing
sequences of data points. The main criteria are: the speed of
convergence to 0 when the time or the frequency goes to infinity,
which quantifies both time and frequency localizations, the sym-
metry, the number of vanishing moments of the mother wavelet,
and the regularity, which is useful for getting nice features, like
smoothness of the reconstructed signal. The most commonly
used wavelets are the orthogonal ones: Daubechies, Symlet or
Coiflet wavelets. Because the Daubechies wavelets have the
highest number of vanishing moments (Daubechies et al., 1992),
this family has been chosen for carrying out the wavelet-based
multi-resolution analysis of the considered sequences of data
points.

Although this algorithm was validated in a previous study
(Nou et al., 2014), some improvements have been realized in
order to detect clear-sky DNI data with a higher accuracy. Lim-
itations of the algorithm occurred in case of some very cloudy
periods. Indeed, when the measured DNI is very low and rela-
tively constant, the sum of all details can be close to zero. As a
result, in this unusual case, a cloudy period can be considered
as a clear-sky one. To solve this problem, an additional coeffi-
cient derived from the computation of atmospheric turbidity is
proposed. This coefficient, called coefficient of turbidity (CT ), is
defined as follows (Eq. (24)):

CT (t) = 1 +

[
11.1
m(t)

· ln
(

b · I0

I(t)

)]
(24)
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Figure 8: Clear-sky DNI data detection algorithm.

where I is the measured DNI. In fact, once the clear-sky detection
using the wavelet-based multi-resolution analysis is performed,
the additional coefficient CT allows some wrong detections to
be avoided. Indeed, when CT is higher than the maximum
atmospheric turbidity value measured on-site (Tmax), the corre-
sponding measured DNI is not considered as a clear-sky DNI.
Figure 8 is an example of clear-sky detection performed with
the proposed algorithm. First, from the measured DNI I (Figure
8a), the coefficient of turbidity is computed (Figure 8b). Second,
I is decomposed into L approximations (not represented) and a
detail D, defined as the sum of the L details (Figure 8c). Then,
a moving average µ is calculated from D in the following way
(Eq. (25)):

µ(t) =
1
tw

t+ 1
2 (tw−1)∑

k=t− 1
2 (tw−1)

|D(k)| (25)

where tw is the length of the temporal window. Third, a decision
coefficient, noted dec (Figure 8d), is computed as follows, from
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Table 3: Parameters of the clear-sky DNI detection algorithm.

Parameters Golden Perpignan

Level of decomposition L 3 3
Temporal window (min) tw 15 15
Threshold (W m−2) µmax 3 5
Maximum turbidity Tmax 4.00 4.50

µ and CT (Eq. (26)):

if µ(t) < µmax and CT (t) < Tmax then
dec(t) = 1

else
dec(t) = 0

end

(26)

where Tmax is the maximum atmospheric turbidity measured on
site and µmax (which is defined empirically) is the maximum
admissible value for µ. A value of ‘1’ is attributed to dec in case
of clear sky conditions whereas ‘0’ is attributed to this parameter
in the opposite case. Finally, from this binary sequence, one can
obtain the clear-sky DNI (Figure 8e), which is essential in the
development and validation of the proposed approach.

A parametric study dealing with the optimal level of decom-
position has been performed for the two sites. To this end, we
manually selected clear-sky DNI data over a period of 20 days
in both databases, according to the shape of the DNI curves. To
evaluate the accuracy of the detection algorithm, we defined an
index of clear-sky data detection ηcs. This index, formulated as a
weighted sum, combines the percentage of clear-sky data missed
by the detection algorithm (ηmd) with the percentage of data
incorrectly considered as clear-sky data (ηid). Note that because
avoiding data to be incorrectly detected is more important than
missing clear-sky data, ηid has been weighted with a coefficient
three times higher than the one assigned to ηmd (Eq. (27)):

ηcs(L) =
1
4
ηmd(L) +

3
4
ηid(L) (27)

The aim is to find the level of decomposition that minimizes ηcs.
For the Golden site, this index is minimized by considering a
level of decomposition equal to 3 (ηcs(3) = 2.57%). Regarding
the Perpignan site, the optimal level of decomposition is the
same (ηcs(3) = 2.69%) (Figure 9). Table 3 summarizes all the
parameters of the clear-sky DNI detection algorithm, for both
sites.

6. Methodology for the computation of T?
LI

The clear-sky DNI model considered as part of the proposed
approach is mainly based on the behaviour of atmospheric tur-
bidity (Eq. (22)). It takes advantage of the fact that, in case
of clear-sky conditions, changes in atmospheric turbidity are
relatively small throughout the day in comparison to changes in
DNI. Each time DNI is measured, the corresponding coefficient
CT (t) is calculated using Eq. (24). Then, atmospheric turbidity
T?

LI(t) is computed by defining Ω as the greyed out area in Figure
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Figure 1: Index of clear-sky data selection ηcs as a function of the level of
decomposition L, for both the Golden and Perpignan sites.
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Figure 9: Index of clear-sky data selection ηcs as a function of the level of
decomposition L.

10 and using Eq. (28):

if CT (t) ∈ Ω then
T?

LI(t) = CT (t)
else

T?
LI(t) = T?

LI(tpast)
end

(28)

where T?
LI(tpast) is the last trustable atmospheric turbidity value.

Indeed, if the coefficient of turbidity CT (t) is not inside Ω, it is
preferable to keep T?

LI(tpast) as the new atmospheric turbidity
value. At a given time t, the area Ω depends on five parameters
(Tmin, Tmax, α, β, and ∆Tmax), defined as follows.

– Tmin and Tmax correspond to the minimum and maximum
values of atmospheric turbidity T?

LI in the database, respec-
tively. These two parameters are used to make sure that no
outlier is computed.

– ∆Tmax is the largest admissible change in atmospheric tur-
bidity. Because it is a key parameter in the computation of
T?

LI , it has been set carefully (see Section 8.1.1).

– α represents the maximum growth rate of T?
LI and thus

depends on the characteristics of the considered site. It is
equal to the slope of the straight line ` in Figure 10. As for
∆Tmax, α is a key parameter in the computation of T?

LI . As
a result, it has been set carefully (see Section 8.1.1).

– β depends on the accuracy of the DNI measuring device. It
can be determined using the absolute difference between
two successive estimates of atmospheric turbidity: in the
sequel, it is set in a way that 99% of the differences are
lower than its value. This threshold is empirically chosen
with the aim of limiting the risk of physically impossible
changes in atmospheric turbidity.

In Section 8 is explained how to set the values of these five
parameters, for both the Golden and Perpignan sites. Finally, at
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Figure 1: Principle of the atmospheric turbidity model. Note that case (a) is
more probable than case (b) because Tmax is usually quite high.

2

Figure 10: Methodology for the computation of atmospheric turbidity (T?
LI).

Note that case (a) is more probable than case (b) because Tmax is usually quite
high.

a given time t, T?
LI can be expressed through Eqs. (29) and (30):

T?
LI(t) ∈

[
Tmin, min

(
`, T?

LI(tpast) + ∆Tmax, Tmax

)]
(29)

` = T?
LI(tpast) + α(t − tpast) + β (30)

Once T?
LI is known, the clear-sky DNI Îcs is estimated by using

Eq. (22) (Section 3.3).

7. Evaluation procedure and metrics

To estimate the accuracy of the considered approaches, an
evaluation procedure has been defined. It is based on the clear-
sky DNI data detection presented in Section 5. Starting with a
DNI signal of reference, the idea is to simulate changes caused
by clouds. The obtained noisy signal Ig can then be used to
assess the accuracy of the models: outputs given by the models
can be compared with the reference clear-sky DNI values. Figure
11 presents an example of how Ig can be obtained in five steps:

(a) The DNI I is measured.
(b) Using the clear-sky data detection methodology presented

in Section 5, the decision coefficient dec is determined.
(c) A pseudo-random binary sequence (PRBS) v is generated.

The mean value of this PRBS can be adjusted according to
the ratio R0/1 (e.g. R0/1 = 0.7 means 70% of ‘1’ (clear-sky
data)).

(d) The binary sequence w is obtained by multiplying term by
term dec and v. Then, w contains only a part of the detected
clear-sky periods. The amount of clear-sky periods that are
kept can be modulated using R0/1.

(e) Finally, the irradiance Ig is computed in the following way
(Eq. (31)):

if w(t) = 0 then
Ig(t) = I(t)

else
Ig(t) = I(t) · krand(t)

end

(31)

where krand(t) is a random value between 0 (the Sun is
occulted by a thick cloud) and 1 (there is no cloud occulting
the Sun). To evaluate the accuracy of the approaches, the
Normalized Root Mean Square Error (NRMSE), defined
as follows, is used (Eq. (32)):

NRMSE =

√
1
p
∑(

Ics − Îcs

)2

Icsmax − Icsmin
(32)

where p is the number of data, Icsmin and Icsmax are the
minimum and maximum values of the clear-sky DNI in
the database, respectively, and Ics and Îcs are the detected
(from measurements) and estimated values of the clear-sky
DNI, respectively. Performance is also evaluated by means
of the Mean Absolute Error (MAE), defined by Eq. (33):

MAE =
1
p

∑∣∣∣Ics − Îcs

∣∣∣ (33)

Given that the approach proposed in this paper to the real-
time assessment of the clear-sky DNI is mainly based on the
behaviour of atmospheric turbidity (see Section 3.3), perfor-
mance is very dependent on both the considered site (climate,
dynamics of atmospheric turbidity. . . ) and accuracy of the mea-
suring device. That is why this approach has been compared
with several combinations of existing models and methodologies
for the computation of atmospheric turbidity (see Section 3.2).

8. Analysis of the results

This section focuses on tuning the models and evaluating
the approaches included in the comparative study thanks to the
proposed procedure. Results are discussed in details.

8.1. Tuning of the models
8.1.1. Ineichen and Perez model, with T?

LI used as input
Figure 12 presents, for both the Golden and Perpignan sites,

the cumulative distribution of the absolute difference between
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Figure 1: Overview of how Ig can be obtained in five steps (five days from the PROMES-CNRS database)

2

Figure 11: Computation in five steps of Ig (five days from the PROMES-CNRS database).

two successive estimates of atmospheric turbidity. Remember
that, according to the methodology proposed for the computation
of T?

LI (Section 6), β is set in a way that 99% of the differences
are lower than its value. So, we found β = 0.0406 for Golden
and β = 0.0566 for Perpignan. As one can note, the value we
obtained for the Perpignan site is higher than the Golden value.
This is probably due to the accuracy of the DNI measuring
device, which is affected by the technology: a thermopile is
used in Golden whereas the Perpignan site is equipped with a
photodiode. Once β is estimated, the couple (α, ∆Tmax) yielding
the lower NRMSE can be determined. Figure 13 presents the
NRMSE obtained for different sets of (α, ∆Tmax). This error
is highly dependent on α. In fact, this parameter is mainly
affected by the site characteristics, in particular the emissions
of gases and particles, and (as for β) the accuracy of the DNI
measuring device. For both sites, the parameters allowing T?

LI to
be calculated (Tmin, Tmax, α, β, and ∆Tmax) are given in Table 4.
As one can note, the accuracy is clearly satisfying: the MAE is
less than 10 W m−2 whereas the NRMSE does not exceed 1.74%,

whatever the site.

Table 4: Parameters for the computation of T?
LI and associated errors.

Golden, USA Perpignan, France

Tmin 1.5 1.5
Tmax 4.0 4.5
α [s−1] 1.5 · 10−4 0.9 · 10−4

β 0.0406 0.0566
∆Tmax 1.10 1.40

NRMSE 1.74% 1.35%
MAE 9.26 W m−2 8.10 W m−2

8.1.2. Polynomial of the cosine of the solar zenith angle
Regarding the polynomial-based model (Eq. (19)), its coeffi-

cients {an}06n6N are calculated using the least squares method to
fit the clear-sky DNI data we randomly selected in each database
(i.e. 5132 data for Golden and 4243 data for Perpignan, which
represents one tenth of the available data). Although an order
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Figure 1: Cumulative distribution of the absolute difference between two tur-
bidity measurements, for both the Golden and the Perpignan sites. 99% of the
differences are below the chosen β value.
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Figure 12: Cumulative distribution of the absolute difference between two
successive estimates of atmospheric turbidity, for both the Golden and Perpignan
sites. 99% of the differences are lower than the chosen value for β. TLI is
estimated from detected clear-sky DNI data (see Section 5), using Eq. (18).

N = 8 gives the best results (Table 5), a third-order polynomial
(N = 3) could have been sufficient, as shown by Marquez and
Coimbra (Marquez and Coimbra, 2013b). The coefficients we
obtained (for N = 8) for the Golden (Eq. (34)) and Perpignan
(Eq. (35)) sites are, respectively:

{an}06n68 = 103 · { − 0.210, 11.9,−67.5, 216,−336,
124, 307,−392, 138

} (34)

{an}06n68 = 103 · { − 1.10, 30.7,−250, 1160,−3160,
5200,−5070, 2700,−606

} (35)

8.2. Evaluation of performance

The accuracy of all the considered approaches (Eqs. (19) to
(22)) has been assessed by means of both the MAE and NRMSE
(which are exclusively computed when the binary sequence dec,
shown in Figure 11, is equal to 1). Table 5 summarizes all the re-
sults, for the Golden and Perpignan sites. As expected, both the
model developed by Ineichen and Perez and the ESRA model
work better than the polynomial-based model (even with N = 8),
with (either monthly or daily) mean values of atmospheric tur-
bidity (TLI) serving as inputs. Indeed, although all the models
take the position of the Sun into account, mean turbidity-based
models take advantage of an additional information about the
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Figure 1: Estimation of the couple (α, ∆Tmax), for both the Golden and the
Perpignan sites. The red circles highlight the optimal couples.
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Figure 13: Estimation of the couple (α, ∆Tmax), for both the Golden and Perpig-
nan sites. The red circles highlight the optimal couples.

state of the atmosphere. One can note that there is no real bene-
fits in considering daily mean values of atmospheric turbidity,
instead of monthly mean values, the errors being very close.

Regarding the proposed approach (Eq. (22)), several values of
R0/1, ranging from 0.1 to 1, have been tried out. Taking a look
at Table 5, one can notice that the more the ratio R0/1 increases
(i.e. the higher the degradation of the clear-sky DNI signal),
the quicker the MAE and NRMSE increase. Indeed, in case of
a significant degradation, less data are available to be used in
the computation of atmospheric turbidity and, therefore, of the
clear-sky DNI. Even with a ratio R0/1 set to 1 (which means that
all the detected clear-sky DNI data are noisy), the MAE and
NRMSE are 25.24 W m−2 and 3.45% for the Golden site and
17.61 W m−2 and 2.47% for the Perpignan site. Note that in the
databases used in the present study, the mean ratio of clear-sky
data observed during a day is close to 30%, whatever the site.
This corresponds to a ratio R0/1 equal to 0.7. So, in that case
(R0/1 = 0.7), the results are satisfying because of a MAE less
than 14 W m−2 and a maximum NRMSE near to 2.25% in the
worst case (i.e. for Golden). Without any doubt, the clear-sky
DNI model developed by Ineichen and Perez, combined with
the proposed methodology for the computation of atmospheric
turbidity (Eq. (22)), offers the lower MAE and NRMSE (even
with R0/1 = 1), in each site.
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Table 5: Comparison of the considered approaches, for both the Golden and Perpignan sites. R0/1 is the ratio of degradation. N is the polynomial order. Number of
clear-sky DNI data considered in the comparative study: 51322 for Golden, USA, and 42432 for Perpignan, France.

Model
Computation

of TLI
N or R0/1

Golden, USA Perpignan, France

MAE [W m−2] NRMSE [%] MAE [W m−2] NRMSE [%]

Îpoly
cs n/a

N = 2 88.71 10.51 79.25 10.12
N = 3 63.96 7.42 61.10 7.76
N = 4 63.38 7.14 60.26 7.62
N = 5 63.15 7.09 60.16 7.62
N = 6 62.88 7.06 60.15 7.60
N = 7 62.66 7.03 59.86 7.59
N = 8 62.67 7.03 59.91 7.58

ÎES RA
cs

〈TLI〉m n/a 38.99 4.73 39.83 5.25
〈TLI〉d n/a 38.66 4.68 40.86 5.38

ÎIneichen
cs

〈TLI〉m n/a 33.66 4.01 37.61 4.81
〈TLI〉d n/a 32.79 3.91 37.86 4.89

T?
LI

R0/1 = 1.0 25.24 3.45 17.61 2.47
R0/1 = 0.9 20.39 2.97 15.20 2.22
R0/1 = 0.8 16.22 2.59 12.85 1.96
R0/1 = 0.7 13.17 2.25 11.33 1.77
R0/1 = 0.6 11.18 2.08 9.59 1.55
R0/1 = 0.5 9.26 1.74 8.10 1.35
R0/1 = 0.4 7.49 1.47 6.74 1.15
R0/1 = 0.3 6.94 1.47 6.49 1.17
R0/1 = 0.2 6.30 1.40 5.69 0.97
R0/1 = 0.1 5.45 1.13 5.52 0.94

Figure 14 shows an example of results obtained using the
considered approaches on three consecutive days in February.
Here, no degradation has been applied since real DNI measure-
ments have been used. As a result, Figure 14 highlights from a
qualitative point of view how the approaches are able to cope
with different DNI behaviours. One can clearly notice, for all
days and sites, that the green (i.e. the polynomial-based model),
cyan (i.e. the ESRA model with monthly mean values of atmo-
spheric turbidity serving as inputs), and blue (i.e. the Ineichen
and Perez model with monthly mean values of atmospheric tur-
bidity serving as inputs) curves are very smooth. However, their
profiles are clearly not close to the expected clear-sky DNI pro-
file: they are similar during the three days, since changes in
atmospheric turbidity throughout the day are not taken into con-
sideration. Looking at the results we obtained for Golden using
the proposed approach (i.e. the Ineichen and Perez model, with
atmospheric turbidity being computed as described in Section
6), one can notice, in the first day (February 6), that the red
curve follows the measured signal at sunrise, which seems to
correspond to a clear-sky period. After the first part of the day
(i.e. during the DNI attenuation), the estimated clear-sky DNI
has a regular shape, corresponding to an atmospheric turbidity
set to the last trustable value (T?

LI(t) = T?
LI(tpast)). This value is

kept until the end of the day because no other clear-sky DNI is
detected. On the second day (February 7), the model generally
follows the measured DNI because it has been detected as a
clear-sky DNI. In case of drops in DNI, the model, as expected,
does not follow the measurements (T?

LI(t) = T?
LI(tpast)). Finally,

on the third day (February 8), because it is totally covered in
its first hours (as a result, one can observe very low DNI val-
ues), the model starts using as an input the last turbidity of the
previous day. Obviously, even if atmospheric turbidity can be
quite variable over the days, considering the last turbidity value
is statistically better than considering an estimated value given
by one of the other approaches. Indeed, these estimated values
could not faithfully represent the real state of the atmosphere at
a given time. Moreover, using the proposed approach, when the
measured DNI is considered as a clear-sky DNI, the atmospheric
turbidity value is updated (T?

LI(t) = CT (t)). As a consequence, in
that case, the red curve shows a drop in DNI. Although this drop
is impossible to observe in case of a clear sky, it corresponds to
an accurate update of atmospheric turbidity. Such an adjustment
is not available in the other approaches and DNI is provided with
a symmetric and smooth shape. Of course, this is incompatible
with changes in atmospheric turbidity throughout the day. Note
that similar DNI behaviours are observable at Perpignan and
Golden, whatever the considered approach. However, the results
are not exactly the same, due to local specificities in the dynam-
ics of atmospheric turbidity. Generally, the clear-sky DNI values
given by the proposed approach (Eq. (22)) form an upper limit
envelope (red curve) and the clear-sky DNI fluctuations, caused
by atmospheric turbidity updates, are sometimes not negligible
but they are necessary to adapt the model output to an accurate
value of the clear-sky DNI. To sum up, the results highlight that
the variability of atmospheric turbidity is a key factor to consider
in clear-sky DNI estimation.
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I Îpoly
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Figure 1: Results obtained using the three clear-sky models, along with measured DNI in the two experimental sites.
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Figure 14: Results obtained using the considered approaches for clear-sky DNI estimation, along with measured DNI in the two experimental sites.

9. Conclusion

In order to achieve a better competitiveness of the concentrat-
ing solar power (CSP) technologies and optimize the operation
strategies used in the plants, one challenge is to improve solar
resource assessment and forecasting. The development of an
effective clear-sky DNI model is therefore an essential step in
estimating DNI because clear sky defines the nominal operat-
ing conditions of the plants. So, the present paper focuses on
a new approach to the real-time assessment of the clear-sky
DNI. During its development, compromises were made between
performance of the algorithms involved and computation time
required for their execution. First, for computing the position of
the Sun, among the most widely-used algorithms, we opted for
SG2 because it is accurate and fast enough. In addition, it allows
the Sun-Earth distance to be computed at each time step. As for
the computation of the relative optical air mass, among the five
functional forms presented, we opted for the widely-used for-
mulation of Kasten and Young. It is very accurate, also at high
zenith angles, and its computation time is very low. Regarding
the clear-sky DNI model, we decided for the one developed by

Ineichen and Perez in 2002. Due to its low dependence on air
mass, TLI is relatively stable throughout the day. Note that it is
also well adapted to real-time applications. The main contribu-
tion of the present work lies in the way atmospheric turbidity is
computed and updated in real time. As a key point, we took ad-
vantage of the fact that, in case of clear-sky conditions, changes
in atmospheric turbidity are relatively small throughout the day
in comparison to changes in DNI, even when the sky is free of
clouds. So, atmospheric turbidity is computed using the last
detected clear-sky DNI measurement.

In the present study, we considered data from two experimen-
tal sites (Golden, in the USA, and Perpignan, in France), during
one entire year, and used a wavelet-based multi-resolution anal-
ysis as a clear-sky DNI detection tool. In addition, we compared
the proposed approach with several combinations of empirical
models and ways of computing atmospheric turbidity. The first
model included in the comparative study is a polynomial of the
cosine of the solar zenith angle, whereas the two other models
use atmospheric turbidity as an additional input. Regarding its
calculation, monthly and daily mean values have been consid-
ered. Moreover, we defined a procedure in order to evaluate
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the accuracy of all the considered approaches. This procedure
allows changes in DNI caused by clouds to be simulated using
a noisy signal applied to clear-sky periods. This noisy signal,
which is randomly generated, is based on a ratio of degradation
R0/1. Clear-sky DNI measurements were then used during the
validation phase.

It can be noticed that, whatever the approach, the results we
obtained using monthly or daily mean values of atmospheric
turbidity are always better than those given by the polynomial-
based model (even with a relatively high order). Moreover,
the proposed approach (i.e. the model developed by Ineichen
and Perez, with atmospheric turbidity being computed as de-
scribed in Section 6) offers unsurpassed accuracy. Indeed, even
in the worst case (i.e. R0/1 set to 1), the errors one can observe
are less than those given by the other approaches. The MAE
and NRMSE are 25.24 W m−2 and 3.45% for the Golden site
and 17.61 W m−2 and 2.47% for the Perpignan site, respectively.
These highly satisfactory results as well as the compromises we
have made between performance and computation time make
the proposed approach suitable for real-time applications. As a
result, it has just been implemented in a CSP plant (at Palma del
Rio, in Spain) and will soon be validated on-site.
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Long, C.N., Ackerman, T.P., 2000. Identification of clear skies from broadband
pyranometer measurements and calculation of downwelling shortwave cloud
effects. Journal of Geophysical Research - Atmospheres 105, 15609–15626.

Louche, A., Peri, G., Iqbal, M., 1986. An analysis of Linke turbidity factor.
Solar Energy 37, 393–396.

Mallat, S., 2009. A wavelet tour of signal processing. 3rd ed., Academic Press.
Marquez, R., Coimbra, C.F.M., 2013a. Intra-hour DNI forecasting based on

cloud tracking image analysis. Solar Energy 91, 327–336.
Marquez, R., Coimbra, C.F.M., 2013b. Proposed metric for evaluation of solar

forecasting models. Journal of solar energy engineering 135, 011016.

15



Meinel, A.B., Meinel, M.P., 1976. Applied solar energy: an introduction.
Addison-Wesley.

Michalsky, J.J., 1988. The astronomical almanac’s algorithm for approximate
solar position (1950–2050). Solar Energy 40, 227–235.
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