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Abstract. In view of growing interest in understanding how biodiversity affects ecosystem
functioning, we investigated effects of riparian plant diversity on litter decomposition in forest
streams. Leaf litter from 10 deciduous tree species was collected during natural leaf fall at two
locations (Massif Central in France and Carpathians in Romania) and exposed in the field in
litter bags. There were 35 species combinations, with species richness ranging 1–10.
Nonadditive effects on the decomposition of mixed-species litter were minor, although a
small synergistic effect was observed in the Massif Central stream where observed litter mass
remaining was significantly lower overall than expected from data on single-species litter. In
addition, variability in litter mass remaining decreased with litter diversity at both locations.
Mean nitrogen concentration of single- and mixed-species litters (0.68–4.47% of litter ash-free
dry mass) accounted for a large part of the variation in litter mass loss across species
combinations. For a given species or mixture, litter mass loss was also consistently faster in the
Massif Central than in the Carpathians, and the similarity in general stream characteristics,
other than temperature, suggests that this effect was largely due to differences in thermal
regimes. These results support the notion that decomposition of litter mixtures is primarily
driven by litter quality and environmental factors, rather than by species richness per se.
However, the observed consistent decrease in variability of decomposition rate with increasing
plant species richness indicates that conservation of riparian tree diversity is important even
when decomposition rates are not greatly influenced by litter mixing.

Key words: biodiversity; context-dependency; ecosystem functioning; leaf breakdown; litter nitrogen;
litter quality; nonadditive effects; riparian vegetation; stability.

INTRODUCTION

There has been growing interest over the past decade

in assessing the significance of biodiversity for ecosystem

functioning. Most studies have examined the importance

of plant diversity for primary productivity and its

stability in grasslands (e.g., Hector et al. 1999, Tilman

et al. 2001, 2006, van Ruijven and Berendse 2005), and

these experiments have usually provided clear evidence

for positive effects of species richness (see Hooper et al.

[2005] for a comprehensive review). Consequences of

changing biodiversity on other ecosystem processes have

also been addressed (Jonsson and Malmqvist 2000,

Covich et al. 2004, Hättenschwiler et al. 2005, Spehn et

al. 2005, Wojdak 2005). Particular attention has been

given to plant litter decomposition (e.g., Wardle et al.

1997, Swan and Palmer 2004, Hättenschwiler and

Gasser 2005, Lecerf et al. 2005, Moore and Fairweather

2006) to determine whether this critical complementary

process in terrestrial and many aquatic ecosystems

(Webster and Benfield 1986, Wagener et al. 1998, Moore

et al. 2004) also is affected by plant species diversity.

According to current concepts, litter decay rates are

driven by both extrinsic and intrinsic factors. These

include moisture, temperature, external nutrient supply,

and litter quality (Webster and Benfield 1986, Coûteaux

et al. 1995, Gessner et al. 1997, Berg and McClaugherty

2003). Within a given system, concentrations of nutri-

ents (N and P) and refractory leaf constituents are

generally useful litter traits to predict decomposition

rates of single-species litter (Melillo et al. 1982, Gessner

and Chauvet 1994, Heal et al. 1997, Hobbie 2005).

However, whether and to what extent mixing litter alters

the control of litter quality on decomposition is poorly

documented.

Litter diversity effects on litter decomposition can be

tested by mixing various litter species and comparing

decay rates of the mixtures with rates predicted from the

component species decomposing in isolation (Wardle et

al. 1997, Gartner and Cardon 2004, Hättenschwiler et al.

2005). Diversity effects are indicated when litter

mixtures do not decay at rates predicted from the

component species. Mechanisms that could be respon-

sible for the effects of litter mixtures on decomposition

include the possible transfer of nutrients (e.g., N, P, Ca)



or certain essential organic compounds (e.g., vitamins

and some fatty acids) from litter species rich in these

elements or molecules to litters with low concentrations.

The outcome of such transfers should be an acceleration

of decomposition in species mixtures, because nutrients

and/or other essential compounds are used more

efficiently overall (Hättenschwiler et al. 2005). Con-

versely, inhibitory cell constituents released from some

leaves in species mixtures, especially water soluble

compounds such as phenolic substances, could slow

decomposition even of species that do not contain these

compounds themselves (Hättenschwiler et al. 2005). In

addition, litter diversity could be mediated through

alteration of the microenvironment where decomposi-

tion occurs (Gartner and Cardon 2004, Hättenschwiler

et al. 2005) or behavioral responses of invertebrates

feeding on litter (Hättenschwiler and Gasser 2005,

Zimmer et al. 2005, Swan and Palmer 2006b).

In a literature synthesis on biodiversity and litter

decomposition, litter diversity effects have been ob-

served in the majority of experiments (Gartner and

Cardon 2004). However, these significant effects have

varied across studies in terms of both direction and

magnitude, and lack of effects has also been noted

(Gartner and Cardon 2004, Hättenschwiler et al. 2005).

In addition to differences in litter quality and methods,

discrepancies across studies may be due to differences in

environmental conditions (e.g., Cardinale et al. 2000,

Spehn et al. 2005, Wojdak 2005). Evidence for this idea

of context dependency comes from studies where the

presence or composition of litter-associated inverte-

brates was altered concomitantly with litter diversity

(Hättenschwiler and Gasser 2005, Schädler and Brandl

2005, Zimmer et al. 2005, Swan and Palmer 2006a).

Decomposition experiments with litter mixtures would

therefore be strengthened if they were replicated at

different sites with species composition of treatments

kept constant.

Most experiments addressing litter diversity–decom-

position relationships have been conducted in grasslands

or forests (Gartner and Cardon 2004, Hättenschwiler et

al. 2005), whereas information on forest streams and

other aquatic environments is limited (Swan and Palmer

2004, LeRoy and Marks 2006, Moore and Fairweather

2006). Forest streams are characterized by (1) large

amounts of leaf litter that constitutes the main energy

supply to food webs (Richardson 1992, Wallace et al.

1999); (2) multispecies litter accumulations in front of

obstacles (see Plate 1), which represent ephemeral

resource patches and can easily be simulated and

manipulated in experiments (Petersen and Cummins

1974, Finn 2001); (3) absence of moisture effects, which

often govern decomposition dynamics in terrestrial

environments (Berg and McClaugherty 2003, Kuehn et

al. 2004); and (4) substantially faster decomposition

than on land (Webster and Benfield 1986, Wagener et al.

TABLE 1. Stream characteristics at the study sites during
experiments in the Massif Central and Carpathians.

Location

Parameter Massif Central Carpathians

Starting date of experiment 11 Dec 2003 21 Nov 2003
Final sampling date 14 Jan 2004 10 Feb 2004
Duration of experiment (d) 34 81
Degree-days 272 122
Water temperature (8C)  8.0 6 0.2 1.5 6 0.2
pH 6.9 6 0.1 7.9 6 0.2
Conductivity (lS/cm) 34 6 2 221 6 20.4
NO3

ÿ (lg N/L) 976 6 139 866 6 131
PO4

3- (lg P/L) 2.8 6 0.2 3.8 6 2.3
NH4

þ (lg N/L) 1.5 6 1.4 17.4 6 5.8

Note: Means (6SE) are given for water chemistry data (n¼ 3
sampling dates).

 Mean (6SE) water temperature was calculated from mean
daily temperature.

PLATE 1. Leaf litter in a stream flowing through temperate
deciduous forest. In autumn, such streams are supplied by
tremendous amounts of leaf litter (top photo) which accumulate
in front of obstacles to form diverse leaf patches (bottom
photo). Photo credits: E. Chauvet and A. Lecerf.



1998). Together, these features should make forest

streams a useful model system to address questions

about litter diversity–decomposition relationships.

The present study aimed to test the extent to which

litter diversity alters decomposition in streams. The

experiment involved a large number of litter species (10)

and many combinations (25) of litter mixtures to assess

the importance of litter species richness for both

decomposition rates and the variability of these rates.

To assess the possible influence of geographical context,

identical experiments were conducted in two streams

with similar characteristics, but situated at great distance

from one another. Finally, determination of initial litter

nitrogen concentrations was intended to shed light on

the importance of litter quality for the decomposition of

litter species mixtures.

METHODS

Experimental sites

A litter mixture experiment was conducted in the

autumn and winter of 2003–2004 in two forest streams

in the Massif Central, France (43825029.500 N, 2813029.300

E, elevation 720 m) and the Carpathians, Romania

(45823046.500 N, 25833022.200 E, elevation 1053 m). Both

sites were second-order reaches in beech (Fagus silvatica

L.) forests and had similar channel morphology and

streamside vegetation. This included common riparian

tree species, such as ash (Fraxinus excelsior L.), alder

(Alnus glutinosa (L.) Gaertn.), maple (Acer pseudoplata-

nus L.), and hazelnut (Corylus avellana L.). Stream water

temperature was continuously monitored with calibrat-

ed temperature data loggers (SmartButton, ACR

Systems, Surrey, British Columbia, Canada). Through-

out the experiments, temperature was much higher in the

Massif Central than in the Carpathians, whereas

differences in water chemistry were small, especially in

terms of nutrient concentrations (Table 1).

Litter-bag experiment

Leaves from 10 woody-plant species, present at both

locations, were collected just after abscission and air-

dried for at least two weeks at room temperature

(;208C). The selected litter species encompassed a broad

range of decomposability (Table 2). Leaflets of ash and

elderberry, and whole leaves of all other species, were

used. Stalks were removed from maple leaves.

Litter bags consisted of 4.0 6 0.2 g (mean air-dry

mass 6 range) of leaf litter enclosed in bags (13319 cm)

made of 10-mm mesh screen to allow access to the

largest detritivorous invertebrates, which were case-

bearing caddisfly larvae (Lecerf et al. 2005; G. Risno-

veanu, unpublished data). Before placing weighed leaves

in bags, they were wetted with distilled water from a

vaporizer to prevent breakage during handling and

transport. Species mixtures were assembled with the

total mass partitioned equally among species, recording

the exact mass of litter used. Because testing all

combinations of species mixtures was impracticable,

six species combinations were drawn at random for each

of four intermediate richness levels: 2, 4, 6, and 8 species.

Thus the experiment encompassed 35 treatments,

including 10 single-species litters decomposing in isola-

tion, one 10-species mixture, and a total of 24 random

species-mixtures comprising 2–8 species. There were

four replicate bags of each litter treatment per location,

each submerged in a separate riffle that served as

blocking factor. Litter bags were randomly distributed

within each riffle, in groups of seven on 3-m lines, ;0.4

m apart. The five lines per riffle were set up parallel to

the flow and were also 0.4 m apart. Lines were secured

with three 10 mm diameter rebars, and stones were

placed on top of them to maintain bags on the stream

bottom and ensure natural invertebrate colonization.

The litter bags were retrieved from streams after 34

and 81 days in the Massif Central and Carpathians,

corresponding to 272 and 121 degree-days, respectively.

These sampling dates corresponded to the time when

;50% of the initial litter mass was lost from the 10-

species mixture, as estimated by removing extra litter

bags during the experiment. Litter samples were cleaned

with tap water, dried at 1058C for 48 h, and weighed to

the nearest 0.01 g. Ash-free dry mass (AFDM) was

determined after combustion of subsamples at 5508C for

4 h. Four unexposed samples of each litter species were

TABLE 2. Mass remaining in single-species litter bags and initial nitrogen concentrations of 10 litter species (mean 6 SE)
decomposing in two similar streams at geographically distant locations.

Species Mass remaining (%) N (% AFDM)

Latin name Common name Massif Central Carpathians Massif Central Carpathians

Fagus silvatica Beech 83.7 6 1.4 88.5 6 0.9 1.23 6 0.02 0.90 6 0.02
Quercus rubra Red Oak 75.0 6 2.8 85.2 6 1.3 0.68 6 0.02 0.81 6 0.04
Quercus robur Oak 58.4 6 7.4 78.1 6 1.3 1.14 6 0.02 0.86 6 0.01
Betula pendula Birch 62.2 6 4.4 59.7 6 2.0 1.03 6 0.01 1.15 6 0.03
Ulmus minor Elm 25.8 6 3.8 28.4 6 5.9 0.94 6 0.01 1.79 6 0.02
Acer pseudoplatanus Maple 18.4 6 2.4 58.2 6 6.1 1.11 6 0.09 1.01 6 0.02
Corylus avellana Hazel 19.6 6 7.5 75.0 6 6.0 1.36 6 0.03 1.19 6 0.01
Alnus glutinosa Alder 19.7 6 6.5 33.7 6 4.2 2.83 6 0.07 3.46 6 0.07
Fraxinus excelsior Ash 4.8 6 2.2 37.2 6 4.1 2.75 6 0.06 2.70 6 0.17
Sambucus nigra Elderberry 1.2 6 0.1 0.0 6 0.0  3.01 6 0.03 4.47 6 0.08

  No litter remaining in any of the litter bags



used to determine the initial dry mass and AFDM in the

same way.

The initial nitrogen (N) content of the 10 litter species

was determined on ground subsamples with CHN-

analyzers (NA 2100, CE Instruments, ThermoQuest,

Milan, Italy; CHNOS-VARIO EL III, Elemental

Analysensysteme GmbH, Hanau, Germany). Mean N

concentration of the litter mixtures comprising n species

was calculated as follows:

N ¼

Xn

i¼1

ðNi 3AFDMiÞ

Xn

i¼1

AFDMi

where Ni is the N concentration (by percentage AFDM)

and AFDMi is the initial AFDM of litter species i.

Decomposition was determined as percentage litter

AFDM remaining over the duration of experiments.

Expected mass remaining (E ) in litter mixtures was

calculated as follows:

E ¼

Xn

i¼1

ðAFDMi 3OiÞ

Xn

i¼1

AFDMi

where AFDMi is the initial AFDM of litter species i, and

Oi the observed percentage of litter AFDM remaining of

species i in the single-species litter bag from the same

riffle.

Deviation between the observed and expected mass

remaining in litter mixtures was calculated as difference

Oÿ E. Values not different from zero indicate additivity,

whereas positive and negative values suggest antagonis-

tic and synergistic effects on decomposition, respective-

ly. Instead of calculating relative deviations (i.e., (O ÿ
E)/E; Wardle et al. 1997, Loreau 1998), E was used as

covariate in statistical analyses, which provides a formal

test for the influence of E on Oÿ E.

Statistical analyses

Paired t tests were used to assess whether observed

and expected mass remaining in individual mixed-

species litter bags differed in each of the two study

streams. Hierarchical ANOVA and ANCOVA were

used to test whether observed litter mass remaining and

the difference O ÿ E depended on location, riffle as

blocking factor nested in location, litter species richness,

the interaction location 3 richness, species composition

nested in richness, and the interaction location 3

composition nested in location 3 richness. This model

required calculation of multiple error terms (Schmid et

al. 2002): location vs. riffle, richness vs. composition,

location 3 richness vs. location 3 composition, and all

other terms vs. the residual error. Since the graphical

display of data did not suggest a particular shape of the

diversity–functioning relationship, litter species richness

was treated in this analysis as categorical factor, rather

than as continuous variable in a regression analysis.

Using Type I sums of squares, expected litter mass

remaining (E ) as covariate was introduced last in the

ANCOVA on the difference O ÿ E in order not to

interfere with correlated factors, such as species com-

position of litter mixtures (see Hector et al. 2000, Tilman

et al. 2001). Litter mass remaining data were square-root

transformed before analyses to alleviate heteroscedas-

ticity and improve normality.

Effect of litter diversity on the variability of decom-

position was assessed by nonlinear regression analysis

according to CV ¼ aSb, where CV is the coefficient of

variation of litter AFDM remaining, S is litter species

richness, and a and b are constants (Doak et al. 1998,

Tilman et al. 1998, Dang et al. 2005). Values of CV at

each richness level were calculated separately for each

FIG. 1. Effects of litter species richness on (a) decomposi-
tion determined as litter ash-free dry mass (AFDM) remaining,
and (b) the coefficient of variation (CV) of litter mass remaining
in a Massif Central stream (open circles) and a Carpathian
stream (shaded circles). Coefficients of variation among species
combinations were calculated separately for each riffle and
fitted to power functions.



stream riffle. The effect of initial litter N concentration

on decomposition was assessed by nonlinear regression

analysis according to O¼ aebN, where O is the observed

percentage litter AFDM remaining, N is the initial

nitrogen concentration of litter, and a and b are

constants. Regression analyses were carried out sepa-

rately at both locations using nonlinear curve fitting,

and differences in regression model coefficients were

assessed by ANCOVA on log-log-transformed data

(effects of diversity on variability) or log-transformed

data (litter N effects).

Statistica 6.0 (StatSoft 2001) was used for all

statistical analyses. The ANOVA, ANCOVA and

nonlinear regression analyses were performed using the

GLM procedure.

RESULTS

The observed litter mass remaining varied among

species combinations over a similar range at both

locations (1.2–83.7% in the Massif Central and 0.0–

88.5% in the Carpathians; Fig. 1a, Table 2). Litter

species composition overwhelmed all other sources of

variation in litter mass remaining (sum of squares in

Table 3 ¼ 73.4%). Location, riffle, and the location 3

composition interaction also had significant effects on

litter mass remaining (Table 3), whereas no significant

effect of species richness was found (richness, P ¼ 1.00;

location3 richness, P ¼ 0.86; Fig. 1a).

Mean mass remaining of litter mixtures observed in

the Massif Central was slightly lower (by 2.8%) than

expected (Fig. 2a; paired t test of observed vs. expected

values, t99 ¼ ÿ3.81, P , 0.001). This indicates that

mixing litter had a small positive (i.e., synergistic) effect

on litter decomposition. In the Carpathians, in contrast,

the mean observed and expected mass remaining were

virtually the same (Fig. 2a; paired t test, t99¼ÿ0.083, P
¼ 0.93), reflecting an overall lack of either antagonistic

or synergistic effects of litter mixing on decomposition

rate.

Respectively, 8% and 19% of individual litter mixtures

in the Massif Central and Carpathians decomposed at

rates very close to those expected from single-species

litter bags (i.e., observed and expected litter mass

remaining differed by ,1%). The other litter mixtures

decomposed either faster (59% and 43% of the points

were below the 1:1 lines in Fig. 2b, c, respectively) or

more slowly (33% and 38% of the points were above the

1:1 lines in Fig. 2b, c, respectively) than expected. The

difference O – E was strongly related to the expected

litter mass remaining (E ) used as covariate in the

ANCOVA (Table 4). It also differed between the Massif

Central and the Carpathians for a given species

combination, as reflected in a significant interaction

between location and species composition (P ¼ 0.034;

Table 4). The mean difference between observed and

expected mass remaining of a given species mixture

ranged from 0.2% to 9.5% in the Massif Central, and the

corresponding range in the Carpathians was 0.1% to

6.2% (data not shown).

Mixing litter consistently reduced variability in litter

mass remaining across species combinations as richness

increased from one to eight leaf species (Fig. 1b). This

relationship was well described by a power function for

both locations (R2 � 0.80, P , 0.001). However, mean

CV values were higher in the Massif Central than in the

Carpathians (ANCOVA after log-log transformation of

data; intercept, F1,36¼ 7.3, P¼ 0.010; slope, F1,36¼ 0.02,

P ¼ 0.90; Fig. 1b).

Large variation among species was found for initial N

concentrations of litter. Concentrations ranged from

0.68% to 3.01% of AFDM in the Massif Central and

from 0.81% to 4.47% in the Carpathians (Table 2). Mass

remaining of single-species litter was related to the initial

litter N concentration in both streams by a negative

exponential function (R2
. 0.48, P , 0.01; Fig. 3a, b,

dashed lines), and results were similar when all species

combinations including mixtures were used in the

analyses (R2
. 0.47, P , 0.001; Fig. 3a, b, solid lines).

An ANCOVA conducted on the log-transformed data

for litter mass remaining indicated that model coeffi-

cients did not significantly differ between locations

(intercept, F1,66 , 0.1, P ¼ 0.81; slope, F1,66 ¼ 1.8, P ¼
0.18).

DISCUSSION

An interesting finding of the present study is that litter

species richness had at most small effects on decompo-

sition rate when comparing litter mixtures across a wide

range of species showing large differences in decompos-

ability. The mean difference between observed and

TABLE 3. Summary of ANOVA of observed litter mass remaining in single- and mixed-species litter
bags in two streams of the Massif Central and the Carpathians (location). Data were square-root
transformed before analysis.

Source of variation df SS SS (%) MS F P

Location 1 80.6 8.5 80.6 29.3 0.002
Riffle(location) 6 16.5 1.7 2.7 7.8 ,0.0001
Species richness 5 3.2 0.3 0.6 0.0 1.00
Species composition(richness) 29 692.9 73.4 23.9 68.3 ,0.0001
Location 3 richness 5 4.8 0.5 1.0 0.4 0.86
Location 3 composition(richness) 29 74.8 7.9 2.6 7.4 ,0.0001
Error 204 71.4 7.6 0.4
Total 279 944.2 100.0



expected litter mass remaining of a given species mixture

never exceeded 10% of initial litter mass, and sign and

magnitude of the differences (positive or negative)

varied among individual mixed-litter bags (Fig. 2).

These relatively small and inconsistent effects of litter

diversity support the idea that litter decomposition is

less responsive to variation in plant species richness than

is primary productivity (Wardle et al. 1997, Hector et al.

2000). In addition, our results are consistent with the

outcome of a literature synthesis that assessed litter

diversity effects on decomposition (Gartner and Cardon

2004) and found higher occurrence of positive (i.e.,

synergistic) than negative (i.e., antagonistic) effects

overall (47.5% vs. 19% of the reviewed cases).

Although not strong, a significant positive diversity

effect across all litter mixtures in the present study was

observed in the Massif Central, but not the Carpathians

(Fig. 2a). This discrepancy between locations, despite

the use of identical leaf species and experimental designs,

supports the idea that litter diversity effects on

decomposition are context dependent. Evidence from a

model and experiments in other systems also indicates

that environmental factors can alter biodiversity–eco-

system functioning relationships (Cardinale et al. 2000,

Spehn et al. 2005, Wojdak 2005). For example, in a

stream study, litter diversity effects on decomposition

observed in summer disappeared when repeating the

experiment in fall (Swan and Palmer 2004). It is worth

noting that the direction and strength of diversity effects

differed between the latter and present study, in that

strong negative effects (i.e., reduced decomposition rates

in species mixtures) were reported by Swan and Palmer

(2004). Thus, litter diversity effects on decomposition

currently remain difficult to predict, suggesting that a

better grasp of underlying mechanisms is needed to

understand the context dependency of the relationship

(Hättenschwiler and Gasser 2005, Zimmer et al. 2005,

Swan and Palmer 2006a, b).

There are a variety of mechanisms that could cause

effects of litter diversity on decomposition (Gartner and

Cardon 2004, Hättenschwiler et al. 2005). Transfers

between litter species differing in quality of nutrients and

other essential compounds, or of inhibitory soluble

compounds, may be effective, even in spite of possible

dilution in aquatic environments (McArthur et al. 1994).

Litter diversity effects on decomposition may also be

caused by detritivore behavior, such as aggregation in

litter bags (Presa Abós et al. 2006) coupled with

preferential feeding on high-quality litter in mixtures

(Swan and Palmer 2006b). In the present study, litter

bags were well colonized by invertebrates capable of

feeding on leaves (A. Lecerf and G. Risnoveanu,

unpublished data), suggesting that detritivores could

have caused diversity effects in the streams studied here.

Irrespective of the specific mechanisms involved, balance

of positive and negative litter diversity effects may

explain variability in the difference between observed

and expected litter mass remaining across locations,

litter species combinations, and even individual mixed-

species litter bags, the last, for example, through

invertebrate aggregation effects (Presa Abós et al. 2006).

FIG. 2. Observed and expected litter mass remaining in
mixed-species litter bags exposed in streams. (a) Bars represent
grand means (þSE) of expected (open bars) and observed (filled
bars) litter mass remaining. Scatter plots show observed vs.
expected mass remaining for individual litter bags in the (b)
Massif Central, and (c) Carpathians. Deviation from the 1:1
line indicates litter diversity effects on decomposition of litter
mixtures.



In contrast to decomposition rate, variability of litter

mass remaining among mixtures differing in species

composition was sensitive to altered litter species richness

(Fig. 1b). This effect has also been noticed in other

decomposition experiments, where the diversity of leaf

litter (Schädler and Brandl 2005) or fungal decomposers

(Dang et al. 2005) was manipulated and appeared to be

due to a mathematical rather than biological mechanism.

This conclusion is in accordance with both theoretical

considerations (Doak et al. 1998, Tilman et al. 1998) and

results from biodiversity experiments addressing other

aspects of variability (McGrady-Steed et al. 1997, Tilman

et al. 2006). Concordance of these results across such

diverse studies suggests that reduction of variability in

process rates is a common phenomenon associated with

high diversity, although strength of the effect can be

modulated by the structure of communities (Cottingham

et al. 2001, Dang et al. 2005).

Species composition of litter mixtures was the main

determinant of decomposition rate, accounting for

nearly two-thirds of the total variation in litter mass

remaining in this study (Table 3). This strong effect

reflects large differences in decomposability among litter

species and the underlying well-known control of

decomposition rate by litter quality (Melillo et al.

1982, Gessner and Chauvet 1994). That the initial N

concentration of litter can be a useful predictor of litter

mass remaining is in accordance with a range of other

studies (Webster and Benfield 1986, Heal et al. 1997,

Hobbie 2005) and apparently holds in the same way for

litter mixtures (Fig. 3a, b). However, some caution is

needed in the interpretation of this result, because

relationships were partly determined by clusters of some

high-N and low-N species in both streams (Fig. 3a, b).

Moreover, correlations between initial litter N concen-

tration and decomposition rate may not accurately

indicate N limitation of decomposition. One reason is

that N concentration can covary with other litter quality

traits (e.g., lignin or tannin concentrations), which in

turn control decomposition rate (Hobbie 2005).

Litter mass remaining when litter bags were retrieved

from streams was comparable between locations in the

present study (Fig. 1a). However, litter was exposed in

the field nearly three times longer in the Carpathian

stream, where decomposition rates thus were much

lower. Since stream characteristics, other than temper-

ature, were similar between locations, particularly

concentrations of dissolved nutrients (Table 1), differ-

ences in thermal regimes were likely an important

environmental factor contributing to variation in

decomposition rates between locations (cf. Richardson

1992). Variation among streams in population densities

of detritivores can confound response patterns of

TABLE 4. Summary of ANCOVA of the deviation between observed and expected litter mass
remaining in mixed-species litter bags placed in two streams of the Massif Central and the
Carpathians (location).

Source of variation df SS SS (%) MS F P

Location 1 0.455 4.0 0.455 5.5 0.058
Riffle(location) 6 0.497 4.4 0.083 1.9 0.087
Species richness 4 0.319 2.8 0.080 1.9 0.18
Species composition(richness) 20 0.822 7.3 0.041 0.9 0.54
Location 3 richness 4 0.132 1.2 0.033 0.4 0.78
Location 3 composition(richness) 20 1.523 13.5 0.076 1.7 0.034
Expected litter mass remaining 1 1.207 10.7 1.207 27.5 ,0.001
Error 143 6.275 56.1 0.044
Total 199 11.229 100.0

FIG. 3. Litter mass remaining as a function of initial litter N
concentration of single-species (circles) and mixed-species
(triangles) litter combinations in an (a) Massif Central, and
(b) Carpathian stream. Symbols represent means per litter
species combination. Exponential regression curves are shown
for single-species litter combinations (dashed lines) and single-
species plus mixed-species litter combinations (solid lines).



decomposition to temperature (Irons et al. 1994,

Robinson et al. 1998, Dobson et al. 2002). However,

although nearly 2000 km apart, detritivore communities

did not notably differ between the two streams (A.

Lecerf and G. Risnoveanu, unpublished data), suggesting

that direct temperature effects on metabolic activity of

decomposers were most influential.

In conclusion, our results indicate that litter diversity

clearly reduces variability of decomposition rates.

Effects on decomposition rate per se appear to depend

on context, and, when present, they were small

compared to those of litter quality or environmental

factors (e.g., temperature). It is possible, however, that

diversity of riparian trees affects litter decomposition

more than was captured in our short-term experiment.

For example, riparian tree richness may increase the

number of fungal species degrading leaves in streams

(Laitung and Chauvet 2005), which in turn can enhance

litter consumption by invertebrates (Lecerf et al. 2005).

Similarly, a diet of mixed-species litter may increase

invertebrate growth rate (Swan and Palmer 2006a).

Detritivore secondary production therefore may be

enhanced in streams lined by diverse riparian vegetation

and in turn lead to a positive feedback on litter

decomposition in the long run (i.e., at time scales of

months and years), as has been observed in a whole-

stream litter exclusion experiment (Wallace et al. 1999).
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