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Abstract

This work falls within the context of predicting the value of a real function f at some input
locations given a limited number of observations of this function. Kriging interpolation technique
(or Gaussian process regression) is often considered to tackle such problem but the method suffers
from its computational burden when the number of observation points n is large. We introduce in
this article nested Kriging estimators which are constructed by aggregating sub-models based on
subsets of observation points. This approach is proven to have better theoretical properties than
other aggregation methods that can be found in the literature. In particular, contrary to some
other methods which are shown inconsistent, we prove the consistency of our proposed aggregation
method. Finally, the practical interest of the proposed method is illustrated on simulated datasets
and on an industrial test case with 104 observations in a 6-dimensional space.

1 Introduction
Gaussian process regression models have proven to be of great interest in many fields when

it comes to predict the output of a function f : D → R, D ⊂ Rd, based on the knowl-
edge of n input-output tuples (xi, f(xi)) for 1 ≤ i ≤ n [Stein, 2012, Santner et al., 2013,
Williams and Rasmussen, 2006]. One asset of this method is to provide not only a mean pre-
dictor but also a quantification of the model uncertainty. The Gaussian process regression frame-
work uses a (centered) real-valued Gaussian process Y over D as a prior distribution for f and
approximates it by the conditional distribution of Y given the observations Y (xi) = f(xi) for
1 ≤ i ≤ n. In this framework, we denote by k : D ×D → R the covariance function (or kernel) of
Y : k(x, x′) = Cov [Y (x), Y (x′)], and by X ∈ Dn the vector of observation points with entries xi
for 1 ≤ i ≤ n.

In the following, we use classical vectorial notations: for any functions f : D → R, g : D×D → R

and for any vectors A = (a1, . . . , an) ∈ Dn and B = (b1, . . . , bm) ∈ Dm, we denote by f(A) the
n× 1 real valued vector with components f(ai) and by g(A,B) the n×m real valued matrix with
components g(ai, bj), i = 1, . . . , n, j = 1, . . . ,m. With such notations, the conditional distribution
of Y given the n× 1 vector of observations Y (X) is Gaussian with mean, covariance and variance:

Mfull(x) = E [Y (x)|Y (X)] = k(x,X)k(X,X)−1Y (X) ,
cfull(x, x′) = Cov [Y (x), Y (x′)|Y (X)] = k(x, x′)− k(x,X)k(X,X)−1k(X,x′) ,
vfull(x) = cfull(x, x) .

(1)

Since we do not specify yet the values taken by Y at X, the “mean predictor” Mfull(x) is random
so it is denoted by an upper-case letter M . The approximation of f(x) given the observations
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f(X) is thus given by mfull(x) = E [Y (x)|Y (X) = f(X)] = k(x,X)k(X,X)−1f(X). This method
is quite general since an appropriate choice of the kernel allows to recover the models obtained from
various frameworks such as linear regression and splines models [Wahba, 1990].

One limitation of such models is the computational time required for building models based on
a large number of observations. Indeed, these models require computing and inverting the n × n
covariance matrix k(X,X) between the observed values Y (X), which leads to a O(n2) complexity in
space and O(n3) in time. In practice, this computational burden makes Gaussian process regression
difficult to use when the number of observation points is in the range [103, 104] or greater.

Many methods have been proposed in the literature to overcome this limit. Let us first mention
that, when the observations are recorded on a regular grid, choosing a separable covariance function
k enables to drastically simplify the inversion of the covariance matrix k(X,X), since the latter
can be written as a Kronecker product.

For irregularly spaced data, a common approach in machine learning relies on inducing points.
It consists in introducing a set W of pseudo input points and in approximating the full conditional
distribution Y (x)|Y (X) by Y (x)|Y (W ). The challenge here is to find the best locations for the
inducing inputs and to decide which values should be assigned to the outputs at W . Various
methods are suggested in the literature to answer these questions [Hensman et al., 2013]. One
drawback of this kind of approximation is that the predictions do not interpolate the observation
points any more. Note that this method has recently been combined with the Kronecker product
method in [Nickson et al., 2015].

Among popular classes of methods dedicated to large datasets, one can also cite low rank ap-
proximations (see [Stein, 2014] and the references therein for a review). They typically assume
that the covariance matrix k(X,X) is a sum of a diagonal matrix and a low rank matrix. While
these techniques can be very computationally efficient, they may poorly reproduce the underlying
process small scale dependence [Stein, 2008, Stein, 2014]. See also the experiments conducted in
[Datta et al., 2016].

Another possibility is to rely on compactly supported covariance functions. The latter can be done
by tapering an initial arbitrary covariance function [Kaufman et al., 2008, Furrer et al., 2006], or
by simply working directly with a compactly supported covariance function [Kaufman et al., 2011,
Stein, 2013]. This approach benefits from the sparse covariance matrix k(X,X), for which efficient
factorization algorithms exist. Furthermore, it has been combined with low rank approximation
in [Sang and Huang, 2012]. The main criticism against these methods is that, by definition, they
tend not to capture large scale dependencies. [Maurya, 2016] argues however that the issue can be
mitigated by the choice of appropriate trend functions; a case in which the independence assumption
between the (zero-mean) residuals at distant locations becomes more realistic. Another drawback
– which to the best of our knowledge is little discussed in the literature – is the difficulty to
use these methods when the dimension of the input space is large (say larger than 10, which
is frequent in computer experiments or machine learning). In this case, stationary compactly
supported covariance functions are known to decrease quickly to zero (see e.g. [Gneiting, 2002] for
more details about parametric families of such covariance functions) so that their effective range,
i.e. the range at which the correlation equals 5%, is in fact much lower than the actual range. This
issue leads to covariance matrices where non-zero off diagonal terms will be widely dominated by
the diagonal ones, i.e. where the underlying process behaves like a white-noise. In application, these
techniques have been applied in dimension up to 4 [Kaufman et al., 2011]. See also the remarks
of [Xue et al., 2012, Bai et al., 2012, Maurya, 2016] about the performances of sparse Cholesky
algorithms when the dimension of the input set becomes larger.

Other methods based on Gaussian Markov Random Fields (GMRF) assume that the precision
matrix, i.e. the inverse of k(X,X) is a sparse matrix [Rue and Held, 2005]. A drawback of these
methods is the difficulty to compute predictions at arbitrary locations, since nodes should be placed
at both observation and prediction locations (see also the recent work of [Datta et al., 2016]). There
is also a relative lack of flexibility when the Markov assumption about the random field is unnatural.
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Let us also mention that the computation of k(X,X)−1y, for an arbitrary vector y ∈ Rn can
be performed using iterative algorithms, like the preconditionned conjugate gradient algorithm
[Golub and Van Loan, 2012]. Unfortunately, the algorithms need to be run many times when a
posterior variance – involving the computation of k(X,X)−1k(X,xi) – needs to be computed for a
large set of prediction points.

Finally, we mention inference methods based on composite likelihood, see [Vecchia, 1988] and
[Bevilacqua and Gaetan, 2015] or on iterative algorithms solving the score equations [Stein et al., 2013,
Anitescu et al., 2016] which enable to efficiently find maximum likelihood estimates for the covari-
ance hyperparameters. While these techniques are very promising for inference with large dataset,
they do not give a process interpretation which enables interpolation.

The method proposed in this paper belongs to the a so-called “mixture of experts” family.
The latter relies on the aggregation of sub-models based on subsets of the data which make
them easy to compute. This kind of methods offers a great flexibility since it can be applied
with any covariance function and in large dimension while retaining the interpolation property.
Some existing “mixture of experts” methods are product of experts [Hinton, 2002], and the (ro-
bust) Bayesian committee machine [Tresp, 2000, Deisenroth and Ng, 2015]. All these methods
are based on a similar approach: for a given point x, each sub-model provides its own predic-
tion (a mean and a variance) and these predictions are then merged into one single mean and
prediction variance. The differences between these methods lie in how to aggregate the predic-
tions made by each sub-model. It shall be noted that aggregating expert opinions is the topic of
consensus statistical methods (sometimes referred to as opinion synthesis or averaging methods),
where probability distributions representing expert opinions are joined together. Early references
are [Winkler, 1968, Winkler, 1981]. A detailed review and an annotated bibliography is given in
[Genest and Zidek, 1986] (see also [Satopää et al., 2015, Ranjan and Gneiting, 2010] for recent re-
lated developments). From a probabilistic perspective, usual mixture of experts methods assume
that there is some (conditional) independence between the sub-models. Although this kind of
hypothesis leads to efficient computations, it is often violated in practice and may lead to poor
predictions as illustrated in [Samo and Roberts, 2016]. Furthermore, these methods only provide
pointwise confidence intervals instead of a full Gaussian process posterior distribution.

The new aggregation method we develop in this article is part of the mixture of experts frame-
work, so it will benefit from the properties of this family: it does not require the data to be on
a grid, the predictions can interpolate the observations and it can be applied to data with small
or large scale dependencies regardless of the input space dimension. Compared to other mixtures
of experts, we relax the usually made independence assumption so that the prediction takes into
account all n2 pairwise cross-covariances between observations. We show this addresses two main
pitfalls of usual mixture of experts: the predictions are more accurate and the theoretical con-
sistency is ensured (we prove it is not the case for product of experts and Bayesian committee
machine). Furthermore, the proposed method remains computationally affordable: predictions are
performed in a few seconds for n = 104 and a few minutes for n = 105 using standard laptop
and the proposed online implementation. Finally, the prediction method comes with a naturally
associated inference procedure, which is based on cross validation errors.

The proposed method is presented in Section 2. In particular, we detail a pointwise approach and
a process based approach such that the proposed aggregation method can be seen as an optimal
method for a modified prior process. In Section 3, we introduce an iterative scheme for nesting the
estimators derived previously. A procedure for estimating the parameters of models is then given
in Section 4. Finally, Section 5 compares the method with state of the art aggregation methods on
both a simulated dataset and an industrial case study.

2 Proposed aggregation
2.1 Pointwise aggregation of experts
Let us now address in more details the framework of this article. The method is based on the

aggregation of sub-models defined on smaller subsets of points. Let X1, . . . , Xp be subvectors of
the vector of observations input points X, it is thus possible to define p associated sub-models (or
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experts) M1, . . . , Mp. For example, the sub-model Mi can be a Gaussian process regression model
based on a subset of the data

Mi(x) = E [Y (x)|Y (Xi)] = k(x,Xi)k(Xi, Xi)−1Y (Xi) , (2)

however, we make no Gaussian assumption in this section. For a given prediction point x ∈ D, the
p sub-models predictions are gathered into a p×1 vectorM(x) = (M1(x) . . . ,Mp(x))t. The random
column vector (M1(x), . . . ,Mp(x), Y (x))t is supposed to be centered with finite first two moments
and we consider that both the p × 1 covariance vector kM (x) = Cov [M(x), Y (x)] and the p × p
covariance matrix KM (x) = Cov [M(x),M(x)] are given. Sub-models aggregation (or mixture of
experts) aims at merging all the pointwise sub-models M1(x), . . . ,Mp(x) into one unique pointwise
estimator MA(x) of Y (x). We propose the following aggregation:
Definition 1 (Sub-models aggregation). For a given point x ∈ D, let Mi(x), i ∈ A = {1, . . . , p}
be sub-models with covariance matrix KM (x). Then, when KM (x) is invertible, we define the
sub-model aggregation as:

MA(x) = kM (x)tKM (x)−1M(x). (3)
In practice, the invertibility condition on KM (x) can be avoided by using matrices pseudo-

inverses. Given the vector of observations M(x) = m(x), the associated prediction is

mA(x) = kM (x)tKM (x)−1m(x). (4)

Notice that we are here aggregating random variables rather than their distributions. For dependent
non-elliptical random variables, expressing the probability density function of MA(x) as a function
of each expert density Mi(x) is not straightforward. This difference in the approaches implies
that the proposed method differs from usual consensus aggregations. For example, aggregating
random variables allows to specify the correlations between the aggregated prediction and the
experts whereas aggregating expert distributions into a univariate prediction distribution does not
characterize uniquely these correlations.
Proposition 1 (BLUE). MA(x) is the best linear unbiased estimator (BLUE) of Y (x) that writes∑
i∈A αi(x)Mi(x). The mean squared error vA(x) = E

[
(Y (x)−MA(x))2] writes

vA(x) = k(x, x)− kM (x)tKM (x)−1kM (x) . (5)

The coefficients {αi(x), i ∈ A} are given by the vector α = kM (x)tKM (x)−1.

Proof. The standard proof applies: The square error writes E
[
(Y (x)− αtM(x))2] = k(x, x) −

2αtkM (x) +αtKM (x)α. The value of α∗ minimising it can be found by differentiation: −2kM (x) +
2α∗KM (x) = 0 which leads to α∗ = KM (x)−1kM (x). Then, vA(x) = k(x, x) − 2α∗tkM (x) +
α∗tKM (x)α∗ and the result holds.

Proposition 2 (Basic properties). Let x be a given prediction point in D.
(i) Linear case: if M(x) in linear in Y (X), i.e. if there exists a p× n deterministic matrix Λ(x)

such that M(x) = Λ(x)Y (X) and if Λ(x)k(X,X)Λ(x)t is invertible, then MA(x) in linear in
Y (X) with {

MA(x) = λA(x)tY (X) ,
vA(x) = k(x, x)− λA(x)tk(X,x) .

(6)

where λA(x)t = k(x,X)Λ(x)t
(
Λ(x)k(X,X)Λ(x)t

)−1Λ(x).
(ii) Interpolation case: if M interpolates Y at X, i.e. if for any component xk of the vector X

there is at least one index ik ∈ A such that Mik(xk) = Y (xk), and if KM (xk) is invertible for
any component xk of X, then MA is also interpolating, i.e.{

MA(X) = Y (X) ,
vA(X) = 0n ,

(7)

where 0n is a n× 1 vector with entries 0. This property can be extended when some KM (xk)
are not invertible by using pseudo-inverse in place of matrix inverse in Definition 1.

(iii) Gaussian case: if the joint distribution (M(x), Y (x)) is multivariate normal, then the condi-
tional distribution of Y (x) given M(x) is normal with moments{

E [Y (x)|Mi(x), i ∈ A] = MA(x) ,
V [Y (x)|Mi(x), i ∈ A] = vA(x) .

(8)
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(b) aggregated model (solid lines) and full model (dashed lines)

Figure 1: Example of aggregation of two Gaussian process regression models. For each model, we
represent the predicted mean and 95% confidence intervals.

Proof. Linearity directly derives from kM (x) = Λ(x)k(X,x) and KM (x) = Λ(x)K(X,X)Λ(x)t.
Interpolation: Let k ∈ {1, . . . , n}, and i ∈ A be an index such thatMi(xk) = Y (xk). As KM (xk) =
Cov [M(xk),M(xk)], the ith line ofKM (xk) is equal to Cov [Mi(xk),M(xk)] = Cov [Y (xk),M(xk)] =
kM (xk)t. Setting ei the p dimensional vector having entries 0 except on its ith component, it
is thus clear that eitKM (xk) = kM (xk)t. As KM (xk) is assumed to be invertible, then ei

t =
kM (xk)tKM (xk)−1, so that MA(xk) = kM (xk)tKM (xk)−1M(xk) = ei

tM(xk) = Mi(xk) = Y (xk).
This result can be plugged into the definition of vA to obtain the second part of Eq. (7): vA(xk) =
E
[
(Y (xk)−MA(xk))2] = 0.

Finally the Gaussian case can be proved directly by applying the usual multivariate normal condi-
tioning formula.

Example 1 (Gaussian process regression aggregation). In this example, we set D = R and we
approximate the function f(x) = sin(2πx) + x based on a set of five observation points in D:
{0.1, 0.3, 0.5, 0.7, 0.9}. These observations are gathered in two column vectors X1 = (0.1, 0.3, 0.5)
and X2 = (0.7, 0.9). We use as prior a centered Gaussian process Y with squared exponential
covariance k(x, x′) = exp

(
−12.5(x− x′)2) in order to build two Kriging sub-models, for i ∈ {1, 2}:{

Mi(x) = E [Y (x)|Y (Xi)] = k(x,Xi)k(Xi, Xi)−1Y (Xi) ,
mi(x) = E [Y (x)|Y (Xi) = f(Xi)] = k(x,Xi)k(Xi, Xi)−1f(Xi) .

(9)

The expressions required to compute MA as defined in Eq. (3) are for i, j ∈ {1, 2}:{ (
kM (x)

)
i

= Cov [Mi(x), Y (x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, x) ,(
KM (x)

)
i,j

= Cov [Mi(x),Mj(x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, Xj)k(Xj , Xj)−1k(Xj , x) .
(10)

Recall mfull(x) = E [Y (x)|Y (X) = f(X)] and vfull(x) = V [Y (x)|Y (X) = f(X)], as it can de seen
in Figure 1, the resulting model mA appears to be a very good approximation of mfull and there is
only a slight difference between prediction variances vA and vfull on this example.

Example 2 (Linear regression aggregation). In this distribution-free example, we set D = R and
we consider the process Y (x) = ε1 +ε2x where ε1 and ε2 are independent centered random variables
with unit variance. Y is thus centered with covariance k(x, x′) = 1+xx′. Furthermore, we consider
that Y is corrupted by some observation noise Yobs(x) = Y (x)+ε3(x) where ε3(x) is an independent
white noise process with covariance k3(x, x′) = 1{x=x′}. Note that we only make assumptions on
the first two moments of ε1, ε2 or ε3(x) but not on their laws. We introduce five observation points
gathered in two column vectors: X1 = (0.1, 0.3, 0.5)t and X2 = (0.7, 0.9)t and their associated
outputs y1 = (2.05, 0.93, 0.31)t and y2 = (−0.47, 0.12)t. The linear regression sub-models, obtained
by square error minimization, areMi(x) = k(x,Xi)(k(Xi, Xi)+Id)−1Yobs(Xi), i ∈ {1, 2}. Resulting
covariances Cov [Mi(x), Y (x)], Cov [Mi(x),Mj(x)] and aggregated model MA(x), vA(x) of Eq. (8)
are then easily obtained. The resulting model is illustrated in Figure 2.
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Figure 2: Example of aggregation of two linear regression sub-models. Exhibited confidence bands
correspond to a difference to mean value of two standard deviations.

2.2 Random process perspective
In this section, we develop an alternative construction where the process Y is replaced by an al-
ternative prior YA for which MA(x) and vA(x) correspond exactly to the conditional expectation
and variance of YA(x) given YA(X). As discussed in [Quinonero-Candela and Rasmussen, 2005],
this point of view allows us to see the proposed aggregation not only as an approximation of the
full model but also as an exact method for a slightly different prior (as illustrated in the further
commented Figure 3). As a consequence, it also provides conditional cross-covariances (which were
not available in the pointwise approach) and posterior samples can be associated to the aggregated
models. Furthermore, all the methods developed in the literature based on Kriging predicted covari-
ances, such as [Marrel et al., 2009] for sensitivity analysis and [Chevalier and Ginsbourger, 2013]
for optimization, may be applied to our aggregated models.

Here, we consider that (M1, . . . ,Mp, Y )t is a centered process with finite variance on the whole
input space D. We define the p × 1 cross-covariance vector kM (x, x′) = Cov [M(x), Y (x′)] and
p × p cross-covariance matrix KM (x, x′) = Cov [M(x),M(x′)], for all x, x′ ∈ D. Notice that
using notations of subsection 2.1, KM (x) = KM (x, x) and kM (x) = kM (x, x). We now define an
aggregated process YA based on MA that aims at reproducing the behaviour of the process Y :
Definition 2 (Aggregated process). We define the process YA as YA = MA + ε′A where ε′A is an
independent replicate of Y −MA.

As Y = MA + (Y −MA), the difference between Y and YA is that YA neglects the covariances
between MA and the residual Y −MA. The process YA is centered with a kernel given for all
x, x′ ∈ D by

kA(x, x′) = k(x, x′) + 2kM (x)tK−1
M (x)KM (x, x′)K−1

M (x′)kM (x′)

− kM (x)tK−1
M (x)kM (x, x′)− kM (x′)tK−1

M (x′)kM (x′, x) ,
(11)

The main interest of introducing YA is that it corresponds to a prior for which MA is actually an
optimal model : given a prior process YA, aggregated values MA and vA can be seen as respective
mean and variance of a posterior process YA|YA(X):
Proposition 3 (Bayesian perspective). If MA is a deterministic and interpolating function of
Y (X), i.e. if for any x ∈ D there exists a deterministic function gx : Rn → R such that MA(x) =
gx(Y (X)) and if MA(X) = Y (X), then{

MA(x) = E [YA(x)|YA(X)] ,
vA(x) = V [YA(x)|YA(X)] .

(12)

Proof. The interpolation hypothesis MA(X) = Y (X) ensures ε′A(X) = 0 so we have

E [YA(x)|YA(X)] = E [YA(x)|MA(X) + 0]
= E [MA(x)|MA(X)] + E [ε′A(x)|MA(X)]
= E [gx(Y (X))|Y (X)] + 0
= MA(x).

(13)
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The proof that vA is a conditional variance follows the same pattern:

V [YA(x)|YA(X)] = V [YA(x)|MA(X)]
= V [MA(x)|MA(X)] + V [ε′A(x)|MA(X)]
= 0 + V [ε′A(x)]
= vA(x).

(14)

One great advantage of this Bayesian framework is to introduce the posterior conditional co-
variance:

cA(x, x′) = Cov [YA(x), YA(x′)|YA(X)] . (15)

In the case where (M,Y ) is Gaussian, then YA is also Gaussian and Eq. (15) writes

cA(x, x′) = kA(x, x′)− kA(x,X)kA(X,X)−1kA(X,x′). (16)

This point of view thus allows to define conditional sample paths which was not possible in the
previous section. Figure 3 is based on the same settings as in Example 1 and illustrate that: a.
The mean and variance obtained by conditioning YA are the same as in the pointwise illustration
(Figure 1) and b. The knowledge of a full posterior Gaussian Process allows to sample from the
conditional distribution YA|YA(X) = f(X). However, computational issues arise when calculating
cA or conditional samples of YA for large n. This exact conditional interpretation of the aggregation
aims at explaining the approximation that is done when using MA instead of the full model, but
does not provide any computational gain.
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(a) Prior samples.

0.0 0.2 0.4 0.6 0.8 1.0
2
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(b) Posterior samples.

Figure 3: Interpretation of the results from Example 1 as a posterior Gaussian process distribution.
(a) Samples from modified prior process YA, which is normally distributed with mean 0 and covariance
kA. (b) conditional sample paths of YA given YA(X) = f(X), which is normally distributed with mean
mA and covariance cA.

The new covariance kA of the prior process YA can be shown to coincide with the one of the
process Y at several locations, as detailed in the following proposition.

Proposition 4 (Covariance interpolation). For all x ∈ D, Y (x) and YA(x) have the same variance:
kA(x, x) = k(x, x). Furthermore, if MA is interpolating Y at X, i.e. if MA(X) = Y (X) then
kA(X,X) = k(X,X).

Proof. The first property of this proposition is a direct consequence of Eq. (11). The second one
relies on the fact that YA(X) = Y (X) under the interpolation assumption.

Figure 4 illustrates the difference between the covariance kernels of k and kA, using the settings
of Example 1. It shows that
(a) the absolute difference between the two covariance functions k and kA is quite small. Fur-

thermore, it illustrates the identity of Prop. 4 which states kA(X,X) = k(X,X): as 0.3 is a
component of X, kA(0.3, xk) = k(0.3, xk) for any of the five components xk of X.
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(b) the contour lines for kA are not straight lines, as it is the case for covariance matrices of
stationary processes evaluated on regular grids. In this example, Y is stationary whereas YA
is not. However, the latter only departs slightly from the stationary assumption.

(c) the difference kA − k vanishes at some places, among which are the places of the bullets
points and the diagonal which correspond respectively to kA(X,X) = k(X,X) and kA(x, x) =
k(x, x). Furthermore, the absolute differences between the two covariances functions are again
quite small. It also shows that the pattern of the difference is quite complex.

0.0 0.2 0.4 0.6 0.8 1.0
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(a) kernel functions kA (solid
lines) and k (dashed lines) with
one variable fixed to 0.3 ∈ X
and 0.85 /∈ X.
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(b) contour plot of the mod-
ified prior covariance matrix
kA(Xp, Xp).

0 20 40 60 80 100

0

20

40

60

80

100
0.045

0.030

0.015

0.000

0.015

0.030

0.045

(c) image plot of the difference
between prior covariance matri-
ces kA(Xp, Xp)− k(Xp, Xp).

Figure 4: Comparisons of the modified covariance kA and the initial covariance k. The vector of
prediction points Xp corresponds to 100 regularly spaced points spanning [0, 1]. The horizontal and
vertical dotted lines correspond to locations of observed points xi for i ∈ {1, . . . , 5}. The bullets
indicate locations where kA(xi, xj) = k(xi, xj).

2.3 Consistency
This section gives results on the consistency of the proposed aggregation method. Furthermore,

we show that some other aggregation methods developed in the literature are not consistent.

Proposition 5 (Consistency). Let D be a compact subset of Rd. Let Y be a Gaussian process
on D with mean zero and continuous covariance function k. Let (xni)1≤i≤n,n∈N be a triangular
array of observation points so that xni ∈ D for all 1 ≤ i ≤ n, n ∈ N and so that for all x ∈ D,
limn→∞mini=1,...,n ||xni − x|| = 0.

For n ∈ N, let An = {1, ..., pn} be the set of sub-model indexes and let M1(x), ...,Mpn(x) be any
collection of pn Kriging predictors based on respective design points X1, . . . , Xpn . Assume that
each component of X = (xn1, ..., xnn) is a component of at least one Xi, 1 ≤ i ≤ pn. Then we have

sup
x∈D

E
(

(Y (x)−MAn(x))2
)
→n→∞ 0. (17)

The proof is given in Appendix A.

In the next proposition, we consider aggregations of Kriging predictors based on weighted sums
of the conditional means of the predictors, which weights are functions of only their conditional
variances. For certain conditions on the weight functions, we show that such aggregations methods
can lead to mean square prediction errors that do not go to zero as n → ∞, even in cases where
the triangular array of observation points is dense in D.

Proposition 6 (Non-consistency of variance based aggregations). Let D be a compact non-empty
subset of Rd. Let Y be a Gaussian process on D with mean zero and stationary covariance function
k. Assume that k is defined on Rd, continuous and satisfies 0 < k(x, y) for two distinct points
x, y ∈ D so that D contains two open balls with strictly positive radii and centres x and y. Assume
also that k has a positive spectral density (defined by k̂(ω) =

∫
Rd
k(x) exp(Jx′ω)dx with J2 = −1

and for ω ∈ Rd). Assume that there exists 0 ≤ A <∞ and 0 ≤ T <∞ so that 1/k̂(ω) ≤ A||ω||T .
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For each number n of observation points, let pn be the number of Kriging predictors, let X be the
vector of the n observation points, and let X1, ..., Xpn be the vectors of observation points for the pn
Kriging predictors. Let An = {1, ..., pn}. Let vk(x) = V [Y (x)|Y (Xk)] and let vprior(x) = k(x, x).
Consider an aggregated predictor of the form

M̄An(x) =
pn∑
k=1

αk,n(v1(x), ..., vpn(x), vprior(x))Mk(x)

where

αk,n(v1(x), ..., vpn(x), vprior(x)) ≤ a(vk(x), vprior(x))∑pn
l=1 b(vl(x), vprior(x))

,

where a and b are given deterministic continuous functions from ∆ = {(x, y) ∈ (0,∞)2;x ≤ y} to
[0,∞), with a and b positive on ∆̊ = {(x, y) ∈ (0,∞)2;x < y}.

Then, there exists a triangular array of observation points (xni)1≤i≤n;n∈N so that
limn→∞ supx∈D mini=1,...,n ||xni − x|| = 0, a triangular array of subvectors X1, ..., Xpn so that
X = (X1, ..., Xpn), with pn →n→∞ ∞ and pn/n→n→∞ 0, and so that there exists x0 ∈ D so that

lim inf
n→∞

E
[(
Y (x0)− M̄An(x0)

)2]
> 0. (18)

The detailed proof is given in Appendix B. Its intuitive explanation is that the aggregation
methods for which the proposition applies ignore the correlations between the different Kriging
predictors. Hence, for prediction points around which the density of observation points is smaller
than on average, too much weight can be given to Kriging predictors based on distant observation
points.

As detailed in Section 5, examples of aggregation methods for which Prop. 6 applies are
(generalized) products of experts and (robust) Bayesian committee machines, described in
[Deisenroth and Ng, 2015, van Stein et al., 2015] and references therein. Furthermore, the assump-
tions made on k in this proposition are satisfied by many stationary covariance functions, including
those of the Matérn model, with the notable exception of the Gaussian covariance function (Propo-
sition 1 in [Vazquez and Bect, 2010]).

2.4 Bounds on aggregation errors
We recall that, even in a non-Gaussian setting, Mfull(x) = k(x,X)k(X,X)−1Y (X) and vfull(x) =
k(x, x) − k(x,X)k(X,X)−1k(X,x). Mfull(x) corresponds to an optimal model but it cannot be
used because of its computational burden so it is approximated by the aggregated model MA(x).
Similarly, vA(x) aims at approximating vfull(x) that can also be computationally intractable. This
section aims at studying the differences between the aggregated model and full one.

For the analysis of these approximation errors we focus on the case where M(x) is linear in
Y (X), i.e. there exists a p×n deterministic matrix Λ(x) such that M(x) = Λ(x)Y (X). Under this
assumption, the differences write{

MA(x)−Mfull(x) = −k(x,X)∆(x)Y (X) ,
vA(x)− vfull(x) = k(x,X)∆(x)k(X,x) .

(19)

where ∆(x) = K−1 −Λ(x)t
(
Λ(x)k(X,X)Λ(x)t

)−1Λ(x), as soon as Λ(x)k(X,X)Λ(x)t is invertible.
Proposition 7 (Bounds for maximal errors). Let x ∈ D. if M(x) is linear in Y (X), then for any
norm ‖.‖, there exists some constants λ, µ ∈ R+ such that{

|MA(x)−Mfull(x)| ≤ λ‖k(X,x)‖‖Y (X)‖ ,
|vA(x)− vfull(x)| ≤ µ‖k(X,x)‖2 .

(20)

This implies that, if one can choose a prediction point x far enough to observations in X, in the
sense ‖k(X,x)‖ ≤ ε for any given ε > 0, |MA(x) −Mfull(x)| and |vA(x) − vfull(x)| can be as
small as desired. Furthermore, if M is interpolates Y at X (see definition in Prop. 2), then since
vfull(x) = E

[
(Y (x)−Mfull(x))2]:

0 ≤ vA(x)− vfull(x) ≤ min
k∈{1,...,n}

E
[
(Y (x)−Mk(x))2]− vfull(x) . (21)
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Proof. For the first part of the proposition, ∆(x) is the difference of two positive semi-definite
matrices. After expanding Eq. (19) both terms can thus be interpreted as differences of inner
products. We can thus conclude using successive application of triangular inequality, Cauchy-
Schwartz inequality, and equivalence of norms for finite-dimensional real vector spaces. Regarding
the second part, the upper bound comes from the fact that MA(x) is the best linear combination
of Mk(x) for k ∈ {1, . . . , n}. The positivity of vA− vfull can be proved similarly: MA(x) is a linear
combination of Y (xk), k ∈ {1, . . . , n}, whereas Mfull(x) is the best linear combination.

One consequence of previous proposition is that when the covariances between the prediction
point x and the observed ones X become small, both models tend to predict the unconditional
distribution of Y (x). This is a natural property that is desirable for any aggregation method but
it is not always fulfilled (see for instance PoE in [Deisenroth and Ng, 2015]).

We have seen in Figure 4 that the kernels k and kA are very similar. The following proposition
gives a link between the aggregation errors and the kernel differences.

Proposition 8 (Errors as kernel differences). Assume that for all x ∈ D, M(x) is a linear function
of Y (X) and that M interpolates Y at X, i.e. if for any component xk of the vector X there is
at least one index ik ∈ A such that Mik(xk) = Y (xk), then the differences between the full and
aggregated models write as differences between kernels :{

E
[
(MA(x)−Mfull(x))2] = ‖k(X,x)− kA(X,x)‖2K ,

vA(x)− vfull(x) = ‖k(X,x)‖2K − ‖kA(X,x)‖2K ,
(22)

where ‖u‖2K = utk(X,X)−1u. Assuming the the smallest eigenvalue λmin of k(X,X) is non zero,
this norm can be bounded by ‖u‖2K ≤

1
λmin
‖u‖2 where ‖u‖ denotes the Euclidean norm.

Proof. The first equality comes from k(X,X) = kA(X,X) under interpolation assumption, which
leads to MA(x)−Mfull(x) = (k(x,X)− kA(x,X))k(X,X)−1Y (X). The second equality uses both
k(X,X) = kA(X,X) and k(x, x) = kA(x, x) which leads to vA(x) = k(x, x)−kA(x,X)k(X,X)−1kA(X,x).
The result is then obtained by subtracting vfull(x). Finally, the classical inequality between ‖.‖K
and ‖.‖ derives from the diagonalization of k(X,X).

The difference between the full model and the aggregated one of Example 1 is illustrated in
Figure 5. Various remarks can be made on this figure. First, the difference between the aggregated
and full model is small, both on the predicted means and variances. Second, the error tends toward
0 when the prediction point x is far away from the observations X. This illustrates Prop. 7 in the
case where ‖k(X,x)‖ is small. Third, it can be seen that the bounds on the left panel are relatively
tight on this example, and that both the errors and their bounds vanish at observation points. At
last, the right panel shows vA(x) ≥ vfull(x). This is because the estimator MA is expressed as
successive optimal linear combinations of Y (X), which have a quadratic error necessarily greater
or equal than Mfull which is the optimal linear combination of Y (X). Panel (b) also illustrates
that the bounds given in Eq. (21) are relatively loose. This means that the nested aggregation is
more informative than the most accurate sub-model.

At last, the following result gives another optimality property that is often not satisfied by
other aggregating methods: if the sub-models contain enough information, the aggregated one
corresponds to the full model.

Proposition 9 (Fully informative sub-models). AssumeM(x) is linear in Y (X): M(x) = Λ(x)Y (X)
and that Λ(x) is a n× n matrix with full rank, then{

MA(x) = Mfull(x) ,
vA(x) = vfull(x) .

(23)

Furthermore, if Y and YA are Gaussian processes then

YA
law= Y and thus YA|YA(X) law= Y |Y (X). (24)

In other words, there is no difference between the full and the approximated models when Λ(x)
is invertible. This property can be extended if Λ(x) is p × n with p > n (more sub-models than
observation points) but it requires replacing matrix inverses by pseudo-inverses in Definition 1.
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(a) differences between predicted means mA(x)−
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Figure 5: Comparisons of the full and aggregated model. The dashed lines correspond to the bounds
given in Prop. 8: ±λ−1/2

min ‖k(X,x)− kA(X,x)‖ on panel (a) and bounds of Eq.(21) on panel (b).
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Figure 6: One aggregation tree with height ν̄ = 2, n0 = 5 initial leave nodes (observation points) and
n1 = 2 sub-models.

Proof. As Λ(x) is invertible, the expression of λA(x) from Prop. 2 (i) is λA(x)t = k(x,X)k(X,X)−1

which leads to Eq. (23). As MA = Mfull, we have YA = Mfull + ε where ε is an independent copy
of Y −Mfull. Furthermore Y = Mfull + Y −Mfull where Mfull and Y −Mfull are independent in
the Gaussian case so YA

law= Y .

Note that there is of course no computational interest in building and merging fully informative
sub-models since it requires computing and inverting a matrix that has the same size as k(X,X)
so there is no complexity gain compared to the full model.

3 Iterative scheme
In the previous sections, we have seen how to aggregate sub-models M1, . . . ,Mp into one unique
aggregated value MA. Now, starting from the same sub-models, one can imagine creating several
aggregated values, MA1 , . . . ,MAs , each of them based on a subset of {M1, . . . ,Mp}. One can show
that these aggregated values can themselves be aggregated. This makes possible the construction
of an iterative algorithm that merges sub-models at successive steps, according to a tree struc-
ture. Such tree-based schemes are sometimes used to reduce the complexity of models, see e.g.
[Tzeng et al., 2005], or to allow parallel computing [Wei et al., 2015].

The aim of this section is to give a generic algorithm for aggregating sub-models according
to a tree structure and to show that the choice of the tree structure helps partially reducing the
complexity of the algorithm. It also aims at giving perspectives for further large reduction of the
global complexity.
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Let us introduce some notations. The total height (i.e number of layers) of the tree is denoted
ν̄ and the number of node of a layer ν ∈ {1, . . . , ν̄} is nν . We associate to each node (say node i
in layer ν) a sub-model Mν

i corresponding to the aggregation of its child node sub-models. In
other words, Mν

i is the aggregation of {Mν−1
k , k ∈ Aνi } where Aνi is the set of childs of node i in

layer ν. These notations are summarized in Figure 6 which details the tree associated to Example 1.
In practice, there will be one root node (nν̄ = 1) and each node will have at least one parent:
∪i=1,...,nνAνi = {1, . . . , nν−1}. Typically, the sets Aνi , i = 1, . . . , nν , are a partition of {1, . . . , nν−1}
but this assumption is not required and a child node may have several parents (which can generate
a lattice rather than a tree).

3.1 Two-Layer aggregation
We discuss in this section the tree structure associated to the case ν̄ = 2 as per the previous ex-

amples. With such settings, the first step consists in calculating the initial sub-models M1
1 , . . . ,M

1
p

of the layer ν = 1 and the second one is to aggregate all sub-models of layer ν = 1 into one unique
estimator M2

1 (see for example Figure 6). This aggregation is obtained by direct application of
Definition 1.

In practice the sub-models can be any covariates, like gradients, non-Gaussian underlying factors
or even black-box responses, as soon as cross-covariances and covariances with Y (x) are known.
When sub-models are calculated from direct observations Y (x1), . . . , Y (xn), the number of leave
nodes at layer ν = 0 is n0 = n. In further numerical illustrations of Section 5, the sub-models M1

i

are simple Kriging predictors of Y (x), with for i = 1, . . . , p,
M1
i (x) = k(x,Xi)k(Xi, Xi)−1Y (Xi) ,

Cov [Mν
i (x), Y (x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, x) ,

Cov
[
Mν
i (x),Mν

j (x)
]

= k(x,Xi)k(Xi, Xi)−1k(Xi, Xj)k(Xj , Xj)−1k(Xj , x) .
(25)

With these particular simple Kriging initial sub-models, the layer ν = 1 corresponds to the aggre-
gation of covariates M0

i (x) = Y (xi) at the previous layer ν = 0, i = 1, . . . , n.

3.2 Multiple Layer aggregation
In order extend the two-layer setting, one needs to compute covariances among aggregated sub-
models. The following proposition gives covariances between aggregated models of a given layer.

Proposition 10 (aggregated models covariances). Let us consider a layer ν ≥ 1 and given aggre-
gated modelsMν

1 (x), . . . ,Mν
nν (x). Assume that the following covariances (kν(x))i = Cov [Mν

i (x), Y (x)]
and (Kν(x))ij = Cov

[
Mν
i (x),Mν

j (x)
]
are given, i, j ∈ {1, . . . , nν}. Let nν+1 ≥ 1 be a number of

new aggregated values. Consider subsets Aν+1
i of {1, . . . , nν}, i = 1, . . . , nν+1, and assume that

Mν+1
i (x) is the aggregation of Mν

k (x), k ∈ Aν+1
i . Then

(Mν+1(x))i = αν+1
i (x)t

(
Mν(x)[Aν+1

i
]

)
,

Cov
[
Mν+1
i (x), Y (x)

]
= αν+1

i (x)t
(
kν(x)[Aν+1

i
]

)
,

Cov
[
Mν+1
i (x),Mν+1

j (x)
]

= αν+1
i (x)t

(
Kν(x)[Aν+1

i
,Aν+1
j

]

)
αν+1
j (x) ,

(26)

where the vectors of optimal weights are αν+1
i (x) =

(
Kν

[Aν+1
i

,Aν+1
i

]

)−1 (
kν(x)[Aν+1

i
]

)
and where

kν(x)[Aν+1
i

] corresponds to the sub-vector of kν(x) of indices in Aν+1
i and similarly for Mν(x)[Aν+1

i
]

and the submatrix Kν(x)[Aν+1
i

,Aν+1
i

], which is assumed to be invertible.
Furthermore, Cov

[
Mν+1
i (x), Y (x)

]
= Cov

[
Mν+1
i (x),Mν+1

i (x)
]
.

Proof. This follows immediately from Definition 1: as the aggregated values are linear expressions,
the calculation of their covariances is straightforward. The last equality is simply obtained by
inserting the value of αν+1

i (x) into the expression of Cov
[
Mν+1
i (x),Mν+1

i (x)
]
.

The following algorithm, which is a generic algorithm for aggregating sub-models according to a
tree structure, is based on an iterative use of the previous proposition. It is given for one prediction
point x ∈ D and it assumes that the sub-models are already calculated, starting directly from layer
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1. This allows a large variety of sub-models, and avoids storage the storage of the possibly large co-
variance matrix K0(x). Its outputs are the final scalar aggregated model,Mν̄(x), and the scalar co-
varianceKν̄(x) from which one deduces the prediction error E

[
(Y (x)−Mν̄(x))2] = k(x, x)−Kν̄(x).

In order to give dimensions in the algorithm and to ease the calculation of complexities, we de-
fine cνi as the number of childs of the sub-model Mν

i , cνi = cardAνi . We also denote cmax = max
ν,i

cνi

the maximal number of childs.

Algorithm 1: Nested Kriging algorithm

inputs : M1, vector of length n1 (sub-models evaluated at x)
k1, vector of length n1 (covariance between Y (x) and sub-models at x)
K1, matrix of size n1 × n1 (covariance between sub-models at x)
A, a list describing the tree structure

outputs: Mν̄ , Kν̄

Create vectors M , k of size cmax and matrix K of size cmax × cmax
for ν = 2, . . . , ν̄ do

Create vectors Mν of size nν and matrix Kν of size nν × nν
for i = 1, . . . , nν do

Create vector αi of size cνi
M ← subvector of Mν−1 on Aνi
K ← submatrix of Kν−1 on Aνi
if ν = 2 then k ← k1 else k ← Diag(K)
αi ← K−1k

Mν [i]← (αi)tM
Kν [i, i]← (αi)tk
for j = 1, . . . , i− 1 do

K ← submatrix of Kν−1 on Aνi ×Aνj
Kν [i, j]← (αi)tKαj
Kν [j, i]← Kν [i, j]

Mν−1, Kν−1 and all αi can be deleted

Notice that Algorithm 1 uses the result (Kν+1(x))ii = (kν+1(x))i from Prop. 10: when we con-
sider aggregated models (ν ≥ 2), we do not need to store and compute the vector kν(x) any more.
When ν = 1, depending on the initial covariates, Cov

[
M1
i (x), Y (x)

]
is not necessarily equal to

Cov
[
M1
i (x),M1

i (x)
]
(this is however the case when M1

i (x) are simple Kriging predictors).

For the sake of clarity, some improvements have been omitted in the algorithm above. For
instance, covariances can be stored in triangular matrices, one can store two couples (Mν ,Kν)
instead of ν̄ couples by using objects M(ν mod 2) and K(ν mod 2). Furthermore, it is quite natural
to adapt this algorithm to parallel computing, but this is out of the scope of this article.

3.3 Complexity
We study here the complexity of Algorithm 1 in space (storage footprint) and in time (execution
time). For the sake of clarity we consider in this paragraph a simplified tree where nν is decreasing
in ν and each child has only one parent. This corresponds to the most common structure of trees,
without overlapping. Furthermore, at any given level ν, we consider that each node has the same
number of childs: cνi = cν for all i = 1, . . . , nν . Such a tree will be called regular. In this setting,
one easily sees that nν = nν−1

cν
= n

c1...cν
, ν ∈ {1, . . . , ν̄}. Complexities obviously depend on the

choice of sub-models, we give here complexities for Kriging sub-models as in Eq. (25), but this can
be adapted to other kind of sub-models.

For one prediction point x ∈ D, we denote by S the storage footprint of Algorithm 1, and
by C its complexity in time, including sub-models calculation. One can show that in a particular
two-layers setting with

√
n sub-models (ν̄ = 2 and c1 = c2 =

√
n), a reachable global complexity for

q prediction points is (see assumptions below and expression details in the proof of Proposition 11)

S = O(n) and qC = O(n2q) . (27)
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This is to be compared with O(n3) + O(n2q) for the same prediction with the full model. The
aggregation of sub-models can be useful when the number of prediction points is smaller than the
number of observations. Notice that the storage needed for q prediction points is the same as for
one prediction point, but in some cases (as for leave-one-out errors calculation), it is worth using a
O(nq) storage to avoid recalculations of some quantities.

We now detail chosen assumptions on the calculation of S and C, and study the impact of the
tree structure on these quantities. For one prediction point x ∈ D, including sub-models calculation,
the complexity in time can be decomposed into C = Ccov + Cα + Cβ , where

- Ccov is the complexity for computing all cross covariances among initial design points, which
does not depend on the tree structure (neither on the number of prediction points).

- Cα is the complexity for building all aggregation predictors, i.e. the sum over ν, i of all oper-
ations in the i-loop in the Algorithm 1 (excluding operations in the j-loop).

- Cβ is the complexity for building the covariance matrices among these predictors, i.e. the sum
over ν, i, j of all operations in the j-loop in the Algorithm 1.

We assume here that there exists two constants α > 0 and β > 0 such that the complexity of
operations inside the i-loop (excluding those of the j-loop) is αc3ν , and the complexity of operations
inside the j-loop is βc2ν . Despite perfectible, this assumption follows from the fact that one usually
considers that the complexity of cν × cν matrix inversion is O(c3ν) and the complexity of matrix-
vector multiplication is O(c2ν). We also assume that the tree height ν̄ is finite, and that all numbers
of childs cν tend to +∞ as n tends to +∞. This excludes for example binary trees, but makes
assumptions on complexities more reliable. Under these assumptions, the following proposition
details how the tree structure affects the complexities.
Proposition 11 (Complexities). The following storage footprint S and complexities Cα, Cβ hold
for the respective tree structures, when the number of observations n tend to ∞.
(i) The two-layer equilibrated

√
n-tree, where p = c1 = c2 =

√
n, ν̄ = 2, is the optimal storage

footprint tree, and
S = O(n) , Cα ∼ αn2 , Cβ ∼

β

2n
2 . (28)

(ii) The ν̄-layer equilibrated ν̄
√
n-tree, where c1 = · · · = cν̄ = ν̄

√
n, ν̄ ≥ 2, is such that

S = O(n2−2/ν̄) , Cα ∼ αn1+ 2
ν̄ , Cβ ∼

β

2n
2 . (29)

(iii) The optimal complexity tree is defined as the regular tree structure that minimizes Cα, as it is
not possible to reduce Cβ to lower orders than O(n2). This tree is such that

S = O
(
n

2− 1
δν̄−1

)
, Cα ∼ γαn

1+ 1
δν̄−1 , Cβ ∼

β

2n
2 , (30)

with δ = 3
2 and γ = 27

4 δ
− ν̄
δν̄−1 (1− δ−ν̄). This tree is obtained for cν = δ (δ−ν̄n)

δ(ν−1)
2(δν̄−1) , ν =

1, . . . , ν̄. In a particular two-layers setting one gets c1 =
( 3

2
)1/5

n2/5 and c2 =
( 3

2
)−1/5

n3/5,
which leads to Cα = γαn9/5 and Cβ = β

2n
2 − β

2
( 3

2
) 1

5 n
7
5 , where γ = ( 2

3 )−2/5 + ( 2
3 )3/5 ' 1.96.

Proof. The details of the proof are given in Appendix C.

We have seen that for q prediction points and n observations, a reachable complexity of the
algorithm is O(n2q), which is less than O(n3)+O(n2q) for the same prediction with the full model,
when q < n.

More precisely, we have shown that the choice of the tree structure helps partially reducing the
complexity of the algorithm. Indeed, a large tree height ν̄ largely reduces the complexity Cα of
matrix inversions in the algorithm. However, Cβ cannot be reduced and one can expect a maximal
complexity reduction factor of β

2α+β when using an optimal tree, compared to the equilibrated
two-layers

√
n-tree. One shall however keep in mind that a lower complexity can lead to larger

prediction errors or larger storage footprint.
As a perspective, approximating cross-covariances between aggregated models would allow to

reduce Cβ to the same order than Cα, which approach O(n) when ν̄ is large. This thus give
perspectives for further large reduction of the global complexity, which are let to future work.

At last, several parts of the algorithm can be computed in parallel execution threads. This is
an interesting feature since sub-models computation at any layer can also be distributed.
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4 Parameter estimation
Consider a set of covariance functions {σ2kθ, σ

2 ≥ 0, θ ∈ Θ} where kθ is a correlation function
from D × D into [−1, 1] depending on some parameters θ such as length-scales. In this section,
we address the problem of selecting the value of σ2 and θ from the input observation points in X
and the observation vector f(X). The mean predictor mA depends only on θ so it will be written
mA,θ. The prediction variance is a function of both θ and σ2. Since it is linear in the latter, the
prediction variance is written σ2vA,θ.

Let, for 1 ≤ i ≤ n, the leave-one-out means mA,θ,−i(xi) be computed as mA,θ(xi), but with
X, f(X) replaced by X−i, f(X−i), where X−i is obtained by removing the ith line of X. Note
that the input division X1, ..., Xp is left unchanged, apart from removing xi when it appears in
X1, ..., Xp. Similarly, the tree structure {Aνi } is left unchanged. We define σ2vA,θ,−i(xi) similarly
from σ2vA,θ(xi).

We estimate σ2 and θ with a two-step leave-one-out procedure similar to that of [Bachoc, 2013].
We first select θ as minimizing the leave-one-out mean square error. We let

θ̂ ∈ argmin
θ∈Θ

1
n

n∑
i=1

(f(xi)−mA,θ,−i(xi))2
. (31)

Second, we set σ2 so that the leave-one-out errors have variance one:

σ̂2 = 1
n

n∑
i=1

(
f(xi)−mA,θ̂,−i(xi)

)2

vA,θ̂,−i(xi).
(32)

We implemented an algorithm which computes, for a given covariance parameter θ, the quan-
tities mA,θ,−i(xi) and vA,θ,−i(xi) for q different values of xi. If the proper storage and precompu-
tations are made, the computational cost is of the order O(qn2), which is similar to the cost for
predicting in q new locations using the model aggregation procedure presented in this paper. How-
ever using precomputations, the algorithm also has a storage cost of O(nq) which excludes using
q = n in the case where n is large and prevents computing the right-hand side of Equation (31)
exactly. Finally, one may notice that when q points are chosen uniformly, without replacement,
in the set of all n points, averaging q leave-one-out mean square error yields an unbiased estimate
of the leave-one out mean square error, and can be seen as an approximation of the latter. We
thus propose to solve the optimization problem (31) with a stochastic gradient descent algorithm
described in Chapter 5 of [Bhatnagar et al., 2013]. At each step of the gradient descent, the pro-
jection of the gradient of (31) on a random direction is approximated by a finite difference. The
algorithm is as follows.

Algorithm 2: Stochastic gradient descent

inputs : θ0, initial value of θ
(ai)i∈N, sequence of increment terms for the gradient descent
(δi)i∈N, sequence of step sizes for the finite differences
q, number of leave-one-out predictions
niter, maximal number of iterations

outputs: θ̂

for i = 1, ..., niter do
Sample a subset Ii of {1, ..., n}, uniformly over all the subsets of {1, ..., n} with cardinality q.
Sample a m-dimensional vector hi from a m-dimensional random vector with independent
components, each of them taking the values 1 and −1 with probabilities 1/2.
Let

∆i = 1
2δi

1
q

∑
j∈Ii

(
f(xj)−mA,−j,θi−1+δihi(xj)

)2 − 1
q

∑
j∈Ii

(
f(xj)−mA,−j,θi−1−δihi(xj)

)2 .

Let θi = θi−1 − ai∆ihi.
Let θ̂ = θniter .
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An implementation in R and C++ of both algorithms 1 and 2 is publicly available on the
website http://blinded (available upon request to the editor). In practice, the computation cost
of q leave-one-out predictions is the sum of a fixed cost – involving in particular the computation of
the n2 covariances kθ(xi, xj) – and a marginal cost which is proportional to q. When n = 10, 000,
these two summands take comparable values for q = 100, which is the setting we use in practice.
Following the recommendations in [Bhatnagar et al., 2013], we set δi = c/(i+ 1)γ , with γ = 0.101.
We set ai = a/(A+ i+ 1)α, with α = 0.602 (as suggested in [Bhatnagar et al., 2013]), or α = 0.2,
or a combination of these two values. Typically we run a first gradient descent with α = 0.2, which
termination point serves as starting point for a second gradient descent with α = 0.601. Good
values of a, c and A depend of the application case. In practice, satisfactory results are obtained
for n = 10, 000, d = 10 and p = 100, with niter = 500, in which case the computation time would
be around a few hours on a personal computer.

5 Numerical applications
5.1 Comparison with other aggregation methods
We now compare the predictions obtained with various methods when aggregating 15 Kriging sub-
models based on two observations each. The test functions are samples of a centered Gaussian
process over [0, 1]. The compared models are the nested Kriging model introduced in this article,
the full model and other methods developed in the literature:
Product of expert (PoE) [Hinton, 2002] is based on the assumption that for a given x, the
predictions of each sub-model correspond to independent random variables. As a consequence,
the aggregated predicted density for Y (x) is equal to the product of the sub-models densities :
fpoe(y) ∝

∏p
i=1 fi(y) where fi is the predicted density of Y (x) according to the ith sub-model.

The PoE corresponds to the normal model developed in [Winkler, 1981], in the case of independent
experts, when the considered covariance matrix is diagonal (see e.g. section 3.2 in the previously
cited article and [van Stein et al., 2015]). Some extensions of this method to consensus Monte-
Carlo sampling can be found in [Scott et al., 2016].
Generalised product of expert (GPoE). As discussed in [Deisenroth and Ng, 2015], a major
drawback of Kriging based PoE is that the prediction variance of the aggregated model decreases
when the number sub-model increases even in regions with no observation points. [Cao and Fleet, 2014]
introduced a variant called generalised product of expert where a weighting term is added to over-
come this issue. The prediction is then given by

fgpoe(y) ∝
p∏
i=1

(fi(y))βi . (33)

For this benchmark, the parameters βi will be set to 1/p as recommended in [Deisenroth and Ng, 2015].
Notice that GPoE corresponds exactly to what consensus literature refers to logarithmic opinion
pool, see e.g. Eq.(3.11) in [Genest and Zidek, 1986].
Bayesian Committee Machine (BCM) has been introduced in [Tresp, 2000] to aggregate Krig-
ing sub-models. It is based on the assumption of conditional independence of the sub-models given
the process values at prediction points. The predicted aggregated density is given by

fbcm(y) ∝
∏p
i=1 fi(y)
fY (y)p−1 . (34)

Robust Bayesian committee machine (RBCM) has been introduced in [Deisenroth and Ng, 2015]
to correct some supposed flaws from BCM aggregations in the case where there are only few ob-
servations in each sub-models. The predicted aggregated density is given by

frbcm(y) ∝
∏p
i=1(fi(y))βi

(fY (y))−1+
∑

i
βi
, (35)

where βi = 1
2 [log(V [Y (x)])− log(vi(x))] with vi(x) the predicted variance of the ith sub-model at

x.
Smallest prediction variance (SPV). For the sake of comparison, we add another aggregation
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method to the benchmark: for a given prediction point x, the aggregation returns the prediction
of the sub-model with the lowest prediction variance:

fspv(y) = fk(y) with k = argmin
i∈{1,...,p}

vi(x). (36)

One advantage of these aggregation methods is their very low complexity. However, these meth-
ods are missing basic good behaviour properties. On the one hand (generalised) product of expert
and (robust) Bayesian committee machine can be inconsistent. This is is a direct consequence of
Prop. 6 with a(s2, k) = b(s2, k) = 1/s2 for PoE, a(s2, k) = b(s2, k) = (1/2)[log(k)−log(s2)][1/s2] for
GPoE, a(s2, k) = 1/s2, b(s2, k) = 1/s2 − 1/k for BCM and a(s2, k) = (1/2)[log(k)− log(s2)][1/s2],
b(s2, k) = (1/2)[log(k)− log(s2)][1/s2− 1/k] for RBCM. On the other hand, SPV can be proved to
be consistent but the predictions given by this method are not continuous.

The test functions are given by samples over [0, 1] of a centered Gaussian process Y with a
Matérn 5/2 kernel. The variance and length-scale parameters of the later are fixed to σ2 = 1 and
θ = 0.05. The vector of observation points X consists in 30 random points uniformly distributed
on [0, 1] and we consider in this example the aggregation of 15 sub-models based on two points
each. Assuming that the observations points are ordered (x1 ≤ ... ≤ xn), each sub-model is trained
with two consecutive observations points : A1 = {1, 2}, . . . , A15 = {29, 30}. The variance and
length-scale parameters of the sub-models are equal to the values used to generate the process
samples.

First of all, we will focus on the aggregated models obtained with the different methods for
a given sample path and design of experiments X before looking at the distribution of various
criteria when replicating the experiment. Figure 7 shows the aggregated models for the aggregation
methods described above. On this example, PoE and GPoE appear respectively to be over- and
under-confident in their predictions and show a mean prediction that tends too quickly to zero as
the prediction point moves away from the observation points. On the other hand, the predictions
from other methods seem more reliable and the best approximation is obtained with the proposed
nested estimation approach.

This can confirmed by replicating 50 times the experiment by sampling independently the ob-
servation points and the test function. We consider three criteria to quantify the distance between
the aggregated model and the full model: the mean square error (MSE) to assess the accuracy of
the aggregated mean, the mean variance error MVE for the accuracy of the predicted variance and
the mean negative log probability (MNLP) [Williams and Rasmussen, 2006] to quantify the overall
distribution fit. Let m, v (resp. mfull, vfull) denote the mean and variance of the model to be
tested (resp. the full model) and let Xt be the vector of test points. These criteria are defined as:

MSE(m,mfull, Xt) = 1
nt

nt∑
i=1

(m(xt,i)−mfull(xt,i))2 ,

MVE(v, vfull, Xt) = 1
nt

nt∑
i=1

(v(xt,i)− vfull(xt,i)) ,

MNLP (m, v, f,Xt) = 1
nt

nt∑
i=1

(
1
2 log(2πv(xt,i)) + (m(xt,i)− f(xt,i))2

2v(xt,i)

)
.

(37)

Figure 8 shows the boxplots of these criteria for 50 replications of the experiments. It appears
that the proposed approach gives the best approximation of the full model for the three considered
criteria.

5.2 Application to an industrial case study
We consider in this section experimental data on the behaviour of a steel test piece subject to

cycles of tension-compression. During these cycles, the evolution of the tensile strain in the test piece
is monitored over time using two methods: by performing the actual physical experiment and by
a numerical simulator based on a Chaboche constitutive equation [Lemaitre and Chaboche, 1994].
The quantity of interest is the misfit between these two experiments. A test piece is described by
6 scalar variables (E,C1, C2, γ

0
1 , γ

0
2 , r), where E is a logarithm transform of the Young’s modulus,
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Figure 7: Comparison of various aggregation methods. The solid lines corresponds to aggregated
models (mean and 95% prediction intervals) and the dashed lines indicate the full model predictions
(mean and 95% prediction intervals).
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Figure 8: Quality assessment of the aggregated models for 50 test functions. Each test function is
a sample from a Gaussian process and in each case 30 observation points are sampled uniformly on
[0, 1]. The test points vector Xt consists of 101 points regularly spaced from xt,1 = 0 to xt,101 = 1.
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C1, C2, γ0
1 and γ0

2 are parameters related to the kinematic hardening and r is the radius of the
plastic surface at the stabilized state. The set of admissible inputs is denoted by D ⊂ R6.

Hereafter, we focus on modelling the function f : D → R that returns the logarithm of the
L2 norm of the difference between the curve from the actual experiment and the one from the
simulator.

In total, we have at our disposal a set of 10, 000 observations [X, f(X)], from which we randomly
extract a learning set [Xl, f(Xl)] of n = 9, 000 observations and assign the nt = 1, 000 remaining
observations to a test set [Xt, f(Xt)].

We compare the predictions of f(Xt) obtained from the SPV, PoE, GPoE1, GPoE2, BCM
and RBCM aggregation procedures described in Section 5.1 with our nested aggregation proce-
dure. GPoE1 corresponds to (33) with βi = 1

2 [log(V [Y (x)])− log(vi(x))] [Cao and Fleet, 2014] and
GPoE2 corresponds to (33) with βi = 1/p [Deisenroth and Ng, 2015]. For all these methods, we
consider an aggregation tree of height ν̄ = 2 (once submodels have been evaluated at layer 1, they
are all directly aggregated into one value at layer 2), so that p Gaussian process models are directly
aggregated. The p subsamples form a partition of [Xl, f(Xl)], which is obtained using the k-means
clustering algorithm.

Three covariance functions have been considered for the sub-models: (tensorized) exponential,
Matérn 3/2 and Matérn 5/2 (see [Williams and Rasmussen, 2006, Roustant et al., 2012] for the
definition of these functions). For all studied methods, the Matérn 5/2 covariance seemed to be
the most appropriate to the problem at hand since we obtained overall more accurate results. The
results presented hereafter thus focus on this Matérn 5/2 covariance family. Its parameters are
estimated with two different techniques depending on the aggregation method: for the methods
from the literature and SPV, we follow the recommended procedure which consists in maximizing
the sum of the log likelihoods over the p subsamples of [Xl, f(Xl)] (see [Deisenroth and Ng, 2015]).
For the proposed nested aggregation, we carry out the stochastic-gradient based estimation method
described in Section 4, with starting points set to the maximiser of the sum of the log likelihoods.

To assess the quality of a model with predicted mean m and variance v, we compute three quality
criteria using the test set: MSE and MNLP as per Eq. 37 which are small for a good model, and
the mean normalized square error (MNSE)

MNSE(m, v, f,Xt) = 1
nt

nt∑
i=1

(m(xt,i)− f(xt,i))2

v(xt,i)
,

which should be close to 1.

The prediction results for a given learning and training test set are given in Table 1 for the
aggregation of p = 20 sub-models and in Table 2 for p = 90. It can be seen that in both cases
the proposed method outperforms the other aggregation methods for the MSE and MNLP quality
criteria. The MSE has the same order of magnitude for the SPV and our aggregation method,
where the prediction errors are small compared the empirical variance of the test outputs f(xt,i),
i = 1, ..., nt, which is approximately equal to 0.81. In contrasts, the MSE can be significantly larger
for all the other aggregation procedures. For the PoE, GPoE1, BCM and RBCM aggregation
techniques, the values of MNSE are orders of magnitude greater than the target value one, which
indicates that the aggregated models are highly overconfident. The GPoE2 aggregation technique
is also overconfident when p = 90, where its MNSE is equal to 5.16. The SPV and our aggregation
methods provide appropriate predictive variances, and our method provides the best combination
of predictions and predictive variances, according to the MNLP criterion.

Tables 1 and 2 also show that aggregating p = 20 sub-models gives more accurate models than
aggregating p = 90 sub-models. This suggests that it is a good practice to aggregate few sub-models
based on many points instead of aggregating many sub-models based on few points. Although this
would require further testing to be confirmed, it is not surprising since aggregation methods rely
on some independence assumptions that are not often met in practice.
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SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.00416 0.0662 0.0033 0.0662 0.604 0.0625 0.00321
MNSE 1.27 20.00 4.55 1.00 219 60.8 0.846
MNLP −1.86 7.25 −0.949 −0.765 107 27.2 −1.97

Table 1: Prediction performances of the aggregation of p = 20 sub-models for the steel piece constraints
cycles data set. The investigated prediction performance criteria are the mean square error (MSE)
which should be minimal, mean normalized square error (MNSE) which should be close to 1 and
mean negative log probability (MNLP) which should be small. Bold figures indicate each line’s best
performing aggregation method.

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.00556 0.811 0.0244 0.811 1.84 0.121 0.00418
MNSE 1.20 465 34.2 5.16 980 148 0.84700
MNLP −1.55 230 14.1 2.13 487 71 −1.7

Table 2: Prediction performances of the aggregation of p = 90 sub-models for the steel piece constraints
cycles data set. All other settings are the same as in Table 1.

Tables 3 and 4 show the values of the quality criteria when the subsamples used for the p = 20
or p = 90 sub-models are randomly generated into the learning set. They can thus be compared to
Tables 1 and 2 to study the influence of the choice of the support points of the sub-models : the
criteria values are overall better in Tables 1 and 2 so using k-means is beneficial for the aggregation
procedures. In addition, our proposed aggregation technique becomes better in comparison to the
other methods, and specifically to SPV, when the subsamples are randomly generated.

All previous results have been obtained for a given random choice of the learning and test
sets. We now replicate the procedure 20 times, with the same settings as in Tables 1 (p = 20;
subsamples obtained from the k-means algorithm; Matérn 5/2 covariance function) and 4 (p = 90;
subsamples randomly selected; Matérn 5/2 covariance function), but with different learning and
test sets for each replication. The covariance parameters are reestimated for each learning set,
by minimizing the sum of log likelihoods for the SPV, PoE, GPoE1, GPoE2, BCM and RBCM
aggregation techniques, and with the proposed leave one out estimation procedure for our nested
aggregation method. The box plots of the corresponding 20 mean square errors and mean negative
log probability are reported in Figures 9 and 10. These replications confirm the results obtained
previously on single instances of the learning and test set: the proposed nested aggregation and
covariance parameter estimation jointly give better prediction both for the predicted mean and
variance than current existing aggregation techniques.

Of course, the improvement brought by our proposed aggregation scheme comes with a higher
computational cost: the proposed estimation procedure takes a few hours on a personal computer,
against a few tens of minutes for the minimization of the sum of the log likelihoods. Similarly, per-
forming 1000 predictions takes around 30 seconds with our proposed optimal aggregation, against
around 1 second for the other simpler aggregation procedures. Nevertheless, we believe that the
increased accuracy and robustness of the method we propose is worth the additional computational
burden in many situations.

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.0086 0.00763 0.00704 0.00763 0.338 0.274 0.00539
MNSE 1.21 9.38 16.6 0.469 178 268 0.864
MNLP −1.25 1.75 5.03 −1.21 86.2 130 −1.5

Table 3: Same settings as in Table 1 but when the subsamples are randomly selected.
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SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.0182 0.0293 0.0246 0.0293 0.977 0.686 0.00575
MNSE 1.29 42.5 57.2 0.473 852 988 0.867
MNLP −0.804 18.3 25.3 −0.517 423 491 −1.37

Table 4: Same settings as in Table 1 but with p = 90 submodels and where the subsamples are
randomly selected.
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Figure 9: Box plots of 20 values of the mean square error (MSE) prediction criterion and of the
logarithm of the mean negative log probability (MNLP) prediction criterion where the learning and
test sets are randomly generated. The settings are as in Table 1 (p = 20 subsamples obtained from
the k-means algorithm; Matérn 5/2 covariance function). The covariance parameters are estimated by
minimizing the sum of log likelihoods for the SPV, PoE, GPoE1, GPoE2, BCM and RBCM aggregation
techniques, and with our proposed leave one out estimation procedure for the nested aggregation
procedure. The box plots that are not represented correspond to large MSE or MLNP values. More
specifically, the averages (standard deviations) of the 20 MSE values for PoE, GPoE2, BCM and
RBCM are respectively 0.057 (0.0107), 0.057 (0.0107), 0.43 (0.095) and 0.047 (0.0099). The averages
(standard deviations) of the 20 MNLP values for PoE, BCM and RBCM are respectively 7.04 (1.37),
90.1 (18.5) and 23.2 (4.09).
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Figure 10: Same settings as in Figure 9 but with p = 90 and where the subsamples are randomly
selected. The box plots that are not represented correspond to large MSE or MLNP values. More
specifically, the averages (standard deviations) of the 20 MSE values for BCM and RBCM are respec-
tively 0.97 (0.11) and 0.68 (0.071). The averages (standard deviations) of the 20 MNLP values for
PoE, GPoE1, BCM and RBCM are respectively 20.6 (2.22), 28.9 (3.29), 441.9 (29.0) and 509 (23.5).

6 Conclusion
We have proposed a new method for aggregating sub-models based on subsets of observation

points, with a particular emphasis on Kriging sub-models. Our method can be seen as an optimal
linear weighting of submodels, where the obtained weights are taking into account all pairwise co-
variances between the submodels, thus avoiding some usual independence assumptions. Compared
to current existing aggregation techniques, we find several benefits of our approach.

First, our aggregation procedure has some theoretical benefits. It can be seen as an optimal
method based on a slightly different process, which can be simulated. In the Gaussian case, it yields
a full conditional Gaussian process distribution, which allows computing conditional covariances
and simulating Gaussian process conditional sample paths. Furthermore, our nested aggregation
method is proven to provide consistent predictors whereas, as demonstrated, some other classical
aggregation techniques can yield inconsistent predictors.

Second, a dedicated covariance parameter estimation procedure is provided, based on a gradient
descent minimization of leave-one-out cross validation errors, where the predictions are performed
using the proposed nested aggregation. Some code for computing both prediction and covariance
parameter estimation is publicly available.

At last, numerical results are encouraging. In both simulated data and industrial application,
our method is shown to outperform state of the art aggregation techniques. This improvement
comes with an increased computational cost compared to more basic aggregation methods, but
the proposed nested remains typically applicable in the domain n = 10, 000− 100, 000 observation
points, while exact Kriging inference becomes intractable around n = 10, 000 observation points.

We would like to mention two avenues for future research. First, we show that the aggregation
method we propose can be applied recursively, yielding a nested aggregation technique with smaller
computational cost. It would be interesting to quantify the practical gain one could obtain on real
data sets from this recursive aggregation. Second, we find that the stochastic gradient algorithm
we propose could be further investigated. In particular, theoretical properties could be derived, the
practical implementation could be improved, and the principle could be extended to other criteria
for covariance parameter estimation.
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A Proof of Proposition 5
Because D is compact we have limn→∞ supx∈D mini=1,...,n ||xni − x|| = 0. Indeed, if this does not
hold, there exists ε > 0 and a subsequence φ(n) so that supx∈D mini=1,...,φ(n) ||xφ(n)i − x|| ≥ 2ε.
Hence, there exists a sequence, xφ(n) ∈ D so that mini=1,...,φ(n) ||xφ(n)i − xφ(n)|| ≥ ε. Since D is
compact, up to extracting a further subsequence, we can also assume that xφ(n) →n→∞ xlim with
xlim ∈ D. This implies that for all n large enough, mini=1,...,φ(n) ||xφ(n)i− xlim|| ≥ ε/2, which is in
contradiction with the assumptions of the proposition.

Hence there exists a sequence of positive numbers δn so that δn →n→∞ 0 and so that for all
x ∈ D there exists a sequence of indices in(x) so that in(x) ∈ {1, ..., n} and ||x − xnin(x)|| ≤ δn.
There also exists a sequence of indices jn(x) so that xnin(x) is a component of Xjn(x). With these
notations we have, since M1(x),..., Mpn(x), MAn(x) are linear combinations with minimal square
prediction errors,

sup
x∈D

E
[
(Y (x)−MAn(x))2

]
≤ sup

x∈D
E
[(
Y (x)−Mjn(x)(x)

)2]
≤ sup

x∈D
E
[(
Y (x)− Y (xnin(x))

)2]
. (38)

In the rest of the proof we essentially show that, for a dense triangular array of observation
points, the Kriging predictor which predicts Y (x) based only on the nearest neighbour of x among
the observation points has a mean square prediction error which goes to zero uniformly in x when
k is continuous. We believe that this fact is somehow known, but we have not been able to find a
precise result in the literature.

We have from (38),

sup
x∈D

E
[
(Y (x)−MAn(x))2

]
≤ sup
x∈D

[
1{k(xnin(x), xnin(x)) = 0}k(x, x) + 1{k(xnin(x), xnin(x)) > 0}

(
k(x, x)−

k(x, xnin(x))2

k(xnin(x), xnin(x))

)]
≤ sup

x,t∈D;
||x−t||≤δn

[
1{k(t, t) = 0}k(x, x) + 1{k(t, t) > 0}

(
k(x, x)− k(x, t)2

k(t, t)

)]
= sup

x,t∈D;
||x−t||≤δn

F (x, t),

say. Assume now that the above supremum does not go to zero as n → ∞. Then there exists
ε > 0 and two sub-sequences xφ(n) and tφ(n) with values in D so that xφ(n) →n→∞ xlim and
tφ(n) →n→∞ xlim, with xlim ∈ D and so that F (xφ(n), tφ(n)) ≥ ε. Then if k(xlim, xlim) = 0 then
F (xφ(n), tφ(n)) ≤ k(xφ(n), xφ(n))→n→∞ 0. If k(xlim, xlim) > 0 then for n large enough

F (xφ(n), tφ(n)) = k(xφ(n), xφ(n))−
k(xφ(n), tφ(n))2

k(tφ(n), tφ(n))

which goes to zero as n→∞ since k is continuous. Hence we have a contradiction, which completes
the proof.
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B Proof of Proposition 6
Because of the assumptions on k, Y has the no-empty-ball property (Definition 1 and Proposition
1 in [Vazquez and Bect, 2010]). Hence for δ > 0, letting

V (δ) = inf
n∈N

inf
x1,...,xn∈D;

∀i=1,...,n,||xi−x0||≥δ

V [Y (x0)|Y (x1), ..., Y (xn)] ,

we have that V (δ) > 0.
Consider a sequence δn of non-negative numbers so that δn →n→∞ 0, and which will be specified

below. There exists a sequence (un)n∈N ∈ DN, composed of two-by-two distinct elements, so that
limn→∞ supx∈D mini=1,...,n ||ui − x|| = 0, and so that for all n, inf1≤i≤n ||ui − x0|| ≥ δn.

Let x0 and x̄ be so that k(x0, x̄) > 0 and D contains two open balls with strictly positive radii
and centers x0 and x̄ (the existence is assumed in the proposition). We can find 0 < r1 < ||x0−x̄||/4
so that B(x̄, r1) ⊂ D. Then, by continuity of k, we can find ε2 > 0, 0 < r ≤ r1 and 0 < δ1 ≤ r1 so
that B(x̄, r) ⊂ D and for all x ∈ B(x̄, r), ||x− x0|| ≥ δ1 and

k(x0, x0)− k(x, x0)2

k(x, x) ≤ k(x0, x0)− ε2.

Consider then the sequence (wn)n∈N ∈ DN so that for all n, wn = x̄ − (r/(1 + n))e1 with
e1 = (1, 0, ..., 0). We can assume furthermore that {un}n∈N and {wn}n∈N are disjoint.

Let us now consider two sequences of integers pn and kn with kn → ∞ and pn → ∞ to be
specified later. Let Cn be the largest natural number m satisfying m(pn − 1) < n. Let X =
(X1, ..., Xpn) be defined by, for i = 1, ..., kn, Xi = (uj)j=(i−1)Cn+1,...,iCn ; for i = kn + 1, ..., pn −
1, Xi = (wj)j=(i−kn−1)Cn+1,...,(i−kn)Cn ; and Xpn = (wj)j=(pn−kn−1)Cn+1,...,n−knCn . With this
construction, note that Xpn is non-empty. Furthermore, the sequence of vectors X = (X1, ..., Xpn),
indexed by n ∈ N, defines a triangular array of observation points satisfying the conditions of the
proposition.

Observing that infi∈N ||wi−x0|| ≥ δ1 and letting ε1 = V (δ1) > 0, we have for all n ∈ N and for
all k = kn + 1, ..., pn, since then Xk is non-empty and only contains elements wi ∈ B(x̄, r),

ε1 ≤ vk(x0) ≤ k(x0, x0)− ε2. (39)

From (39), and since k̂ is a positive function and x0 is not a component of X, we have vk(x0) > 0
for all k, and vpn(x0) < k(x0, x0). Hence, M̄An is well-defined, at least for n large enough.

For two random variables A and B, we let ||A−B|| = (E
[
(A−B)2])1/2. Let

R =

∣∣∣∣∣
∣∣∣∣∣
kn∑
k=1

αk,n(v1(x0), ..., vpn(x0), vprior(x0))Mk(x0)

∣∣∣∣∣
∣∣∣∣∣ .

Then, from the triangular inequality, and since, from the law of total variance, ||Mk(x0)|| ≤
||Y (x0)|| = vprior(x0) we have

R ≤
∑kn
k=1 a(vk(x0), vprior(x0))

√
vprior(x0)∑pn

l=1 b(vl(x0), vprior(x0))

≤
kn sups2≥V (δn) a(s2, vprior(x0))

√
vprior(x0)

(pn − kn) infε1≤s2≤vprior(x0)−ε2 b(s2, vprior(x0)) ,

where the last inequality is obtained from (39) and the definition of δn and V (δ).
Let now for δ > 0, s(δ) = sups2≥V (δ) a(s2, vprior(x0)). Since a is continuous on D and since

V (δ) > 0, we have that s(δ) is finite. Hence, we can choose a sequence δn of positive numbers so
that δn →n→∞ 0 and s(δn) ≤

√
n (for instance, let δn = inf{δ ≥ n−1/2;V (δ) ≤ n1/2}). Then, we

can choose pn = n4/5 and kn = n1/5. Then, for n large enough

kn
pn − kn

s(δn) ≤ 2n−3/5√n→n→∞ 0.

Hence, since √
vprior(x0)

infε1≤s2≤vprior(x0)−ε2 b(s2, vprior(x0))
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is a finite constant, as b is positive and continuous on D̊, we have thatR→n→∞ 0. As a consequence,
we have from the triangular inequality∣∣∣∣∣||Y (x0)− M̄An(x0)|| − ||Y (x0)−

pn∑
k=kn+1

αk,n(v1(x0), ..., vpn(x0), vprior(x0))Mk(x0)||

∣∣∣∣∣
≤ ||

pn∑
k=kn+1

αk,n(v1(x0), ..., vpn(x0), vprior(x0))Mk(x0)− M̄An(x0)||

= R

→n→∞ 0.

Hence

lim inf
n→∞

||Y (x0)−M̄An(x0)|| = lim inf
n→∞

∣∣∣∣∣
∣∣∣∣∣Y (x0)−

pn∑
k=kn+1

αk,n(v1(x0), ..., vpn(x0), vprior(x0))Mk(x0)

∣∣∣∣∣
∣∣∣∣∣ .

Hence, since Xkn+1, ..., Xpn are composed only of elements of {wi}i∈N,

lim inf
n→∞

||Y (x0)− M̄An(x0)|| ≥ V (δ1) > 0.

C Proof of Proposition 11
Complexities: under chosen assumption on α and β coefficients, for a regular tree and in the case of
simple Kriging sub-models, Cα =

∑ν̄
ν=1

∑nν
i=1 αc

3
ν = α

∑ν̄
ν=1 c

3
νnν and Cβ =

∑ν̄
ν=1

∑nν
i=2
∑i−1
j=1 βc

2
ν =

β
2
∑ν̄
ν=1 nν(nν − 1)c2ν . Notice that the sum starts from ν = 1 in order to include sub-models calcu-

lation. Equilibrated trees complexities: In a constant child number setting, when cν = c for all ν,
the tree structure ensures that nν = n/cν , thus as c = n1/ν̄ , we get when n → +∞, Cα ∼ αn1+ 2

ν̄

and Cβ ∼ β
2n

2. The result for equilibrated two-layer tree where ν̄ = 2 directly derives from this
one, and in this case Cα ∼ αn2 and Cβ ∼ β

2n
2 (it derives also from the expressions of Cα, Cβ , when

c1 = c2 =
√
n, n1 =

√
n, n2 = 1). Optimal tree complexities: One easily shows that under the cho-

sen assumptions Cβ ∼ β
2n

2. Thus, it is indeed not possible to reduce the whole complexity to lower
orders than O(n2). However, one can choose the tree structure in order to reduce the complexity Cα.
For a regular tree, nν = n/(c1 · · · cν) so that ∂

∂ck
nν = −1{ν≥k}nν/ck. Using a Lagrange multiplier

`, one defines ξ(k) = ck
∂
∂ck

(Cα − `(c1 · · · cν̄ − n)) = 3αc3knk − α
∑ν̄
ν=k c

3
νnν − `c1 · · · cν̄ . The tree

structure that minimizes Cα is such that for all k < ν̄, ξ(k) = ξ(k + 1) = 0. Using ck+1nk+1 = nk,

one gets 3c2k+1 = 2c3k for all k < ν̄, and setting c1 · · · cν̄ = n, cν = δ (δ−ν̄n)
δν−1

2(δν̄−1) , ν = 1, . . . , ν̄,
with δ = 3

2 . Setting γ = 27
4 δ
− ν̄
δν̄−1 (1− δ−ν̄). After some direct calculations this tree structure

corresponds to complexities, Cα = γαn
1+ 1

δν̄−1 and Cβ ∼ β
2n

2. In a two-layers setting one gets
c1 =

( 3
2
)1/5

n2/5 and c2 =
( 3

2
)−1/5

n3/5, which leads to Cα = γαn9/5 and Cβ = β
2n

2 − β
2
( 3

2
) 1

5 n
7
5 ,

where γ = ( 2
3 )−2/5 +( 2

3 )3/5 ' 1.96 (eventually notice that even for values of n of order 105, terms of
order like n9/5 are not necessarily negligible compared to those of order n2, and that Cβ is slightly
affected by the choice of the tree structure, but the global complexity benefits from the optimization
of Cα).
Storage footprint: First, covariances can be stored in triangular matrices. So temporary objects
M , k and K in Algorithm 1 require the storage of cmax(cmax + 5)/2 real values. For a given step
ν, ν ≥ 2, building all vectors αi requires the storage of

∑nν
i=1 c

ν
i = nν−1 values. At last, for a

given step ν, we simultaneously need objects Mν−1,Kν−1,Mν ,Kν , which require the storage of
nν−1(nν−1 + 3)/2 +nν(nν + 3)/2 real values. In a regular tree, as nν is decreasing in ν, the storage
footprint is S = (cmax(cmax + 5) + n1(n1 + 5) + n2(n2 + 3))/2. Hence the equivalents for S for the
different tree structures, S ∼ n for the two-layer equilibrated tree, S ∼ 1

2n
2−2/ν̄ for the ν̄-layer,

ν̄ > 2, and the indicated result for the optimal tree. Simple orders are given in the proposition,
which avoids separating the case ν̄ = 2 and a cumbersome constant for the optimal tree.
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