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Abstract

We consider a multidimensional stochastic differential equation Y writ-
ten as a drift-perturbation of an ergodic Ornstein-Uhlenbeck process X.
Under the condition of time-reversibility of X, we derive a first and sec-
ond order expansion of the stationary distribution µY of Y in terms of X.
Error estimates are established. These approximations are then turned
into a simulation scheme for sampling approximately according to µY .
Numerical experiments support the theoretical error estimates.

Keywords: ergodic diffusion, invariant measure, time-reversibility, per-
turbation method, asymptotic expansion
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1 Introduction

The problem. Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space support-
ing a q-dimensional Brownian motion W , with q ≥ 1 and the usual assumptions
on the filtration. Consider the Rd-valued solution (Yt)t≥0 of the stochastic dif-
ferential equation

dYt =
[
−AYt + β(Yt)

]
dt+ ΣdWt, Y0 independent of W, (1.1)

where A is d × d-matrix, Σ is d × q-matrix and β : Rd 7→ Rd is a measurable
function, quantities that satisfy assumptions specified later. We assume that Y
has a unique invariant measure µY , and we are concerned by the approximation
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and simulation of µY using an instrumental process X and its invariant distri-
bution µX (assuming so far it exists). Namely, X is the solution of the linear
SDE (generalized Ornstein-Uhlenbeck equation)

dXt = −AXtdt+ ΣdWt, X0 independent of W. (1.2)

While µY is hardly tractable and not easily simulable, µX is rather explicit
(Gaussian distribution) and can be advantageously used to approximate µY :
our work provides a numerical scheme to achieve this purpose. Our main results
(Theorems 1 and 2) state that

µY (dx)≈ (1 + ck(x))µX(dx) (1.3)

with some explicit correction terms ck that depend of the approximation or-
der k. Our analysis is supported by theoretical error estimates and numerical
experiments. Essentially we consider that Y is a perturbation of X, and our
analysis may be justified by β small in a suitable sense.

Background results. Our strategy is based on stochastic approximation
techniques, in the spirit of the proxy expansion of [GM14]. This is quite differ-
ent from the literature on small noise expansion [FS86][FW98], or small time
asymptotics [Wat87][KP10], or even multiscale asymptotics of [FPSK11]. To the
best of our knowledge, this is the first time that the problem of approximating
invariant distribution is tackled, which gives raise to new challenges compared
to the previous works.

In this paper, we will only derive a limited number of correction terms in
(1.3) (first and second order approximation), but in principle any order could
be achieved. The main term is the stationary distribution of the OU process
X. In practice, the first and second order correction terms provide an excellent
accuracy. The final second order approximation takes the form

µY (dx) ≈ E
[
ξ2(τ1, τ2, X

x
τ1 , X

x
τ2 , X

x
τ1+τ2 , x)

]
µX(dx)

where ξ2(·) is explicit, Xx stands for the OU process starting from x and (τ1, τ2)

are independent exponentially-distributed random variables. The above repre-
sentation is very convenient to sample according to µY , as we will see later.

Approximation strategy. It consists in defining a suitable interpolation be-
tween the distributions of X and Y , and performing expansion along this in-
terpolation. Actually, this is done for the marginal of the processes at time
T → +∞. The crucial part lies in the derivation of explicit correction terms. As
a difference with strong approximation techniques like in [Wat87][FW98][KP10],
we have to control in the weak sense XT and YT as T → +∞, since strong es-
timates explode in large time. To achieve this weak convergence analysis, we
use in an essential manner the reversibility of the process X to pull back the
computations in large time to small time, and derive in this way explicit repre-
sentations. Furthermore, when taking T → +∞ we show that expansion errors
can be well controlled.
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Outline of the paper. We first give notations used throughout the paper.
Section 2 gathers preliminary properties on X and Y . In particular we provide
necessary and sufficient conditions under which X is a reversible process; these
results are interesting on their own, besides they will be crucially used in the
subsequent expansion analysis. In Section 3, we state our main approximation
results and analyse the errors. In Section 4, we investigate how to turn the ex-
pansion results into simulation algorithms of µY and we perform some numerical
experiments.

Notations and basic definitions. The following are used frequently through-
out this paper.

Vector. |x| is the Euclidean norm of a vector x ∈ Rd. Its sup-norm is denoted
by |x|∞.

Its i-th coordinate is xi, or xi,t if x = xt depends on time.

Matrix. If A = (Ai,j) is a square matrix, A> denotes its transpose, Tr(A) its
trace and det(A) its determinant. λ(A) denotes the spectrum of A.

Id is the d× d-identity matrix.

For a symmetric matrix A, λmax,A and λmin,A stand for the maximum and
minimum eigenvalues of A.

Definition 1. [Kha02, p. 135] A square matrix H is called a Hurwitz
matrix if its eigenvalues have negative real parts, i.e. its spectrum λ(H)

is included in {λ ∈ C : Re(λ) < 0}.

‖A‖ is the matrix norm of A subordinated to the Euclidean norm.

vec(A) is the vectorizing operator applied to A, it stacks the columns of
A into a vector.

The Kronecker product A⊗B of matrix A = (Aij)1≤i≤m,1≤j≤n and B =

(Bij)1≤i≤k,1≤j≤l is defined as

A⊗B =


A11B A12B . . . A1nB

A21B A22B . . . A2nB
...

...
...

...
Am1B Am2B . . . AmnB

 ,
where A⊗B is a mk × nl matrix.

We also recall that if the matrices M1, M2 and M3 are conformable for
matrix multiplication then

vec (M1M2M3) =
(
M>3 ⊗M1

)
vec (M2) . (1.4)

If M1 and M2 are two matrices of the same size, then

Tr
(
M>1 M2

)
= (vec (M1))

>
vec (M2) .
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Functions. For a vector (resp. matrix) valued function ϕ, |ϕ|∞ stands for
sup
t,x
|ϕ(t, x)| (resp. sup

t,x
‖ϕ(t, x)‖).

For a smooth function ϕ(w), ∂wiϕ(w) stands for the partial derivative of
ϕ with respect to wi.

If ϕ : Rd → Rq, then ∇ϕ(x) is defined as the q × d-matrix

∇ϕ(x) := [∂x1
ϕ(x), · · · , ∂xdϕ(x)] .

For a smooth drift function β : Rd 7→ Rd, we set β(1)(x) := ∇β(x),
β(2)(x) := ∇ vec(β(1))(x) and β(3)(x) := ∇ vec(β(2))(x).

For a smooth test function h : Rd 7→ R, we set h(1)(x) := ∇h(x), h(2)(x) :=

(∂xi,xjh(x))i,j and h(3)(x) := ∇ vec(h(2))(x).

The divergence of ϕ : Rd → Rd is div(ϕ) := Tr(∇ϕ).

Generic constants. We shall denote by c all constants which depend only on
universal constants and the dimension d.

2 Preliminary results

2.1 Exponential of a Hurwitz matrix

We will repeatedly use the large time behavior of eHt as t → +∞, for a given
square matrix H. Consider its Jordan matrix canonical decomposition [FF07,
Chapter 1, Section 7], H = THJHT

−1
H , for which TH comprises the generalized

eigenvectors of H and JH is block diagonal, i.e.

JH =



Jk1,H (λ1,H) 0 0 . . . 0

0 Jk2,H (λ2,H) 0 . . . 0

0 0 Jk3,H (λ3,H)
. . . 0

...
...

...
. . . 0

0 0 0 . . . Jkm,H (λm,H)


and each block has the form

Jki,H (λi,H) =



λi,H 1 0 . . . 0

0 λi,H 1 . . . 0

0 0 λi,H
. . . 0

...
...

...
. . . 1

0 0 0 . . . λi,H


(ki,H × ki,H)

where ki,H is the multiplicity of λi,H .
Then, we can write exp(Ht) = TH exp(JHt)T

−1
H . Since JH is block diagonal,

so is exp(JHt); in particular, for each submatrix of the form Jki,H (λi,H) on the
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block diagonal of JH , exp(JHt) will contain the diagonal block

exp(Jki,H (λi,H)t) = exp(λi,Ht)



1 t 1
2 t

2 . . . 1
(ki,H−1)! t

ki,H−1

0 1 t . . . 1
(ki,H−2)! t

ki,H−2

0 0 1
. . .

...
...

...
...

. . . t

0 0 0 . . . 1


(ki,H × ki,H) .

Then, it becomes clear that if H is a Hurwitz matrix, eHt converges to 0, with
some precise exponential rate. We have proved the following result.

Lemma 1. If H is a Hurwitz matrix, then for any λH ∈ (0,−maxλ∈λ(H)Re(λ))

there exist cH > 0 and cvec (H) > 0 such that∥∥eHt∥∥ ≤ cHe−λHt and
∣∣vec

(
eHt
)∣∣ ≤ cvec (H)e

−λHt ∀t ≥ 0.

2.2 The generalized Ornstein-Uhlenbeck process

We collect in this paragraph the main results on X. It will serve as a basis
for all this work. The two following statements are standard, see for instance
[KS91, Section 5.6].

Proposition 1. Assume that the random variable X0 is independent of W and
is square integrable. Then, there exists a unique square integrable solution to
(1.2), represented as

Xt = e−At
[
X0 +

ˆ t

0

eArΣdWr

]
. (2.1)

Its mean mt := E(Xt) and covariance Vt,s := E(XtX
>
s ) are given by

mt := e−AtE(X0), (2.2)

Vt,s := e−At
(
E(X0X

>
0 ) +

ˆ t∧s

0

eArΣΣ>eA
>rdr

)
e−A

>s (2.3)

for any s ≥ 0 and t ≥ 0. Additionally, for any t ≥ s ≥ 0, the distribution of Xt

conditioned on Xs is Gaussian

N
(
e−A(t−s)Xs,

ˆ t−s

0

e−ArΣΣ>e−A
>rdr

)
. (2.4)

Proof. (2.1) is a direct consequence of the Itô formula. Identities (2.2)-(2.3)-
(2.4) are straightforward.

Proposition 2. Assume that −A is a Hurwitz matrix. Then, X has a unique
stationary distribution µX which is Gaussian with mean 0 and covariance

V∞ :=

ˆ +∞

0

e−ArΣΣ>e−A
>rdr. (2.5)
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Under the stationary distribution, we have

Vt,s = e−A(t−s)V∞ (2.6)

for any t ≥ s ≥ 0.

Proof. Owing to Lemma 1, both matrices e−At and e−A
>t converge to 0 ex-

ponentially fast as t → +∞. Then, the stochastic integral e−At
´ t
0
eArΣdWr

is Gaussian, centered, with covariance
´ t
0
e−AsΣΣ>e−A

>s → V∞ as t → +∞:
thus, the related Wiener stochastic integral converges weakly to µX . Since
e−AtX0 converges almost surely to 0 and in view of (2.1), we have proved the
weak convergence of X to µX . If X0 has the Gaussian distribution µX , then X
is a Gaussian process, with mean 0 (see (2.2)): the covariance matrix of Xt is
(see (2.3))

Vt,t = e−At
(
V∞ +

ˆ t

0

eArΣΣ>eA
>rdr

)
e−A

>t = V∞. (2.7)

From the above and (2.3), we easily deduce (2.6).

In our subsequent approximation approach (Section 3), we make use of the
property of time-reversibility ofX, i.e. for any non-negative times t and s, under
the stationary distribution the processes (Xr)s≤r≤t and (Xs+t−r)s≤r≤t have the
same distribution. In the case of discrete-time Gaussian linear processes, this
time-reversibility question is investigated in [TZ05]. Here in our continuous-time
framework, we establish a rather explicit equivalence criterion with a specific
proof. To the best of our knowledge, this statement is new.

Proposition 3. Assume that the assumptions of Proposition 2 hold and that
X is considered under the stationary distribution µX . Then X is reversible if
and only if AΣΣ> is a symmetric matrix, i.e.

AΣΣ> = ΣΣ>A>. (2.8)

Furthermore, we have in this case

V∞ =
1

2
A−1ΣΣ>. (2.9)

Proof. Note that (2.9) directly follows from (2.5) and (2.8).
Because of the Gaussian properties of X, time-reversibility is equivalent to

Vt,s = Vs,t for any t ≥ s ≥ 0. Observe that Vs,t = V >t,s.
Proof of ⇐=: we first prove by induction that AkΣΣ> = ΣΣ>[A>]k for any
k ≥ 1. This is true for k = 1 because of (2.8); assuming the property for k,
then Ak+1ΣΣ> = A[AkΣΣ>] = A[ΣΣ>[A>]k] = ΣΣ>A>[A>]k = ΣΣ>[A>]k+1,
therefore the announced property.

Second, by writing the matrix exponential as a series, it readily follows that
e−AtΣΣ> = ΣΣ>e−A

>t for any t ≥ 0. We finally deduce

Vt,s
(2.6)
= e−A(t−s)V∞

(2.5)
=

ˆ +∞

0

e−Are−A(t−s)ΣΣ>e−A
>rdr
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(2.8)
=

ˆ +∞

0

e−ArΣΣ>e−A
>(t−s)e−A

>rdr

= V∞e
−A>(t−s) = Vs,t,

therefore the time-reversibility of X.
Proof of =⇒: assume Vt,s = Vs,t for any t ≥ s ≥ 0. For such t and s, write Vt,s
in a form similar to (2.7), i.e.

Vt,s = e−At
(
V∞ +

ˆ s

0

eArΣΣ>eA
>rdr

)
e−A

>s.

A straightforward differentiation w.r.t. s and t (t > s) gives

∂tVt,s = −AVt,s, ∂sVt,s = −Vt,sA> + eA(s−t)ΣΣ>,

∂2s,tVt,s = AVt,sA
> −AeA(s−t)ΣΣ>. (2.10)

Owing to Vs,t = V >t,s, we deduce ∂2s,tVs,t = (AVt,sA
>)>−(AeA(s−t)ΣΣ>)>. Now,

invoking the time-reversibility and identifying the previous equality with (2.10),
we obtain Ae−ArΣΣ> = ΣΣ>e−A

>rA> for any r = t − s > 0. By taking the
limit as r ↓ 0, we obtain the advertised equality (2.8).

Examples 1. Let us consider the assumptions of Proposition 2.

i) If A is symmetric and A and ΣΣ> commute, then reversibility holds.

ii) In the case ΣΣ> = c Id for some c > 0, reversibility is equivalent to sym-
metry of A.

iii) The symmetry of A is not sufficient for time-reversibility: for instance,

take A = diag(1, 2) and ΣΣ> =

(
1 ρ

ρ 1

)
for ρ 6= 0. Indeed AΣΣ> =(

1 ρ

2ρ 2

)
is not symmetric, therefore X is not time-reversible.

iv) There are many situations of reversibility for which A is not symmet-

ric: take ΣΣ> as before and set A =

(
1 ρ(λ− 1)

0 λ

)
for some λ ∈

(0,+∞)\{1}. A is not symmetric but AΣΣ> is, there reversibility holds.

Extension to non-centered Ornstein-Uhlenbeck process. For the sake
of completeness, we briefly expose how to handle the case of a constant term
in the drift coefficient of (1.1) and (1.2), by using a simple translation of the
variables. Namely, consider

dXa
t = (−AXa

t + a)dt+ ΣdWt, Xa
0 independent of W,

with a ∈ Rd, and similarly for Y . Consider the assumptions of Proposition 2
and set m = a

´∞
0
e−Ardr. A similar analysis yields that Xa has a stationary

Gaussian distribution N (m,V∞) (see [KS91, Eq. (6.10-6.11) p.355]): moreover,
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we have the relation Am = a (see [KS91, Eq. (6.12) p.355]). Now, if we put
Xt = Xa

t −m, we obtain dXt = (−AXt+(a−Am))dt+ΣdWt = −AXtdt+ΣdWt.
It means that all subsequent results can be translated from the case a = 0 to
the case a 6= 0, by shifting the space variable from m. In the error estimates of
Theorems 1 and 2, we would have to replace β by β−a. Heuristically, for a given
β, the parameter a should be chosen such that m is approximately equal to the
mean of µY . These heuristics are not captured in our subsequent quantitative
analysis, however this centering property presumably brings further accuracy.

2.3 The perturbed Ornstein-Uhlenbeck process

Recall the process of interest Y defined by (1.1). We impose that β is a Lipschitz
function, ensuring the existence and uniqueness of a strong solution (with square
integrability) for any initial condition Y0 independent ofW and square integrable
(see [KS91, Theorem 2.9 p.289]). Reinforcing the conditions lead to ergodic
properties for Y , as stated in the following standard result.

Proposition 4. Assume that −A is a Hurwitz matrix, that ΣΣ> is non-singular
and that β is a bounded Lipschitz function. Then, Y has a unique stationary
distribution µY , which has a density with respect to the Lebesgue measure; thus
we denote µY (dy) = µY (y)dy.

Furthermore, for any continuous bounded function ϕ : Rd 7→ R and any
x ∈ Rd, we have

lim
t→+∞

E[ϕ(Yt)|Y0 = x] =

ˆ
Rd
ϕ(y)µY (dy). (2.11)

Proof. To prove the existence and uniqueness of a stationary distribution, we
apply [Kha12, Theorem 4.1 and Corollary 4.4] by checking the validity of [Kha12,
assumptions (B1)-(B2), p.107]. The related assumption (B1) is satisfied since
ΣΣ> is non-degenerate. To check (B2) (the mean recurrence time is locally
uniform w.r.t. the starting point), we apply [Kha12, Theorem 3.9] with the
Lyapunov function V (x) = x · P#x where P# is a symmetric non-negative
matrix to be specified hereafter. Denoting by LY the infinitesimal generator
associated to Y , it reduces to check only that LY V (x) ≤ −1 for |x| large enough.
Simple computations give

LY V (x) = 2x>P#(−Ax+ β(x)) + Tr(P#ΣΣ>)

= −x>(P#A+A>P#)x+ 2x · P#β(x) + Tr(P#ΣΣ>)

≤ −x>(P#A+A>P#)x+
1

2
|x|2 + 2|P#β|2∞ + Tr(P#ΣΣ>).

Now, for a given symmetric positive-definite matrix Q we consider solutions P
to the Lyapunov equation

PA+A>P = Q.

By [Kha02, Theorem 4.6] and since −A is Hurwitz, there is a unique solution PQ
in the class of symmetric positive-definite matrices. Denote by P# the solution
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associated to Q = Id. This choice ensures that the related Lyapunov function
V satisfies LY V (x) ≤ − 1

2 |x|
2 +2|P#β|2∞+Tr(P#ΣΣ>), therefore the requested

behavior for |x| large.
The existence of of a density with respect to the Lebesgue measure is a direct

consequence of [Kha12, Lemma 4.16].
Finally, [Kha12, Theorem 4.3] gives the convergence (2.11) and we are done.

3 Main approximation results

We start by listing the working assumptions we need, in order to ensure the
validity of approximation.

(H-i) −A is a Hurwitz matrix.
Choose λ0,A ∈ (0,minλ∈λ(A)Re (λ)): for such λ0,A, define

A0 := A− λ0,AId;

note that −A0 is a Hurwitz matrix. Denote by cA > 0 the constant such
that

∥∥e−As∥∥ ≤ cAe−λ0,As, ∀s ≥ 0 (see Lemma 1).

(H-ii) AΣΣ> is symmetric.

(H-iii) ΣΣ> is non-singular.

(H-iv) β is a d×1 vector and all its derivatives up to third order are bounded.

(H-v) h is a continuous bounded function and its derivatives up to third order
exist and are bounded.

(H-vi) λ0,A > cA|β(1)|∞, where λ0,A, cA > 0 are the constants from (H-i). We
set

c(3.1) :=
cA

λ0,A − cA|β(1)|∞
. (3.1)

3.1 Strategy

For the sake of pedagogy, we outline the main arguments for the first-order
approximation only. The full justification is given in Subsection 3.3. We aim at
approximating ˆ

Rd
h(y)µY (y)dy −

ˆ
Rd
h(x)µX(x)dx

for some test functions h in a certain class (assumption (H-v)). To study the
approximation of µY by µX , we use the solution denoted by Ỹ starting from
µX (independent of W ):

dỸt =
(
−AỸt + β(Ỹt)

)
dt+ ΣdWt, Ỹ0

d
= N (0, V∞) = µX .

By the sake of symmetry, we also denote by X̃ the process solution without the
above β-term, starting from µX .
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Finite-time approximation. Under the standing assumption (H-i), recall
that V∞ is properly defined in (2.5). For a given T > 0, consider furthermore
that

Ex
[
h(ỸT )

]
:= E

[
h(ỸT ) | Ỹ0 = x

]
,

EµX
[
h(ỸT )

]
:=

ˆ
Rd

Ex
[
h(ỸT )

]
µX(x)dx.

First, we get the following lemma.

Lemma 2. Assume (H-i)-(H-ii)-(H-iii)-(H-iv). For any continuous bounded
function h : Rd → R, we have

lim
T→+∞

EµX
[
h(ỸT )

]
=

ˆ
Rd
h(y)µY (y)dy, (3.2)

lim
T→+∞

EµX
[
h(X̃T )

]
=

ˆ
Rd
h(x)µX(x)dx. (3.3)

Parameterization. Then, we introduce the d-dimensional parameterized pro-
cess

dX̃ε
t =

(
−AX̃ε

t + εβ(X̃ε
t )
)

dt+ ΣdWt, X̃ε
0
d
= µX (3.4)

for ε ∈ [0, 1] and we define

X̃ε
i,t =

∂iX̃ε
t

∂εi
, X̃i,t =

∂iX̃ε
t

∂εi

∣∣∣∣∣
ε=0

.

These derivatives up to the second order are well defined by an application of
[Kun97]. A simple computation shows that X̃0,t = X̃t and

dX̃1,t =
(
−AX̃1,t + β(X̃t)

)
dt, X̃1,0 = 0. (3.5)

With this d-dimensional parameterization, we can derive a decomposition of
EµX

[
h(ỸT )

]
.

Decomposition. For a continuous bounded function h, with bounded deriva-
tives, we expand EµX

[
h(ỸT )

]
to the first order. Applying the Taylor expansion

to EµX
[
h(X̃ε

T )
]
for ε = 1 around ε = 0, we have

EµX
[
h(ỸT )

]
= EµX

[
h(X̃T )

]
+ C1(T ) + Error1(T ) (3.6)

where

C1(T ) := EµX
[
h(1)(X̃T )X̃1,T

]
,

Error1(T ) :=

ˆ 1

0

(1− u)EµX
[
(X̃u

1,T )>h(2)(X̃u
0,T )(X̃u

1,T )

+ h(1)(X̃u
0,T )X̃u

2,T

]
du. (3.7)
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Taking limits as T → +∞. Owing to Lemma 2, the first two terms of (3.6)
converge respectively to

ˆ
Rd
h(y)µY (y)dy and

ˆ
Rd
h(y)µX(y)dy.

Besides, we will also show that the first correction term converges (see Equation
(3.24)):

lim
T→+∞

C1(T ) =

ˆ
Rd
h(x)c1(x)µX(x)dx

where c1(x) is given in Theorem 1. Here, we use Time-Reversibility of X
to obtain Equation (3.21), which allows us to derive the above limit. More-
over, we also prove that the error term, Error1(T ), is uniformly bounded (when
T → +∞) and controlled like Estimate (3.11) by assuming Assumption (H-vi).
Therefore, this shows the approximate stationary distribution of µY to be

µY,1(dx) = (1 + c1(x))µX(dx),

with an error bound for smooth test functions h.

3.2 First and second order expansions

We now state the main results obtained by using the above approximation strat-
egy.

Theorem 1 (First-order approximation). If we assume (H-i) to (H-vi), then
we have ˆ

Rd
h(y)µY (y)dy =

ˆ
Rd
h(x) (1 + c1(x))µX(x)dx+ Error1, (3.8)

where

c1(x) = Ex

x>V −1∞ e−A0τ1β(X̃τ1)

λ0,A
−

Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)
λ0,A

 (3.9)

and τ1
d
= Exp (λ0,A) is independent of the Brownian motion W . Additionally,

we have

|c1(x)| ≤ cA
λ0,A
|x|
∥∥V −1∞ ∥∥ |β|∞ +

dc2A|β(1)|∞
2λ0,A

, (3.10)

|Error1| ≤ c
(
c2(3.1)|β|

2
∞|h(2)|∞

+
(
c2(3.1)|β

(1)|∞|β|∞ + c3(3.1)|β
(2)|∞|β|2∞

)
|h(1)|∞

)
. (3.11)

As a consequence, the stationary distribution of Y is approximated by

µY,1(dx) := (1 + c1(x))µX(dx). (3.12)
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We refer to (3.8) as a first-order approximation since the error term is quadratic
in β and its derivatives. For the purpose of simulation in Section 4, we shall
compute an explicit upper bound on c1 as we do in (3.10).

Observe that µY,1(x)dx is a finite measure on Rd (owing to (3.10)), its mass
equals 1 (take h = 1 in (3.8)) but it is not necessarily a density (even for small
β). This is discussed later in Section 4.

Theorem 2 (Second-order approximation). If we assume (H-i) to (H-vi),
then we haveˆ

Rd
h(y)µY (y)dy =

ˆ
Rd
h(x) (1 + c1(x) + c21(x) + c22(x))µX(x)dx

+ Error2, (3.13)

where

c21(x) = Ex

[
x>V −1∞ e−A0τ1β(1)(X̃τ1)e−A0τ2β(X̃τ1+τ2)

λ20,A

− 1

λ20,A
Tr
({(

β>(X̃τ1+τ2)e−A
>
0 τ2
)
⊗ e−A0τ1

}
β(2)(X̃τ1)e−Aτ1

+e−Aτ1β(1)(X̃τ1)e−Aτ2β(1)(X̃τ1+τ2)e−A0(τ1+τ2)
)]

and

c22(x) = Ex

[{
−x>V −1∞ e−Aτ1β(1)(X̃τ1)e−A0(τ1+τ2)β(X̃τ2)

+ Tr
({(

β>(X̃τ2)e−A
>
0 (τ1+τ2)

)
⊗ e−Aτ1

}
β(2)(X̃τ1)e−Aτ1

)
+ Tr

(
e−Aτ1β(1)(X̃τ1)e−A0(τ1+τ2)β(1)(X̃τ2)e−Aτ2

)
+β>(X̃τ2)e−A

>
0 τ2V −1∞ xx>V −1∞ e−A0τ1β(X̃τ1)

−x>V −1∞ e−Aτ2β(1)(X̃τ2)e−A0(τ1+τ2)β(X̃τ1)

−β>(X̃τ2)e−A
>
0 τ2V −1∞ e−A0τ1β(X̃τ1)

−x>V −1∞ e−A0τ2β(X̃τ2) Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)
−x>V −1∞ e−A0τ1β(X̃τ1) Tr

(
e−A0τ2β(1)(X̃τ2)e−Aτ2

)
+
(

vec
(
e−2A

>τ2
))>

β(2)(X̃τ2)e−A0(τ1+τ2)β(X̃τ1)

+ Tr
(
e−A0τ2β(1)(X̃τ2)e−Aτ2

)
Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)}
1τ1<τ2

λ20,A

]

with τ2
d
= Exp (λ0,A) independent of τ1 and the Brownian motion W . Addition-

ally, we have

|c21(x)| ≤
c2A
∥∥V −1∞ ∥∥ |β|∞|β(1)|∞|x|

λ20,A
+
dc3A|β|∞|β(2)|∞

2λ20,A
+
dc3A|β(1)|2∞

4λ20,A
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and

|c22(x)| ≤ cA|β(2)|∞|β|∞
4λ20,A

(
dc2A +

cvec(−2A>)

3

)
+
dc3A|β(1)|2∞

8λ20,A
(dcA + 1)

+
c2A
∥∥V −1∞ ∥∥ |β(1)|∞|β|∞|x|

2λ20,A
(1 + dcA)

+
c2A
∥∥V −1∞ ∥∥ |β|2∞

2λ20,A

(
|x|2

∥∥V −1∞ ∥∥+ 1
)
.

Moreover, the Error term is bounded by

|Error2|

≤ c
(
|h(3)|∞c3(3.1)|β|

3
∞ + |h(2)|∞c3(3.1)|β|

2
∞

(
|β(1)|∞ + c(3.1)|β(2)|∞|β|∞

)
+|h(1)|∞c3(3.1)|β|∞

[(
|β(1)|∞ + c(3.1)|β(2)|∞|β|∞

)2
+|β|∞

(
|β(2)|∞ + c(3.1)|β(3)|∞|β|∞

)])
. (3.14)

Consequently, the stationary distribution of Y is approximated by

µY,2 (dx) := (1 + c1(x) + c21(x) + c22(x))µX (dx) . (3.15)

Since the error term is cubic in β and its derivatives, (3.13) is a second-order
approximation. Here again, µY,2(x)dx is a finite measure on Rd with mass equal
to 1 but not necessarily a probability density.

3.3 Proof of Theorem 1

The proof is split into several steps.

Step 1) Preliminary estimates. The following result is instrumental in our
analysis.

Proposition 5. Let Z be the Rd-valued solution to

dZs = ((−A+ αs)Zs + γs) ds, Z0 = 0,

where α and γ are two bounded measurable functions (resp. a d× d matrix and
a vector in Rd), and A is a d×d matrix function such that

∥∥e−As∥∥ ≤ cAe−λ0,As

(cA > 0, λ0,A > 0). Then, if λ0,A > cA|α|∞, we have

sup
T≥0
|ZT | ≤

cA|γ|∞
λ0,A − cA|α|∞

. (3.16)

Moreover, if we assume that B(t) := −A+ αt commutes with B(s) for every s
and t, then Z writes

ZT =

ˆ T

0

exp

(ˆ T

s

B(u)du

)
γsds. (3.17)
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Proof. The second statement is easily derived by writing (under the commuta-
tivity assumption on (B(s) : s ≥ 0))

e−
´ t
0
B(u)duZt =

ˆ t

0

e−
´ s
0
B(u)duγsds,

then simplifying (still under the commutativity assumption).
The representation (3.17) can be an intermediate step in the derivation of

(3.16). However, in our analysis, we need (3.16) without the restrictive commu-
tativity assumption. We employ another approach using Gronwall inequality.
Use (3.17) with the commutative family B(s) = −A (by adjusting γ to γ+αZ),
hence

Zt =

ˆ t

0

e−A(t−s)γsds+

ˆ t

0

e−A(t−s)αsZsds.

Then take the norm and apply Minkowski inequality: it follows

|Zt| ≤
cA|γ|∞
λ0,A

+

ˆ t

0

cA|α|∞e−λ0,A(t−s)|Zs|ds,

eλ0,At|Zt| ≤
cA|γ|∞
λ0,A

eλ0,At +

ˆ t

0

cA|α|∞eλ0,As|Zs|ds.

The Gronwall inequality yields

eλ0,At|Zt| ≤
cA|γ|∞
λ0,A

eλ0,At +

ˆ t

0

c2A|γ|∞|α|∞
λ0,A

eλ0,As exp (cA|α|∞ (t− s)) ds,

|Zt| ≤
cA|γ|∞
λ0,A

+
c2A|γ|∞|α|∞

λ0,A

ˆ t

0

exp (− (λ0,A − cA|α|∞) (t− s)) ds

≤ cA|γ|∞
λ0,A − cA|α|∞

.

The previous proposition allows us to directly control uniformly in time the
process X̃ε

1,., solution to

dX̃ε
1,t =

(
−AX̃ε

1,t + β(X̃ε
0,t) + εβ(1)(X̃ε

0,t)X̃
ε
1,t

)
dt, X̃ε

1,0 = 0.

Lemma 3. Assume (H-i)-(H-iv)-(H-vi). We have, for any ε ∈ [0, 1],

sup
T≥0

∣∣∣X̃ε
1,T

∣∣∣ ≤ c(3.1)|β|∞.
We proceed similarly for X̃ε

2,., solution to

dX̃ε
2,t =

(
−AX̃ε

2,t + 2β(1)(X̃ε
0,t)X̃

ε
1,t + εβ(1)(X̃ε

0,t)X̃
ε
2,t

+ε∂ε

(
β(1)(X̃ε

0,t)
)
X̃ε

1,t

)
dt, X̃ε

2,0 = 0. (3.18)
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Lemma 4. Assume (H-i)-(H-iv)-(H-vi). We have, for any ε ∈ [0, 1],

sup
T≥0

∣∣∣X̃ε
2,T

∣∣∣ ≤ c(c2(3.1)|β(1)|∞|β|∞ + c3(3.1)|β
(2)|∞|β|2∞

)
.

Proof. We observe that the matrix ∂ε

(
β(1)(X̃ε

0,t)
)

has a norm bounded by

c|β(2)|∞ supT≥0

∣∣∣X̃ε
1,T

∣∣∣. Therefore, Proposition 5 combined with Lemma 3 yields

sup
T≥0

∣∣∣X̃ε
2,T

∣∣∣ ≤ c(3.1) (2|β(1)|∞c(3.1)|β|∞ + c|β(2)|∞
(
c(3.1)|β|∞

)2)
.

Additionally, using Lemma 1, we easily prove the following.

Lemma 5. Assume (H-i)-(H-iv). We have∣∣∣Tr
(
e−A0rEx

[
β(1)(X̃r)

]
e−Ar

)∣∣∣ ≤ d c2Ae−λ0,Ar|β(1)|∞.

Proof of Lemma 2. We prove a slightly more general statement regarding
X̃ε
T for any given ε ∈ [0, 1]. Denote by µX

ε

its stationary distribution, which
exists owing to Proposition 4. If X̃ε

T follows the dynamics of Equation (3.4),
then we have

lim
T→+∞

EµX
[
h(X̃ε

T )
]

= lim
T→+∞

ˆ
Rd

Ex
[
h(X̃ε

T )
]
µX(x)dx

=

ˆ
Rd
µX(x)dx

ˆ
Rd
h(y)µX

ε

(y)dy

(by the dominated convergence theorem and Proposition 4)

=

ˆ
Rd
h(y)µX

ε

(y)dy.

Substituting ε = 1 and ε = 0, we obtain the convergences (3.2) and (3.3)
respectively.

Step 2) Derivation of the first correction term. We start by a crucial
lemma which strongly relies on the time-reversibility of X.

Lemma 6. Let C1(T ) be the first correction term of the finite-time expansion
(3.6). Then

C1(T ) =

ˆ
Rd
h(1)(x)Ex

[
e−A0τ1β(X̃τ1)

1τ1<T

λ0,A

]
µX(x)dx, (3.19)

where τ1
d
= Exp (λ0,A) is independent of the Brownian motion W .
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Proof. We will first derive the explicit form of X̃1,T . Starting from (3.5) for the
equation of X̃1,., then applying Proposition 5 and finally taking advantage of
the Hurwitz property of A (e.g. (H-i)), we get

X̃1,T =

ˆ T

0

e−A(T−s)β(X̃s)ds =

ˆ T

0

e−A0rβ(X̃T−r)
1

λ0,A
λ0,Ae

−λ0,Ardr. (3.20)

By the definition of C1(T ), we have

C1(T ) = EµX
[
h(1)

(
X̃T

)
e−A0τ1β(X̃T−τ1)

1τ1<T

λ0,A

]
= EµX

[
h(1)

(
X̃0

)
e−A0τ1β(X̃τ1)

1τ1<T

λ0,A

]
, (3.21)

where the last equality comes from the time-reversibility of X̃ (valid under
assumption (H-i)-(H-ii), see Proposition 3), and the independence between τ1
and the Brownian motion W (and thus between τ1 and X̃).

Completion of the derivation of the first order correction term. If ϕ(x) : Rd →
Rd, then recall that div (ϕ(x)) = Tr (∇ϕ(x)). Using (2.9), the identity

∇µX(x)

µX(x)
= −x>V −1∞ (3.22)

and (3.19), we obtain after an integration by parts

C1(T ) =

ˆ
Rd
−h(x)div

(
Ex
[
e−A0τ1β(X̃τ1)

1τ1<T

λ0,A

]
µX(x)

)
dx

=

ˆ
Rd
−h(x)

((
∇µX(x)

)
Ex
[
e−A0τ1β(X̃τ1)

1τ1<T

λ0,A

]
+Ex

[
div
(
e−A0τ1β(X̃τ1)

)
1τ1<T

λ0,A

]
µX(x)

)
dx

(3.22)
=

ˆ
Rd
h(x)Ex

[
x>V −1∞ e−A0τ1β(X̃τ1)

λ0,A
1τ1<T

−
Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)
λ0,A

1τ1<T

µX(x)dx

:=

ˆ
Rd
h(x)c1(T, x)µX(x)dx. (3.23)

By Lemmas 1 and 5, we see that c1(T, x) is bounded uniformly in T . We can
easily apply Lebesgue dominated convergence theorem to show that

c1(x) := lim
T→+∞

c1(T, x)

= Ex

x>V −1∞ e−A0τ1β(X̃τ1)

λ0,A
−

Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)
λ0,A

 ,
which is exactly the announced formula for (3.9).
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Step 3) Bounds on c1(T, x) and c1(x). From Equation (3.23), the above
formula for c1 and from Lemma 5, we have

sup
T≥0
|c1(T, x)| ∨ |c1(x)|

≤
ˆ +∞

0

(
cA|x|

∥∥V −1∞ ∥∥ e−λ0,Ar|β|∞ + d c2A|β(1)|∞e−2λ0,Ar
)

dr

=
cA
λ0,A
|x|
∥∥V −1∞ ∥∥ |β|∞ +

d c2A|β(1)|∞
2λ0,A

.

The bounds on c1(T, x) and c1(x) are now proved. They are sufficient to pass
to the limit in (3.23) and obtain

lim
T→+∞

C1(T ) =

ˆ
Rd
h(x)c1(x)µX(x)dx. (3.24)

Step 4) Error estimates. In view of the representation (3.7) of the error at
fixed time, we easily deduce, in view of Lemmas 3 and 4,

sup
T≥0
|Error1(T )| ≤ c

((
c(3.1)|β|∞

)2 |h(2)|∞
+
(
c2(3.1)|β

(1)|∞|β|∞ + c3(3.1)|β
(2)|∞|β|2∞

)
|h(1)|∞

)
.

Step 5) Conclusion. Take the limit of Equation (3.6) as T → +∞, in com-
bination with (3.24) and Lemma 2: it shows that Error1(T ) has a limit as T →
+∞, which we denote by Error1, and this limit is bounded by supT≥0 Error1(T ).
The proof of Theorem 1 is now complete.

3.4 Proof of Theorem 2

As before, the proof is split into multiple steps.

Step 1) Preliminary results. The results presented in this step are neces-
sary for our analysis. First observe that under (H-iv), β(2) = ∇ vec(β(1)) and
β(3) = ∇ vec(β(2)) are well defined and bounded.

Proposition 6. The following derivatives are computed w.r.t. x, the starting
point of the OU process X̃:

∇
(
e−Asβ(1)(X̃s)e

−Atβ(X̃s+t)
)

=
((
β>(X̃s+t)e

−A>t
)
⊗ e−As

)
β(2)(X̃s)e

−As

+ e−Asβ(1)(X̃s)e
−Atβ(1)(X̃s+t)e

−A(s+t), (3.25)

∇
(
x>V −1∞ e−Aqβ(X̃q)

)
= β>(X̃q)e

−A>qV −1∞

+ x>V −1∞ e−Aqβ(1)(X̃q)e
−Aq, (3.26)

∇Tr

((
e−2A

>q
)>

β(1)(X̃q)

)
=
(

vec
(
e−2A

>q
))>

β(2)(X̃q)e
−Aq. (3.27)
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Proof. Note that ∂xX̃τ1 = e−Aτ1 under the Px-measure, see (2.1). To prove
Equation (3.25), we have to recall the fact that vec (M1M2M3) =(
M>3 ⊗M1

)
vec (M2). We prove Equation (3.26) by a direct matrix differ-

entiation. Lastly, to prove Equation (3.27), we recall that Tr
(
M>1 M2

)
=

(vec (M1))
>

vec (M2).

Proposition 7. The following equality holds:
ˆ +∞

0

ˆ v

0

e−mλ0,Are−nλ0,Avdrdv =
1

n (m+ n)λ20,A
.

Proof. We have
ˆ +∞

0

ˆ v

0

e−mλ0,Are−nλ0,Avdrdv =
1

mλ0,A

ˆ +∞

0

e−nλ0,Av − e−(m+n)λ0,Avdv

=
1

mλ0,A

(
1

nλ0,A
− 1

(m+ n)λ0,A

)
=

1

n (m+ n)λ20,A
.

Lemma 7. Assume (H-i)-(H-iv)-(H-vi). We have, for any ε ∈ [0, 1],

sup
T≥0

∣∣∣X̃ε
3,T

∣∣∣ ≤ cc3(3.1)|β|∞((|β(1)|∞ + c(3.1)|β(2)|∞|β|∞
)2

+ |β|∞
(
|β(2)|∞ + c(3.1)|β(3)|∞|β|∞

))
.

Proof. From Equation (3.18), we obtain

dX̃ε
3,t =

[
−AX̃ε

3,t + εβ(1)(X̃ε
0,t)X̃

ε
3,t + 3β(1)(X̃ε

0,t)X̃
ε
2,t + 3∂ε

(
β(1)(X̃ε

0,t)
)
X̃ε

1,t

+ 2ε∂ε

(
β(1)(X̃ε

0,t)
)
X̃ε

2,t + ε∂2ε

(
β(1)(X̃ε

0,t)
)
X̃ε

1,t

]
dt.

Therefore, invoking Proposition 5, Lemma 3 and 4 together with the facts that
∂ε

(
β(1)(X̃ε

0,t)
)

has a norm bounded by c|β(2)|∞ supT≥0 |X̃ε
1,T | and

∂2ε

(
β(1)(X̃ε

0,t)
)
has a norm that can be bounded by c

(
|β(3)|∞(supT≥0 |X̃ε

1,T |)2+

|β(2)|∞ supT≥0 |X̃ε
2,T |
)
yields the announced result after factorization.

Step 2) Derivation of the second correction term. The decomposition
of EµX

[
h(ỸT )

]
to the second order correction term is

EµX
[
h(ỸT )

]
= EµX

[
h(X̃0,T )

]
+ C1(T ) + C21(T ) + C22(T ) + Error2(T ) (3.28)

where

C21(T ) :=
1

2
EµX

[
h(1)(X̃0,T )X̃2,T

]
,
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C22(T ) :=
1

2
EµX

[
(X̃1,T )>h(2)(X̃0,T )X̃1,T

]
and Error2(T ) as shown in Equation (3.33).

Now, we introduce 2 lemmas which rely on the time-reversibility of X.

Lemma 8. C21(T ) is the first part of the second correction term of our finite-
time expansion (3.28), and it can be represented as

C21(T ) =

ˆ
Rd
h(1)(x)Ex

[
e−A0τ1β(1)(X̃τ1)e−A0τ2β(X̃τ1+τ2)

1τ1+τ2<T

λ20,A

]
µX(x)dx,

with τ1 and τ2 as in Theorems 1 and 2.

Proof. We take ε = 0 for Equation (3.18) before using Proposition 5 and invok-
ing Equation (3.20) to obtain

X2,T =

ˆ T

0

ˆ q

0

2e−A(T−q)β(1)(X̃q)e
−Auβ(X̃q−u)dudq

(r=T−q)
=

ˆ T

0

ˆ T−r

0

2e−A0rβ(1)(X̃T−r)e
−A0uβ(X̃T−r−u)

λ0,Ae
−λ0,Arλ0,Ae

−λ0,Au

λ20,A
dudr.

From the time-reversibility of the OU process X̃ and the independence of τ1
and τ2 with the Brownian Motion W and thus with X̃, we have

C21(T ) = EµX

[
h(1)(X̃T )e−A0τ1β(1)(X̃T−τ1)e−A0τ2β(X̃T−τ1−τ2)

λ20,A
1τ1+τ2<T

]

=

ˆ
Rd
h(1)(x)Ex

[
e−A0τ1β(1)(X̃τ1)e−A0τ2β(X̃τ1+τ2)

λ20,A
1τ1+τ2<T

]
µX(x)dx.

Lemma 9. C22(T ) is the second part of the second order correction term of our
finite-time expansion (3.28), it has the representation

C22(T ) :=

ˆ
Rd

Ex

[
β>(X̃τ1)e−A

>
0 τ1h(2)(x)e−A0τ2β(X̃τ2)

λ20,A
1τ1<τ2<T

]
µX(x)dx,

with τ1 and τ2 as in Theorems 1 and 2.

Proof. We merely proceed as in the proof of Lemma 8. Start from the definition
of C22(T ), writing the quadratic term in X̃1,T as a double time-integral owing
to (3.20), use the symmetry in the time-integral; it readily follows that

C22(T ) = EµX

[
β>(X̃T−τ1)e−A

>
0 τ1h(2)(X̃T )e−A0τ2β(X̃T−τ2)

λ20,A
1τ1<τ2<T

]
.

Now, we conclude by using the time-reversibility property.
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Completion of the derivation of the second order correction term. From Lemma
8, an integration by parts and Proposition 6 with Equations (3.22) and (1.4)
gives

C21(T ) =

ˆ
Rd
h(x)Ex

[{
x>V −1∞ e−A0τ1β(1)(X̃τ1)e−A0τ2β(X̃τ1+τ2)

λ20,A

−Tr


{(
β>(X̃τ1+τ2)e−A

>
0 τ2
)
⊗ e−A0τ1

}
β(2)(X̃τ1)e−Aτ1

λ20,A


−Tr

(
e−A0τ1β(1)(X̃τ1)e−A0τ2β(1)(X̃τ1+τ2)e−A(τ1+τ2)

λ20,A

)}
1τ1+τ2<T

]
µX(x)dx

:=

ˆ
Rd
h(x)c21(T, x)µX(x)dx. (3.29)

Next, from Lemma 9, an integration by parts gives (after some simplifications)

C22(T ) = −
d∑

i,j=1

ˆ
Rd
∂xih(x)

Ex

[
∂xj

([
e−A0τ1β(X̃τ1)

]
i

[
e−A0τ2β(X̃τ2)

]
j
µX(x)

)
1τ1<τ2<T

λ20,A

]
dx

= −
ˆ
Rd
h(1)(x)Ex

[(
e−Aτ1β(1)(X̃τ1)e−A0(τ1+τ2)β(X̃τ2)

−x>V −1∞ e−A0τ2β(X̃τ2)e−A0τ1β(X̃τ1)

+ Tr
(
e−A0τ2β(1)(X̃τ2)e−Aτ2

)
e−A0τ1β(X̃τ1)

)
1τ1<τ2<T

λ20,A

]
µX(x)dx.

Applying another integration by parts yields

C22(T ) =

ˆ
Rd
h(x)Ex

({
−x>V −1∞ e−Aτ1β(1)(X̃τ1)e−A0(τ1+τ2)β(X̃τ2)

+ Tr
({(

β>(X̃τ2)e−A
>
0 (τ1+τ2)

)
⊗ e−Aτ1

}
β(2)(X̃τ1)e−Aτ1

)
+ Tr

(
e−Aτ1β(1)(X̃τ1)e−A0(τ1+τ2)β(1)(X̃τ2)e−Aτ2

)
+x>V −1∞ e−A0τ2β(X̃τ2)x>V −1∞ e−A0τ1β(X̃τ1)

−x>V −1∞ e−Aτ2β(1)(X̃τ2)e−A0(τ1+τ2)β(X̃τ1)

−β>(X̃τ2)e−A
>
0 τ2V −1∞ e−A0τ1β(X̃τ1)

−x>V −1∞ e−A0τ2β(X̃τ2) Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)
−x>V −1∞ e−A0τ1β(X̃τ1) Tr

(
e−A0τ2β(1)(X̃τ2)e−Aτ2

)
+
(

vec
(
e−2A

>τ2
))>

β(2)(X̃τ2)e−A0(τ1+τ2)β(X̃τ1)

+ Tr
(
e−A0τ2β(1)(X̃τ2)e−Aτ2

)
Tr
(
e−A0τ1β(1)(X̃τ1)e−Aτ1

)}
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1τ1<τ2<T

λ20,A

]
µX(x)dx

:=

ˆ
Rd
h(x)c22(T, x)µX(x)dx. (3.30)

So, as for c1(x) we can justify that as T → +∞, c21(T, x) → c21(x) and
c22 (T, x)→ c22(x). Thus, we also have

lim
T→+∞

C21(T ) =

ˆ
Rd
h(x)c21(x)µX(x)dx, (3.31)

lim
T→+∞

C22(T ) =

ˆ
Rd
h(x)c22(x)µX(x)dx. (3.32)

The details are left for the readers.

Step 3) Bounds on c21(T, x) and c21(x). From (3.29) and Proposition 7,
we have

sup
T≥0
|c21(T, x)| ∨ |c21(x)|

≤
ˆ
[0,+∞]2

(
c2A|x|

∥∥V −1∞ ∥∥ e−λ0,A(r+v)|β|∞|β(1)|∞

+ dc3Ae
−λ0,A(2r+v)|β|∞|β(2)|∞ + dc3Ae

−2λ0,A(r+v)|β(1)|2∞
)

dvdr

=
c2A
∥∥V −1∞ ∥∥ |β|∞|β(1)|∞|x|

λ20,A
+
dc3A|β|∞|β(2)|∞

2λ20,A
+
dc3A|β(1)|2∞

4λ20,A
.

The bounds on c21(T, x) and c21(x) are proved.

Step 4) Bounds on c22(T, x) and c22(x). From (3.30) and Proposition 7,
we easily obtain

sup
T≥0
|c22(T, x)| ∨ |c22(x)|

≤ c2A|x|
∥∥V −1∞ ∥∥ |β(1)|∞|β|∞

1

3λ20,A
+ dc3A|β(2)|∞|β|∞

1

4λ20,A

+ dc3A|β(1)|2∞
1

8λ20,A
+ c2A|x|2

∥∥V −1∞ ∥∥2 |β|2∞ 1

2λ20,A

+ c2A|x|
∥∥V −1∞ ∥∥ |β(1)|∞|β|∞

1

6λ20,A
+ c2A

∥∥V −1∞ ∥∥ |β|2∞ 1

2λ20,A

+ dc3A|x|
∥∥V −1∞ ∥∥ |β(1)|∞|β|∞

1

3λ20,A
+ dc3A|x|

∥∥V −1∞ ∥∥ |β(1)|∞|β|∞
1

6λ20,A

+ cAcvec(−2A>)|β(2)|∞|β|∞
1

12λ20,A
+ d2c4A|β(1)|2∞

1

8λ20,A

=
cA|β(2)|∞|β|∞

4λ20,A

(
dc2A +

cvec(−2A>)

3

)
+
dc3A|β(1)|2∞

8λ20,A
(dcA + 1)
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+
c2A
∥∥V −1∞ ∥∥ |β(1)|∞|β|∞|x|

2λ20,A
(1 + dcA) +

c2A
∥∥V −1∞ ∥∥ |β|2∞

2λ20,A

(
|x|2

∥∥V −1∞ ∥∥+ 1
)
.

The bounds on c22(T, x) and c22(x) are proved.

Step 5) Error estimates. By a Taylor expansion of ε 7→ EµX
[
h(X̃ε

T )
]
, we

directly obtain that the error up to the second order correction term is given as

Error2(T ) =
1

2

ˆ 1

0

(1− u)
2 EµX

[(
(X̃u

1,T )> ⊗ (X̃u
1,T )>

)
h(3)(X̃u

T )X̃u
1,T

+3(X̃u
2,T )>h(2)(X̃u

0,T )X̃u
1,T + h(1)(X̃u

0,T )X̃u
3,T

]
du. (3.33)

Thus, in view of the above representation of the error at a fixed time T , we
deduce easily the inequality (3.14) from Lemmas 3, 4 and 7.

Step 6) Conclusion. Taking the limit of Equation (3.28) as T → +∞, in
combination with Equations (3.24), (3.31), (3.32) and Lemma 2, we show that
Error2(T ) has a limit as T → +∞ which is denoted by Error2 and the limit is
bounded by supT≥0 Error2(T ). The proof of Theorem 2 is thus completed.

4 Application to simulation algorithm, numerical
results

In the sequel, we assume the previous hypotheses of Theorems 1 and 2 are in
force.

4.1 Generalized acceptance-rejection algorithm

We give a simulation scheme, in a form that suits well the decompositions (3.12)
and (3.15). The aim is to sample according to a probability distribution µ+ built
from a slightly non-positive unit-mass measure µ; moreover, we control the total
variation distance between the two measures, in terms of the negative part of µ.

Theorem 3. Let µ be a measure on Rd with mass 1 but not necessarily positive,
that can be written as:

µ(dx) = E [ξ (Y x, x)]µ0(dx),

where µ0 (dx) is a probability measure, the distribution of Y x depends on x and
there exists a function H : Rd 7→ R+ such that∣∣∣(ξ (y, x))

+
∣∣∣ ≤ H(x), ∀x, y,

with
´
Rd H(x)µ0 (dx) < +∞. Moreover, assume that 0 <

´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx) <

+∞ and set

µ+ (dx) :=
E
[
(ξ (Y x, x))

+
]
µ0(dx)

´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx)

.
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Then Algorithm 1 produces a random variate with distribution µ+, with an ac-
ceptance rate equal to

p :=

´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx)´

Rd H(z)µ0 (dz)

and an error in total variation given by

|µ− µ+|TV ≤ 2

ˆ
Rd

E
[
(ξ (Y x, x))

−
]
µ0(dx). (4.1)

1 repeat
2 Generate X with distribution H(x)µ0(dx)´

H(x)µ0(dx)
(on Rd)

3 Generate Y with distribution Y x for x = X

4 Generate a uniform [0, 1] random variate U
5 until UH(x) ≤ (ξ (Y,X))

+;
6 Return X

Algorithm 1: Generalized acceptance-rejection method

Proof. Denoting by gx (dy) the distribution of Y x, for any Borel set B we have

P (X (returned) ∈ B) =
1

p
P
(
X ∈ B, UH(x) ≤ (ξ (Y,X))

+
)

=
1

p

ˆ
B

ˆ
(ξ (y, z))

+

H(z)

H(z)µ0 (dz)´
H(x)µ0(dx)

gz (dy)

=
1

p
´
H(x)µ0(dx)

ˆ
B
E
[
(ξ (Y z, z))

+
]
µ0 (dz)

=

´
Rd E

[
(ξ (Y z, z))

+
]
µ0(dx)

p
´
Rd H(x)µ0(dx)

ˆ
B
µ+ (dz) .

Therefore, by setting B = Rd it is clear that the acceptance probability is p, as
advertised, and that the variate produced by the algorithm has distribution µ+.
When ξ (Y x, x) is not non-negative, µ and µ+ may be different. Then the total
variation distance between µ+ and µ is

sup
h:|h|∞≤1

∣∣∣∣ˆ
Rd
h(x)µ (dx)−

ˆ
Rd
h(x)µ+ (dx)

∣∣∣∣
= sup
h:|h|∞≤1

∣∣∣∣ ˆ
Rd
h(x)

E [ξ (Y x, x)]
´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx)− E

[
(ξ (Y x, x))

+
]

´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx)

µ0 (dx)

∣∣∣∣
(since ξ (Y x, x) = (ξ (Y x, x))

+ − (ξ (Y x, x))
−)

= sup
h:|h|∞≤1

∣∣∣∣ ˆ
Rd
h(x)

(E
[
(ξ (Y x, x))

+
] (´

Rd E
[
(ξ (Y x, x))

+
]
µ0(dx)− 1

)
´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx)
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− E
[
(ξ (Y x, x))

−
])

µ0 (dx)

∣∣∣∣
(since 1 =

´
Rd E [ξ (Y x, x)]µ0 (dx))

= sup
h:|h|∞≤1

∣∣∣∣∣
ˆ
Rd
h(x)

(E
[
(ξ (Y x, x))

+
] (´

Rd E
[
(ξ (Y x, x))

−
]
µ0(dx)

)
´
Rd E

[
(ξ (Y x, x))

+
]
µ0(dx)

− E
[
(ξ (Y x, x))

−
])

µ0(dx)

∣∣∣∣∣
≤ 2

ˆ
Rd

E
[
(ξ (Y x, x))

−
]
µ0(dx).

4.2 Simulation algorithm for 1st and 2nd order approxi-
mations

4.2.1 First order simulation scheme

1 repeat
2 Generate K d

= Bern
(

p11
p11+p12

)
; /* sampling of Gaussian mixture

*/
3 if K = 1 then
4 Generate X d

= µX

5 else
6 Generate X d

= N (0, 2V∞)

7 Generate R d
= Exp (λ0,A) ; /* sampling of τ1 */

8 Generate Y d
= N

(
e−ARX,V∞

(
Id− e−2A>R

))
; /* sampling of X̃τ1

using (2.4) */
9 Generate a uniform [0, 1] random variate U

10 until UH1(X) ≤ (ξ1 (R, Y,X))
+;

11 Return X

Algorithm 2: sampling of µY at the first-order accuracy

According to Theorem 1, we have

µY,1(dx) = Ex
[
ξ1

(
τ1, X̃τ1 , x

)]
µX(dx),

with

ξ1(r, y, x) = 1 +
x>V −1∞ e−A0rβ(y)

λ0,A
−

Tr
(
e−A0rβ(1)(y)e−Ar

)
λ0,A

.
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Furthermore, if we let

p11 := 1 +
|β(1)|∞
λ0,A

dc2A,

p12 := 2d/2cA

∣∣∣∣x exp

(
−1

4
x>V −1∞ x

)∣∣∣∣
∞

∥∥V −1∞ ∥∥ |β|∞
λ0,A

,

then

|ξ1(r, y, x)| ≤ H1(x) := p11 + p122−d/2 exp

(
1

4
x>V −1∞ x

)
,

H1(x)µX(dx)´
Rd H1(x)µX(dx)

d
=

p11
p11 + p12

µX(dx) +
p12

p11 + p12
N (0, 2V∞) .

In this form, we obtain that the distribution to simulate in Algorithm 1-Line 2
is simply a mixture of two Gaussian distributions. As a consequence, Algorithm
2 produces a random variate with distribution

(
µY,1

)+
(dx) =

E
[
(ξ1(τ1, X̃τ1 , x))+

]
µX (dx)

´
Rd E

[
(ξ1(τ1, X̃τ1 , x))+

]
µX (dx)

with an acceptance rate p =

´
Rd E

[
(ξ1(τ1,X̃τ1 ,x))

+
]
µX(dx)

p11+p12
. Recall that when β →

0, ξ1 converges to 1: thus, for small β, the acceptance rate p is close to 1.
Starting from (4.1) and invoking Gaussian tail estimates, we can derive a sharp
estimate on the error in TV between µY,1 and

(
µY,1

)+. This is stated as follows,
the easy proof is left to the reader.

Proposition 8. If |β(1)|∞ <
λ0,A

dc2A
, then the total variation distance is controlled

as ∣∣∣µY,1 − (µY,1)+∣∣∣
TV
≤ m1,1e

−m1,2

|β|2∞ ,

where the positive constants m1,1 and m1,2 depend on the model parameters and
are locally uniform when |β|∞ and |β(1)|∞ tend to 0.

This shows that µY,1 and
(
µY,1

)+ are exponentially close to each other as
|β|∞ and |β(1)|∞ are small.

4.2.2 Second order simulation scheme

From Theorem 2, we have

µY,2 (dx) = Ex
[
ξ2(τ1, τ2, X̃τ1 , X̃τ2 , X̃τ1+τ2 , x)

]
µX (dx)

with an explicit function ξ2(·) (derived from c1(x), c21(x), c22(x)). Furthermore,
if we let

p21 := 1 +
dc2A|β(1)|∞

λ0,A
+
dc3A (2 + dcA) |β(1)|2∞

λ20,A
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1 repeat
2 Generate K d

= Bern
(

p21
p21+p22

)
; /* sampling of Gaussian mixture

*/
3 if K = 1 then
4 Generate X d

= µX

5 else
6 Generate X d

= N (0, 2V∞)

7 Generate R d
= Exp (λ0,A) ; /* sampling of τ1 */

8 Generate V d
= Exp (λ0,A) ; /* sampling of τ2 */

9 if R ≤ V then
10 Generate Y d

= N
(
e−ARX,V∞

(
Id− e−2A>R

))
11 Generate W d

= N
(
e−A(V−R)Y, V∞

(
Id− e−2A>(V−R)

))
12 Generate Z d

= N
(
e−ARW,V∞

(
Id− e−2A>R

))
13 else
14 Generate W d

= N
(
e−AVX,V∞

(
Id− e−2A>V

))
15 Generate Y d

= N
(
e−A(R−V )W,V∞

(
Id− e−2A>(R−V )

))
16 Generate Z d

= N
(
e−AV Y, V∞

(
Id− e−2A>V

))
17 Generate a uniform [0, 1] random variate U
18 until UH2(X) ≤ (ξ2(R, V, Y,W,Z,X))

+;
19 Return X

Algorithm 3: sampling of µY at the second-order accuracy

+
cA
(
2dc2A + cvec(−2A>)

)
|β|∞|β(2)|∞

λ20,A
+
c2A
∥∥V −1∞ ∥∥ |β|2∞
λ20,A

,

p22 := 2d/2
∥∥V −1∞ ∥∥ ∣∣∣∣x exp

(
−1

4
x>V −1∞ x

)∣∣∣∣
∞(

cA|β|∞
λ0,A

+
3c2A|β|∞|β(1)|∞

λ20,A
+

2dc3A|β|∞|β(1)|∞
λ20,A

)

+
2d/2c2A

∣∣xx> exp
(
− 1

4x
>V −1∞ x

)∣∣
∞

∥∥V −1∞ ∥∥2 |β|2∞
λ20,A

,

then

|ξ2(r, v, y, w, z, x)| ≤ H2(x) := p21 + p222−d/2 exp

(
1

4
x>V −1∞ x

)
,

H2(x)µX (dx)´
Rd H2(x)µX (dx)

d
=

p21
p21 + p22

µX (dx) +
p22

p21 + p22
N (0, 2V∞) .

Similar to the first-order simulation scheme, Algorithm 3 produces a random
variate with distribution

(
µY,2

)+
(dx) (defined in Theorem 3) with an accep-
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tance rate close to 1 as β is small and such that the distance in TV between(
µY,2

)+ and µY,2 is exponentially small as β → 0. Details are left to the reader.

Proposition 9. As β → 0, we have∣∣∣µY,2 − (µY,2)+∣∣∣
TV
≤ m2,1e

−m2,2

|β|2∞ ,

where the positive constants m2,1 and m2,2 depend on the model parameters and
are locally uniform when |β|∞, |β(1)|∞ and |β(2)|∞ tend to 0.

4.3 Numerical experiments

Two-dimensional example. In this subsection, we first conduct numerical
study for d = 2, Σ = Id, with A and β given by

A = A> =
(
a11 0
0 a22

)
and β (( x1

x2
)) =

(
b sin(x1)
b sin(x2)

)
,

where a11, a22, b ∈ R. We compare using contour plots our approximate distri-
bution generated with 4 millions sample points with the exact distribution for
a11 = 7, a22 = 7.1 and b = 0.1. The density of the exact distribution1 of Y is
Cst× exp

(
−7x21 − 7.1x22 − 2b cos (x1)− 2b cos (x2)

)
.

Y∞
1

Y
∞2

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0

.5
0

.0
0

.5
1

.0

Exact

First Order

Second Order

Figure 1: Density plot for the stationary distribution of dỸt =
(
− AỸt +

β(Ỹt)
)
dt+ dWt, where a11 = 7, a22 = 7.1 and b = 0.1.

We see from Figure 1 that our approximation is accurate in approximating
the exact distribution and that the second order approximation is better than

1Indeed the drift is of the form − 1
2
∇V (x) so that the stationary density is Cst× e−V (x).
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the first order approximation. Furthermore, we also note that because of the
Gaussian exponential decay, the errors are larger in the center of the distribu-
tions than in the tails.

One-dimensional example. Next, we conduct numerical studies for d = 1,
Σ = 1, A = 1.7 and β(x) = bxe−x

2

, for b = 1, 1.6, 1.7 and 5 with 4 millions
sample points. The density of the exact distribution for this model is Cst ×
exp

(
−1.7x2 − be−x2

)
. Taking different values for b (thus changing |β(1)|∞) for

a fixed A serves to investigate to which extent the condition (H-vi) is important
for the algorithm accuracy.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dYt = (− 1.7Yt + 1Ytexp(− Yt
2))dt + dWt

Y∞

De
ns

ity

Exact Solution

µX

1 Correction term

2 Correction terms

Figure 2: Density plot for the stationary distribution of dYt =
(
− 1.7Yt +

Yte
−Y 2

t

)
dt+ dWt.

In the case b = 1, we notice again from Figure 2 that our approximation is
very accurate and that the second order approximation is superior compared to
the first order.
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0

dYt = (− 1.7Yt + 1.6Ytexp(− Yt
2))dt + dWt

Y∞

De
ns

ity

Exact Solution

µX

1 Correction term

2 Correction terms

Figure 3: Density plot for the stationary distribution of dYt =
(
− 1.7Yt +

1.6Yte
−Y 2

t

)
dt+ dWt.

Here, we compare the results for b = 1 and b = 1.6 (resp. on Figures 2 and
3), to observe that our approximation is more accurate when the ratio of |β|∞
against A is smaller. This is in agreement with our theoretical error analysis.

−2 −1 0 1 2
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1.
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dYt = (− 1.7Yt + 1.7Ytexp(− Yt
2))dt + dWt

Y∞

De
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ity
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µX

1 Correction term

2 Correction terms

Figure 4: Density plot for the stationary distribution of dYt =
(
− 1.7Yt +

1.7Yte
−Y 2

t

)
dt+ dWt.
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dYt = (− 1.7Yt + 5Ytexp(− Yt
2))dt + dWt
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Figure 5: Density plot for the stationary distribution of dYt =
(
− 1.7Yt +

5Yte
−Y 2

t

)
dt+ dWt.

In Figure 4 where b = 1.7, we notice that although |β(1)|∞ is no longer
smaller than A, our approximation can still work. However, we observe in
Figure 5 (b = 5) that, when |β(1)|∞ � A, then our approximation is not accurate
anymore, it only gives a rough approximation of the solution. In this case, both
first and second order schemes are inaccurate; nevertheless, the second order
approximation is seemingly worse, this reinforces the role of the assumptions in
this analysis.
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