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Abstract

In this paper, we consider nonparametric multidimensional finite mixture models
and we are interested in the semiparametric estimation of the population weights.
Here, the i.i.d. observations are assumed to have at least three components which
are independent given the population. We approximate the semiparametric model by
projecting the conditional distributions on step functions associated to some partition.
Our first main result is that if we refine the partition slowly enough, the associated
sequence of maximum likelihood estimators of the weights is asymptotically efficient,
and the posterior distribution of the weights, when using a Bayesian procedure, satisfies
a semiparametric Bernstein von Mises theorem. We then propose a cross-validation like
procedure to select the partition in a finite horizon. Our second main result is that the
proposed procedure satisfies an oracle inequality. Numerical experiments on simulated
data illustrate our theoretical results.

1 Introduction

We consider in this paper multidimensional mixture models that describe the probability
distribution of a random vector X with at least three coordinates. The model is a probabil-
ity mixture of k populations such that, given the population, the coordinates of the random
vector are independently distributed. We call emission distributions the conditional dis-
tributions of the coordinates and θ the parameter that contains the probability weights of
each population. It has been known for some time that such a model is identifiable. An
algebraic result by Kruskal [23] in 1977 (see also [27]) proved it when the coordinates of X
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take finitely many values. Kruskal’s result was recently used by [1] to obtain identifiabil-
ity under almost no assumption on the possible emission distributions: only the fact that,
for each coordinate, the k emission distributions are linearly independent. Spectral meth-
ods were proposed by [2], which allowed [10] to derive estimators of the emission densities
having the minimax rate of convergence when the smoothness of the emission densities is
known. Moreover, [11] proposes an estimation procedure in the case of repeated measure-
ments (where the emission distributions of each coordinate given a population are the same).

Our paper focusses on the semiparametric estimation of the population weights when noth-
ing is known about the emission distributions. This is a semiparametric model, where the
finite dimensional parameter of interest is θ and the infinite dimensional nuisance parame-
ters are the emission distributions.
We are in particular interested in constructing optimal procedures for the estimation of θ.
Optimal may be understood as efficient, in Le Cam’s theory point of view which is about
asymptotic distribution and asymptotic (quadratic) loss. See [24], [8], [32], [33]. The first
question is: is the parametric rate attainable in the semiparametric setting? We know here,
for instance using spectral estimates, that the parametric rate is indeed attainable. Then,
the loss due to the nuisance parameter may be seen in the efficient Fisher information
and efficient estimators are asymptotically equivalent to the empirical process on efficient
influence functions. The next question is thus: how can we construct asymptotically efficient
estimators? In the parametric setting, maximum likelihood estimators (m.l.e.’s) do the
job, but the semiparametric situation is more difficult, because one has to deal with the
unknown nuisance parameter, see Theorems in chapter 24 of [32] where it is necessary to
control various bias/approximation terms.
From a Bayesian perspective, the issue is the validity of the Bernstein-Von Mises property
of the marginal posterior distribution of the parameter of interet θ. In other words: is the
marginal posterior distribution of θ asymptotically Gaussian? Is it asymptotically centered
around an efficient estimator? Is the asymptotic variance of the posterior distribution the
inverse of the efficient Fisher information matrix? Semiparametric Bernstein-Von Mises the-
orems have been the subject of recent research, see [30], [12], [28], [15], [14], [9], [17] and [28].

The results of our paper are twofold: first we obtain asymptotically efficient semiparametric
estimators using a likelihood strategy, then we propose a data driven method to perform
the strategy in a finite horizon with an oracle inequality as theoretical guarantee.
Let us describe our ideas. For the multidimensional mixture model we consider, we will
take advantage of the fact that, for some finite approximations of the nuisance parameter,
the model is still valid for the observation process. This may be seen as a no bias situation.
Indeed, when approximating the emission densities by step functions, the density of the
observation is the multinomial distribution of the indicator function of the sets in the parti-
tion. Hence, this is a common and fairly crude modelling of densities by histograms. The no
bias property of this modelling implies that, for each of these finite dimensional models, the
parameter of interest, i.e. the weights of the mixture, may be efficiently estimated within
the finite dimensional model. Then, under weak assumptions, and using the fact that one
can approximate any density on [0, 1] by such histograms based on partitions with radius
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(i.e. the size of the largest bin) going to zero, it is possible to prove that asymptotically
efficient semiparametric estimators may be built using the sequence of m.l.es in a growing
(with sample size) sequence of approximation models. In the same way, using Bayesian pos-
teriors in the growing sequence of approximation models, one gets a Bernstein-Von Mises
result. One of the important implications of the Bernstein von Mises property is that cred-
ible regions, such as highest posterior density regions or credible ellipses are also confidence
regions. In the particular case of the semiparametric mixtures, this is of great interest,
since the construction of a confidence region is not necessarily trivial. This is our first main
result which is stated in Theorem 1: by considering partitions refined slowly enough when
the number of observations increases, we can derive efficient estimation procedures for the
parameter of interest θ and in the Bayesian approach for a marginal posterior distribution
on θ which satisfies the renown Bernstein von Mises property.

We still need however in practice to choose a good partition, for a finite sample size. This can
be viewed as a model selection problem. There is now a huge literature on model selection,
both in the frequentist and in the Bayesian literature. Roughly speaking the methods can
be split into two categories: penalized likelihood types of approaches, which include in
particular AIC, BIC, MDL and marginal likelihood (Bayesian) criteria or approaches which
consist in estimating the risk of the estimator in each model using for instance bootstrap
or cross validation methods. In all these cases theory and practice are nowadays well
grounded, see for instance [22], [29], [6], [25], [7], [5], [16], [3]. Most of the existing results
above cover parametric or nonparametric models. Penalized likelihoods in particular target
models wich are best in terms of Kullback-Leibler divergences typically and therefore aim
at estimating the whole nonparametric parameter. Risk estimation via bootstrap or cross -
validation methods are more naturally defined in semiparametric (or more generally setups
with nuisance parameters) models, however the theory remains quite limited in cases where
the estimation strategy is strongly non linear as encountered here.
In our context, the natural risk for θ is the quadratic risk, which can not be written as
some risk of the distribution of the observations, which is the basic stone in the theory of
model selection based on risk estimation. To propose specific procedures, one has thus to
find some way to estimate the risk of the estimator in each approximation model, and then
select the model with the smallest estimated risk. We propose to use a cross-validation
method similar to the one proposed in [13]. To get theoretical results on such a strategy,
the usual basic tool is to write the cross-validation criterion as a function of the empirical
distribution which is not possible in our semiparametric setting. We thus divide the sample
in non overlapping blocks of size an (n being the the sample size) to define the cross valida-
tion criterion. This enables us to prove our second main result: Theorem 2 which states an
oracle inequality on the quadratic risk associated with a sample of size an observations, and
which also leads to criterion to select an. Simulations indicate moreover that the approach
behaves well in practice.

In Section 2, we first describe the model, set the notations and our basic assumptions. We
recall the semiparametric tools in Section 2.2, where we define the score functions and the
efficient information matrices. Using the fact that spectral estimators are smooth func-
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tions of the empirical distribution of the observations, we obtain that, for large enough
approximation model, the efficient Fisher information matrix is full rank, see Proposition
1. Intuition says that with better approximation spaces, more is known about all parame-
ters of the distribution, in particular about θ. We prove in Proposition 2 that indeed the
efficient Fisher information matrix increases when the partition is refined. We are finally
able to prove our main general result in Section 2.3. In Lemma 1, we first prove that semi-
parametric score functions and semiparametric efficient Fisher information matrix are the
limits of the parametric ones obtained in the approximation parametric models. Thus, the
fact that the semiparametric efficient Fisher information matrix is full rank is a consequence
of previous results and stated in Proposition 3. In Theorem 1, we prove that it is possible
to let the approximation parametric models grow with the sample size so that the sequence
of maximum likelihood estimators are asymptotically efficient in the semiparametric model
and so that a semiparametric Bernstein - von Mises Theorem holds. In Section 3, we first
discuss in Section 3.1 the reasons to perform model selection and the fact that choosing
a too large approximation space does not work, see Proposition 4 and Corollary 1. Then
we propose in Section 3.2 our cross-validation criterion, for which we prove an oracle in-
equality in Theorem 2 and Proposition 5. Results of simulations are described in Section 4,
we investigate several choices of the number and length of blocks for performing cross val-
idation, and investigate practically also V-fold strategies. We discuss possible extensions,
open questions and further work in Section 5. Finally Section 6 is dedicated to proofs of
intermediate propositions and lemmas.

2 Asymptotic efficiency

2.1 Model and notations

Let (Xn)n≥1 be a sequence of independent and identically distributed randoms variables
taking values in [0, 1]3. We assume the possible marginal distribution of an observation
Xn, n ≥ 1 is a population mixture of k distributions such that, given the population, the
coordinates are independent and have some density with respect to the Lebesgue measure
on [0, 1]. The possible densities of Xn, n ≥ 1, are, if x = (x1, x2, x3) ∈ [0, 1]3:

gθ,f (x) =
k∑
j=1

θj

3∏
c=1

fj,c(xc),
k∑
j=1

θj = 1, θj ≥ 0, ∀j (1)

Here, k is the number of populations, θj is the probability to belong to population j for
j ≤ k and we set θ = (θ1, . . . , θk−1). For each j = 1, . . . , k, fj,c, c = 1, 2, 3, is the density
of the c-th coordinate of the observation, given the observation coming from population j
and we set f = ((fj,c)1≤c≤3)1≤j≤k. We denote by P? the true (unknown) distribution of the
sequence (Xn)n≥1, such that P? = P⊗Nθ?,f? , dPθ?,f?(x) = gθ?,f?(x)dx, for some θ? ∈ Θ and

f? ∈ F3k, where Θ is the set of possible parameters θ and F the set of probability densities
on [0, 1].
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We approximate the densities by step functions on some partitions of [0, 1]. We assume
that we have a collection of partitions IM , M ∈ M, M ⊂ N, so that for each M ∈ M,
IM = (Im)1≤m≤M is a partition of [0, 1] by borelian sets. It is clear that Im changes when
M changes. For each M ∈M, we now consider the model of possible densities

gθ,ω;M (x) =

k∑
j=1

θj

3∏
c=1

(
M∑
m=1

ωj,c,m
|Im|

1lIm(xc)

)
. (2)

Here, ω = (((ωj,c,m)1≤m≤M−1)1≤c≤3)1≤j≤k, and for each j = 1, . . . , k, each c = 1, 2, 3, each

m = 1, . . . ,M − 1, ωj,c,m ≥ 0,
∑M−1

m=1 ωj,c,m ≤ 1, and we denote ωj,c,M = 1−
∑M−1

m=1 ωj,c,m.
Thus, ωj,c,m may be thought of as

ωj,c,m =

∫ 1

0
fj,c1lIm(u)du.

We denote ΩM the set of possible parameters ω when using model (2) with the partition IM .

Let `n(θ, ω;M) be the log-likelihood using model (2), that is

`n(θ, ω;M) =
n∑
i=1

log gθ,ω;M (Xi).

It appears as the model of population mixture of multinomial distributions for the obser-
vations Yi := ((1lIm(Xi,c))1≤m≤M )1≤c≤3, for which the true (unknown) parameter is given
by

θ = θ?, ω = ω?M :=

((∫ 1

0
f?j,c1lIm(u)du

)
1≤m≤M−1

)
1≤c≤3


1≤j≤k

.

We denote, for each M ∈ M, (θ̂M , ω̂M ) the m.l.e., that is a maximizer of `n(θ, ω;M) over
Θ× ΩM .

Let ΠM denote a prior distribution, that is a probability distribution on the parameter
space Θ× ΩM . The posterior distribution ΠM (·|X1, . . . , Xn) is defined as follows. For any
borelian subset A of Θ× ΩM ,

ΠM (A|X1, . . . , Xn) =

∫
A

∏n
i=1 gθ,ω;M (Xi)dΠM (θ, ω)∫

Θ×ΩM

∏n
i=1 gθ,ω;M (Xi)dΠM (θ, ω)

.

The first requirement to get consistency of estimators or posterior distributions is the iden-
tifiability of the model. We use the following assumption.

Assumption (A1).
• For all j = 1, . . . , k, θ?j > 0.
• For all c = 1, 2, 3, the measures f?1,cdx, . . . , f

?
k,cdx are linearly independent.
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It is proved in Theorem 8 of [1] that under (A1) identifiability holds up to label switching,
that is, if Tk is the set of permutations of {1, . . . , k},

∀θ ∈ Θ, ∀f ∈ F3k, gθ,f = gθ?,f? =⇒ ∃σ ∈ Tk such that σθ = θ?, σf = f?,

where σθ ∈ Θ, σf ∈ F3k and σθj = θσ(j),
σf j,c = fσ(j),c, for all c ∈ {1, 2, 3}, j ∈ {1, , . . . , k}.

We need that identifiability holds for model (2) also. It is straightforward that this is the
case if the partition is refined enough. For any partition M , any ω = (ωm)1≤m≤M−1 such
that ωm ≥ 0, m = 1, . . . ,M , with ωm = 1 −

∑M−1
m=1 ωm, denote fω the step function given

by

fω(x) =

M∑
m=1

ωm
|Im|

1lIm(x). (3)

Introduce the following assumption on the sequence of partitions IM , M ∈M.

Assumption (A2).
• For all M , the sets Im in IM are intervals with non empty interior.
• As M tends to infinity, max1≤m≤M |Im| tends to 0.

Assumption (A2) is used to get that all functions fω?j,c;M tend to f?j,c Lebesgue almost ev-
erywhere. To extend the results when the coordinates xc may be multivariate, the first
point of (A2) has to be replaced by:
• There exists a > 0 such that for all M , for all Im in IM , there exists an open ball I such
that Im ⊂ I and |Im| ≥ a|I|. Here |I| is the Lebesgue measure of the set I.

Then, if (A1) and (A2) hold, for M large enough, we have that for all c = 1, 2, 3, the
measures fω?1,c;Mdx, . . . , fω

?
k,c;M

dx are linearly independent, where

ω?j,c;M :=

(∫ 1

0
f?j,c;M1lIm(u)du

)
1≤m≤M−1

, c = 1, 2, 3, j = 1, . . . , k.

We give a formal proof of this fact in Section 6.1. Thus, using again the identifiability result
in [1], under (A1) and (A2), for M large enough,

∀θ ∈ Θ, ∀ω ∈ ΩM , gθ,ω;M = gθ?,ω?M ;M =⇒ ∃σ ∈ Tk such that σθ = θ?, σω = ω∗M ,

where σω ∈ ΩM and σωj,c,m = ωσ(j),c,m;M , for all m ∈ {1, . . . ,M}, c ∈ {1, 2, 3}, j ∈
{1, . . . , k}.

2.2 Efficient influence functions and information

We now study the estimation of θ in model (1) and (2) from the semiparametric point of
view, following Le-Cam’s theory. We start with model (2) which is easier to analyze since it
is a parametric model. For anyM , gθ,ω;M (x) is a polynomial function of the parameter (θ, ω)
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and the model is differentiable in quadratic mean. Denote by S?M = (S?θ,M , S
?
ω,M ) the score

function for parameter (θ, ω) at point (θ?, ω?M ) in model (2). We have for j = 1, . . . , k − 1

(
S?θ,M

)
j

=

∏3
c=1 fω?j,c;M −

∏3
c=1 fω?k,c;M

gθ?,ω?M ;M
(4)

and for j = 1, . . . , k, c = 1, 2, 3, m = 1, . . . ,M − 1

(
S?ω,M

)
j,c,m

=
θ?j

(
1lIm (xc)
|Im| −

1lIM (xc)

|IM |

)∏
c′ 6=c fω?j,c′;M

gθ?,ω?M ;M
(5)

Denote by JM the Fisher information, that is the variance of S?M (X):

JM = E?
[
S?M (X)S?M (X)T

]
Here, E? denotes expectation under P?, and S?M (X)T is the transpose vector of S?M (X).

When considering the question of efficient estimation of θ in the presence of a nuisance
parameter, the relevant mathematical objects are the efficient influence function and the
efficient Fisher information. Let us recall well known facts, see [32] or [33] for details. The
efficient score function is the projection of the score function with respect to parameter θ
on the orthogonal subspace of the closure of the linear subspace spanned by the tangent
set with respect to the nuisance parameter (that is the set of scores in parametric models
regarding the nuisance parameter). The efficient Fisher information is the variance matrix
of the efficient score function. For parametric models, direct computation gives the result.
If we partition the Fisher information JM according to the parameters θ and ω, that is

[JM ]θ,θ = E?
[
S?θ,M (X)S?θ,M (X)T

]
, [JM ]ω,ω = E?

[
S?ω,M (X)S?ω,M (X)T

]
,

[JM ]θ,ω = E?
[
S?θ,M (X)S?ω,M (X)T

]
, [JM ]ω,θ = [JM ]Tθ,ω,

we get that, in model (2), if we denote ψ̃M the efficient score function for the estimation of
θ,

ψ̃M = S?θ,M − [JM ]θ,ω([JM ]ω,ω)−1S?ω,M ,

and the efficient Fisher information J̃M is

J̃M = [JM ]θ,θ − [JM ]θ,ω([JM ]ω,ω)−1[JM ]Tθ,ω.

To discuss efficiency of estimators, invertibility of the efficient Fisher information is needed.
Spectral methods have been proposed recently to get estimators in model (2), see [2]. It
is possible to obtain upper bounds of their local maximum quadratic risk with rate n−1/2,
which as a consequence excludes the possibility that the efficient Fisher information be
singular. This is stated in Proposition 1 below and proved in Section 6.1.

Proposition 1. Assume (A1) and (A2). Then, for large enough M , J̃M is non singular.
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In the context of mixture models, all asymptotic results are given up to label switching.
We define here formally what we mean by ‘up to label switching’ for frequentist efficiency
results with Equation (7) and Bayesian efficiency results with Equation (9).
Then, if (A1) and (A2) hold, for large enough M J̃M is non singular, and an estimator θ̂ is
asymptotically a regular efficient estimator of θ? if and only if

√
n
(
θ̂ − θ?

)
=
J̃−1
M√
n

n∑
i=1

ψ̃M (Xi) + oP?(1), up to label switching, (6)

which formally means that there exists a sequence (σn)n of Tk such that

√
n
(
σn
θ̂ − θ?

)
=
J̃−1
M√
n

n∑
i=1

ψ̃M (Xi) + oP?(1). (7)

To get an asymptotically regular efficient estimator, one may for instance apply a one step
improvement (see Section 5.7 in [32]) of a preliminary spectral estimator, described in [2].
Also, using the trick given in [32] p. 63 to get consistency of the maximum likelihood
estimator (m.l.e.), one sees also that the m.l.e. θ̂M is asymptotically a regular efficient
estimator of θ?.

In the Bayesian context, Bernstein-von Mises Theorem holds for large enough M if the prior
has a positive density in the neighborhood of (θ?, ω?M ), see Theorem 10.1 in [32]. That is,
if ‖ · ‖TV denotes the total variation distance, with ΠM,θ the marginal distribution on the
parameter θ,∥∥∥∥∥ΠM,θ (·|X1, . . . , Xn)−N

(
θ̂;
J̃−1
M

n

)∥∥∥∥∥
TV

= oP?(1), up to label switching, (8)

where θ̂ verifies Equation (6),
which formally means that

sup
A⊂Θ

∣∣∣∣∣ΠM,θ

(
∃σ ∈ Tk : σθ ∈ A

∣∣X1, . . . , Xn

)
−N

(
σn
θ̂;
J̃−1
M

n

)
(A)

∣∣∣∣∣ = oP?(1), (9)

where (σn) and θ̂ satisfie Equation (7).
A naive heuristic idea is that, when using the Yi’s as summaries of the Xi’s, one has
less information, but more and more if the partition IM is refined. Thus, efficient Fisher
information should grow when partitions IM are refined. The following proposition is
proved in Section 6.2.

Proposition 2. Let IM1 be a coarser partition than IM2, that is such that for any I ∈ IM1,
there exists A ⊂ IM2 such that I = ∪I′∈AI ′. Then

J̃M2 ≥ J̃M1

in which“ ≥” denotes the partial order between symmetric matrices.
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Thus, it is of interest to let the partitions grow so that one reaches the largest efficient
Fisher information.

Let us now come back to model (1). Let, for j = 1, . . . , k, c = 1, 2, 3, Hj,c be the subset
of functions h in L2(f?j,cdx) such that

∫
hf?j,cdx = 0. Then the tangent set for f at point

(θ?, f?) is the subspace Ṗ of L2(gθ?,f?(x)dx) spanned by the functions

x 7→
h(xc)

∏3
c′=1 f

?
j,c′(xc′)

gθ?,f?(x)
, h ∈ Hj,c, j = 1, . . . , k, c = 1, 2, 3,

and the efficient score function ψ̃ for the estimation of θ in the semiparametric model (1)
is given, for j = 1, . . . , k − 1, by

ψ̃j = (S?θ )j − A (S?θ )j , (S?θ )j =

∏3
c=1 f

?
j,c −

∏3
c=1 f

?
k,c

gθ?,f?
, (10)

with A the orthogonal projection onto the closure of Ṗ in L2(gθ?,f?(x)dx). Then, the
efficient Fisher information J̃ is the variance matrix of ψ̃.
If J̃ is non singular, an estimator θ̂ is asymptotically a regular efficient estimator of θ? if
and only if

√
n
(
θ̂ − θ?

)
=
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) + oP?(1), up to label switching (11)

and a Bayesian method using a nonparametric prior Π satisfies a semiparametric Bernstein-
von Mises Theorem if, with Πθ the marginal distribution on the parameter θ,∥∥∥∥∥Πθ (·|X1, . . . , Xn)−N

(
θ̂;
J̃−1

n

)∥∥∥∥∥
TV

= oP?(1), up to label switching (12)

for a θ̂ satisfying (11).

2.3 General result

When the sequence of models is a good approximation of model (1) by model (2), we expect
that efficient score functions in (2) are good approximations of efficient score functions in
(1) so that asymptotically efficient estimators in model (2) become efficient estimators in
model (1). This is what Theorem 1 below states. The approximation assumption we shall
use is the following.

Assumption (A3). There exists δ > 0 such that for all x in [0, 1]3, δ ≤ gθ?,f?(x) ≤ 1/δ,
and

lim
M→+∞

‖gθ?,ω?M ;M − gθ?,f?‖∞ = 0.
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Note that when (A2) is satisfied, (A3) holds true as soon as the functions f?j,c, j = 1, . . . , k,
c = 1, 2, 3, are positive continuous functions.
We first obtain:

Lemma 1. Under Assumptions (A1), (A2) and (A3), the sequence of score functions
(ψ̃M )M converges in L2(gθ?,f∗dx) to the score function ψ̃, and the sequence of efficient
Fisher informations (J̃M )M converges to the efficient Fisher information matrix J̃ .

Lemma 1 is proved in Section 6.3.
To get that J̃ is invertible, it is enough that subsequences of approximation spaces are
embedded. Introduce the following assumption.

Assumption (A4). There exists a sequence (Mp)p≥1 such that for all p, IMp is a coarser
partition than IMp+1

The proof of the following proposition is straightforward using Lemma 1, Proposition 1 and
Proposition 2.

Proposition 3. Under Assumptions (A1), (A2), (A3) and (A4), J̃ is non singular.

We are now ready to state Theorem 1.

Theorem 1. Under Assumptions (A1), (A2), (A3) and (A4), there exists a sequence Mn

tending to infinity sufficiently slowly such that the m.l.e. θ̂Mn is asymptotically a regular
efficient estimator of θ? and satisfies

√
n
(
θ̂Mn − θ?

)
=
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) + oP?(1), up to label switching.

Under the same assumptions and if for all M , the prior ΠM has a positive density in the
neighborhood of (θ?, ω?M ), then there exists a sequence Ln tending to infinity sufficiently
slowly such that moreover∥∥∥∥∥ΠLn,θ (·|X1, . . . , Xn)−N

(
θ? +

J̃−1

n

n∑
i=1

ψ̃ (Xi) ;
J̃−1

n

)∥∥∥∥∥
TV

= oP?(1), up to label switching.

Proof. If θ̂M is the m.l.e. when using model (2) with partition IM one has

√
n
(
σn,M

θ̂M − θ?
)

=
J̃−1
M√
n

n∑
i=1

ψ̃M (Xi) +Rn(M)

where for each M , (Rn(M))n≥1 is a sequence of random vectors converging to 0 in P?-
probability as n tends to infinity. But then, there exists a sequence Mn tending to infinity
sufficiently slowly so that, as n tends to infinity, Rn(Mn) tends to 0 in P?-probability. Now,

J̃−1
Mn√
n

n∑
i=1

ψ̃Mn (Xi) =
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) +
J̃−1
Mn
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi) +
J̃−1
Mn√
n

n∑
i=1

(ψ̃Mn − ψ̃) (Xi)

=
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) + oP?(1)

10



since, by Lemma 1, E?‖ 1√
n

∑n
i=1(ψ̃Mn − ψ̃) (Xi) ‖2 = ‖ψ̃Mn − ψ̃‖2L2(gθ?,f? (x)dx) tends to 0 as

n tends to infinity and (J̃Mn)−1 converges to (J̃)−1 as n tends to infinity, so that the first
part of the theorem is proved.
On the Bayesian side, for all M , there exists a sequence Vn(M) of random vectors converging
to 0 in P?-probability as n tends to infinity such that

sup
A⊂Θ

∣∣∣∣∣ΠM,θ

(
∃σ ∈ Tk : σθ ∈ A

∣∣X1, . . . , Xn

)
−N

(
σn,M

θ̂M ;
J̃−1
M

n

)∣∣∣∣∣ = Vn(M).

Arguing as previously, there exists a sequence Ln tending to infinity sufficiently slowly so
that, as n tends to infinity, both Vn(Ln) and Rn(Ln) tend to 0 in P?-probability. Using
the fact that the total variation distance is invariant through one-to-one transformations
we get∥∥∥∥∥N

(
σn,M

θ̂M ;
J̃−1
M

n

)
−N

(
θ? +

J̃−1

n

n∑
i=1

ψ̃ (Xi) ;
J̃−1

n

)∥∥∥∥∥
TV

=

∥∥∥∥∥N
(
√
n
(
σn,M

θ̂M − θ?
)
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi) ; J̃−1
M

)
−N

(
0; J̃−1

)∥∥∥∥∥
TV

=

∥∥∥∥∥N
(
J̃

1/2
M [
√
n
(
σn,M

θ̂M − θ?
)
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi)]; Id

)
−N

(
0; J̃M J̃

−1
)∥∥∥∥∥

TV

≤

∥∥∥∥∥N
(
J̃

1/2
M [
√
n
(
σn,M

θ̂M − θ?
)
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi)]; Id

)
−N (0; Id)

∥∥∥∥∥
TV

+
∥∥∥N (0, Id)−N

(
0; J̃M J̃

−1
)∥∥∥

TV
.

But for vectors in m ∈ Rk−1 and symmetric positive (k − 1)× (k − 1) matrices Σ we have

‖N (m, Id)−N (0; Id)‖TV ≤ ‖m‖

and

‖N (0, Id)−N (0; Σ)‖TV ≤ P
(
‖Σ1/2U‖2 − ‖U‖2 ≥ log[det(Σ)]

)
− P

(
‖U‖2 − ‖Σ−1/2U‖2 ≥ log[det(Σ)]

)
where U ∼ N (0, Id). Thus the last part of the theorem follows from the triangular in-
equality and the fact that using Lemma 1, as n tends to infinity, J̃Ln J̃

−1 tends to Id and
Vn(Ln) and Rn(Ln) tend to 0 in P?-probability.

3 Model selection

In Theorem 1, we prove the existence of some increasing partition leading to efficiency. In
this section, we propose a method to choose a partition when the number of observations
n is fixed.

11



3.1 Reasons to do model selection

We first explain why the choice of the model is important. We have seen in Proposition 2
that for a sequence of increasing partitions, the efficient matrix is non decreasing. This
suggests to choose the coarsest partition and thus Mn increasing as fast as possible. Yet, one
needs to pay attention to the bias in a finite horizon (i.e. when the number of observations
n is fixed). Note that in this model, we don’t know any unbiased estimator of θ. Besides,
typically the bias of an estimator of θ may increase when M increases. This prevents us to
choose a sequence Mn tending to +∞ too quickly (see Corollary 1).
We now illustrate this issue using the m.l.e. If the m.l.e. is unbiased asymptotically, it is
biased for a finite sample. In Proposition 4, we give the limit of the m.l.e. when the number
n of observations is fixed but M tends to infinity.

Proposition 4. For almost all observations X1, . . . , Xn, θ̂M (X1, . . . , Xn) tends to

θn = (bn/kc/n, . . . , bn/kc/n︸ ︷︷ ︸
r:=n−kbn/kc

, dn/ke/n, . . . , dn/ke/n︸ ︷︷ ︸
k−r

)

up to label switching, when M tends to infinity.

Proposition 4 is proved in Section 6.4.
Using Proposition 4, we can deduce a constraint (leading to an upper bound in some cases),
depending on the considered sequence of partitions (IM )M∈M, on sequences Mn leading to
efficiency. We believe that this constraint is very conservative and leads to very conservative
bounds. Corollary 1 below is proved in Section 6.5.

Corollary 1. Suppose Assumption (A3), if θ̂Mn tends to θ∗ in probability, and θ∗ is different
from (1/k, . . . , 1/k),
then there exists N > 0 and a constant C > 0 such that for all n ≥ N ,

n2

(
max
m≤Mn

|Im|
)2

Mn ≥ C.

Moreover, in the particular case where there exists 0 < C1 ≤ C2 such that for all n ∈ N and
1 ≤ m ≤Mn,

C1

Mn
≤ |Im| ≤

C2

Mn
(13)

then there exists a constant C > 0 such that,

Mn ≤ Cn2.

Note that Assumption (13) holds as soon as the partition is regular, so that in the two
following cases:

• for the uniform partition, whenM = N and for all M ∈M Im = [(m− 1)/M,m/M)
for all m < M , IM = [(M − 1)/M, 1],

• or for the dyadic regular partitions, when M = {2p, p ∈ N∗} and for all M ∈ M
Im = [(m − 1)/M,m/M) for all m < M , IM = [(M − 1)/M, 1], which form an
embedded sequence of partition.

12



3.2 Criterion for model selection

In this section, we propose a criterion to choose the partition when n is fixed. This criterion
can be used to choose the size M of a family of partitions but also to choose between two
families of partition. With a dataset, we can compute the m.l.e. (with the EM algorithm)
when using model (2) with partition I, or we can get an estimator of θ using its posterior
distribution (the posterior mean or the posterior median for instance). We thus shall index
all our estimators by I. Note that the results of this section are valid for any family of
estimators (θ̃I) and not only for the m.l.e.

Proposition 4 and Corollary 1 show the necessity to choose an appropriate partition among
a collection of partitions IM , M ∈M. To choose the partition we need a criterion. Since the
aim is to get efficient estimators, we choose the quadratic risk as the criterion to minimize.
We thus want to minimize over all possible partitions

Rn(I) = E?
[
‖θ̃I(X1:n)− θ?‖2Tk

]
, (14)

where X1:n = (Xi)i≤n and for all θ, θ̃ ∈ Θ,

‖θ − θ̃‖Tk = min
σ∈Tk
‖σθ − θ̃‖2 = ‖oθ − o

θ̃‖2, (15)

with oθ = σθ for a permutation σ ∈ Tk which orders the components of σθ, i.e. such that
σθ1 ≤ . . . ≤ σθk. As usual, this criterion cannot be computed in practice (since we do not
know θ∗). To do this on data we need for each partition I some estimator C(I) of Rn(I).
We want to emphasize here that the choice of the criterion for this problem is not easy.
Indeed, the quadratic risk Rn(I) cannot be written as the expectation of an excess loss ex-

pressed thanks to a contrast function, i.e. in the form E?
[
E?
[
γ(θ̃(X1:n), X)− γ(θ∗, X)|X1:n

]]
,

where γ : Θ×X → [0,+∞). Yet, the last framework is the framework of most theoretical
results in model selection, see [5] or [25] for instance. Moreover the quadratic risk has not
a usual behaviour. Indeed if we decompose it as an approximation error plus an estimation
error as explained in [5]:

Rn(I) = inf
θ∈ΘI

‖θ − θ∗‖2Tk︸ ︷︷ ︸
approximation error

+ Rn(I)− inf
θ∈ΘI

‖θ − θ∗‖2Tk︸ ︷︷ ︸
estimation error

, where ΘI = Θ,

we see that the approximation error is always zero in our model (and not decreasing as
often). For these reasons, we cannot apply the usual methods and we use instead a variant
of usual cross validation technique.
Consider a partition of {1, · · · , n} in the form (Bb, B−b, b ≤ bn), in other words the partition
is made of 2 × bn subsets of {1, · · · , n}. By definition Bb1 ∩ B−b2 = ∅ for all b1, b2 ≤ bn.
Because the maximum likelihood estimator based on any finite sample size is not unbiased,
the following naive estimator of the risk is not appropriate:

CCV 1(I) =
1

2bn

bn∑
b=1

‖θ̃I(XBb)− θ̃I(XB−b)‖
2
Tk .

13



Indeed, using Proposition 4, CCV 1(I) is tending to 0 when maxm |Im| tends to 0. So that
minimizing this criterion leads to choosing a partition În ∈ arg minI CCV 1(I) which has
a large number of sets and so θ̂În(X1:n) may be close to (1/k, . . . , 1/k) and then may not
even be consistent. This can be seen when decomposing the risk Rn(I) as:

Rn(I) = V ar?
[
o
θ̃I(X1:n)

]
︸ ︷︷ ︸

variance

+
∥∥∥E? [θ̃I(X1:n)

]
− θ?

∥∥∥2

Tk︸ ︷︷ ︸
bias

(16)

and computing the expectation of CCV 1(I) in the case where the sizes of Bb, B−b, b ≤ bn,
are all equal,

E? [CCV 1(I)] = V ar?
[
o
θ̃I(XBb)

]
suggests that CCV 1(I) does not estimate the bias of Equation (16). As an illustration, see

Figure 2 where the trends of Rn(I), V ar?
[
o
θ̂I(X1:n)

]
and

∥∥∥E? [θ̂I(X1:n)
]
− θ?

∥∥∥2

Tk
respec-

tively are plotted.
To address the bad behaviour of CCV 1(I), we use an idea of [13]. Choose a (fixed) base
partition I0 (for which the criterion may also be computed) which is believed to be (almost)
unbiased. And set

CCV (I) =
1

bn

bn∑
b=1

‖θ̃I(XBb)− θ̃I0(XB−b)‖
2
Tk .

Equivalently, we could choose any unbiased estimator θ̃ instead of using an estimator θI0
of the considered family of estimator. Figure 3 gives an idea of the behaviour of CCV and
CCV 1 using the m.l.e.. It shows in particular that in our simulation study CCV follows the
same behaviour as Rn(I), contrarywise to CCV 1. More details are provided in Section 4.
We now provide some theoretical results on the behaviour of the minimizer of CCV (·) over
a finite family of candidate partitions Mn compared to the minimizer of Ran(·) over the
same family.
Let mn = #Mn be number of candidate partitions.
To do so we consider the following set of assumptions:

Assumption (A5).

(A5.1) Bb, B−b, b ≤ bn are disjoint sets of equal size

#Bb = #B−b = an, for all b ≤ bn

(A5.2) θ̃I0,b,2 is not biased i.e. E∗[θ̃I0,b,2] = θ∗,

we obtain the following oracle inequality.

Theorem 2. Suppose Assumption (A5). For any sequences 0 < εn, δn < 1, with probability
greater than

1− 2mn exp

(
−2bn

(
εn inf
I∈Mn

Ran(I) + δn

)2
)
,

14



we have

Ran(În) ≤ 1 + εn
1− εn

inf
I∈Mn

Ran(I) +
2δn

1− εn
, (17)

where În ∈ arg minI∈Mn
CCV (I).

As a consequence of Theorem 2, the following Proposition holds. Recall that n = 2bnan.

Proposition 5. Assume (A5). If bn & n2/3 log2(n), an . n1/3/(log2(n)), and mn ≤ Cαnα,
for some Cα > 0 and α ≥ 0, then

E?
[
anRan(În)

]
≤ inf
I∈Mn

anRan(I) + o(1),

where În ∈ arg minI∈Mn
CCV (I).

Note that for each I, Ran(I) is of order of magnitude 1/an so that the remaining term
is indeed small regarding the main term. Note also that this is an exact oracle inequality
(with constant 1).
In Theorem 2 and Proposition 5, În is built with n observations while the risk is associated
with an < n observations. This leads to a conservative choice of În, i.e. we may choose a
sequence În (optimal with an observations) increasing more slowly than the optimal one
(with n observation). We think however that this conservative choice should not change
the good behaviour of θ̂În , since Theorem 1 implies that any sequence of partitions which
grows slowly enough to infinity leads to an efficient estimator. Hence, once the sequence
Mn growing to infinity is chosen, then any other sequence growing to infinity more slowly
also leads to an efficient estimator.

In Proposition 5 and Theorem 2, the reference point estimate θ̃I0(XB−b) is assumed to be
unbiased. This is a strong assumption, which is not exactly satisfied in our simulation study.
To consider a reasonable approximation of it, θ̃I0(XB−b) is chosen as the m.l.e. associated
to a partition with a small number of bins. The heuristic behind this choice is that the
maximum likelihood is asymptotically unbiased and a small number of bins implies a smaller
number of parameters to estimate, so that the asymptotic regime is attained faster. Our
simulations confirm this heuristic, see Section 4.

4 Simulations

In this section, we illustrate the results obtained in Sections 3.1 and 3.2 with simulations.
We compare six criteria for the model selection based on CCV with different choices of
size of training and testing sets. We choose the regular embedded dyadic partitions, i.e.
when M = {2p, p ∈ N∗} and for all M ∈ M, Im = [(m − 1)/M,m/M) for all m < M ,
IM = [(M − 1)/M, 1]. Following Corollary 1, when n is fixed, we only consider M = 2P ≤
Mn = n3 (i.e. P ≤ Pn := b3/2 log(n)c). In this part, we only consider m.l.e. estimators
with ordered components and approximated thanks to the EM algorithm.
For n fixed, the choice of the model, through P , is done thanks to the criterion CCV with
two types of choice for (Bb), (B−b). First, we use the framework under which we were able
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to prove something, i.e. Assumption (A5.1) where all the training and testing sets are
disjoints. We use different sizes an and bn:

• bn = dn2/3log(n)/(20)e and an = bn/(2bn)c (Assumption of Proposition 5, up to
log(n)), leading to the criterion CD,1CV and the choice of P noted P̂D,1n ∈ arg minP≤Pn C

D,1
CV (I2P ),

• bn = dn1/3e, an = bn/(2bn)c, leading to the criterion CD,2CV and the choice of P noted

P̂D,2n ∈ arg minP≤Pn C
D,2
CV (I2P ),

• an = bn/10c, bn = bn/(2an)c, leading to the criterion CD,3CV and the choice of P noted

P̂D,3n ∈ arg minP≤Pn C
D,3
CV (I2P )

We also consider the famous V-fold, where the dataset is cut into bn disjoint sets B̃b of size
an, leading to training sets Bb = B̃b and testing sets B−b = {1, . . . n} \ B̃b. We also use
different sizes an and bn:

• an = bn1/3c, bn = bn/anc, leading to the criterion CV,1CV and the choice of P noted

P̂ V,1n ∈ arg minP≤Pn C
V,1
CV (I2P ),

• an = bn2/3/2c, bn = bn/anc, leading to the criterion CV,2CV and the choice of P noted

P̂ V,2n ∈ arg minP≤Pn C
V,2
CV (I2P ),

• an = bn/10c, bn = bn/anc, leading to the criterion CV,3CV and the choice of P noted

P̂ V,3n ∈ arg minP≤Pn C
V,3
CV (I2P ) .

Note that for criteria

• Cj,1CV , j ∈ {D,V }, an is proportional to n1/3 up to a logarithm term,

• Cj,2CV , j ∈ {D,V }, an is proportional to n2/3,

• Cj,3CV , j ∈ {D,V }, an is proportional to n.

We know explain how we choose I0. We do not know any unbiased estimate of θ, which
would match the Assumption (A5.2). Particularly the m.l.e. θ̂M is unbiased asymptotically
but biased with finite n. We propose to choose a m.l.e. θ̂M0 with a small M0 with the
idea that when M is small the asymptotic is attained more quickly. Yet, M0 should not be
taken too small neither since otherwise the model would not be identifiable. We propose to
choose the smallest M0 = 2P0 such that M0 ≥ k + 2 (equivalently P0 ≥ log(k + 2)/ log(2)).
This lower bound ensures that generically on I0 the model (2) is identifiable.
In the simulation part, we work in the repeated setting, that is f∗j,1 = f∗j,2 = f∗j,3 and we
assume that we know it, i.e. when we search for the m.l.e. in the model (2) associated
to M ∈ M, we only search for θ ∈ ∆k, ω ∈ ∆k

M (and not ω ∈ ∆3k
M ) assuming that

ωj,1,m = ωj,2,m = ωj,3,m = ωj,m. We first use three different true parameters for the
simulations, in easy situations. In the three cases, k = 2 and the other parameters are
given in Table 1. So that, we work with P0 = 2 and M0 = 22 = 4.
The different emission distributions are represented in Figure 1.
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Simu. k p∗ f∗1,1dλ = f∗1,2dλ = f∗1,3dλ f∗2,1dλ = f∗2,2dλ = f∗2,3dλ

1 2 (0.3, 0.7) N (4/5, 0.072) truncated to [0, 1] N (1/3, 0.12) truncated to [0, 1]

2 2 (0.2, 0.8) U((0, 1)) N (2/3, 0.052) truncated to [0, 1]

3 2 (0.3, 0.7) β(1, 2) β(5, 3)

Table 1: Values of the true parameters for simulation 1 to 3

Figure 2 gives a taste of the trend of the riskRn(I2P ), along with the variance V ar∗
[
o
θ̂2P (X1:n)

]
and the squared bias

∥∥∥E∗ [θ̂2P (X1:n)
]
− θ∗

∥∥∥2

Tk
defined in Equation (16) when P increases.

We illustrates these trends thanks to different true parameters and numbers of observations
n. The different risks, bias and variances are estimated by Monte Carlo by repeating 1000
times the estimation of θ with the m.l.e. (approximated with the EM algorithm). A typical
behaviour of the bias is being constant or decreasing, with small increasing values of P ,
then increasing a lot when P increases, and finally stabilizing to the value ‖θn−oθ∗‖, which
is a consequence of Proposition 4. Typically, the variance is constant or decreasing for small
increasing values of P , sometimes it then increases, before decreasing to zero (which also is
a consequence of Proposition 4) when P gets large. Then, the risk, which is the sum of the
squared bias and the variance, is usually constant or decreasing for small increasing values
of P and then increasing to ‖θn − oθ∗‖2 when P gets large.
Now we have an idea of the behaviour of the risk Rn(I2P ), we can check the behaviour of
the different criteria CCV and CCV 1. Figure 3 gives an idea of the pattern of some criteria
for one sequence of observations X1:n, distributed from two different true parameters, with
respect to P . We do not show all the criteria since they all look alike. Moreover the
purpose of figure 3 is to illustrate the ‘bad’ behaviour of CCV 1 compared to CCV and
not comparing the six criteria (which would anyway be impossible with one sequence of
observations X1:n). Note that we do not compare the values but the behaviour. Indeed,
the criteria are used to choose the best P by taking the minimum of the criterion so that
the values are not important by themselves. Besides, we know that the criterion CCV is
biased by a constant depending on I0. As theoretically explained in Section 3 and as a
consequence of Proposition 4, we can see that the criteria CCV 1 are tending to 0 when P
increases while it is not the case for the criteria CCV . Looking at Figure 3, the behaviour
of CCV seems to be correct, we precise this impression with table 2.
Finally we compare the six criteria Cj,cCV , j ∈ {D,V }, c ∈ {1, 2, 3}, by estimating the

squared risk of the associated estimator θ̂
2P̂

j,c
n

, presented in Table 2. Different sizes n of
samples and different true parameters are used to simulate the data. We can compare the
six squared risk to

√
minP≤Pn Rn(2P ) and

√
Rn(2P0). The different risks are estimated

by Monte Carlo by repeating 100 times the estimation. The differences of performance
between the different criteria are not obvious. Besides, the performances of all the criteria
are satisfactory, compared to

√
minP≤Pn Rn(2P ). Yet, we suggest not to use criterion CV,1CV

because it is longer than the others, particularly when n is large (because of large bn).
Furthermore, there is a little advantage to criteria CD,1CV and CV,2CV .
These results confirm that by using M0 small, the criterion behaves correctly. Moreover,
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(a) Simulation 1 (b) Simulation 2

(c) Simulation 3

Figure 1: Representation of the true emission distributions for simulations 1, 2 and 3.

the fact that the choice of În corresponds to a risk associated with an < n observations
does not seem to be a conservative choice even in a finite horizon (i.e. when n is fixed). We
were expecting this behaviour asymptotically but not in a finite horizon.

5 Discussion

Finite mixture models all have the property that, when the approximation space for the
emission distributions is that of step functions (histograms), then the model stays true for
observation process. Thus there is no approximation bias regarding the parameter that
describes the probability distribution of the latent variables. Extension of the results we
obtain in this paper should be possible to other nonparametric finite mixture models. This
should also be the case for nonparametric hidden Markov models with translated emission
distributions studied in [21] or for general nonparametric finite state space hidden Markov
models studied in [18], [34] and [19]. Here, the parameter describing the probability distri-
bution of the latent variable is the transition matrix of the hidden Markov chain. However,
semiparametric asymptotic theory for dependent observations is much more involved, see
[26] for the ground principles. It seems difficult to identify the score functions and the
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(a) Simulation 1, n = 100 (b) Simulation 3, n = 50

(c) Simulation 2, n = 50 (d) Simulation 3, n = 100

(e) Simulation 2, n = 500 (f) Simulation 3, n = 500

Figure 2: Patterns of the risk (with black squares), the squared bias (with blue dots) and
variance (with magenta triangles) with respect to P = log(M)/ log(2) for simulations 1, 2
and 3 and different values of n.

efficient Fisher information matrices for hidden Markov models even in the parametric
approximation model, so that to get results such as Theorem 1 could be quite challenging.
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(a) Simulation 1, n = 100, CD,1CV (1) (b) Simulation 1, n = 100, CV,3CV (1)

(c) Simulation 2, n = 500, CD,1CV (1) (d) Simulation 2, n = 500, CV,3CV (1)

Figure 3: Taste of the behaviour of CCV 1 vs CCV .

6 Proofs

6.1 Proof of Proposition 1

Let us first prove that for large enough M , the measures fω?1,c;Mdx, . . . , fω
?
k,c;M

dx are linearly
independent. Indeed, if it is not the case, there exists a subsequence Mp tending to infinity
as p tends to infinity and a sequence (α(p))p≥1 in the unit ball of Rk such that for all p ≥ 1,

k∑
j=1

α
(p)
j fω?j,c;Mp

(x) = 0

Lebesgue a.e. Let α = (α1, . . . , αk) be a limit point of (α(p))p≥1 in the unit ball of Rk.
Using Assumption (A.2) and Corollary 1.7 in Chapter 3 of [31], we have that as p tends to
infinity, fω?j,c;Mp

(x) converges to f?j,c(x) Lebesgue a.e. so that we obtain
∑k

j=1 αjf
?
j,c(x) = 0

Lebesgue a.e., contradicting Assumption (A1).
Fix now M large enough so that the measures fω?1,c;Mdx, . . . , fω

?
k,c;M

dx are linearly indepen-

dent. Then, one may use the spectral method described in [2] to get estimators θ̂sp and
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Simulation 1 1 1 1 1 2 2 2 3 3 3
n 50 100 500 1000 2000 50 100 500 50 100 500√

minP≤Pn Rn(2P ) 0.062 0.043 0.020 0.014 0.010 0.058 0.046 0.020 0.096 0.078 0.036√
Rn(2P0) 0.063 0.046 0.021 0.015 0.010 0.067 0.046 0.022 0.10 0.082 0.042√
E?
[
‖θ̂

2P̂
D,1
n

(X1:n)− θ?‖2
]

0.069 0.047 0.019 0.014 0.011 0.075 0.056 0.019 0.12 0.087 0.037√
E?
[
‖θ̂

2P̂
D,2
n

(X1:n)− θ?‖2
]

0.073 0.046 0.022 0.015 0.010 0.065 0.056 0.025 0.10 0.087 0.046√
E?
[
‖θ̂

2P̂
D,3
n

(X1:n)− θ?‖2
]

0.086 0.047 0.021 0.014 0.010 0.087 0.056 0.026 0.11 0.087 0.041√
E?
[
‖θ̂

2P̂
V,1
n

(X1:n)− θ?‖2
]

0.091 0.046 0.021 0.013 0.009 0.104 0.055 0.022 0.11 0.087 0.053√
E?
[
‖θ̂

2P̂
V,2
n

(X1:n)− θ?‖2
]

0.069 0.046 0.019 0.013 0.010 0.070 0.049 0.022 0.12 0.084 0.036√
E?
[
‖θ̂

2P̂
V,3
n

(X1:n)− θ?‖2
]

0.103 0.046 0.019 0.014 0.009 0.10 0.049 0.022 0.14 0.083 0.035

Table 2: Comparison of the squared risk of estimators associated to different criteria

ω̂M ;sp of the parameters θ and ωM from a sample of the multinomial distribution associated
to density gθ,ω;M . The estimator uses eigenvalues and eigenvectors computed from the em-
pirical estimator of the multinomial distribution. But in a neighborhood of θ? and ω?M , this
is a continuously derivative procedure, and since on this neighborhood, classical deviation
probabilities on empirical means hold uniformy, we get easily that for any vector V ∈ Rk,
there exists K > 0 such that for all c > 0, for large enough n (the size of the sample):

sup
‖θ−θ?‖≤ c√

n

(
〈θ̂sp − θ, V 〉

)2
≤ K.

Now, the multinomial model is differentiable in quadratic mean, and following the proof of
Theorem 4 in [20] one gets that, if V T J̃MV = 0, then

lim
c→+∞

lim
n→+∞

sup
‖θ−θ?‖≤ c√

n

(
〈θ̂sp − θ, V 〉

)2
= +∞.

Thus for all V ∈ Rk, V T J̃MV 6= 0, so that J̃M is not singular.

6.2 Proof of Proposition 2

We prove the proposition when M1 = M , M2 = M + 1, IM = {I1, . . . , IM} and IM+1 =
{I1, . . . , IM,0, IM,1} with IM = IM,0 ∪ IM,1, which is sufficient by induction. We denote

(ω
(M)
j,c,m)j,c,1≤m≤M the parameter ω in the model with partition IM and (ω

(M+1)
j,c,m )j,c,1≤m≤M+1

the parameter ω in the model with partition IM+1. Define b ∈ (0, 1), αj,c ∈ (0, 1), j =
1, . . . , k, c = 1, 2, 3 so that

|IM,0| = (1− b)|IM |, |IM,1| = b|IM |, ω(M+1)
j,c,M = (1− αj,c)ω(M)

j,c,M , ω
(M+1)
j,c,M+1 = αj,cω

(M)
j,c,M .
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Then, we may write

gθ,ω;M (x) =
k∑
j=1

θj

3∏
c=1

M∏
m=1

(
ω

(M)
j,c,m

|Im|

)1lIm (xc)

and

gθ,ω;M+1(x) =

k∑
j=1

θj

3∏
c=1

M−1∏
m=1

(
ω

(M+1)
j,c,m

|Im|

)1lIm (xc)

ω(M+1)

j,c,M

|IM,0|

1lIM,0 (xc)ω(M+1)
j,c,M+1

|IM,1|

1lIM,1 (xc)


=
k∑
j=1

θj

3∏
c=1

M∏
m=1

(
ω

(M)
j,c,m

|Im|

)1lIm (xc) [(αj,c
b

)1lIM,1 (xc)
(

1− αj,c
1− b

)1lIM,0 (xc)
]
.

Thus, when xc /∈ IM for c = 1, 2, 3, gθ,ω;M+1(x) = gθ,ω;M (x) and computations have to
take care of x’s such that for some c, xc ∈ IM . If we parametrize the model with partition

IM+1 using the parameter
(
θ, (ω

(M)
j,c,m), (αj,c)

)
we get the same efficient Fisher information

for θ as when parametrizing with
(
θ, (ω

(M+1)
j,c,m )

)
. Define the function D as the difference

between the gradient of log gθ,ω;M+1 and that of log gθ,ω;M (x) with respect to the parameter(
θ, (ω

(M)
j,c,m), (αj,c)

)
:

D(x) := ∇ log gθ,ω;M+1(x)−∇ log gθ,ω;M (x),

in particular the last coordinates of ∇ log gθ,ω;M (x) corresponding to the derivatives with
respect to (αj,c) are zero. Let us denote K(M+1) the Fisher information obtained for this
new parametrization, that is K(M+1) = E?[(∇ log gθ,ω;M+1(X))(∇ log gθ,ω;M+1(X))T ]. Easy
but tedious computations give

E?[(∇ log gθ,ω;M (X))(D(X))T ] =

 0 · · · 0
...

...
...

0 · · · 0

 ,

so that

K(M+1) =

(
JM 0
0 0

)
+ ∆

where ∆ = E?[D(X)D(X)T ] is positive semi-definite. As said before, J̃M+1 is obtained from
K(M+1) using the similar formula as from JM+1. Then usual algebra gives that J̃M+1 ≥ J̃M
since ∆ is positive semi-definite.

6.3 Proof of Lemma 1

Proof. Notice first that under (A3), gθ?,f∗/gθ?,ω?M ,M is positively lower and upper bounded,

so that the set of functions which are in L2(gθ?,f∗dx) is the same as the set of functions which
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are in L2(gθ?,ω?M ,Mdx). Also, any step function which is constant over Im1 × Im2 × Im3 ,
m1,m2,m3 = 1, . . . ,M , has the same hilbertian product with gθ?,f∗ and with gθ?,ω?M ,M .

Thus, if for any M , AM is the orthogonal projection in L2(gθ?,f∗dx) onto ṖM , the set of step

functions spanned by the functions
(
S?ω,M

)
j,c,m

, j = 1, . . . , k, c = 1, 2, 3, m = 1, . . . ,M −1,

then for all j = 1, . . . , k − 1,

(ψ̃M )j =
(
S?θ,M

)
j
− AM

(
S?θ,M

)
j
,

so that

(ψ̃)j − (ψ̃M )j = (S?θ )j −
(
S?θ,M

)
j
− AM

[
(S?θ )j −

(
S?θ,M

)
j

]
+ (AM − A) (S?θ )j . (18)

Notice that using (A3),
ṖM ⊂ Ṗ (19)

so that AMA = AM . We then obtain∥∥∥(ψ̃)j − (ψ̃M )j

∥∥∥
L2(gθ?,f?dx)

≤
∥∥∥(S?θ )j −

(
S?θ,M

)
j

∥∥∥
L2(gθ?,f?dx)

+
∥∥∥(AMA− A) (S?θ )j

∥∥∥
L2(gθ?,f?dx)

.

Using Assumption (A2) and Corollary 1.7 in Chapter 3 of [31], we have that as M tends

to infinity,
(
S?θ,M

)
j

converges to (S?θ )j Lebesgue a.e. Both functions are uniformly upper

bounded by the finite constant 1/θ?j using Assumption (A.1), so that
(
S?θ,M

)
j

converges

to (S?θ )j in L2(gθ?,f?(x)dx) as M tends to +∞ and

∥∥∥∥(S?θ )j −
(
S?θ,M

)
j

∥∥∥∥
L2(gθ?,f?dx)

converges

to 0 as M tends to +∞. Using the same argument, for any function S ∈ Ṗ there exists
a sequence of functions SM ∈ ṖM that converges to S in L2(gθ?,f?dx). Let (SM )M be the
sequence of functions converging to A (S?θ )j in L2(gθ?,f?dx). Since for all M , SM ∈ ṖM , we
have that ∥∥∥AM [A (S?θ )j

]
− A (S?θ )j

∥∥∥
L2(gθ?,f?dx)

≤
∥∥∥SM − A (S?θ )j

∥∥∥
L2(gθ?,f?dx)

so that also
∥∥∥(AMA− A) (S?θ )j

∥∥∥
L2(gθ?,f?dx)

converges to 0 as M tends to +∞. We thus

obtain that (ψ̃)j converges to (ψ̃M )j in L2(gθ?,f?dx). As a consequence, J̃M converges to J̃
as M tends to +∞.

6.4 Proof of Proposition 4

Proposition 4 is easily implied by Lemma 2 which formalizes the following. When the
sequence of observations X1, . . . , Xn and n are fixed, then almost surely there exists a suf-
ficiently fine partition IM such that there exists at most one component of an observation
in each set Im, m ≤ M . Then we can reorder the sets Im so that Xi,c ∈ Ii+n(c−1), for all
c ∈ {1, 2, 3} and i ≤ n. In this case, the likelihood `n(·, ·;M) is maximised at each param-
eter (θ, ω) belonging to the set SM ⊂ ∆k × (∆M )3k that we explain now (and formalise in
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Lemma 2). Each element of SM corresponds to one clustering of the observations in k sets
(represented by the (A∗j )j≤k in Lemma 2) of size as equal as possible. For each clustering,
for all j ≤ k,
• θj = #A∗j/n is the proportion of observations associated to A∗j (then the θj are almost
equal to 1/k),
• for all c ∈ {1, 2, 3} and for all l ≤M ,

ωj,c,l =


1/#A∗j if l − n(c− 1) ∈ A∗j (i.e. Xl−n(c−1) ∈ Il is associated to the hidden state j),

0 if l − n(c− 1) ∈ {1, . . . n} \A∗j (i.e. Xl−n(c−1) ∈ Il is not associated to j),

0 otherwise (i.e. there is no observation in Il).

Lemma 2. Let X1, . . . , Xn be fixed observations, as soon as for all i ≤ n and c ∈ {1, 2, 3},
Xi,c ∈ Ii+n(c−1) then the likelihood `n(·, ·;M) is maximised at (θ̂M , ω̂M ) if and only if

(θ̂M , ω̂M ) ∈ SM where

SM =
{

(θ, ω) : θj = #A∗j/n, ωj,c,l = 1l−n(c−1)∈A∗j /#A
∗
j ,

(J1, J2) partition of {1, . . . , k}, #J2 = n− kbn/kc =: r

(A∗j )j≤k partition of {1, . . . , n},
#A∗j1 = bn/kc =: q, for j1 ∈ J1, #A∗j2 = bn/kc+ 1 =: q + 1, for j2 ∈ J2

}
,

and n = kq + r, 0 ≤ r ≤ k − 1.

Proof. Since the set of parameters is compact and the likelihood is a continuous function
of the parameters then the maximum is attained.
If (θ, ω) maximises the likelihood `n(·, ·;M),

(P1) then, for all 1 ≤ i ≤ n, there exists 1 ≤ j ≤ k such that ωj,c,i+n(c−1) > 0 for all
c ∈ {1, 2, 3}.
Indeed, if there exists 1 ≤ i ≤ n such that for all 1 ≤ j ≤ k, ωj,c,i+n(c−1) = 0 for some
c ∈ {1, 2, 3}, then

`n(θ, ω;M) =
n∑
i=1

log

 k∑
j=1

θj

3∏
c=1

ωj,c,i+n(c−1)

+
n∑
i=1

log (1/(|Ii||Ii+n||Ii+2n|))︸ ︷︷ ︸
constant

= −∞.

(P2) and if there exists j, c, i such that ωj,c,i+n(c−1) = 0 and θj > 0 then ωj,d,i+n(d−1) = 0
for all d.
Indeed otherwise you can give the weight ωj,d,i+n(d−1), to one of the other ωj,d,s+n(d−1)

for which ωj,e,s+n(e−1) > 0, for all e 6= d (which exist otherwise take θj = 0 which
would increase the likelihood) and this increases the likelihood.

(P3) and if θj > 0, then ωj,c,l = 0 if l − n(c− 1) /∈ {1, . . . , n}.
Indeed, in this case, there is no observation in Il so that ωj,c,l does not appear in the
likelihood and we conclude similarly as the previous point.
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Combining all the previous remarks, we know that the maximum can only be attained (and
is at least once) in one of the following sets, indexed by J ⊂ {1, . . . , k} which determines
the zeros of θ and Aj ⊂ {1, . . . , n}, j ≤ k, which determine the zeros of ω:

SJ,A1,...,Ak ={θ ∈ ∆k : θj > 0, j ∈ J, θj = 0, j ∈ Jc}

×
∏
j≤k

{
(ωj,1,·, ωj,2,·, ωj,3,·) ∈ (∆M )3 :

if j ∈ J, ωj,c,i+n(c−1) > 0

� using (P2) � using (P3)

, if i ∈ Aj , c ∈ {1, 2, 3}

and ωj,c,l = 0, if l ∈ {1, . . . ,M} \ {i+ n(c− 1), i ∈ Aj}
}
.

Note that we do not assume that (Aj)j∈J is a partition of {1, . . . , n}.
We fix J ⊂ {1, . . . , k} and Aj ⊂ {1, . . . , n}, j ∈ J . Now we search for parameters (θ̄, ω̄) in
SJ,A1,...,Ak which maximize the likelihood. They are zeros of the derivative of

(θ, ω, λ, µ) 7→ `n(θ, ω;M) + λ

 k∑
j=1

θj − 1

+

3∑
c=1

µj,c

(∑
i

ωj,c,i − 1

)
, (20)

with respect to non zero components (θj , ωj,c,i+n(c−1), λ and µj,c, for j ∈ J , i ∈ Aj ,
1 ≤ c ≤ 3). Annulling the partial derivatives give∑

i∈Aj

ω̄j,1,iω̄j,2,i+nω̄j,3,i+2n∑
s∈J(i) θ̄sω̄s,1,iω̄s,2,i+nω̄s,3,i+2n

= −λ, ∀j ∈ J (21)

θ̄j
∏
d6=c ω̄j,d,i+n(d−1)∑

s∈J(i) θ̄sω̄s,1,iω̄s,2,i+nω̄s,3,i+2n
= −µj,c, ∀j ∈ J, i ∈ Aj , c ∈ {1, 2, 3} (22)∑

j∈J
θ̄j = 1, (23)

∑
i∈Aj

ω̄j,c,i+n(c−1) = 1, ∀j ∈ J, c ∈ {1, 2, 3}, (24)

where J(i) = {s ∈ J : i ∈ As}.
Multiplying Equation (22) by ω̄j,c,i+n(c−1) and then summing the result over i ∈ Aj and
using Equation (24), we obtain that µj,c does not depend on c. Then using Equations (22)
for c = 1, c = 2 and c = 3, we obtain

θ̄jω̄j,1,iω̄j,2,i+n = θ̄jω̄j,1,iω̄j,3,i+2n = θ̄jω̄j,2,i+nω̄j,3,i+2n,

so that
ω̄j,1,i = ω̄j,2,i+n = ω̄j,3,i+2n. (25)

Furthermore, multiplying Equation (21) by θ̄j and summing the result over j ∈ J and using
Equation (23), we obtain λ = −n. Moreover by multiplying Equation (22) by ω̄j,c,i+n(c−1),
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and then summing the result over i ∈ Aj and finally subtracting (21) multiplied by θ̄j to
the result (ie making

∑
i∈Aj ω̄j,c,i+n(c−1)(22)− θ̄j(21)), we get

0 = −µj,c − nθ̄j . (26)

Then using again Equations (22), (25) and (26), we get

ω̄2
j,c,i+n(c−1) = n

∑
s∈J(i)

θ̄sω̄
3
s,1,i, ∀j ∈ J(i), ∀c ∈ {1, 2, 3},

so that ω̄j,c,i+n(c−1) does not depend on j ∈ J(i) and

ω̄j,c,i+n(c−1) = 1i∈Aj/

n ∑
s∈J(i)

θ̄s

 , ∀j ∈ J(i). (27)

For each SJ,A1,...,Ak =: S, we have obtained the zeros of the derivative of the log-likelihood,
that we now denote (S θ̄,S ω̄), to emphasize the dependence with the considered set S. We
now want to know which of these zeros (S θ̄,S ω̄) are local maxima thanks to the second
partial derivatives.
We consider sets SJ,A1,...,Ak for which there exists i ≤ n such that there exist j and l are in
J(i) and j 6= i. We consider a second partial derivative of

˜̀
n(θ, ω̃;M) =

n∑
i=1

log

 k∑
j=1

θj(ω̃j,1,i)
3


that is the log-likelihood (up to an additive constant) associated to the model where for all
1 ≤ m ≤ k, 1 ≤ s ≤ n, ωm,1,s = ωm,2,s+n = ωm,3,s+2n. Assume without loss of generality
that θl ≥ θj , then (using that θk = 1−

∑
m<k θm and ωj,1,n = 1−

∑
s<n ωj,1,s),

∂2 ˜̀
n

∂ω̃2
j,1,i

(S θ̄,S ω̄;M) = C

6 S θ̄j
∑

m∈J(i)\{j}

S θ̄m − 3 S θ̄2
j

 ≥ C (6 S θ̄j S θ̄l − 3 S θ̄2
j

)
> 0,

where C > 0. This implies that for all sets SJ,A1,...,Ak := S where there exists i ≤ n such
that #J(i) > 1, every zeros (S θ̄,S ω̄) is not a local maximum. So that the only possible
local maxima of `n(θ, ω;M) are the zeros (SJ,A1,...,Ak θ̄,SJ,A1,...,Ak ω̄) where #J(i) = 1 for all
i ≤ n, i.e. when (Aj)j∈J forms a partition of {1, . . . , n}.
So we now only consider setsAj , j ∈ J which form a partition of {1, . . . , n} and ω̄j,c,i+n(c−1) =
1i∈Aj/(nθ̄j) for i ∈ Aj , using Equation (27). As

∑
i∈Aj ω̄j,1,i = 1, we then obtain that

θ̄j = #Aj/n = 1/(nω̄j,1,i), for all i ∈ Aj . So that we now only have to choose the best
partition (Aj)j∈J of {1, . . . , n} and J . Let Nj = #Aj , we know that

∑
j Nj = n and the

log-likelihood at the local maximum (S θ̄,S ω̄) associated to SJ,A1,...,Ak =: S is

`n(S θ̄,S ω̄;M) =
∑
s∈J

Ns log(N−2
s ) + constant.
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So that we want to minimize∑
s∈J

Ns log(Ns) under the constraint
∑
s∈J

Ns = n (28)

over J ⊂ {1, . . . k} and Nj ∈ N, j ∈ J . This minimization is equivalent to the minimization
of ∑

s≤k
Ns log(Ns) under the constraint

∑
s≤k

Ns = n (29)

overNj ∈ N, j ≤ k (since then the problem (29) is less constrained than for the minimization
of (28) when J is fixed).
And, when k divides n, the minimum of (29) is attained at Ns = n/k. Otherwise, when
k does not divide n, consider only two indices s1, s2 in {1, . . . , k} and assume that Ns,
s /∈ {s1, s2} are fixed such that Ns1 + Ns2 = SN is also fixed. Then we want to min-
imise −Ns1 log(Ns1) − (SN − Ns1) log(SN − Ns1). Studying the function x ∈ (0, SN ) 7→
−x log(SN )− (SN −x) log(SN −x), we obtain that the minimum is attained when Ns1 and
Ns2 = SN −Ns1 are the closest of NS/2. Then in both cases, the m.l.e. is attained at every
(θ, ω) ∈ SM .

6.5 Proof of Corollary 1

Suppose that for all N > 0 and all C > 0, there exists n ≥ N such that

n2

(
max
m≤Mn

|Im|
)2

Mn ≤ C.

So that there exists a subsequence (φ(n))n∈N of (n)n∈N such that

(φ(n))2

(
max

m≤Mφ(n)

|Im|
)2

Mφ(n) −→
n→∞

0. (30)

Set ε > 0, by Proposition 4, there exists N1 > 0 such that for all n ≥ N1,

P
(∣∣∣θ̂Mn(X1:φ(n))− (1/k, . . . , 1/k)

∣∣∣ ≤ ε)
≥ P

({
∃ 1 ≤ i1, i2 ≤ φ(n), 1 ≤ c, d ≤ 3, m ≤Mφ(n) : Xi1,c ∈ Im, Xi2,d ∈ Im

}c)
≥ 1−

φ(n)∑
i1=1

φ(n)∑
i2=1

Mφ(n)∑
m=1

P (Xi1,c ∈ Im, Xi2,d ∈ Im)

≥ 1− (φ(n))2Mφ(n) max
(
sup g, (sup g)2

)(
max

m≤Mφ(n)

|Im|
)2

. (31)

Using Equations (30) and (31) and Assumption (A3), then θ̂Mn(X1:φ(n)) tends in probability

to (1/k, . . . , 1/k) which contradicts the convergence in law of θ̂Mn to θ∗. This concludes the
proof.
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6.6 Proof of Theorem 2

We first recall Lemma 2.1 in [4]:

Lemma 3 (Sylvain Arlot). Let A,B,C,R :M→ R. If for all m,m′ ∈M,

(C(m)−R(m))− (C(m′)−R(m′)) ≤ A(m) +B(m′),

then for all m̂ ∈M such that C(m̂) ≤ infm∈MC(m) + ρ, ρ > 0,

R(m̂)−B(m̂) ≤ inf
m∈M

{R(m) +A(m)}+ ρ.

We are going to use this lemma with R(I) = Ran(I), C(I) = CCV (I) and

A(I) = B(I) = εnR(I) + δn.

Using Hoeffding’s inequality,

P ({−B(I) ≤ CCV (I)−Ran(I) ≤ A(I)}c) ≤ 2 exp
(
−2bnA(I)2

)
,

since ‖θ̂I(XBb)− θ̂I0(XB−b)‖2 ≤ 1, for all b. We introduce the sets

SI = {−B(I) ≤ CCV (I)−Ran(I) ≤ A(I)} (32)

for all I ∈ Mn. Using Lemma 3, on the set ∩I∈MnSI , Equation (17) holds and using
Equation (32), we obtain

P (∩I∈MnSI) ≥ 1− 2mn exp

(
−2bn

(
εn inf
I∈Mn

Ran(I) + δn

)2
)
.

6.7 Proof of Proposition 5

Using Theorem 2,

E?
[
anRan(În)

]
≤ an

(
1 + εn
1− εn

inf
I∈Mn

Ran(I) +
2δn

1− εn

)
+ 2anmn exp

(
−2bn

(
εn inf
I∈Mn

Ran(I) + δn

)2
)

we can conclude by taking εn = δn = 1/(log(n)an).
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point detection. Habilitation à diriger des recherches, University Paris Diderot, De-
cember 2014. Habilitation à diriger des recherches.

[5] S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection.
Stat. Surv., 4:40–79, 2010.

[6] P. Barbe and P. Bertail. The Weighted Bootstrap, volume 98 of Lecture Notes in
Statistics. Springer, 1995.

[7] J.-P. Baudry, C. Maugis, and B. Michel. Slope heuristics: overview and implementa-
tion. Stat. Comput., (22):455–470, 2012.

[8] P. J. Bickel, C. A. J. Klaassen, Y. Ritov, and J. A. Wellner. Efficient and adaptive
estimation for semiparametric models. Johns Hopkins Series in the Mathematical
Sciences. Johns Hopkins University Press, Baltimore, MD, 1993.

[9] P. J. Bickel and B. J. K. Kleijn. The semiparametric Bernstein-von Mises theorem.
Ann. Statist., 40(1):206–237, 2012.

[10] S. Bonhomme, K. Jochmans, and J.-M. Robin. Estimating multivariate latent-
structure models. Ann. Statist., 44(2):540–563, 2016.

[11] S. Bonhomme, K. Jochmans, and J.-M. Robin. Non-parametric estimation of fi-
nite mixtures from repeated measurements. J. R. Stat. Soc. Ser. B. Stat. Methodol.,
78(1):211–229, 2016.

[12] S. Boucheron and E. Gassiat. A Bernstein-von Mises theorem for discrete probability
distributions. Electron. J. Stat., 3:114–148, 2009.

[13] M. A. Brookhart and M. J. van der Laan. A semiparametric model selection criterion
with applications to the marginal structural model. Comput. Statist. Data Anal.,
50(2):475–498, 2006.

[14] I. Castillo. Semiparametric Bernstein–von Mises theorem and bias, illustrated with
Gaussian process priors. Sankhya A, 74(2):194–221, 2012.

29



[15] I. Castillo. A semiparametric Bernstein–von Mises theorem for Gaussian process priors.
Probab. Theory Related Fields, 152(1-2):53–99, 2012.

[16] G. Claeskens and N. L. Hjort. Model selection and model averaging, volume 27 of
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, Cambridge, 2008.

[17] P. De Blasi and N. L. Hjort. The Bernstein–von Mises theorem in semiparametric
competing risks models. J. Statist. Plann. Inference, 139(7):2316–2328, 2009.

[18] Y. De Castro, E. Gassiat, and C. Lacour. Minimax adaptive estimation of nonpara-
metric hidden Markov models. JMLR, To appear.

[19] Y. De Castro, E. Gassiat, and S. Le Corff. Consistent estimation of the filtering
and marginal smoothing distributions in nonparametric hidden Markov models. arXiv
preprint arXiv:1507.06510, July 2015.

[20] E. Gassiat, D. Pollard, and G. Stoltz. Revisiting the van Trees inequality in the spirit
of Hajek and Le Cam. unpublished manuscript, 2013.

[21] E. Gassiat and J. Rousseau. Non parametric finite translation hidden Markov models
and extensions. Bernoulli, 22(1):193–212, 2016.

[22] M. H. Hansen and B. Yu. Model selection and the principle of minimum description
length. 96:746–774, 2001.

[23] J. B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear Algebra and Appl.,
18(2):95–138, 1977.

[24] L. Le Cam and G. Yang. Asymptotics in Statistics. Some Basic Concepts, Second
Edition. Springer-Verlag, New-York, 2000.

[25] P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture
Notes in Mathematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School
on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by Jean
Picard.

[26] B. McNeney and J. A. Wellner. Application of convolution theorems in semipara-
metric models with non-i.i.d. data. J. Statist. Plann. Inference, 91(2):441–480, 2000.
Prague Workshop on Perspectives in Modern Statistical Inference: Parametrics, Semi-
parametrics, Non-parametrics (1998).

[27] J. A. Rhodes. A concise proof of kruskal’s theorem on tensor decomposition. Linear
Algebra and Appl., 432(7):1818–1824, 2010.

[28] V. Rivoirard and J. Rousseau. Bernstein-von Mises theorem for linear functionals of
the density. Ann. Statist., 40(3):1489–1523, 2012.

30



[29] C.P. Robert. The Bayesian Choice. Springer-Verlag, New York, second edition, 2001.

[30] X. Shen. Asymptotic normality of semiparametric and nonparametric posterior distri-
butions. J. Amer. Statist. Assoc., 97(457):222–235, 2002.

[31] E. M. Stein and R. Shakarchi. Real analysis. Princeton Lectures in Analysis, III.
Princeton University Press, Princeton, NJ, 2005. Measure theory, integration, and
Hilbert spaces.

[32] A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

[33] A. W. van der Vaart. Semiparametric statistics. In Lectures on probability theory and
statistics (Saint-Flour, 1999), volume 1781 of Lecture Notes in Math., pages 331–457.
Springer, Berlin, 2002.

[34] E. Vernet. Posterior consistency for nonparametric hidden markov models with finite
state space. Electronic Journal of Statistics, 9:717–752, 2015.

31


