Norbert Bus
email: busn@esiee.fr

Shashwat Garg
email: garg.shashwat@gmail.com

Nabil H Mustafa
email: mustafan@esiee.fr

Saurabh Ray
email: saurabh.ray@nyu.edu

Tighter Estimates for -nets for Disks

published or not. The documents may come

Introduction

The minimum hitting set problem is one of the most fundamental combinatorial optimization problems: given a range space (P, D) consisting of a set P and a set D of subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that has a non-empty intersection with each of the ranges in D. This problem is strongly NP-hard. If there are no restrictions on the set system D, then it is known that it is NP-hard to approximate the minimum hitting set within a logarithmic factor of the optimal [START_REF] Raz | A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP[END_REF]. The problem is NP-complete even for the case where each range has exactly two points since this problem is equivalent to the vertex cover problem which is known to be NP-complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF][START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. A natural occurrence of the hitting set problem occurs when the range space D is derived from geometry -e.g., given a set P of n points in R 2 , and a set D of m triangles containing points of P , compute the minimum-sized subset of P that hits all the triangles in D. Unfortunately, for most natural geometric range spaces, computing the minimum-sized hitting set remains NP-hard. For example, even the (relatively) simple case where D is a set of unit disks in the plane is strongly NP-hard [START_REF] Hochbaum | Fast approximation algorithms for a nonconvex covering problem[END_REF]. Therefore fast algorithms for computing provably good approximate hitting sets for geometric range spaces have been intensively studied for the past three decades (e.g., see the two recent PhD theses on this topic [START_REF] Fraser | Algorithms for Geometric Covering and Piercing Problems[END_REF][START_REF] Shashidhara | Geometric Hitting Sets and Their Variants[END_REF]).

Computing hitting sets for disks in the plane has been the subject of a long line of research. The case when all the disks have the same radius is easier, and has been studied in a series of works: Cȃlinsecu et al. [START_REF] Cȃlinescu | Selecting forwarding neighbors in wireless ad hoc networks[END_REF] proposed a 108-approximation algorithm, which was subsequently improved by Ambhul et al. [START_REF] Ambühl | Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs[END_REF] to 72. Carmi et al. [START_REF] Carmi | Covering points by unit disks of fixed location[END_REF] further improved that to a 38-approximation algorithm, though with the running time of O(n 6). Claude et al. [START_REF] Claude | An improved line-separable algorithm for discrete unit disk cover[END_REF] were able to achieve a 22-approximation algorithm running in time O(n 6). More recently Fraser et al. [START_REF] Gautam | On the discrete unit disk cover problem[END_REF] presented a 18-approximation algorithm in time O(n 2). Mustafa et al. [START_REF] Nabil | QPTAS for weighted geometric set cover on pseudodisks and halfspaces[END_REF] showed a QPTAS for the dual problem of covering points by weighted disks and pseudo-disks in the plane.

So far, besides ad-hoc approaches, there are two systematic lines along which all progress on the hittingset problem for geometric ranges has relied on: rounding via -nets, and local-search. The local-search approach starts with any hitting set S ⊆ P , and repeatedly decreases the size of S, if possible, by replacing k points of S with ≤ k -1 points of P \ S. Call such an algorithm a k-local search algorithm. It has been shown [START_REF] Nabil | Improved results on geometric hitting set problems[END_REF] that a k-local search algorithm for the hitting set problem for disks in the plane gives a PTAS. Unfortunately the running time of their algorithm to compute a (1 +)-approximation is O(n O(1/ 2)). Very recently Bus et al. [START_REF] Bus | Improved local search for geometric hitting set[END_REF] were able to improve the analysis and algorithm of the local-search approach to design a 8-approximation running in time O(n 2.33). However, at this moment, a near-linear time algorithm based on local-search seems beyond reach. We currently do not even know how to compute the most trivial case, namely when k = 1, of local-search in near-linear time: given the set of disks D, and a set of points P , compute a minimal hitting set in P of D.

Rounding via -nets. Given a range space (P, D) and a parameter > 0, an -net is a subset S ⊆ P such that D ∩ S = ∅ for all D ∈ D with |D ∩ P | ≥ n. The famous -net theorem of Haussler and Welzl [START_REF] Haussler | Epsilon-nets and simplex range queries[END_REF] states that for range spaces with VC-dimension d, there exists an -net of size O(d/ log d/); this bound was later improved to O(d/ log 1/) and which was shown to be optimal in general [START_REF] Komlós | Almost tight bounds for epsilon-nets[END_REF]). Sometimes, weighted versions of the problem are considered in which each p ∈ P has some positive weight associated with it so that the total weight of all elements of P is 1. The weight of each range is the sum of the weights of the elements in it. The aim is to hit all ranges with weight more than . The condition of having finite V C-dimension is satisfied by many geometric set systems: disks, half-spaces, k-sided polytopes, radmissible set of regions etc. in R d . For certain range spaces, one can further improve the bound of the -net theorem [START_REF] Varadarajan | Weighted geometric set cover via quasi-uniform sampling[END_REF][START_REF] Chan | Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling[END_REF][START_REF] Clarkson | Improved approximation algorithms for geometric set cover[END_REF][START_REF] Nabil | Weak -nets have a basis of size O(1/ log 1/)[END_REF][START_REF] Matousek | Efficient partition trees[END_REF][START_REF] Varadarajan | Epsilon nets and union complexity[END_REF][START_REF] Nabil | Near-optimal generalisations of a theorem of Macbeath[END_REF]. An important case is -net for disks in the plane, for which there are several proofs showing the existence of O(1/)-sized nets [START_REF] Pyrga | New existence proofs epsilon-nets[END_REF].

In 1994, Bronnimann and Goodrich [START_REF] Bronnimann | Almost optimal set covers in finite VC-dimension[END_REF] proved the following interesting connection between the hitting-set problem, and -nets: let (P, D) be a range-space for which we want to compute a minimum hitting set. If one can compute an -net of size c/ for the -net problem for (P, D) in polynomial time, then one can compute a hitting set of size at most c • OPT for (P, D), where OPT is the size of the optimal (smallest) hitting set, in polynomial time. A shorter, simpler proof was given by Even et al. [START_REF] Even | Hitting sets when the VC-dimension is small[END_REF]. Both these proofs construct an assignment of weights to points in P such that the total weight of each range D ∈ D (i.e., the sum of the weights of the points in D) is at least (1/OPT)-th fraction of the total weight. Then a (1/OPT)-net with these weights is a hitting set. Until very recently, the best such rounding algorithms had running times of Ω(n 2), and it had been a long-standing open problem to compute a O(1)-approximation to the hitting-set problem for disks in the plane in near-linear time. In a recent break-through, Agarwal and Pan [START_REF] Pankaj | Near-linear algorithms for geometric hitting sets and set covers[END_REF] presented an algorithm that is able to do the required rounding efficiently for a broad set of geometric objects. In particular, they are able to get the first near-linear algorithm for computing O(1)-approximations for hitting sets for disks.

Bounds on -nets. The result of Agarwal and Pan [START_REF] Pankaj | Near-linear algorithms for geometric hitting sets and set covers[END_REF] opens the way, for the first time, for near linear-time algorithms for the geometric hitting set problem. The catch is that the approximation factor depends on the sizes of -nets for disks; despite over seven different proofs of O(1/)-sized -nets for disks, the precise bounds are not very encouraging. The paper containing the earliest proof, Matousek et al. [START_REF] Matousek | How to net a lot with little: Small epsilon-nets for disks and halfspaces[END_REF], was over twenty-two years ago and thus summarized their result: "Note that in principle the -net construction presented in this paper can be transformed into a deterministic algorithm that runs in polynomial time, O(n 3) at worst. However, we certainly would not advocate this algorithm as being practical. We find the resulting constant of proportionality also not particularly flattering." [START_REF] Matousek | How to net a lot with little: Small epsilon-nets for disks and halfspaces[END_REF] So far, the best constants for the -nets come from the proofs in [START_REF] Pyrga | New existence proofs epsilon-nets[END_REF] and [START_REF] Har-Peled | Epsilon-nets for halfspaces revisited[END_REF]. Denote by f (α) the best known bound on the size of an α-net for lower halfspaces in R 3 . A lifting of the problem of disks to R 3 gives an -net problem with lower halfspaces in R 3 . The former paper constructs 1 4 -nets for 4/ independent sub-problems, resulting in -nets of size 4 f (1 4) for halfspaces in R 3 . The latter paper presents five proofs for the existence of linear size -nets for halfspaces in R 3 . The best constant for disks is obtained by using their first proof, obtaining a bound of 4 f (α) where α < 1 3 . Thus, by using the lower bound of [START_REF] Pach | Some new bounds for epsilon-nets[END_REF] for halfplanes in R 2 , f (α) ≥ 2/α -1, the best constructions give a bound that is at least 24/ . However, we believe that f (α) ≥ 10 for α <= 1 2 since even for = 1/2, no -net construction of size less than 10 is known. Such bounds would result in -nets of size at least 40/ . Furthermore, there is no implementation or software solution available that can even compute such -nets efficiently.

Our Contributions

We prove new improved bounds on sizes of -nets and present efficient algorithms to compute such nets. Our approach is simple: we will show that modifications to a well-known technique for computing -netsthe sample-and-refine approach of Chazelle-Friedman [START_REF] Chazelle | A deterministic view of random sampling and its use in geometry[END_REF] -together with additional structural properties of Delaunay triangulations in fact results in -nets of surprisingly low size: Theorem 1.1. Given a set P of n points in R 2 , there exists an -net under disk ranges of size at most 13.4/ . Furthermore it can be computed in expected time O(n log n).

A major advantage of Delaunay triangulations is that their behavior has been extensively studied, there are many efficient implementations available, and they exhibit good behavior for various real-world data-sets as well as random point sets. The algorithm, using CGAL, is furthermore simple to implement. We have implemented it, and present the sizes of -nets for various real-world data-sets; the results indicate that our theoretical analysis closely tracks the actual size of the nets. This can additionally be seen as continuing the program for better analysis of basic geometric tools; see, e.g., Matousek [START_REF] Matousek | On constants for cuttings in the plane[END_REF] for a detailed analysis for a related structure called cuttings.

Together with the result of Agarwal and Pan, this immediately implies the following: Corollary 1.1. For any δ > 0, one can compute a (13.4 + δ)-approximation to the minimum hitting set for (P, D) in time Õ(n).

A near linear time algorithm for computing -nets for disks in the plane

Through a careful analysis, we present an algorithm for computing an -net of size 13.4 , running in near linear time. The method, shown in Algorithm 1, computes a random sample and then solves certain subproblems involving subsets of points located in pairs of Delaunay disks circumscribing adjacent triangles in the Delaunay triangulation of the random sample. The main idea is that every disk that is not hit by a point in the random sample is contained in such a sub-problem. The key to our bounds is i) considering edges in the Delaunay triangulation instead of faces in the analysis, and ii) new improved constructions for large values of . We note that further improvements on the latter would probably yield smaller -nets. Let Ξ(R) be the Delaunay triangulation of a set of points R ⊆ P in the plane. We will use Ξ when R is clear from the context. For any triangle ∆ ∈ Ξ, let D ∆ be the Delaunay disk of ∆, and let P ∆ be the set of points of P contained in D ∆ . Similarly, for any edge e ∈ Ξ, let ∆ 1 e and ∆ 2 e be the two triangles in Ξ adjacent to e, and P e = P ∆ 1 e P ∆ 2 e . If e is on the convex-hull, then one of the triangles is taken to be the halfplane defined by e not containing R.

In order to prove that the algorithm gives the desired result, the following theorems regarding the size of an -net will be useful. Let f () be the size of the smallest -net for any set P of points in R 2 under disk ranges.

Lemma 2.1 ([4]). For 2 3 < < 1, f () ≤ 2, and can be computed in O(n log n) time. Lemma 2.2. For 1 2 < ≤ 2 3 , f () ≤ 10 and can be computed in O(n log n) time. q Q R Figure 1: Setup around q.
Proof. Divide the plane into 4 quadrants with 2 lines, intersecting at a point q, such that each quadrant contains n/4 points. Using the Ham-Sandwich theorem, this can be done in linear time [START_REF] Matousek | Lectures in Discrete Geometry[END_REF]. Create a 2 3 -net for each quadrant, using Lemma 2.1. Add these 8 points to the -net of P . If q ∈ P then add q to the -net; otherwise let ∆ be the triangle in the Delaunay triangulation of P that contains the point q. Add the two vertices of ∆ that are in the opposite quadrants to the -net. The resulting size of the net is at most 10. Denote the quadrant without a vertex of the Delaunay triangle inside it by Q and its opposite quadrant by R. If a disk D intersects at most 3 quadrants and does not contain any of the points from the 2 3 -net in each of those quadrants, it can contain only at most 18 Return (e R e) ∪ R. P). Then if D does not contain any of the two vertices of ∆ in the opposite quadrants (already added to the -net), it must pierce D ∆ (i.e., intersect four times), a contradiction.

Call a tuple ({p, q}, {r, s}), where p, q, r, s ∈ P , a Delaunay quadruple if int(∆(pqr)) ∩ int(∆(pqs)) = ∅. Define its weight, denoted W ({p,q},{r,s}) , to be the number of points of P in D pqr ∪ D pqs . Let T ≤k be a set of Delaunay quadruples of P of weight at most k and similarly T k denotes the set of Delaunay quadruples of weight exactly k. Similarly, a Delaunay triple is given by ({p, q}, {r}), where p, q, r ∈ P . Define its weight, denoted W ({p,q},{r}) , to be the number of points of P in D pqr ∪ D pqr . Let S ≤k be a set of Delaunay triples of P of weight at most k, and S k denotes the set of Delaunay triples of weight exactly k.

One can upper bound the size of T ≤k , S ≤k and using it, we derive an upper bound on the expected number of sub-problems with a certain number of points.

p 3 cs • (1 -p cs) k = |S ≤k | • p 3 cs • (1 -p cs) k
Setting p cs = 2 k+2 gives the required result.

Claim 2.5.

E |{e ∈ Ξ | k 1 n ≤ |P e | ≤ k 2 n}| ≤ (3.1)c 3 1 e k 1 c 1 (k 3 1 c 1 + 3.7k 2 2) if n ≥ 13.
Proof. The crucial observation is that two points {p, q} form an edge in Ξ with two adjacent triangles ∆(pqr), ∆(pqs) ∈ Ξ iff {p, q, r, s} ⊆ R and none of the points of P in D pqr ∪ D pqs are picked in R (i.e, the points p, q, r, s form the Delaunay tuple ({p, q}, {r, s})). Or {p, q} form an edge on the convex-hull of Ξ with one adjacent triangle ∆(pqr) iff {p, q, r} ⊆ R and none of the points of P in D pqr ∪ D pqr are picked in R.

Let χ ({p,q},{r,s}) be the random variable that is 1 iff {p, q} form an edge in Ξ and their two adjacent triangles are ∆(pqr) and ∆(pqs). Let χ ({p,q},{r}) be the random variable that is 1 iff {p, q} form an edge in Ξ with exactly one adjacent triangle ∆(pqr). Noting that every edge in Ξ must come from either a Delaunay quadruple or a Delaunay triple,

E[|{e | k 1 n ≤ |P e | ≤ k 2 n}|] = p,q,r,s∈P k 1 n≤W ({p,q},{r,s}) ≤k 2 n Pr[χ ({p,q},{r,s}) = 1] + p,q,r∈P k 1 n≤W ({p,q},{r}) ≤k 2 n Pr[χ ({p,q},{r}) = 1]
The second term is asymptotically smaller, so we bound it somewhat loosely:

p,q,r∈P k 1 n≤W ({p,q},{r}) ≤k 2 n Pr[χ ({p,q},{r}) = 1] ≤ p,q,r k 1 n≤W ({p,q},{r}) ≤k 2 n (c 1 / n) 3 (1 -c 1 / n) W ({p,q},{r}) ≤ |S ≤k 2 n | • (c 1 / n) 3 (1 -c 1 / n) k 1 n ≤ (2.14)n(k 2 n) 2 • (c 1 / n) 3 • e -c 1 k 1 = (2.14)k 2 2 c 3 1 e c 1 k
1 . Now we carefully bound the first term:

p,q,r,s∈P k 1 n≤W ({p,q},{r,s}) ≤k 2 n Pr[χ ({p,q},{r,s}) = 1] ≤ k 2 n i=k 1 n p,q,r,s W ({p,q},{r,s}) =i Pr[χ ({p,q},{r,s}) = 1] ≤ k 2 n i=k 1 n p,q,r,s W ({p,q},{r,s}) =i (c 1 / n) 4 (1 -c 1 / n) i ≤ k 2 n i=k 1 n |T i |(c 1 / n) 4 (1 -c 1 / n) i
As the above summation is exponentially decreasing as a function of i, it is maximized when

|T i 0 | = max |T ≤i 0 | where i 0 = k 1 n, and |T i | = max |T ≤i | -max |T ≤i-1 |
and so on. Using Claim 2.3 we obtain:

≤ |T ≤k 1 n | • (c 1 / n) 4 (1 -c 1 / n) k 1 n + k 2 n i=k 1 n+1 (|T ≤i | -|T ≤i-1 |) • (c 1 / n) 4 (1 -c 1 / n) i ≤ (3.1)n(k 1 n) 3 • (c 1 / n) 4 (1 -c 1 / n) k 1 n + k 2 n i=k 1 n+1 (3.1)n • 3i 2 • (c 1 / n) 4 (1 -c 1 / n) i ≤ (3.1) k 3 1 c 4 1 e -k 1 c 1 + (3.1) 3k 2 2 c 4 1 2 n k 2 n i=k 1 n+1 (1 -c 1 / n) i ≤ (3.1) k 3 1 c 4 1 e -k 1 c 1 + (3.1) 3k 2 2 c 4 1 2 n (1 -c 1 / n) k 1 n c 1 / n ≤ (3.1)c 3 1 e k 1 c 1 (k 3 1 c 1 + 3k 2 2).
The proof follows by summing up the two terms.

Using the above facts we can prove the main result.

Lemma 2.6. Algorithm COMPUTE -NET computes an -net of expected size 13.4/ . For the expected size, clearly, if n < 13 then the returned set is an -net of size 13 . Note that no recursive call of the algorithm will terminate due to this condition since the number of points a disk has to contain to be hit remains unchanged. Otherwise we can calculate the expected number of points added to the -net during solving the sub-problems . We simply group them by the number of points in them. Set

E i = {e | 2 i n ≤ |P e | < 2 i+1 n} for i ≥ 1
, and let us denote the size of the -net returned by our algorithm with f (). Note that |P e | < 2 n is handled by Lemma 2.1 and 2.2. Then

E f () = E[|R|] + E | e∈Ξ R e | = c 1 + E[|{e | n ≤ |P e | < 3 n/2}|] • f (2/3) +E[|{e | 3 n/2 ≤ |P e | < 2 n}|] • f (1/2) + i=1 E   e∈E i f n |P e |   Noting that E[e∈E i f (n |Pe|) | |E i | = t] ≤ tE[f (1/2 i+1)], we get E   e∈E i f n |P e |   = E   E[e∈E i f n |P e | |E i]   ≤ E |E i | • E[f (1/2 i+1)] = E[|E i |] • E[f (1/2 i+1)]
as |E i | and f (•) are independent. As = n |Pe| > , by induction, assume E[f ()] ≤ 13.4 . Then Proof. Note that E[|R|] = c 1 / . First we bound the expected total size of all the sets P e :

E f () ≤ c 1 + (3.1) • c 3 1 (c 1 + 8.34) e c 1 • 2 + (3.1) • c 3 1 ((3/2) 3 c 1 + 14.8) e 3c 1 /2 • 10 + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • 13.4 • 2 i+1
E e∈Ξ |P e | ≤ E[|{e | 0 ≤ |P e | < n}|] • n + i=0 E[|{e | 2 i n ≤ |P e | < 2 i+1 n}|] • 2 i+1 n ≤ O(n) + i=0 O (2 i) 3 e 2 i c 1 • 2 i+1 n = O(n),
as the last summation is a geometric series. This implies that the expected total number of incidences between points in P , and Delaunay disks in Ξ is O(n). Proof. This can be seen by lifting P to R 3 via the Veronese mapping, where it follows from the fact that the faces of a convex polyhedron that are visible from any exterior point are connected.

Note that the probability of restarting the algorithm (lines 4-5) at any call is at most a constant. Therefore it is re-started expected at most a constant number of times, and so the expected running time, denoted by T (n):

E[T (n)] = O(1/ log 1/) + O(n log 1/) + e∈Ξ E[T (|P e |)] ≤ O(n log 1/) + e∈Ξ E[T (|P e |)]
Similarly to previous calculations we have that

E[T (n)] ≤ O(n log 1/) + (3.1) • c 3 1 (c 1 + 8.34) e c 1 • O(3 n/2 log(3 n/2)) + (3.1) • c 3 1 ((3/2) 3 c 1 + 14.8) e 3c 1 /2 • O(2 n log(2 n)) + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • E[T (2 i+1 n)] ≤ dn log n + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • E[T (2 i+1 n)]
for a constant d coming from the constants above, as well as in Delaunay triangulation, point-location and list-construction computations. Setting E[T (k)] = ck log k satisfies the above inequality for c ≥ 2d, since

E[T (n)] ≤ dn log n + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • c(2 i+1 n) log(2 i+1 n) ≤ dn log n + (cn log n) i=1 2 i+1 • (3.1) • 12 3 (2 3i • 12 + 3.7 • 2 2i+2) e 12•2 i ≤ dn log n + cn log n • 1 2 ≤ cn log n, for c ≥ 2d.

Implementation and Experiments

In this section we present experimental results for our algorithm running on a machine equipped with an Intel Core i7 870 processor with 4 cores each running at 2.93 GHz and with 16 GB main memory. All our implementations are single threaded in order to have a fair comparison. For nearest-neighbors and Delaunay triangulations, we use the well-known geometry library CGAL. It computes Delaunay triangulations in expected O(n log n) time. Instead of computing centerpoints, we will recurse for all values of ; this results in simple efficient code, at the cost of slightly larger constants. In order to empirically validate the size of the -net obtained by our random sampling algorithm we have utilized several datasets in [START_REF]Clustering datasets[END_REF]. The MOPSI Finland dataset contains 13, 467 locations of users in Finland. The KDDCUP04Bio dataset contains the first 2 dimensions of a protein dataset with 145, 751 entries. The Europe and Birch3 datasets have 169, 308 and 100, 000 entries respectively. We have created two random data sets Uniform and Gauss9 with 50, 000 and 90, 000 points. The former is sampled from a uniform distribution while the latter is sampled from 9 different gaussian distributions whose means and covariance matrices are randomly generated. Setting the probability for random sampling to 12 •n results in approximately 12 sized nets for nearly all datasets, as expected by our analysis. We note however, that in practice setting c 1 to 7 gives smaller size -nets, of size around 9 (while our analysis would give an upper bound of 82 in this case). See Figure 2 for the dependency of the net size on c 1 while setting to 0.01. In Table 1

Conclusion

In this paper we have improved upon the constants in the previous construction of -nets for disks in the plane. Our method gives an efficient practical algorithm for computing such -nets, which we have implemented and tested on a variety of data-sets. We conclude with a list of open problems:

• Currently the best known lower-bound for -nets for disks in the plane is the same as the 2/ bound for halfplanes in R 2 . It remains an interesting question to improve this lower-bound, or improve the upper-bounds given in this paper.

• The algorithm of Agarwal and Pan [START_REF] Pankaj | Near-linear algorithms for geometric hitting sets and set covers[END_REF] uses a number of heavy tools (dynamic range reporting, dynamic approximate range counting) that hinders an efficient and practical implementation of their algorithm. Some partial progress has been made recently [START_REF] Bus | Geometric hitting sets for disks: Theory and practice[END_REF], but much work needs to be done to derive a more practical method with provable guarantees.

 Let ∆(abc) denote the triangle defined by the three points a, b and c. D abc denotes the disk through a, b and c, while D abc denotes the halfplane defined by a and b not containing the point c. Let c(D) denote the center of the disk D.

 First we show that the algorithm computes an -net. Take any disk D with center c containing n points of P , and not hit by the initial random sample R. Increase its radius while keeping its center c fixed until it passes through a point, say p 1 of R. Now further expand the disk by moving c in the direction p 1 c until its boundary passes through a second point p 2 of R. The edge e defined by p 1 and p 2 belongs to Ξ, and the two extreme disks in the pencil of empty disks through p 1 and p 2 are the disks D ∆ 1 e and D ∆ 2 e . Their union covers D, and so D contains n points out of the set P e . Then the net R e computed for P e must hit D, as n = (n/|P e |) • |P e |.

by setting c 1 =Lemma 2 . 7 .

 127 [START_REF] Clarkson | Improved approximation algorithms for geometric set cover[END_REF] which is close to the optimal solution of the recurrence relation. Finally, we bound the expected running time of the algorithm. Algorithm COMPUTE -NET runs in expected time O(n log n).

Figure 2 :

 2 Figure 2: -net size multiplied by for 4 sets, = 0.01.

 3 • 2 3 • n 4 = n 2 points. On the other hand, if D contains points from each of the 4 quadrants, then it must contain points from Q and R that are outside of the Delaunay disk D ∆ of ∆ (as D ∆ is empty of points of Algorithm 1: Compute -nets Data: Compute -net, given P : set of n points in R 2 , > 0 and c 1 . Pick each point p ∈ P into R independently with probability c 1 n . 4 if |R| ≤ c 1 /2 or |R| ≥ 2c 1 / then Compute the Delaunay triangulation Ξ of R. 7 for triangles ∆ ∈ Ξ do Compute the set of points P ∆ ⊆ P in Delaunay disk D ∆ of ∆. 9 for edges e ∈ Ξ do 10 Let ∆ 1 e and ∆ 2 e be the two triangles adjacent to e, P e = P ∆ 1 e ∪ P ∆ 2 e . n |Pe|) and compute a -net R e for P e depending on the cases below:

	5	restart algorithm.
	12	if 2 3 < < 1 then
	13	compute using Lemma 2.1.
	14	if 1 2 < ≤ 2 3 then
	15	compute using Lemma 2.2.
	16	if ≤ 1 2 then

1 if n < 13 then 2 Return P 3 6 8 11 Let = (17 compute recursively.

 Claim 2.3. |T ≤k | ≤ (e 3 /9)nk 3 asymptotically and |T ≤k | ≤ (3.1)nk 3 for k ≥ 13.Proof. The proof is an application of the Clarkson-Shor technique[START_REF] Matousek | Lectures in Discrete Geometry[END_REF]. Pick each point in P independently with probability p cs to get a random sample R cs . Count the expected number of edges in the Delaunay triangulation of R cs in two ways. On one hand, it is simply less than 3E[|R cs |] = 3np cs . On the other hand, it is:3np cs ≥ E[Number of Delaunay edges in R cs] = -p cs) k = |T ≤k | • p 4 cs • (1 -p cs) k Therefore |T ≤k | ≤ 3np cs /(p 4 cs (1 -p cs) k) and a simple calculation gives that setting p cs = 3 k+3 minimizes the right hand side. Then |T ≤k | ≤ 3n3

				Pr[{p, q} is a Delaunay edge of R cs]
			p,q∈P
	≥	Pr[(D pqr ∪ D pqs) ∩ R cs = ∅]	(disjoint events)
		p,q∈P r,s∈P	
	≥		Pr[(D pqr ∪ D pqs) ∩ R cs = ∅]
		({p,q},{r,s})∈T ≤k	
	≥	({p,q},{r,s})∈T ≤k	p 4 cs • (1 k+3 /((3 k+3) 4 (1 -3 k+3) k) = nk 3 1 9 (1 + 3 k) k+3 , and the claim follows.

Claim 2.4. |S ≤k | ≤ (e 2 /4)nk 2 asymptotically and |S ≤k | ≤ (2.14)nk 2 for k ≥ 13. Proof. Pick each point in P independently with probability p cs to get a random sample R cs . Count the expected number of edges in the Delaunay triangulation of R cs that lie on the boundary of the Delaunay triangulation, i.e., adjacent to exactly one triangle, in two ways. On one hand, it is exactly the number of edges in the convex-hull of R cs , therefore at most E[|R cs |] = np cs . Counted another way, it is: np cs ≥ E[Number of boundary Delaunay edges in R cs] = p,q∈P Pr[{p, q} is a boundary Delaunay edge of R cs] ≥ p,q∈P r∈P Pr[(D pqr ∪ D pqr) ∩ R cs = ∅] (disjoint events) ≥ ({p,q},{r})∈S ≤k Pr[(D pqr ∪ D pqr) ∩ R cs = ∅] ≥ ({p,q},{r})∈S ≤k

 The Delaunay triangulation of R can be computed in expected time O(1/ log 1/). Steps 7-8 compute, for each Delaunay disk D ∈ Ξ, the list of points contained in D. This can be computed in O(n log 1/) time by instead finding, for each p ∈ P , the list of Delaunay disks in Ξ containing p, as follows. First do point-location in Ξ to locate the triangle ∆ containing p, in expected time O(log 1/). Clearly D ∆ contains p. Now starting from ∆, do a breadth-first search in the dual planar graph of the Delaunay triangulation to find the maximally connected subset of triangles (vertices in the dual graph) whose Delaunay disks contain p. As each vertex in the dual graph has degree at most 3, this takes time proportional to the discovered list of triangles, which as shown earlier is O(n) over all p ∈ P . The correctness follows from the following: Fact 2.8. Given a Delaunay triangulation Ξ on R and any point p ∈ R 2 , the set of triangles in Ξ whose Delaunay disks contain p form a connected sub-graph in the dual graph to Ξ.

Table 1 :

 1 we list -net sizes for different values of while setting c 1 to 12. -net sizes for various point sets, c 1 = 12.

	Dataset		-net size	
		= 0.2	= 0.1	= 0.01	= 0.001
	MOPSI Finland	83	128	1226	12011
	KDDCUP04Bio	55	118	1176	11902
	Europe	69	119	1205	12043
	Birch 3	58	125	1198	11878
	Uniform	70	109	1245	12034
	Gauss9	58	120	1275	12011

Acknowledgments. The authors would like to thank the reviewers for comments and suggestions that substantially improved the content and style of the paper.

The work of Nabil H. Mustafa in this paper has been supported by the grant ANR SAGA (JCJC-14-CE25-0016-01).