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Abstract. We introduce a probabilistic extension of Levy’s Call-By-Push-Value. This
extension consists simply in adding a “flipping coin” boolean closed atomic expression.
This language can be understood as a major generalization of Scott’s PCF encompassing
both call-by-name and call-by-value and featuring recursive (possibly lazy) data types. We
interpret the language in the previously introduced denotational model of probabilistic co-
herence spaces, a categorical model of full classical Linear Logic, interpreting data types as
coalgebras for the resource comonad. We prove adequacy and full abstraction, generalizing
earlier results to a much more realistic and powerful programming language.

1. Introduction

Call-by-Push-Value [22] is a class of functional languages generalizing the lambda-calculus
in several directions. From the point of view of Linear Logic we understand it as a half-
polarized system bearing some similarities with e.g. classical Parigot’s lambda-mu-calculus,
this is why we call it ΛHP. The main idea of Laurent and Regnier interpretation of call-by-
name lambda-mu in Linear Logic [20] (following actually [13]) is that all types of the min-
imal fragment of the propositional calculus (with ⇒ as unique connective) are interpreted
as negative types of Linear Logic which are therefore naturally equipped with structural
morphisms: technically speaking, these types are algebras of the ?-monad of Linear Logic.
This additional structure of negative types allows to perform logical structural rules on the
right side of typing judgments even if these formulas are not necessarily of shape ?σ, and
this is the key towards giving a computational content to classical logical rules, generalizing
the fundamental discovery of Griffin on typing call/cc with Peirce Law [15].

From our point of view, the basic idea of ΛHP is quite similar, though somehow dual
and used in a less systematic way: data types are interpreted as positive types of Linear
Logic equipped therefore with structural morphisms (as linear duals of negative formulas,
they are coalgebras of the !-comonad) and admit therefore structural rules on the left side
of typing judgment even if they are not of shape !σ. This means that a function defined on
a data type can have a linear function type even if it uses its argument in a non-linear way:
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2 T. EHRHARD AND C. TASSON

this non-linearity is automatically implemented by means of the structural morphisms the
positive data type is equipped with.

The basic positive type in Linear Logic is !σ (where σ is any type): it is the very idea of
Girard’s call-by-name translation of the lambda-calculus into Linear Logic to represent the
implication type σ ⇒ τ by means of the decomposition !σ ⊸ τ . The new idea of ΛHP is to
generalize this use of the linear implication to any type construction of shape ϕ⊸ τ where
ϕ is a positive type, without imposing any linearity restriction on the usage of the argument
of type ϕ used by a function of type ϕ ⊸ τ . This non-symmetrical restriction in the use
of the linear implication motivates our description of ΛHP as a “half-polarized” system: in
a fully polarized system like Laurent’s Polarized Linear Logic LLP [20], one would also
require the type σ to be negative in ϕ ⊸ σ (the last system presented in [5] implements
this idea) and the resulting formalism would host classical computational primitives such
as call/cc as well. The price to pay, as illustrated in [2], is a less direct access to data types:
it is impossible to give a function from integers to integers the expected type ι⊸ ι (where
ι is the type of flat natural numbers satisfying ι = 1⊕ ι), the simplest type one can give to
such a term is ι⊸ ?ι which complicates its denotational interpretation1.

Not being polarized on the right side of implications, ΛHP remains “intuitionistic” just
as standard functional programming languages whose paradigmatic example is PCF. So
what is the benefit of this special status given to positive formulas considered as “data
types”? There are several answers to this question.

• First, and most importantly, it gives a call-by-value access to data types: when
translating PCF into Linear Logic, the simplest type for a function from integers to
integers is !ι ⊸ ι. This means that arguments of type ι are used in a call-by-name
way: such arguments are evaluated again each time they are used. This can of
course be quite inefficient. It is also simply wrong if we extend our language with
a random integer generator since in that case each evaluation of such an argument
can lead to a different value: in PCF there is no way to keep memory of the value
obtained for one evaluation of such a parameter and probabilistic programming is
therefore impossible. In ΛHP data types such as ι can be accessed in call-by-value,
meaning that they are evaluated once and that the resulting value is kept for further
computation: this is typically the behavior of a function of type ι⊸ ι. This is not
compulsory however and an explicit ! type constructor still allows to define functions
of type !ι⊸ ι in ΛHP, with the usual PCF behavior.

• Positive types being closed under positive Linear Logic connectives (direct sums
and tensor product) and under “least fixpoint” constructions, it is natural to allow
corresponding constructions of positive types in ΛHP as well, leading to a language
with rich data type constructions (various kinds of trees, streams etc are freely
available) and can be accessed in call-by-value as explained above for integers. From
this data types point of view, the ! Linear Logic connective corresponds to the type
of suspensions or thunks which are boxes (in the usual Linear Logic sense) containing
unevaluated pieces of program.

1One can also consider ? as the computational monad of linear continuations and use a translation from
direct style into monadic style (which, for this monad, is just a version of the familiar CPS translation). This
is just a matter of presentation and of syntactic sugar and does not change the denotational interpretation
in the kind of concrete models of Linear Logic we have in mind such as the relational model, the coherence
space model etc.
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• As already mentioned, since the Linear Logic type constructors ⊸ and ! are
available in ΛHP (with the restriction explained above on the use of ⊸ that the
left side type must be positive), one can represent in ΛHP both Girard’s translations
from lambda-calculus into Linear Logic introduced in [12]: the usual one which is
call-by-name and the “boring one” which is call-by-value. So our language ΛHP

is not intrinsically call-by-value and hosts very simply Girard’s representation of
call-by-name in Linear Logic as further explained in Section 2.4.

Concretely, in ΛHP, a term of positive type can be a value, and then it is discardable
and duplicable and, accordingly, its denotational interpretation is a morphism of coalgebras:
values are particular terms whose interpretation is easily checked to be such a morphism,
which doesn’t preclude other terms of positive type to have the same property of course, in
particular terms reducing to values! Being a value is a property which can be decided in time
at most the size of the term and values are freely duplicable and discardable. The “β-rules”
of the calculus (the standard β-reduction as well as the similar reduction rules associated
with tensor product and direct sum) are subject to restrictions on certain subterms of
redexes to be values (because they must be duplicable and discardable) and these restrictions
make sense thanks to this strong decidability property of being a value.

Probabilities in ΛHP. Because of the possibility offered by ΛHP of handling values in
a call-by-value manner, this language is particularly suitable for probabilistic functional
programming. Contrarily to the common monadic viewpoint on effects, we consider an
extension of the language where probabilistic choice is a primitive coin(p) of type 1 ⊕ 1

(the type of booleans)2 parameterized by p ∈ [0, 1] ∩ Q which is the probability of getting
t (and 1 − p is the probability of getting f). So our probabilistic extension Λp

HP of ΛHP

is in direct style, but, more importantly, the denotational semantics we consider is itself
in “direct style” and does not rely on any auxiliary computational monad of probability
distributions [29, 17] (see [18] for the difficulties related with the monadic approach to
probabilistic computations), random variables [3, 14, 25], or measures [31, 16].

On the contrary, we interpret our language in the model of probabilistic coherence
spaces [4] that we already used for providing a fully abstract semantics for probabilistic
PCF [9]. A probabilistic coherence space X is given by an at most countable set |X| (the web
of X) and a set PX of |X|-indexed families of non-negative real numbers, to be considered as
some kind of “generalized probability distributions”. This set of families of real numbers is
subject to a closure property implementing a simple intuition of probabilistic observations.
Probabilistic coherence spaces are a model of classical Linear Logic and can be seen as
ω-continuous domains equipped with an operation of convex linear combination, and the
linear morphisms of this model are exactly the Scott continuous functions commuting with
these convex linear combinations.

Besides, probabilistic coherence spaces can be seen as particular d-cones [32] and even
Kegelspitzen [19], that is, complete partial orders equipped with a Scott continuous “convex
structure” allowing to compute probabilistic linear combinations of their elements. Kegel-
spitzen have been used recently by Rennela to define a denotational model of a probabilistic
extension of FPC [28]. The main difference with respect to our approach seems to be the
fact that non-linear morphisms (corresponding to morphisms of type !σ ⊸ τ in our setting)

2An not of type T (1⊕ 1) where T would be a computational monad of probabilistic computations.
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are general Scott continuous functions in Rennela’s model3, whereas they are analytic func-
tions4 in ours, which can be seen as very specific Scott continuous functions. See also [11]
where these functions are seen to be stable in a generalized sense.

As shown in [4] probabilistic coherence spaces have all the required completeness prop-
erties for interpreting recursive type definitions (that we already used in [7] for interpreting
the pure lambda-calculus) and so we are able to associate a probabilistic coherence space
with all types of Λp

HP.
In this model the type 1⊕1 is interpreted as the set of sub-probability distributions on

{t, f} so that we have a straightforward interpretation of coin(p). Similarly the type of flat
integers ι is interpreted as a probabilistic coherence space N such that |N| = N and PN is
the set of all probability distributions on the natural numbers. Given probabilistic spaces
X and Y , the space X ⊸ Y has |X| × |Y | as web and P(X ⊸ Y ) is the set of all |X| × |Y |
matrices which, when applied to an element of PX gives an element of PY . The web of the
space !X is the set of all finite multisets of elements of |X| so that an element of !X ⊸ Y
can be considered as a power series on as many variables as there are elements in |X| (the
composition law associated with the Kleisli category of the !-comonad is compatible with
this interpretation of morphisms as power series).

From a syntactic point of view, the only values of 1 ⊕ 1 are t and f , so coin(p) is
not a value. Therefore we cannot reduce 〈λx1⊕1M〉coin(p) to M [coin(p)/x] and this is a
good thing since then we would face the problem that the boolean values of the various
occurrences of coin(p) might be different. We have first to reduce coin(p) to a value, and the
reduction rules of our probabilistic ΛHP stipulate that coin(p) reduces to t with probability
p and to f with probability 1 − p (in accordance with the kind of operational semantics
that we considered in our earlier work on this topic, starting with [4]). So 〈λx1⊕1M〉coin(p)
reduces to M [t/x] with probability p and to M [f/x] with probability 1 − p, which is
perfectly compatible with the intuition that in ΛHP application is a linear operation (and
that implication is linear: the type of λx1⊕1M is (1⊕ 1) ⊸ σ for some type σ): in this
operational semantics as well as in the denotational semantics outlined above, linearity
corresponds to commutation with (probabilistic) convex linear combinations.

Contents. The results presented in this paper illustrate the tight connection between the
syntactic and the denotational intuitions underpinning our understanding of this calculus.

We first introduce in Section 2 the syntax and operational semantics of Λp
HP, an abstract

programming language very close to Paul Levy’s Call by Push Value (CBPV) [22]. It
however differs from Levy’s language mainly by the fact that CBPV computation types
products and recursive type definitions have no counterparts in our language. This choice
is mainly motivated by the wish of keeping the presentation reasonably short. It is argued
in Sections 2.3 and 2.4 that Λp

HP is expressive enough for containing well behaved lazy data
types such as the type of streams, and for encoding call-by-name languages with products.

In Section 3, we present the Linear Logic model of probabilistic coherence spaces, intro-
ducing mainly the underlying linear category Pcoh, where Λp

HP general types are interpreted,

and the Eilenberg-Moore category Pcoh!, where the positive types are interpreted. In order
to simplify the Adequacy and Full Abstraction proofs, we restrict actually our attention

3More precisely, in his interpretation of FPC, Rennela uses strict Scott continuous functions, but, along
the same lines, it seems clear that Kegelspitzen give rise to a model of PCF where morphisms are general
Scott continuous functions.

4Meaning that it is definable by a power series.
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to a well-pointed subcategory of Pcoh! whose objects we call “dense coalgebras”: this will
allow to consider all morphisms as functions. As suggested by one of the referees, there are
probably smaller well-pointed subcategories of Pcoh! where we might interpret our positive
types, and in particular the category of families introduced in [1] describing call-by-value
games. This option will be explored in further work. We prefer here to work with the most
general setting as it is also compatible with a probabilistic extension of the last system of [5],
which features classical call/cc-like capabilities.

We prove then in Section 4 an Adequacy Theorem whose statement is extremely simple:
given a closed termM of type 1 (which has exactly one value ()), the denotational semantics
of M , which is an element of [0, 1], coincides with its probability to reduce to () (such a
term can only diverge or reduce to ()). In spite of its simple statement the proof of this
result requires some efforts mainly because of the presence of unrestricted5 recursive types
in Λp

HP. The method used in the proof relies on an idea of Pitts [26] and is described in the
introduction of Section 4.

Last we prove Full Abstraction in Section 5 adapting the technique used in [7] to the
present Λp

HP setting. The basic idea consists in associating, with any element a of the

web of the probabilistic coherence space [σ] interpreting the type σ, a term a− of type6

!σ ⊸ !ι⊸ 1 such that, given two elements w and w′ of P[σ] such that wa 6= w′
a, the

elements [a−]w! and [a−] (w′)! of P(!ι⊸ 1) are different power series depending on a finite
number n of parameters (this number n depends actually only on a) so that we can find
a rational number valued sub-probability distribution for these parameters where these
power series take different values in [0, 1]. Applying this to the case where w and w′ are
the interpretations of two closed terms M and M ′ of type σ, we obtain, by combining
a− with the rational sub-probability distribution which can be represented in the syntax
using coin(p) for various values of p, a ΛHP closed term C of type !σ ⊸ 1 such that the
probability of convergence of 〈C〉M ! and 〈C〉(M ′)! are different (by adequacy). This proves
that if two (closed) terms are operationally equivalent then they have the same semantics
in probabilistic coherence spaces, that is, equational full abstraction.

Further developments. These results are similar to the ones reported in [10] but are
actually different, and there is no clear logical connection between them, because the lan-
guages are quite different, and therefore, the observation contexts also. And this even in
spite of the fact that PCF can be faithfully encoded in ΛHP. This seems to show that
the semantical framework for probabilistic functional programming offered by probabilistic
coherence spaces is very robust and deserves further investigations. One major outcome
of the present work is a natural extension of probabilistic computation to rich data-types,
including types of potentially infinite values (streams etc).

Our full abstraction result cannot be extended to inequational full abstraction with
respect to the natural order relation on the elements of probabilistic coherence spaces: a
natural research direction will be to investigate other (pre)order relations and their possible
interactive definitions. Also, it is quite tempting to replace the equality of probabilities in the
definition of contextual equivalence by a distance; this clearly requires further developments.

5Meaning that recursive type definitions are not restricted to covariant types.
6For technical reasons and readability of the proof, the type we give to a− in Section 5 slightly differs

from this one.
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2. Probabilistic Call By Push Value

We introduce the syntax of Λp
HP of CBPV (where HP stands for “half polarized”).

Types are given by the following BNF syntax. We define by mutual induction two kinds
of types: positive types and general types, given type variables ζ, ξ. . . :

positive ϕ,ψ, . . . := 1 | !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Rec ζ · ϕ (2.1)

general σ, τ . . . := ϕ | ϕ⊸ σ (2.2)

The type 1 is the neutral element of ⊗ and it might seem natural to have also a type 0 as
the neutral element of ⊕. We didn’t do so because there is no associated constructor in the
syntax of terms, and the only closed terms of type 0 that one can write are ever-looping
terms.

Observe also that there are no restriction on the variance of types in the recursive type
construction: for instance, in Rec ζ ·ϕ is a well-formed positive type if ϕ = !(ζ ⊸ ζ), where
ζ has a negative and a positive occurrence. Do well notice that our “positive types” are
positive in the sense of logical polarities, and not of the variance of type variables!

Terms are given by the following BNF syntax, given variables x, y, . . . :

M,N . . . := x | () | M ! | (M,N) | inℓM | inrM

| λxϕM | 〈M〉N | case(M,xℓ ·Nℓ, xr ·Nr)

| prℓM | prrM | derM | fixx!σM

| fold(M) | unfold(M)

| coin(p), p ∈ [0, 1] ∩ Q

Remark. This functional language Λp
HP, or rather the sublanguage ΛHP which is Λp

HP stripped
from the coin(p) construct, is formally very close to Levy’s CBPV. As explained in the
Introduction, our intuition however are more related to Linear Logic than to CBPV and its
general adjunction-based models. This explains why our syntax slightly departs from Levy’s
original syntax as described e.g. in [21] and is much closer to the SFPL language of [23]:
Levy’s type constructor F is kept implicit and U is “!”. We use LL inspired notations:
M ! corresponds to thunk(M) and derM to force(M). Our syntax is also slightly simpler
than that of SFPL in that our general types do not feature products and recursive types
definitions, we will explain in Section 2.4 that this is not a serious limitation in terms of
expressiveness.

Figure 1 provides the typing rules for these terms. A typing context is an expression
P = (x1 : ϕ1, . . . , xk : ϕk) where all types are positive and the xis are pairwise distinct
variables.

2.1. Reduction rules. Values are particular Λp
HP terms (they are not a new syntactic

category) defined by the following BNF syntax:

V,W . . . := x | () | M ! | (V,W ) | inℓV | inrV | fold(V ) .

Figure 2 defines a deterministic weak reduction relation →w and a probabilistic reduc-

tion
p
→ relation. This reduction is weak in the sense that we never reduce within a ”box”

M ! or under a λ.
The distinguishing feature of this reduction system is the role played by values in the

definition of →w. Consider for instance the case of the term prℓ (Mℓ,Mr); one might expect
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P, x : ϕ ⊢ x : ϕ
P, x : ϕ ⊢M : σ

P ⊢ λxϕM : ϕ⊸ σ

P ⊢M : ϕ⊸ σ P ⊢ N : ϕ

P ⊢ 〈M〉N : σ

P ⊢M : σ

P ⊢M ! : !σ P ⊢ () : 1
P ⊢Mℓ : ϕℓ P ⊢Mr : ϕr

P ⊢ (Mℓ,Mr) : ϕℓ ⊗ ϕr

P ⊢M : ϕi i ∈ {ℓ, r}

P ⊢ iniM : ϕℓ ⊕ ϕr
P ⊢M : !σ

P ⊢ derM : σ
P ⊢M : ϕℓ ⊗ ϕr i ∈ {ℓ, r}

P ⊢ priM : ϕi

P, x : !σ ⊢M : σ

P ⊢ fixx!σM : σ
P ⊢M : ϕℓ ⊕ ϕr P, xℓ : ϕℓ ⊢Mℓ : σ P, xr : ϕr ⊢Mr : σ

P ⊢ case(M,xℓ ·Mℓ, xr ·Mr) : σ

P ⊢ coin(p) : 1⊕ 1

P ⊢M : ψ [Rec ζ · ψ/ζ]

P ⊢ fold(M) : Rec ζ · ψ

P ⊢M : Rec ζ · ψ

P ⊢ unfold(M) : ψ [Rec ζ · ψ/ζ]

Figure 1: Typing system for Λp
HP

this term to reduce directly toMℓ but this is not the case. One needs first to reduceMℓ and
Mr to values before extracting the first component of the pair (the terms prℓ (Mℓ,Mr) and
Mℓ have not the same denotational interpretation in general). Of course replacing Mi with
M !
i allows a lazy behavior. Similarly, in the →w rule for case, the term on which the test

is made must be reduced to a value (necessarily of shape inℓV or inrV if the expression is
well typed) before the reduction is performed. As explained in the Introduction this allows
to “memoize” the value V for further usage: the value is passed to the relevant branch of
the case through the variable xi.

Given two terms M , M ′ and a real number p ∈ [0, 1], M
p
→M ′ means that M reduces

in one step to M ′ with probability p.

We say that M is weak normal if there is no reduction M
p
→ M ′. It is clear that any

value is weak normal. WhenM is closed,M is weak normal iff it is a value or an abstraction.
In order to simplify the presentation we choose in Figure 2 a reduction strategy. For

instance we decide that, for reducing (Mℓ,Mr) to a value, one needs first to reduce Mℓ to a
value, and then Mr; this choice is of course completely arbitrary. A similar choice is made
for reducing terms of shape 〈M〉N , where we require the argument to be reduced first. This
choice is less arbitrary as it will simplify a little bit the proof of adequacy in Section 4 (see
for instance the proof of Lemma 22).

We could perfectly define a more general weak reduction relation as in [5] for which
we could prove a “diamond” confluence property but we would then need to deal with a
reduction transition system where, at each node (term), several probability distributions
of reduced terms are available and so we would not be able to describe reduction as a
simple (infinite dimensional) stochastic matrix. We could certainly also define more general
reduction rules allowing to reduce redexes anywhere in terms (apart for coin(p) which can be
reduced only when in linear position) but this would require the introduction of additional
σ-rules as in [6]. As in that paper, confluence can probably be proven, using ideas coming
from [8, 33] for dealing with reduction in an algebraic lambda-calculus setting.

2.2. Observational equivalence. In order to define observational equivalence, we need to
represent the probability of convergence of a term to a normal form. As in [4], we consider
the reduction as a discrete time Markov chain whose states are terms and stationary states
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derM ! →w M 〈λxϕM〉V →w M [V/x]
i ∈ {ℓ, r}

pri (Vℓ, Vr) →w Vi

fixx!σM →w M
[
(fixx!σM)!/x

] i ∈ {ℓ, r}
case(iniV, xℓ ·Mℓ, xr ·Mr) →w Mi [V/xi]

unfold(fold(V )) →w V

M →w M
′

M
1
→M ′ coin(p)

p
→ inℓ() coin(p)

1−p
→ inr()

M
p
→M ′

derM
p
→ derM ′

M
p
→M ′

〈M〉V
p
→ 〈M ′〉V

N
p
→ N ′

〈M〉N
p
→ 〈M〉N ′

M
p
→M ′

i ∈ {ℓ, r}
priM

p
→ priM

′

Mℓ
p
→M ′

ℓ

(Mℓ,Mr)
p
→ (M ′

ℓ,Mr)

Mr
p
→M ′

r

(V,Mr)
p
→ (V,M ′

r)

M
p
→M ′

i ∈ {ℓ, r}
iniM

p
→ iniM

′

M
p
→M ′

case(M,xℓ ·Mℓ, xr ·Mr)
p
→ case(M ′, xℓ ·Mℓ, xr ·Mr)

M
p
→M ′

fold(M)
p
→ fold(M ′)

M
p
→M ′

unfold(M)
p
→ unfold(M ′)

Figure 2: Weak and Probabilistic reduction axioms and rules for Λp
HP

are weak normal terms. We then define a stochastic matrix Red ∈ [0, 1]Λ
p
HP

×Λp
HP (indexed by

terms) as

RedM,M ′ =





p if M
p
→M ′

1 if M is weak-normal and M ′ =M

0 otherwise.

Saying that Red is stochastic means that the coefficients of Red belong to [0, 1] and that,
for any given term M , one has

∑
M ′ RedM,M ′ = 1 (actually there are at most two terms M ′

such that RedM,M ′ 6= 0).
For allM,M ′ ∈ Λp

HP, ifM
′ is weak-normal then the sequence (RednM,M ′)∞n=1 is monotone

and included in [0, 1], and therefore has a lub that we denote as Red∞M,M ′ which defines a

sub-stochastic matrix (taking Red∞M,M ′ = 0 when M ′ is not weak-normal).

When M ′ is weak-normal, the number p = Red∞M,M ′ is the probability that M reduces

to M ′ after a finite number of steps.
Let us say when two closed terms M1, M2 of type σ are observationally equivalent :

M1 ∼M2, if for all closed term C of type !σ ⊸ 1, Red∞
〈C〉M !

1,()
= Red∞

〈C〉M !
1,()

.

For simplicity we consider only closed terms M1 and M2. We could also define an obser-
vational equivalence on non closed terms, replacing the term C with a context C[ ] which
could bind free variables of the Mi’s, this would not change the results of the paper.

2.3. Examples. For the sake of readability, we drop the fold/unfold constructs associated
with recursive types definitions; they can easily be inserted at the right places. This also
means that, in these examples, we consider the types Rec ζ ·ϕ and ϕ [Rec ζ · ϕ/ζ] as identical.
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Ever-looping program. Given any type σ, we define Ωσ = fixx!σ der x which satisfies ⊢ Ωσ : σ.
It is clear that Ωσ →w der (Ωσ)! →w Ωσ so that we can consider Ωσ as the ever-looping
program of type σ.

Booleans. We define the type o = 1 ⊕ 1, so that P ⊢ coin(p) : o. We define the “true”
constant as t = inℓ() and the “false” constant as f = inr(). The corresponding eliminator is
defined as follows. Given termsM , Nℓ and Nr we set if(M,Nℓ, Nr) = case(M,xℓ ·Nℓ, xr ·Nr)
where xi is not free in Ni for i ∈ {ℓ, r}, so that

P ⊢M : o P ⊢ Nℓ : σ P ⊢ Nr : σ

P ⊢ if(M,Nℓ, Nr) : σ
We have the following weak and probabilistic reduction rules, derived from Figure 2:

if(t, Nℓ, Nr) →w Nℓ if(f , Nℓ, Nr) →w Nr

M
p
→M ′

if(M,Nℓ, Nr)
p
→ if(M ′, Nℓ, Nr)

Natural numbers. We define the type ι of unary natural numbers by ι = 1⊕ ι (by this we
mean that ι = Rec ζ · (1 ⊕ ζ)). We define 0 = inℓ() and n+ 1 = inrn so that we have
P ⊢ n : ι for each n ∈ N.

Then, given a term M , we define the term suc(M) = inrM , so that we have
P ⊢M : ι

P ⊢ suc(M) : ι

Last, given terms M , Nℓ and Nr and a variable x, we define an “ifz” conditional by
ifz(M,Nℓ, x ·Nr) = case(M,z ·Nℓ, x ·Nr) where z is not free in Nℓ, so that

P ⊢M : ι P ⊢ Nℓ : σ P, x : ι ⊢ Nr : σ

P ⊢ ifz(M,Nℓ, x ·Nr) : σ
We have the following weak and probabilistic reduction rules, derived from Figure 2:

i ∈ {ℓ, r}
ifz(iniV,Mℓ, x ·Mr) →w Mi [V/x]

M
p
→M ′

ifz(M,Nℓ, x ·Nr)
p
→ ifz(M ′, Nℓ, x ·Nr)

These conditionals will be used in the examples below.

Streams. Let ϕ be a positive type and Sϕ be the positive type defined by Sϕ = !(ϕ ⊗ Sϕ),
that is Sϕ = Rec ζ · !(ϕ⊗ ζ). We can define a term M such that ⊢M : Sϕ ⊸ ι⊸ ϕ which
computes the nth element of a stream:

M = fix f !(Sϕ⊸ι⊸ϕ) λxSϕ λyι ifz(y, prℓ(der x), z · 〈der f〉prr(der x) z)

Let O = (Ωϕ⊗Sϕ)!, a term which represents the “undefined stream” (more precisely, it is a
stream which is a value, but contains nothing, not to be confused with ΩSϕ which has the
same type but is not a value). We have ⊢ O : Sϕ, and observe that the reduction of 〈M〉O
converges (to an abstraction) and that 〈M〉O 0 diverges.

Conversely, we can define a term N such that ⊢ N : !(ι ⊸ ϕ) ⊸ Sϕ which turns a
function into the stream of its successive applications to an integer.

N = fixF !(!(ι⊸ϕ)⊸Sϕ) λf !(ι⊸ϕ)
(
〈der f〉0, 〈der F 〉(λxι 〈der f〉suc(x))!

)!
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Observe that the recursive call of F is encapsulated into a box, which makes the construction
lazy. As a last example, consider the following term P such that ⊢ P : (Sϕ ⊗ Sϕ) ⊸ (ι⊕ ι) ⊸ ϕ
given by

P = λySϕ⊗Sϕ λcι⊕ι case(c, x · 〈M〉x prℓy, x · 〈M〉x prry)

Take ϕ = 1 and consider the term Q =
(
((), O)! , O

)
, then we have ⊢ Q : S1 ⊗ S1, and

observe that 〈P 〉Q inℓ0 converges to () whereas 〈P 〉Q inr0 diverges.
These examples suggest that Sϕ behaves as should behave a type of streams of elements

of type ϕ.

Lists. There are various possibilities for defining a type of lists of elements of a positive
type ϕ. The simplest definition is λ0 = 1 ⊕ (ϕ⊗ λ0). This corresponds to the ordinary
ML type of lists. But we can also define λ1 = !(1 ⊕ (ϕ⊗ λ1)) and then we have a type of
lazy lists (or terminable streams) where the tail of the list is computed only when required.
Here is an example of a term L such that ⊢ L : λ1, with ϕ = o = 1 ⊕ 1 which is a list of
random length containing random booleans:

L = fixx!λ1 (if(coin(1/4), inℓ(), inr(coin(1/2), der x)))
!

Then derL will reduce with probability 1
4 to the empty list inℓ(), and with probability 3

8 to
each of the values inr (t, L) and inr (f , L).

We can iterate this process, defining a term R of type λ1 ⊸ λ0 which evaluates com-
pletely a terminable stream to a list:

R = fix f !(λ1⊸λ0) λxλ1 case(der x, z · inℓ(), z · (prℓz, 〈der f〉prrz)) .

Then 〈R〉L, which is a closed term of type λ0, terminates with probability 1. The expecta-
tion of the length of this “random list” is

∑∞
n=0 n(

3
4)
n = 12.

Probabilistic tests. If P ⊢ Mi : σ for i = 1, 2, we set dicep(M1,M2) = if(coin(p),M1,M2)
and this term satisfies P ⊢ dicep(M1,M2) : σ. IfMi reduces to a value Vi with probability qi,
then dicep(M1,M2) reduces to V1 with probability p q1 and to V2 with probability (1− p)q2.

Let n ∈ N and let #»p = (p0, . . . , pn) be such that pi ∈ [0, 1] ∩ Q and p0 + · · · + pn ≤ 1.
Then one defines a closed term ran( #»p ), such that ⊢ ran( #»p ) : ι, which reduces to i with
probability pi for each i ∈ {0, . . . , n}. The definition is by induction on n.

ran( #»p ) =





0 if p0 = 1 whatever be the value of n

if(coin(p0), 0,Ω
ι) if n = 0

if(coin(p0), 0, suc(ran(
p1

1−p0
, . . . , pn

1−p0
))) otherwise

As an example of use of the test to zero conditional, we define, by induction on k, a
family of terms eqk such that ⊢ eqk : ι⊸ 1 and that tests the equality to k:

eq0 = λxι ifz(x, (), z · Ω1) eqk+1 = λxι ifz(x,Ω1, z · 〈eqk〉z)

For M such that ⊢M : ι, the term 〈eqk〉M reduces to () with a probability which is equal
to the probability of M to reduce to k.
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2.3.1. Notation. Now, we introduce terms that will be used in the definition of testing terms
in the proof of Full Abstraction in Section 5.

First, we define prodk such that ⊢ prodk : 1 ⊸ · · · ⊸ 1 ⊸ ϕ⊸ ϕ (with k occurrences
of 1):

prod0 = λyϕ y prodk+1 = λx1 prodk .

Given for each i ∈ {0, . . . , k}, Mi such that P ⊢ Mi : 1 and P ⊢ N : ϕ, the term
〈〈〈prodk+1〉M0 · · · 〉Mk〉N reduces to a value V with probability p0 · · · pk q where pi is the
probability of Mi to reduce to () and q is the probability of N to reduce to V . We use the
notations:

M0 ·N = 〈〈prod1〉M0〉N M0 ∧ · · · ∧Mk−1 =

{
() if k = 0
〈〈prodk〉M0· · ·〉Mk−1 otherwise,

so that P ⊢ M0 · N : ϕ and the probability that M0 · N reduces to V is p0 q and P ⊢
M0 ∧ · · · ∧Mk−1 : 1 and M0 ∧ · · · ∧Mk−1 reduces to () with probability p0 · · · pk−1.

Given a general type σ and terms M0, . . . ,Mk−1 such that, for any i ∈ {0, . . . , k − 1},
⊢ Mi : σ, we define close terms chooseσi (M0, . . . ,Mk−1) for i ∈ {0, . . . , n − 1} such that
⊢ chooseσi (M0, . . . ,Mk−1) : ι⊸ σ

chooseσ0 (M0, . . . ,Mk−1) = λzιΩσ

chooseσi+1(M0, . . . ,Mk−1) = λzι ifz(z,M0, y · 〈choose
σ
i (M1, . . . ,Mk−1)〉y) if i ≤ k − 1

Given a term P such that P ⊢ P : ι and pi the probability of P to reduce to i for any i, the
first steps of the reduction are probabilistic:

∀i ∈ {0, . . . , k}, 〈chooseσk+1(M0, . . . ,Mk)〉P
pi
→∗ 〈chooseϕk+1(M0, . . . ,Mk)〉i

the next steps of the reduction are deterministic:

〈chooseϕk+1(M0, . . . ,Mk)〉i →
∗
w Mi

As we will see more precisely in Paragraph 3.2.12, a term of type ι can be seen as a
sub-probability distribution over N. Given integers 0 ≤ l ≤ r, we define by induction the
term ext (l, r) of type ι⊸ ι:

ext (0, 0) = λzι ifz(z, 0, x · Ωι)

∀r > 0, ext (0, r) = chooseιr+1(0, . . . , r)

ext (l + 1, r + 1) = λzι ifz(z,Ωι, x · suc(〈ext (l, r)〉x))

such that if ⊢ P : ι, then 〈ext (l, r)〉P extracts the sub-probability distribution with support
⊆ {l, . . . , r}. Indeed, for any i ∈ {l, . . . , r} 〈ext (l, r)〉P reduces to i with probability pi where
pi is the probability of P to reduce to i.

We also introduce, for #»n = (n0, . . . , nk) a sequence of k + 1 natural numbers, a term
wini(

#»n) of type ι ⊸ ι which extracts the sub-probability distribution whose support is in
the ith window of length ni for 0 ≤ i < k:

win0(
#»n) = ext (0, n0 − 1)

wini+1(
#»n) = ext (n0 + · · ·+ ni, n0 + · · ·+ ni + ni+1 − 1) .
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2.4. On products and recursive definitions of general types. This section has noth-
ing to do with probabilities, so we consider the deterministic language ΛHP, which is just
Λp
HP without the coin(p) construct. Our ΛHP general types, which are similar to Levy’s

CBPV computation types [22] or to the SFPL general types [23], have ⊸ as only type
constructor. This may seem weird when one compares our language with CBPV where prod-
ucts and recursive definitions are possible on computation types and are used for encoding
CBN functional languages such as PCF extended with products.

For keeping our presentation reasonably short, we will not consider the corresponding
extensions of ΛHP in this paper. Instead, we will shortly argue that such a PCF language
with products can be easily encoded in our ΛHP.

Concerning recursive type definitions, it is true that adding them as well as the cartesian
product & at the level of general types would allow to define interesting types such as
Rec ζ · 1 & (!ζ ⊸ ζ), yielding a straightforward encoding of the pure lambda-calculus in
our language. This goal can nevertheless be reached (admittedly in a slightly less natural
way) by using the positive recursive type definition ϕ = Rec ζ · !(ζ ⊸ ζ). A pure term t
will be translated into a ΛHP term t∗ such that x1 : ϕ1, . . . , xn : ϕ ⊢ t∗ : ϕ⊸ ϕ, where the
list x1, . . . , xn contains all the free variables of t. This translation is defined inductively as
follows: x∗ = der x, ((s) t)∗ = der (〈s∗〉(t∗)!) and (λx s)∗ = λx (s∗)!. A simple computation
shows that β-reduction is validated by this interpretation, but observe that it is not the
case for η. The examples we provide in Section 2.3 also show that our recursive definitions
restricted to positive types allow to introduce a lot of useful data types (integers, lists,
trees, streams etc). So we do not see any real motivations for adding recursive general type
definitions (and their addition would make the proof of adequacy in Section 4 even more
complicated).

Coming back to the encoding of products, consider the following grammar of types

A,B, · · · := nat | A⇒ B | A×B

and the following language of terms

s, t, u, · · · := x | n | suc s | pred s | ifz(s, t, u) | λxA s | (s) t | (s, t) | prℓ s | prr s | fixxA · s

We call this languages PCF as it is a straightforward extension of the original PCF of [27].
The typing rules are described in Figure 3. A typing context is a sequence Γ = (x1 :

A1, . . . , xn : An) where the variables are pairwise distinct.
We explain now how we interpret this simple programming language in ΛHP.

Translating PCF types. With any type A, we associate a finite sequence of general types
A∗ = (A∗

1, . . . , A
∗
n) whose length n = l(A) is given by: l(nat) = 1, l(A ⇒ B) = l(B) and

l(A×B) = l(A) + l(B).
Given a sequence #»σ = (σ1, . . . , σn) of general types we define ! #»σ by induction: !() = 1

and !(σ, #»σ ) = !σ ⊗ ! #»σ . Given a positive type ϕ and a sequence #»σ = (σ1, . . . , σn) of general
types, we define ϕ⊸

#»σ = (ϕ⊸ σ1, . . . , ϕ ⊸ σn).
Using these notations, we can now define A∗ as follows:

• nat∗ = (ι) (a one element sequence) where ι is the type of integers introduced in
Section 2.3, ι = Rec ζ · (1⊕ ζ),

• (A⇒ B)∗ = !A∗
⊸ B∗,

• (A×B)∗ = A∗ ·B∗ (list concatenation).
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Translating PCF terms. Let now s be a PCF term with typing judgment7 Γ ⊢ s : A. Let
n = l(A), we define a sequence s∗ of length n such that !Γ ⊢ s∗i : A∗

i (for i = 1, . . . , n) as
follows (if Γ = (x1 : C1, . . . , xk : Ck), then !Γ = (x1 : !C1

∗, . . . , xk : !Ck
∗)).

If s = xj, so that A = Cj (for some j ∈ {1, . . . , k}), let (σ1, . . . , σn) = A∗. Since
!A∗ = !σ1 ⊗ (!σ2 ⊗ · · · (!σn−1 ⊗ (!σn ⊗ 1)) · · ·) we can set x∗ = (x∗1, . . . , x

∗
n) where x∗i =

der prℓprrprr · · · prrx (with i− 1 occurrences of prr).
We set n∗ = inr · · · inrinℓ() (n occurrences of inr), (suc s)

∗ = inrs
∗, (pred s)∗ = case(s∗, x·

inℓ(), x · x). Assume that s = ifz(t, u, v) with Γ ⊢ t : ι, Γ ⊢ u : A and Γ ⊢ v : A for some
PCF type A. Let l = l(A). By inductive hypothesis we have !Γ∗ ⊢ t∗ : ι, !Γ∗ ⊢ u∗i : A

∗
i and

!Γ∗ ⊢ v∗i : A
∗
i for i = 1, . . . , l. So we set s∗ = (case(t∗, z · u∗i , z · v

∗
i ))

l
i=1 where z is a variable

which does not occur free in u or v.
Assume now that Γ, x : A ⊢ s : B, we set (λxA s)

∗
= (λx!A

∗
s∗i )

l(B)
i=1 . Assume that

Γ ⊢ s : A⇒ B and Γ ⊢ t : A. Then, setting n = l(B), we have !Γ∗ ⊢ s∗i : !A∗
⊸ B∗

i for
i = 1, . . . , n and !Γ∗ ⊢ t∗j : A

∗
j for j = 1, . . . ,m where m = l(A). Then, setting

N =
(
(t1

∗)!,
(
· · · ,

(
(tm−1

∗)!,
(
(tm

∗)!, ()
))

· · ·
))

we have !Γ∗ ⊢ N : !A∗ and we set ((s) t)∗ = (〈s∗i 〉N)ni=1. Assume that s = (s1, s2) with
Γ ⊢ si : Ai for i = 1, 2 and Γ ⊢ s : A1 ×A2. Then we set s∗ = s1

∗ · s2
∗ (list concatenation).

Assume that Γ ⊢ s : A1 ×A2, with ni = l(Ai) for i = 1, 2. Then we set (prℓ s)
∗ =

(s∗1, . . . , s
∗
n1
) and (prr s)

∗ = (s∗n1+1, . . . , s
∗
n1+n2

).

Last assume that s = fixxA · t with Γ, x : A ⊢ t : A so that, setting n = l(A), we have
!Γ∗, x : !A∗ ⊢ t∗i : A

∗
i for i = 1, . . . , n. Let x1, . . . , xn be pairwise distinct fresh variables, and

set
Mi = t∗i [(x1, · · · (xn−1, (xn, ())) · · · )/x]

for i = 1, . . . , n. We have !Γ∗, x1 : !A
∗
1, . . . , xn : !A∗

n ⊢ Mi : A∗
i . We are in position of

applying the usual trick for encoding mutual recursive definitions using fixpoints operators.
For the sake of readability, assume that n = 2, so we have !Γ∗, x1 : !A

∗
1, x2 : !A∗

2 ⊢Mi : A
∗
i for

i = 1, 2. Let N1 = fixx
!A∗

1
1 M1 so that !Γ∗, x2 : !A

∗
2 ⊢ N1 : A∗

1. Then we have !Γ∗, x2 : !A
∗
2 ⊢

M2

[
N !

1/x1
]
: A∗

2. Therefore we can set s∗2 = fixx
!A∗

2
2 M2

[
N !

1/x1
]
and we have !Γ∗ ⊢ s∗2 : A∗

2.

Finally we set s∗1 = N1

[
(s∗2)

!/x2
]
with !Γ∗ ⊢ s∗1 : A

∗
1.

We should check now that this translation is compatible with the operational semantics
of our extended PCF language. A simple way to do so would be to choose a simple model
of linear logic (for instance, the relational model) and to prove that the semantics of a
PCF term is equal to the semantics of its translation in Λp

HP stripped from its probabilistic
construct coin(p) (interpreting tuples of types using the “additive” cartesian product &).
This is a long and boring exercise.

3. Probabilistic Coherent Spaces

3.1. Semantics of LL, in a nutshell. The kind of denotational models we are interested
in, in this paper, are those induced by a model of LL, as explained in [5]. We remind the
basic definitions and notations, referring to that paper for more details.

7So our translation depends on the typing judgment and not only on the term; this is fairly standard and
can be avoided by considering typed free variables.
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Γ, x : A ⊢ x : A Γ ⊢ n : nat
Γ ⊢ s : nat

Γ ⊢ suc s : nat
Γ ⊢ s : nat

Γ ⊢ pred s : nat

Γ ⊢ s : nat Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ ifz(s, t, u) : A

Γ, x : A ⊢ s : B

Γ ⊢ λxA s : A⇒ B
Γ ⊢ s : A⇒ B Γ ⊢ t : A

Γ ⊢ (s) t : B
Γ ⊢ sℓ : Aℓ Γ ⊢ sr : Ar

Γ ⊢ (sℓ, sr) : Aℓ ×Ar

Γ ⊢ s : Aℓ ×Ar i ∈ {ℓ, r}
Γ ⊢ pri s : Ai

Γ, x : A ⊢M : A

Γ ⊢ fixxA ·M : A

Figure 3: Typing rules for a simple call-by-name language with products, PCF

3.1.1. Models of Linear Logic. A model of LL consists of the following data.
A symmetric monoidal closed category (L,⊗, 1, λ, ρ, α, σ) where we use simple juxta-

position g f to denote composition of morphisms f ∈ L(X,Y ) and g ∈ L(Y,Z). We use
X ⊸ Y for the object of linear morphisms from X to Y , ev ∈ L((X ⊸ Y )⊗X,Y ) for the
evaluation morphism and cur ∈ L(Z ⊗X,Y ) → L(Z,X ⊸ Y ) for the linear curryfication
map. For convenience, and because it is the case in the concrete models we consider (such
as Scott Semantics [5] or Probabilistic Coherent Spaces here), we assume this SMCC to be
a ∗-autonomous category with dualizing object ⊥. We use X⊥ for the object X ⊸ ⊥ of L
(the dual, or linear negation, of X).

The category L is cartesian with terminal object ⊤, product &, projections pri. By
∗-autonomy L is co-cartesian with initial object 0, coproduct ⊕ and injections ini. By
monoidal closeness of L, the tensor product ⊗ distributes over the coproduct ⊕.

We are given a comonad ! : L → L with co-unit derX ∈ L(!X,X) (dereliction) and
co-multiplication digX ∈ L(!X, !!X) (digging) together with a strong symmetric monoidal
structure (Seely isos m0 and m2) for the functor ! , from the symmetric monoidal cate-
gory (L,&) to the symmetric monoidal category (L,⊗) satisfying an additional coherence
condition wrt. dig.

We use ? for the “De Morgan dual” of ! : ?X = (!(X⊥))⊥ and similarly for morphisms.
It is a monad on L.

3.1.2. The Eilenberg-Moore category. It is then standard to define the category L! of !-
coalgebras. An object of this category is a pair P = (P ,hP ) where P ∈ Obj(L) and
hP ∈ L(P , !P ) is such that derP hP = Id and digP hP = !hP hP . Then f ∈ L!(P,Q) iff

f ∈ L(P ,Q) such that hQ f = !f hP . The functor ! can be seen as a functor from L to L!

mapping X to (!X,digX) and f ∈ L(X,Y ) to !f . It is right adjoint to the forgetful functor
U : L! → L. Given f ∈ L(P ,X), we use f ! ∈ L!(P, !X) for the morphism associated with f

by this adjunction, one has f ! = !f hP . If g ∈ L!(Q,P ), we have f ! g = (f g)!.
Then L! is cartesian (with product of shape P ⊗ Q = (P ⊗ Q,hP⊗Q) and terminal

object (1,h1), still denoted as 1). This category is also co-cartesian with coproduct of
shape P ⊕ Q = (P ⊕ Q,hP⊕Q) and initial object (0,h0) still denoted as 0. The complete

definitions can be found in [5]. We use cP ∈ L!(P,P ⊗ P ) (contraction) for the diagonal
and wP ∈ L!(P, 1) (weakening) for the unique morphism to the terminal object.

We also consider occasionally the Kleisli category8 L! of the comonad !: its objects
are those of L and L!(X,Y ) = L(!X,Y ). The identity at X in this category is derX and

8It is the full subcategory of L! of free coalgebras, see any introductory text on monads and co-monads.
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composition of f ∈ L!(X,Y ) and g ∈ L!(Y,Z) is defined as

g ◦ f = g !f digX .

This category is cartesian closed but this fact will not play an essential role in this work.

3.1.3. Fixpoints. For any object X, we assume to be given fixX ∈ L(!(!X ⊸ X),X), a

morphism such that9 ev (der!X⊸X ⊗ fix!X) ◦ c!(!X⊸X) = fixX which will allow to interpret
term fixpoints.

In order to interpret fixpoints of types, we assume that the category L is equipped
with a notion of embedding-retraction pairs, following a standard approach. We use L⊆

for the corresponding category. It is equipped with a functor F : L⊆ → Lop × L such
that F(X) = (X,X) and for which we use the notation (ϕ−, ϕ+) = F(ϕ) and assume that
ϕ− ϕ+ = IdX . We assume furthermore that L⊆ has all countable directed colimits and that
the functor E = pr2 F : L⊆ → L is continuous. We also assume that all the basic operations
on objects (⊗, ⊕, ( )⊥ and ! ) are continuous functors from L⊆ to itself10.

Then it is easy to carry this notion of embedding-retraction pairs to L!, defining a
category L!

⊆, to show that this category has all countable directed colimits and that the

functors ⊗ and ⊕ are continuous on this category: L!
⊆(P,Q) is the set of all ϕ ∈ L⊆(P ,Q)

such that ϕ+ ∈ L!(P,Q). One checks also that ! defines a continuous functor from L⊆ to
L!
⊆. This allows to interpret recursive types, more details can be found in [5].

3.1.4. Interpreting types. Using straightforwardly the object 1 and the operations ⊗, ⊕, !
and ⊸ of the model L as well as the completeness and continuity properties explained

in Section 3.1.3, we associate with any positive type ϕ and any repetition-free list
#»

ζ =
(ζ1, . . . , ζn) of type variables containing all free variables of ϕ a continuous functor [ϕ]!#»

ζ
:

(L!
⊆)

n → L!
⊆ and with any general type σ and any list

#»

ζ = (ζ1, . . . , ζn) of pairwise distinct

type variables containing all free variables of σ we associate a continuous functor [σ] #»

ζ :

(L!
⊆)

n → L⊆.

When we write [σ] or [ϕ]! (without subscript), we assume implicitly that the types σ
and ϕ have no free type variables. Then [σ] is an object of L and [ϕ]! is an object of L!. We
have [ϕ] = [ϕ]! that is, considered as a generalized type, the semantics of a positive type ϕ

is the carrier of the coalgebra [ϕ]!.
Given a typing context P = (x1 : ϕ1, . . . , xk : ϕk), we define [P] = [ϕ1]

!⊗· · ·⊗ [ϕk]
! ∈ L!.

In the model or probabilistic coherence spaces considered in this paper, we define L⊆

in such a way that the only isos are the identity maps. This implies that the types Rec ζ ·ϕ
and ϕ [(Rec ζ · ϕ)/ζ] are interpreted as the same object (or functor). Such definitions of L⊆

are possible in many other models (relational, coherence spaces, hypercoherences etc).
We postpone the description of term interpretation because this will require construc-

tions specific to our probabilistic semantics, in addition to the generic categorical ingredients
introduced so far.

9It might seem natural to require the stronger uniformity conditions of Conway operator [30]. This does
not seem to be necessary as far as soundness of our semantics is concerned even if the fixpoint operators
arising in concrete models satisfy these further properties.

10This is a rough statement; one has to say for instance that if ϕi ∈ L⊆(Xi, Yi) for i = 1, 2 then
(ϕ1 ⊗ ϕ2)

− = ϕ−
1 ⊗ ϕ−

2 etc. The details can be found in [5].
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3.2. The model of probabilistic coherence spaces. Given a countable set I and u, u′ ∈
(R+)I , we set 〈u, u′〉 =

∑
i∈I uiu

′
i. Given F ⊆ (R+)I , we set F⊥ = {u′ ∈ (R+)I | ∀u ∈

F 〈u, u′〉 ≤ 1}.
A probabilistic coherence space (PCS) is a pair X = (|X|,PX) where |X| is a countable

set and PX ⊆ (R+)|X| satisfies

• PX⊥⊥ = PX (equivalently, PX⊥⊥ ⊆ PX),
• for each a ∈ |X| there exists u ∈ PX such that ua > 0,
• for each a ∈ |X| there exists A > 0 such that ∀u ∈ PX ua ≤ A.

If only the first of these conditions holds, we say that X is a pre-probabilistic coherence
space (pre-PCS).

The purpose of the second and third conditions is to prevent infinite coefficients to
appear in the semantics. This property in turn will be essential for guaranteeing the mor-
phisms interpreting proofs to be analytic functions, which will be the key property to prove
full abstraction. So these conditions, though aesthetic at first sight, are important for our
ultimate goal.

Lemma 1. Let X be a pre-PCS. The following conditions are equivalent:

• X is a PCS,
• ∀a ∈ |X| ∃u ∈ PX ∃u′ ∈ PX⊥ ua > 0 and u′a > 0,
• ∀a ∈ |X| ∃A > 0∀u ∈ PX ∀u′ ∈ PX⊥ ua ≤ A and u′a ≤ A.

The proof is straightforward.
We equip PX with the most obvious partial order relation: u ≤ v if ∀a ∈ |X| ua ≤ va

(using the usual order relation on R).

Theorem 2. PX is an ω-continuous domain. Given u, v ∈ PX and α, β ∈ R+ such that
α+ β ≤ 1, one has αu+ βv ∈ PX.

This is an easy consequence of the hypothesis PX⊥⊥ ⊆ PX. See [4] for details; from this
result, we will only use the closure properties: PX is closed under sub-probabilistic linear
combinations and under lubs of monotonic sequences. Though the ω-continuity property
(and the associated way-below relation) does not play any technical role, it is an intuitively
satisfactory fact11 which means that the “size” of our domains remains bounded.

3.2.1. Morphisms of PCSs. Let X and Y be PCSs. Let t ∈ (R+)|X|×|Y | (to be understood

as a matrix). Given u ∈ PX, we define t u ∈ R+|Y |
by (t u)b =

∑
a∈|X| ta,bua (application

of the matrix t to the vector u)12. We say that t is a (linear) morphism from X to Y if
∀u ∈ PX tu ∈ PY , that is

∀u ∈ PX ∀v′ ∈ PY ⊥
∑

(a,b)∈|X|×|Y |

ta,buav
′
b ≤ 1 .

The diagonal matrix Id ∈ (R+)|X|×|X| given by Ida,b = 1 if a = b and Ida,b = 0 otherwise is
a morphism. In that way we have defined a category Pcoh whose objects are the PCSs and

11The ω-continuity is similar to separability for topological vector spaces.
12This is an unordered sum, which is infinite in general. It makes sense because all its terms are ≥ 0.
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whose morphisms have just been defined. Composition of morphisms is defined as matrix
multiplication: let s ∈ Pcoh(X,Y ) and t ∈ Pcoh(Y,Z), we define t s ∈ (R+)|X|×|Z| by

(t s)a,c =
∑

b∈|Y |

sa,btb,c

and a simple computation shows that t s ∈ Pcoh(X,Z). More precisely, we use the fact
that, given u ∈ PX, one has (t s)u = t (s u). Associativity of composition holds because
matrix multiplication is associative. IdX is the identity morphism at X.

Given u ∈ PX, we define ‖u‖X = sup{〈u, u′〉 | u′ ∈ PX⊥}. By definition, we have
‖u‖X ∈ [0, 1].

3.2.2. Multiplicative constructs. One sets X⊥ = (|X|,PX⊥). It results straightforwardly
from the definition of PCSs that X⊥ is a PCS. Given t ∈ Pcoh(X,Y ), one has t⊥ ∈
Pcoh(Y ⊥ ,X⊥) if t⊥ is the transpose of t, that is (t⊥)b,a = ta,b.

One defines X ⊗ Y by |X ⊗ Y | = |X| × |Y | and

P(X ⊗ Y ) = {u⊗ v | u ∈ PX and v ∈ PY }⊥⊥

where (u⊗ v)(a,b) = uavb. Then X ⊗ Y is a pre-PCS.

We have

P(X ⊗ Y ⊥)⊥ = {u⊗ v′ | u ∈ PX and v′ ∈ PY ⊥}⊥ = Pcoh(X,Y ) .

It follows that X ⊸ Y = (X ⊗ Y ⊥)⊥ is a pre-PCS. Let (a, b) ∈ |X| × |Y |. Since X
and Y ⊥ are PCSs, there is A > 0 such that uav

′
b < A for all u ∈ PX and v′ ∈ PY ⊥ .

Let t ∈ (R+)|X⊸Y | be such that t(a′,b′) = 0 for (a′, b′) 6= (a, b) and t(a,b) = 1/A, we have
t ∈ P(X ⊸ Y ). This shows that ∃t ∈ P(X ⊸ Y ) such that t(a,b) > 0. Similarly we can find

u ∈ PX and v′ ∈ PY ⊥ such that ε = uav
′
b > 0. It follows that ∀t ∈ P(X ⊸ Y ) one has

t(a,b) ≤ 1/ε. We conclude that X ⊸ Y is a PCS, and therefore X ⊗ Y is also a PCS.

Lemma 3. Let X and Y be PCSs. One has P(X ⊸ Y ) = Pcoh(X,Y ). That is, given

t ∈ (R+)|X|×|Y |, one has t ∈ P(X ⊸ Y ) iff for all u ∈ PX, one has t u ∈ PY .

This results immediately from the definition above of X ⊸ Y .

Lemma 4. Let X1, X2 and Y be PCSs. Let t ∈ (R+)|X1⊗X2⊸Y |. One has t ∈ Pcoh(X1 ⊗
X2, Y ) iff for all u1 ∈ PX1 and u2 ∈ PX2 one has t (u1 ⊗ u2) ∈ PY .

Proof. The condition stated by the lemma is clearly necessary. Let us prove that it is
sufficient: under this condition, it suffices to prove that

t⊥ ∈ Pcoh(Y ⊥ , (X1 ⊗X2)
⊥) .

Let v′ ∈ PY ⊥ , it suffices to prove that t⊥ v′ ∈ P(X1 ⊗X2)
⊥ . So let u1 ∈ PX1 and u2 ∈ PX2,

it suffices to prove that 〈t⊥ v′, u1 ⊗ u2〉 ≤ 1, that is 〈t (u1 ⊗ u2), v
′〉 ≤ 1, which follows from

our assumption. ✷

Let si ∈ Pcoh(Xi, Yi) for i = 1, 2. Then one defines

s1 ⊗ s2 ∈ (R+)|X1⊗X2⊸Y1⊗Y2|

by (s1 ⊗ s2)((a1,a2),(b1,b2)) = (s1)(a1,b1)(s2)(a2,b2) and one must check that

s1 ⊗ s2 ∈ Pcoh(X1 ⊗X2, Y1 ⊗ Y2) .
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This follows directly from Lemma 4. Let 1 = ({∗}, [0, 1]). There are obvious choices of
natural isomorphisms

λX ∈ Pcoh(1⊗X,X)

ρX ∈ Pcoh(X ⊗ 1,X)

αX1,X2,X3 ∈ Pcoh((X1 ⊗X2)⊗X3,X1 ⊗ (X2 ⊗X3))

σX1,X2 ∈ Pcoh(X1 ⊗X2,X2 ⊗X1)

which satisfy the standard coherence properties. This shows that (Pcoh, 1, λ, ρ, α, σ) is a
symmetric monoidal category.

3.2.3. Internal linear hom. Given PCSs X and Y , let us define ev ∈ (R+)|(X⊸Y )⊗X⊸Y | by

ev(((a′,b′),a),b) =

{
1 if (a, b) = (a′, b′)

0 otherwise.

Then it is easy to see that (X ⊸ Y, ev) is an internal linear hom object in Pcoh, showing
that this SMCC is closed. If t ∈ Pcoh(Z ⊗ X,Y ), the corresponding linearly curryfied
morphism cur(t) ∈ Pcoh(Z,X ⊸ Y ) is given by cur(t)(c,(a,b)) = t((c,a),b).

3.2.4. ∗-autonomy. Take ⊥ = 1, then one checks readily that (Pcoh, 1, λ, ρ, α, σ,⊥) is a
∗-autonomous category. The duality functor X 7→ (X ⊸ ⊥) can be identified with the
strictly involutive contravariant functor X 7→ X⊥ .

3.2.5. Additives. Let (Xi)i∈I be a countable family of PCSs. We define a PCS &i∈I Xi by

|&i∈I Xi| =
⋃
i∈I{i} × |Xi| and u ∈ P(&i∈I Xi) if, for all i ∈ I, the family u(i) ∈ (R+)|Xi|

defined by u(i)a = u(i,a) belongs to PXi.

Lemma 5. Let u′ ∈ (R+)|&i∈I Xi|. One has u′ ∈ P(&i∈I Xi)
⊥ iff

• ∀i ∈ I u′(i) ∈ PX⊥
i

• and
∑

i∈I ‖u
′(i)‖

X⊥
i

≤ 1.

The proof is quite easy. It follows that &i∈I Xi is a PCS. Moreover we can define
pri ∈ Pcoh(&j∈I Xj ,Xi) by

(pri)(j,a),a′ =

{
1 if j = i and a = a′

0 otherwise.

Then (&i∈I Xi, (pri)i∈I) is the cartesian product of the family (Xi)i∈I in the category Pcoh.
The coproduct (⊕i∈I Xi, (ini)i∈I) is the dual operation, so that

| ⊕
i∈I

Xi| =
⋃

i∈I

{i} × |Xi|

and u ∈ P(⊕i∈I Xi) if ∀i ∈ I u(i) ∈ PXi and
∑

i∈I ‖u(i)‖Xi
≤ 1. The injections inj ∈

Pcoh(Xj ,⊕i∈I Xi) are given by

(ini)a′,(j,a) =

{
1 if j = i and a = a′

0 otherwise.
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Given morphisms si ∈ Pcoh(Xi, Y ) (for each i ∈ I), then the unique morphism s ∈
Pcoh(⊕i∈I Xi, Y ) is given by s(i,a),b = (si)a,b and denoted as casei∈Isi (in the binary case,
we use case(s1, s2)).

3.2.6. Exponentials. Given a set I, a finite multiset of elements of I is a function b : I → N

whose support supp(b) = {a ∈ I | b(a) 6= 0} is finite. We use Mfin(I) for the set of all
finite multisets of elements of I. Given a finite family a1, . . . , an of elements of I, we use
[a1, . . . , an] for the multiset b such that b(a) = #{i | ai = a}. We use additive notations for

multiset unions:
∑k

i=1 bi is the multiset b such that b(a) =
∑k

i=1 bi(a). The empty multiset
is denoted as 0 or [ ]. If k ∈ N, the multiset kb maps a to k b(a).

Let X be a PCS. Given u ∈ PX and b ∈ Mfin(|X|), we define ub =
∏
a∈|X| u

b(a)
a ∈ R+.

Then we set u! = (ub)b∈Mfin(|X|) and finally

!X = (Mfin(|X|), {u! | u ∈ PX}⊥⊥)

which is a pre-PCS.
We check quickly that !X so defined is a PCS. Let b = [a1, . . . , an] ∈ Mfin(|X|). Because

X is a PCS, and by Theorem 2, for each i = 1, . . . , n there is u(i) ∈ PX such that u(i)ai > 0.
Let (αi)

n
i=1 be a family of strictly positive real numbers such that

∑n
i=1 αi ≤ 1. Then

u =
∑n

i=1 αiu(i) ∈ PX satisfies uai > 0 for each i = 1, . . . , n. Therefore u!b = ub > 0. This
shows that there is U ∈ P(!X) such that Ub > 0.

Let now A ∈ R+ be such that ∀u ∈ PX ∀i ∈ {1, . . . , n} uai ≤ A. For all u ∈ PX we
have ub ≤ An. We have

(P(!X))⊥ = {u! | u ∈ PX}
⊥⊥⊥

= {u! | u ∈ PX}⊥ .

Let t ∈ (R+)|!X| be defined by tc = 0 if c 6= b and tb = A−n > 0; we have t ∈ (P(!X))⊥ . We
have exhibited an element t of (P(!X))⊥ such that tb > 0. By Lemma 1 it follows that !X
is a PCS.

3.2.7. Kleisli morphisms as functions. Let s ∈ (R+)|!X⊸Y |. We define a function ŝ : PX →

R+|Y |
as follows. Given u ∈ PX, we set

ŝ(u) = s u! =


 ∑

c∈|!X|

sc,bu
c



b∈|Y |

.

Theorem 6. One has s ∈ P(!X ⊸ Y ) iff, for all u ∈ PX, one has ŝ(u) ∈ PY .

This is an immediate consequence of the definition.

Theorem 7. Let s ∈ Pcoh(!X,Y ). The function ŝ is Scott-continuous. Moreover, given

s, s′ ∈ Pcoh(!X,Y ), one has s = s′ (as matrices) iff ŝ = ŝ′ (as functions PX → PY ).

This is an easy consequence of the fact that two polynomials of n variables with real
coefficients are identical iff they are the same function on any open subset of Rn.

Terminology. We say that s ∈ P(!X ⊸ Y ) is a power series whose monomial uc has
coefficient sc,b. Since s is characterized by the function ŝ we sometimes say that ŝ is a power
series.
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We can consider the elements of Pcoh!(X,Y ) (the morphisms of the Kleisli category of
the comonad ! on the category Pcoh) as particular Scott continuous functions PX → PY
and this identification is compatible with the definition of identity maps and of composition
in Pcoh!, see Section 3.1.2. Of course, not all Scott continuous function are morphisms in
Pcoh!.

Theorem 8. Let s, s′ ∈ Pcoh!(X,Y ) be such that s ≤ s′ (as elements of P(!X ⊸ Y )). Then

∀u ∈ PX ŝ(u) ≤ ŝ′(u). Let (s(i))i∈N be a monotone sequence of elements of Pcoh!(X,Y )
and let s = supi∈N s(i). Then ∀u ∈ PX ŝ(u) = supi∈I ŝi(u).

The first statement is obvious. The second one results from the monotone convergence
Theorem.

Given a multiset b ∈ Mfin(I), we define its factorial b! =
∏
i∈I b(i)! and its multinomial

coefficient mn(b) = (#b)!/b! ∈ N+ where #b =
∑

i∈I b(i) is the cardinality of b. Remember
that, given an I-indexed family a = (ai)i∈I of elements of a commutative semi-ring, one has
the multinomial formula (∑

i∈I

ai

)n
=

∑

b∈Mn(I)

mn(b)ab

where Mn(I) = {b ∈ Mfin(I) | #b = n}.
Given c ∈ |!X | and d ∈ |!Y | we define L(c, d) as the set of all multisets r inMfin(|X| × |Y |)

such that

∀a ∈ |X|
∑

b∈|Y |

r(a, b) = c(a) and ∀b ∈ |Y |
∑

a∈|X|

r(a, b) = d(b) .

Let t ∈ Pcoh(X,Y ), we define !t ∈ (R+)!X⊸!Y by

(!t)c,d =
∑

r∈L(c,d)

d!

r!
tr .

Observe that the coefficients in this sum are all non-negative integers.

Lemma 9. For all u ∈ PX one has !t u! = (t u)!.

This results from a simple computation applying the multinomial formula.

Theorem 10. For all t ∈ Pcoh(X,Y ) one has !t ∈ Pcoh(!X, !Y ) and the operation t 7→ !t
is functorial.

Immediate consequences of Lemma 9 and Theorem 7.

3.2.8. Description of the exponential comonad. We equip now this functor with a struc-
ture of comonad: let derX ∈ (R+)|!X⊸X| be given by (derX)b,a = δ[a],b (the value of the

Kronecker symbol δi,j is 1 if i = j and 0 otherwise) and digX ∈ (R+)|!X⊸!!X| be given by
(digX)b,[b1,...,bn] = δ∑n

i=1 bi,b
. Then we have derX ∈ Pcoh(!X,X) and digX ∈ Pcoh(!X, !!X)

simply because

d̂erX(u) = u and d̂igX(u) = (u!)!

for all u ∈ PX, as easily checked. Using these equations, one also checks easily the naturality
of these morphisms, and the fact that (! ,der,dig) is a comonad.
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As to the monoidality of this comonad, we introduce m0 ∈ (R+)|1⊸!⊤| by m0
∗,[] = 1 and

m2
X,Y ∈ (R+)|!X⊗!Y⊸!(X&Y )| by (m2

X,Y )b,c,d = δd,1·b+2·c where i·[a1, . . . , an] = [(i, a1), . . . , (i, an)].

It is easily checked that the required commutations hold (again, we refer to [24]).

3.2.9. Fixpoints in Pcoh!. For any object Y of Pcoh, a morphism t ∈ Pcoh!(Y, Y ) defines
a Scott-continuous function f = t̂ : P(Y ) → P(Y ) which has a least fixpoint supn∈N f

n(0).
Let X be an object of Pcoh and set Y = !(!X ⊸ X) ⊸ X. Then we have a morphism
t = cur s ∈ Pcoh!(Y, Y ) where s ∈ Pcoh(!Y ⊗ !(!X ⊸ X),X) is defined as the following
composition of morphisms in Pcoh:

!Y ⊗ !(!X ⊸ X) !Y ⊗ !(!X ⊸ X)⊗ !(!X ⊸ X)

!X ⊗ (!X ⊸ X)

X

s

!Y ⊗ c!X⊸X

(ev (derY ⊗ !(!X ⊸ X)))! ⊗ der(!X⊸X)

ev σ

Then t̂ is a Scott continuous function PY → PY whose least fixpoint is fix, considered as a

morphism fix ∈ Pcoh!(!X ⊸ X,X), satisfies fîx(u) = sup∞n=0 û
n(0).

3.2.10. The partially ordered class of probabilistic coherence spaces. We define the category
Pcoh⊆. This category is actually a partially ordered class whose objects are those of Pcoh.
The order relation, denoted as ⊆, is defined as follows: X ⊆ Y if |X| ⊆ |Y | and the
matrices η+X,Y and η−X,Y defined, for a ∈ |X| and b ∈ |Y |, by (η+X,Y )a,b = (η−X,Y )b,a = δa,b
satisfy η+X,Y ∈ Pcoh(X,Y ) and η−X,Y ∈ Pcoh(Y,X). In other words: given u ∈ PX, the

element η+X,Y u of (R+)|Y | obtained by extending u with 0’s outside |X| belongs to PY . And

conversely, given v ∈ PY , the element η−X,Y v of (R+)|X| obtained by restricting v to |X|
belongs to PX. Considering Pcoh⊆ as a category, ηX,Y is a notation for the unique element
of Pcoh⊆(X,Y ) when X ⊆ Y , in accordance with the notations of Paragraph 3.1.3.

Lemma 11. If X ⊆ Y then X⊥ ⊆ Y ⊥ , η+
X⊥ ,Y ⊥ = (η−X,Y )

⊥ and η−
X⊥ ,Y ⊥ = (η+X,Y )

⊥.

The proof is a straightforward verification.
We contend that Pcoh⊆ is directed co-complete. Let (Xγ)γ∈Γ be a countable directed

family in Pcoh⊆ (so Γ is a countable directed poset and γ ≤ γ′ ⇒ Xγ ⊆ Xγ′), we have to
check that this family has a least upper bound X. We set |X| =

⋃
γ∈Γ |Xγ | and PX = {w ∈

(R+)|X| | ∀γ ∈ Γ η−X,Y w ∈ PXγ}. This defines an object of Pcoh which satisfies PX =

{η+Xγ ,X
u | γ ∈ Γ and u ∈ PXγ}

⊥⊥ and is therefore the lub of the family (Xγ)γ∈Γ in Pcoh⊆.

This object X is denoted
⋃
γ∈ΓXγ . One checks easily that (

⋃
γ∈ΓXγ)

⊥ =
⋃
γ∈ΓX

⊥
γ .

Then the functor E : Pcoh⊆ → Pcoh defined by E(X) = X and E(ηX,Y ) = η+X,Y
is continuous: given a directed family (Xγ)γ∈Γ whose lub is X and given a collection of
morphisms tγ ∈ Pcoh(Xγ , Y ) such that tγ′ η

+
Xγ ,Xγ′

= tγ for any γ, γ′ ∈ Γ such that γ ≤ γ′,

there is exactly one morphism t ∈ Pcoh(X,Y ) such that t η+Xγ ,X
= tγ for each γ ∈ Γ. Given

a ∈ |X| and b ∈ |Y |, ta,b = (tγ)a,b for any γ such that a ∈ |Xγ | (our hypothesis on the tγ ’s
means that (tγ)a,b does not depend on the choice of γ).
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All the operations of Linear Logic define monotone continuous functionals on Pcoh⊆

which moreover commute with the functor F. This means for instance that if X ⊆ Y then
!X ⊆ !Y , η+!X,!Y = !(η+X,Y ), η

−
!X,!Y = !(η−X,Y ) and !(

⋃
γ∈ΓXγ) =

⋃
γ∈Γ !Xγ and similarly for ⊗

and ⊕. As a consequence, and as a consequence of Lemma 11, if Xi ⊆ Yi for i = 1, 2 then
X1 ⊸ X2 ⊆ Y1 ⊸ Y2, η

+
X1⊸X2,Y1⊸Y2

= η−X1,Y1
⊸ η+X1,Y1

and η−X1⊸X2,Y1⊸Y2
= η+X1,Y1

⊸

η−X1,Y1
and ⊸ commutes with directed colimits in Pcoh⊆.

This notion of inclusion on probabilistic coherence spaces extends to coalgebras as
outlined in Section 3.1.3 (again, we refer to [5] for more details). We describe briefly this
notion of inclusion in the present concrete setting.

Let P and Q be object of Pcoh!, we have P ⊆ Q in Pcoh!
⊆ if P ⊆ Q and hQ η

+
P,Q =

!(η+P ,Q) hP . The lub of a directed family (Pγ)γ∈Γ of coalgebras (for this notion of substruc-

ture) is the coalgebra P =
⋃
γ∈Γ Pγ defined by P =

⋃
γ∈Γ Pγ and hP is characterized by the

equation hP η
+
Pγ ,P

= !η+Pγ ,P
hPγ which holds for each γ ∈ Γ.

As outlined in Section 3.1.4, this allows to interpret any type σ as an object [σ] of
Pcoh and any positive type ϕ as an object [ϕ]! such that [ϕ]! = [ϕ], in such a way that the

coalgebras [Rec ζ · ϕ]! and [ϕ [Rec ζ · ϕ/ϕ]]! are exactly the same objects of Pcoh!. We use
hϕ for h[ϕ]!.

3.2.11. Dense coalgebras. Let P be an object of Pcoh!, so that P = (P ,hP ) where P is
a probabilistic coherence space and hP ∈ Pcoh(P , !P ) satisfies digP hP = !hP hP . Given

coalgebras P and Q, a morphism t ∈ Pcoh(P ,Q) is coalgebraic (that is t ∈ Pcoh!(P,Q)) if
hQ t = !t hP . In particular, we say that u ∈ P(P ) is coalgebraic if, considered as a morphism

from 1 to P , u belongs to Pcoh!(1, P ). This means that u! = hP u.

Definition 12. Given an object P of Pcoh!, we use P!(P ) for the set of coalgebraic elements
of P(P ).

The following lemma is useful in the sequel and holds in any model of Linear Logic.

Lemma 13. Let X be a probabilistic coherence space, one has P!(!X) = {u! | u ∈ PX}. Let

Pℓ and Pr be objects of Pcoh!.
Pℓ⊗Pr is the cartesian product of Pℓ and Pr in Pcoh!. The function P!(Pℓ)×P!(Pr) →

P!(Pℓ ⊗ Pr) which maps (u, v) to u ⊗ v is a bijection. The projections pr⊗i ∈ Pcoh!(Pℓ ⊗
Pr, Pi) are characterized by pr⊗i (uℓ ⊗ ur) = ui.

The function {ℓ} × P!(Pℓ) ∪ {r} × P!(Pr) → P!(Pℓ ⊕ Pr) which maps (i, u) to ini(u) is
a bijection. The injection u 7→ ini(u) has a left inverse pri ∈ Pcoh(Pℓ ⊕ Pr, Pi) defined by
(pri)(j,a),b = δi,jδa,b, which is not a coalgebra morphism in general.

Proof. Let v ∈ P!(!X), we have v! = h!X v = digX v hence (derX v)! = !derX v
! =

!derX digX v = v. The other properties result from the fact that the Eilenberg-Moore
category Pcoh! is cartesian and co-cartesian with ⊗ and ⊕ as product and co-product,
see [24] for more details.

Because of these properties we write sometimes (uℓ, ur) instead of uℓ⊗ur when ui ∈ P!Pi
for i ∈ {ℓ, r}.

Definition 14. An object P of Pcoh! is dense if, for any object Y of Pcoh and any two
morphisms t, t′ ∈ Pcoh(P , Y ), if t u = t′ u for all u ∈ P!(P ), then t = t′.
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Theorem 15. For any probabilistic coherence space X, !X is a dense coalgebra. If Pℓ and
Pr are dense coalgebras then Pℓ ⊗ Pr and Pℓ ⊕ Pr are dense. The colimit in (Pcoh!)⊆ of a
directed family of dense coalgebras is dense.

Proof. Let X be an object of Pcoh, one has P!(!X) = {u! | u ∈ PX} by Lemma 13. It
follows that !X is a dense coalgebra by Theorem 7. Assume that Pℓ and Pr are dense
coalgebras. Let t, t′ ∈ Pcoh(Pℓ⊗Pr, Y ) be such that t w = t′w for all w ∈ P!(Pℓ ⊗ Pr). We
have cur (t), cur (t′) ∈ Pcoh(Pℓ, P r ⊸ Y ) so, using the density of Pℓ, it suffices to prove

that cur (t) uℓ = cur (t′) uℓ for each uℓ ∈ P!(Pℓ). So let uℓ ∈ P!(Pℓ) and let s = cur (t) uℓ
and s′ = cur (t′)uℓ. Let ur ∈ P!(Pr), we have s ur = t (uℓ ⊗ ur) = t′ (uℓ ⊗ ur) = s′ ur since
uℓ⊗ur ∈ P!(Pℓ ⊗ Pr) and therefore s = s′ since Pr is dense. Let now t, t′ ∈ Pcoh(Pℓ⊕Pr, Y )

be such that t w = t′w for all w ∈ P!(Pℓ ⊕ Pr). To prove that t = t′, it suffices to prove
that t ini = t′ ini for i ∈ {ℓ, r}. Since Pi is dense, it suffices to prove that t ini u = t′ ini u for
each u ∈ P!(Pi) which follows from the fact that ini u ∈ P!Pi. Last let (Pγ)γ∈Γ be a directed

family of dense coalgebras (in Pcoh!
⊆) and let P =

⋃
γ∈Γ Pγ , and let t, t′ ∈ Pcoh!(P , Y ) be

such that t w = t′w for all w ∈ P!(P ). It suffices to prove that, for each γ ∈ Γ, one has
t η+Pγ ,P

= t′ η+Pγ ,P
and this results from the fact that Pγ is dense and η+Pγ ,P

is a coalgebra

morphisms (and therefore maps P!(Pγ) to P!(P )).

The sub-category Pcoh! of dense coalgebras is cartesian and co-cartesian and is well-
pointed by Theorem 15. We use Pcoh!

den for this sub-category and (Pcoh!
den)⊆ for the

sub-class of Pcoh!
⊆ whose objects are the dense coalgebras (with the same order relation).

3.2.12. Interpreting types and terms in Pcoh. Given a type σ with free type variables

contained in the repetition-free list
#»

ζ , and given a sequence
#»

P of length n of objects of
Pcoh!, we define [σ] #»

ζ (
#»

P ) as an object of Pcoh and when ϕ is a positive type (whose free

variables are contained in
#»

ζ ) we define [ϕ]!#»
ζ
(

#»

P ) as an object of Pcoh!. These operations

are continuous and their definition follows the general pattern described in Section 3.1.4.

Theorem 16. Let ϕ be a positive type and let
#»

ζ = (ζ1, . . . , ζn) be a repetition-free list of

type variables which contains all the free variables of ϕ. Let
#»

P be a sequence of n dense
coalgebras. Then [ϕ]!#»

ζ
(

#»

P ) is a dense coalgebra. In particular, when ϕ is closed, the coalgebra

[ϕ]! is dense.

This is an immediate consequence of the definition of [ϕ]! and of Theorem 15

Remark. It turns out that the interpretation of positive types in the model Pcoh/Pcoh!

are dense coalgebras. This is mainly due to the fact that the colimit of a directed family
of dense coalgebras in the partially ordered class Pcoh!

⊆ is dense, see Theorem 15. From
the viewpoint of Levy’s CBPV [22], whose semantics is described in terms of adjunctions,

we are using a resolution of the comonad “!” through the category Pcoh! (or, equivalently,

through the category Pcoh!
den). As pointed out to us by one of the referees and already

mentioned in the introduction, there is another resolution through a category of families
and introduced in [1], which is initial among all resolutions that model CBPV. This other
option will be explored in further work.
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Then o = 1 ⊕ 1 satisfies |[o]| = {(ℓ, ∗), (r, ∗)} and u ∈ (R+)|[o]| satisfies u ∈ P[o] iff
u(ℓ,∗) + u(r,∗) ≤ 1. The coalgebraic structure of this object is given by

(ho)(j,∗),[(j1,∗),...,(jk,∗)] =

{
1 if j = j1 = · · · = jk

0 otherwise.

The object N = [ι] satisfies N = 1⊕N so that |N| = {(ℓ, ∗), (r, (ℓ, ∗)), (r, (r, (ℓ, ∗))), . . . } and

we use n for the element of |N| which has n occurrences of r. Given u ∈ (R+)|N|, we use l(u)

for the element of (R+)|N| defined by l(u)n = un+1. By definition of N, we have u ∈ PN iff
u0 + ‖l(u)‖N ≤ 1, and then ‖u‖N = u0 + ‖l(u)‖N. It follows that u ∈ PN iff

∑∞
n=0 un ≤ 1

and of course ‖u‖N =
∑∞

n=0 un. Then the coalgebraic structure hι is defined exactly as ho
above. In the sequel, we identify |N| with N.

Given a typing context P = (x1 : ϕ1, . . . , xk : ϕk), a type σ and a term M such that

P ⊢ M : σ, M is interpreted as a morphism [M ]P ∈ Pcoh([P], [σ]). For all constructs of
the language but probabilistic choice, this interpretation uses the generic structures of the
model described in Section 3.1, the description of this interpretation can be found in [5].
We set [coin(p)] = pe(ℓ,∗) + (1− p)e(r,∗).

If x1 : ϕ1, . . . , xk : ϕk ⊢ M : σ, the morphism [M ]P is completely characterized by its
values on (u1, . . . , uk) ∈ P!([P]!). We describe now the interpretation of terms using this
observation.

• [()] = 1 ∈ P1 = [0, 1].

• [xi]
P (u1, . . . , uk) = ui.

•
[
N !
]P

(u1, . . . , uk) = ([N ]P (u1, . . . , uk))
!.

• [(Mℓ,Mr)]
P (u1, . . . , uk) = [Mℓ]

P (u1, . . . , uk)⊗ [Mr]
P (u1, . . . , uk).

• [iniN ]P (u1, . . . , uk) = ini([N ]P (u1, . . . , uk)), i ∈ {ℓ, r}.

• [derN ]P (u1, . . . , uk) = der[σ]([N ]P (u1, . . . , uk)), assuming that P ⊢ N : !σ.

• If P ⊢ N : ϕ ⊸ σ and P ⊢ R : ϕ then [N ]P (u1, . . . , uk) ∈ P([ϕ] ⊸ [σ]), and

[R]P (u1, . . . , uk) ∈ P([ϕ]) and using the application of a matrix to a vector we have

[〈N〉R]P (u1, . . . , uk) = [N ]P (u1, . . . , uk) [R]
P (u1, . . . , uk).

• If P, x : ϕ ⊢ N : σ then [λxϕN ]P (u1, . . . , uk) ∈ P([ϕ] ⊸ [σ]) is completely de-

scribed by the fact that, for all u ∈ P!([ϕ]!), one has [λxϕN ]P (u1, . . . , uk)u =

[N ]P,x:ϕ (u1, . . . , uk, u). This is a complete characterization of this interpretation by
Theorem 16.

• If P ⊢ N : ϕℓ ⊕ ϕr and P, yi : ϕi ⊢ Ri : σ for i ∈ {ℓ, r}, then

[case(N, yℓ ·Rℓ, yr · Rr)]
P (u1, . . . , uk) = [Rℓ]

P,yℓ:ϕℓ (u1, . . . , uk,prℓ([N ]P (u1, . . . , uk)))+

[Rr]
P,yr:ϕr (u1, . . . , uk,prr([N ]P (u1, . . . , uk))) where pri ∈ Pcoh(Pℓ ⊕ Pr, Pi) is the

ith “projection” introduced in 3.2.11, left inverse for ini.

• If P, x : !σ ⊢ N : σ then [N ]P,x:!σ ∈ Pcoh([P]⊗![σ], [σ]) and
[
fixx!σN

]P
(u1, . . . , uk) =

sup∞n=0 f
n(0) where f : P[σ] → P[σ] is the Scott-continuous function given by

f(u) = [N ]P,x:!σ (u1, . . . , uk, u
!).

• If P ⊢ N : ψ [Rec ζ · ψ/ζ] then [fold(N)]P = [N ]P which makes sense since [ψ [Rec ζ · ψ/ζ]] =
[Rec ζ · ψ].

• If P ⊢ N : Rec ζ · ψ then [unfold(N)]P = [N ]P .
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Theorem 17 (Soundness). If M satisfies P ⊢M : σ then

[M ]P =
∑

P⊢M ′:σ

RedM,M ′

[
M ′
]P

The proof is done by induction and is a straightforward verification.

Corollary 18. Let M be a term such that ⊢ M : 1 so that [M ] ∈ [0, 1]. Then [M ] ≥
Red∞M,().

This is an immediate consequence of Theorem 17 and of the definition of Red∞, see
Section 2.2.

3.3. Examples of term interpretations. We give the interpretation of terms that we
gave as examples in Subsection 2.3.

• [Ωσ] =
[
fixx!σ der x

]
= 0

• [t] = e(ℓ,∗) and [f ] = e(r,∗)
• [if(M,Nℓ, Nr)]

P (u1, . . . , uk) = [M ]P(ℓ,∗) (u1, . . . , uk) [Nℓ]
P (u1, . . . , uk)

+ [M ]P(r,∗) (u1, . . . , uk) [Nr]
P (u1, . . . , uk)

• [dicep(Mℓ,Mr)]
P (u1, . . . , uk) = p [Mℓ]

P (u1, . . . , uk) + (1− p) [Mr]
P (u1, . . . , uk)

• [n] = n for n ∈ N

• [suc(M)]Pn+1 (u1, . . . , uk) = [M ]n (u1, . . . , uk)

• [ifz(M,Nℓ, x ·Nr)]
P (u1, . . . , uk) = [M ]P0 (u1, . . . , uk) [Nℓ]

P (u1, . . . , uk)

+
∑∞

n=0 [M ]Pn+1 (u1, . . . , uk) [Nr]
P (u1, . . . , uk)(n)

• [ran( #»p )] =
∑n

i=1 piei
• [〈eqℓ〉M ]P (u1, . . . , uk) = [M ]P (u1, . . . , uk)ℓe∗
• [M0 ·N ]P (u1, . . . , uk) = [M0]

P (u1, . . . , uk) [N ]P (u1, . . . , uk)

• [M0 ∧ · · · ∧Ml]
P (u1, . . . , uk) =

∏l
i=0 [Mi]

P (u1, . . . , uk)

•
[
〈chooseσl+1(N0, . . . , Nl)〉P

]P
(u1, . . . , uk) =

∑l
i=0 [P ]

P
i (u1, . . . , uk)·[Ni]

P (u1, . . . , uk)
• ∀u ∈ P([ι]), [ext (l, r)] (u) =

∑r
i=l uiei and

[winl(
#»n )] (u) =

n1+···+nl∑

i=n1+···+nl−1+1

uiei

4. Adequacy

Our goal is to prove the converse of Corollary 18: for any closed term M such that ⊢M : 1,
the probability that M reduces to () is larger than or equal to [M ] ∈ P[1] ≃ [0, 1], so that
we shall know that these two numbers are actually equal.

In spite of its very simple statement, the proof of this property is rather long mainly
because we have to deal with the recursive type definitions allowed by our syntax. As usual,
the proof is based on the definition of a logical relations between terms and elements of the
model (more precisely, given any type σ, we have to define a relation between closed terms
of types σ and elements of P[σ]; let us call such a relation a σ-relation).

Since we have no positivity restrictions on the occurrence of type variables wrt. which
recursive types are defined so that types are neither covariant nor contravariant wrt. these
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type variables, we use a very powerful technique introduced in [26] for defining this logical
relation.

Indeed a type variable ζ can have positive and negative occurrences in a positive13 type
ϕ, consider for instance the case ϕ = !(ζ ⊸ ζ) where the type variable ζ has a positive
(on the right of the ⊸ ) and a negative occurrence (on the left). To define the logical
relation associated with Rec ζ · ϕ, we have to find a fixpoint for the operation which maps
a (Rec ζ · ϕ)-relation R to the relation Φ(R) = !(R ⊸ R) (which can be defined using
R as a “logical relation” in a fairly standard way). Relations are naturally ordered by
inclusion, and this strongly suggests to define the above fixpoint using this order relation
by e.g. Tarski’s Fixpoint Theorem. The problem however is that Φ is neither a monotone
nor an anti-monotone operation on relations, due to the fact that ζ has a positive and a
negative occurrence in ϕ.

It is here that Pitts’s trick comes in: we replace the relations R with pairs of relations
R = (R−,R+) ordered as follows: R ⊑ S if R+ ⊆ S+ and S− ⊆ R−. Then we define
accordingly Φ(R) as a pair of relations by Φ(R)− = !(R+

⊸ R−) and Φ(R)+ = !(R−
⊸

R+). Now the operation Φ is monotone wrt. the ⊑ relation and it becomes possible to apply
Tarski’s Fixpoint Theorem to Φ and get a pair of relations R such that R = Φ(R). The
next step consists in proving that R− = R+. This is obtained by means of an analysis of
the definition of the interpretation of fixpoints of types as colimits in the category Pcoh⊆.
One is finally in position of proving a fairly standard “Logical Relation Lemma” from which
adequacy follows straightforwardly.

In this short description of our adequacy proof, many technicalities have obviously
been hidden, the most important one being that values are handled in a special way so
that we actually consider two kinds of pairs of relations. Also, a kind of “biorthogonality
closure” plays an essential role in the handling of positive types, no surprise for the readers
acquainted with Linear Logic, see for instance the proof of normalization in [12].

4.1. Pairs of relations and basic operations. Given a closed type σ, we define Rel(σ)
as the set of all pairs of relations R = (R−,R+) such that, for ε ∈ {+,−}, each element
of Rε is a pair (M,u) where ⊢ M : σ and u ∈ P[σ]. For a closed positive type ϕ, we also
define Relv(ϕ) as the set of all pairs of relations V = (V−,V+) such that, for ε ∈ {+,−},
each element of Vε is a pair (V, v) where ⊢ V : ϕ is a value and v ∈ P![ϕ].

Given R,S ∈ Rel(σ), we write R ⊑ S if R+ ⊆ S+ and S− ⊆ R−. We define similarly
V ⊑ W for V,W ∈ Relv(ϕ). Then Rel(σ) is a complete meet-lattice, the infimum of a
collection (Ri)i∈I being

d
i∈I Ri = (

⋃
i∈I R

−
i ,
⋂
i∈I R

+
i ). The same holds of course for

Relv(ϕ) and we use the same notations.
We define R(1) as the set of all pairs (M,p) such that ⊢M : 1, p ∈ [0, 1] and Red∞M,() ≥

p.
We define in Figure 4 logical operations on these pairs of relations. The last one is the

aforementioned biorthogonality closure operation on pairs of relations.
Observe that all these operations are monotone wrt. ⊑. For instance V ⊑ W ∧ R ⊑

S ⇒ (V ⊸ R) ⊑ (W ⊸ S), and V ⊑ W ⇒ V ⊑ W.

13Warning: the word “positive” has two different meanings here!
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• Let R ∈ Rel(σ), we define !R ∈ Relv(!σ) by: !Rε = {(M !, u!) | (M,u) ∈ Rε} for
ε ∈ {−,+}.

• Let Vi ∈ Relv(ϕi) for i ∈ {ℓ, r}. We define (Vℓ ⊗ Vr)
ε = {((Vℓ, Vr) , vℓ ⊗ vr)} |

(Vi, vi) ∈ Vεi } for ε ∈ {−,+}, so that Vℓ ⊗ Vr ∈ Relv(ϕℓ ⊗ ϕr).
• Let Vi ∈ Relv(ϕi) for i ∈ {ℓ, r}. We define (Vℓ ⊕ Vr)

ε = {(iniV, ini(v))} | i ∈
{ℓ, r} and (V, v) ∈ Vεi } for ε ∈ {−,+}, so that Vℓ ⊕ Vr ∈ Relv(ϕℓ ⊕ ϕr).

• Let V ∈ Relv(ϕ) and R ∈ Rel(σ). We define V ⊸ R ∈ Rel(ϕ⊸ σ) as follows: (V ⊸

R)ε = {(M,u) | ⊢M : ϕ⊸ σ, u ∈ P[ϕ⊸ σ] and ∀(V, v) ∈ V−ε (〈M〉V, uv ) ∈ Rε}.
• Last, given V ∈ Relv(ϕ), we define V ∈ Rel(ϕ) as follows: V

ε
is the set of all

(M,u) such that ⊢ M : ϕ, u ∈ P[ϕ] and, for all (T, t) ∈ (V ⊸ R(1))−ε, one has
(〈T 〉M, t u) ∈ R(1).

Figure 4: Logical operations for pairs of relations

4.2. Fixpoints of pairs of relations. To deal with fixpoint types Rec ζ · ϕ, we need to
consider types parameterized by relations as follows.

Let σ be a type and let
#»

ζ = (ζ1, . . . , ζn) be a list of type variables without repetitions
and which contains all free variables of σ. For all list #»ϕ = (ϕ1, . . . , ϕn) of closed positive
types, we define

R(σ) #»

ζ :

n∏

i=1

Relv(ϕi) → Rel(σ
[

#»ϕ/
#»

ζ
]
) .

Let also ϕ be a positive type whose free variables are contained in
#»

ζ , we define

V(ϕ) #»

ζ :

n∏

i=1

Relv(ϕi) → Relv(ϕ
[

#»ϕ/
#»

ζ
]
) .

The definition is by simultaneous induction on σ and ϕ. All cases but one consist in applying
straightforwardly the above defined logical operations on pairs of relations, for instance

R(ϕ⊸ τ) #»

ζ (
#»

V ) = V(ϕ) #»

ζ (
#»

V ) ⊸ R(σ) #»

ζ (
#»

V ) and R(ϕ) #»

ζ (
#»

V ) = V(ϕ) #»

ζ (
#»

V ) .

We are left with the case of recursive definitions of types, so assume that ϕ = Rec ζ ·ψ. Let
#»ϕ = (ϕ1, . . . , ϕn) be a list of closed positive types and let

#»

V ∈
∏n
i=1 Rel

v(ϕi), we set

V(ϕ) #»

ζ (
#»

V ) =
l

{V ∈ Relv(ϕ
[

#»ϕ/
#»

ζ
]
) | fold(V(ψ) #»

ζ ,ζ(
#»

V ,V)) ⊑ V} (4.1)

where we use the following notation: given W ∈ Relv(ψ
[

#»ϕ/
#»

ζ , ϕ
[

#»ϕ/
#»

ζ
]
/ζ
]
), fold(W) ∈

Relv(ϕ
[

#»ϕ/
#»

ζ
]
) is given by fold(W)ε = {(fold(W ), v) | (W,v) ∈ Wε} for ε ∈ {+,−}.

We recall the statement of Tarski’s fixpoint theorem.

Theorem 19. Let S and T be complete meet semi-lattices and let f : S × T → T be a
monotone function. For x ∈ S, let g(x) be the meet of the set {y ∈ T | f(x, y) ≤ y}. Then
the function g is monotone and satisfies f(x, g(x)) = g(x) for each x ∈ S.

Applying this theorem we obtain, by induction on types, the following property.
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Lemma 20. For any type σ and any positive type ϕ, the maps R(σ) #»

ζ and V(ϕ) #»

ζ are

monotone wrt. the ⊑ order relation. If ψ is a positive type,
#»

ζ = (ζ1, . . . , ζn, ζ) is a repetition-
free list of type variables containing all the free variables of ψ and ϕ = Rec ζ · ψ and
#»

V = (V1, . . . ,Vn) is a list of pairs of relations such that Vi ∈ Relv(ϕi) for each i, then

V = R(ϕ) #»

ζ (
#»

V ) satisfies V = fold(R(ψ) #»

ζ ,ζ)(
#»

V ,V).

4.3. Some useful closeness lemmas. We state and prove a series of lemmas expressing
that our pairs of relations are closed under various syntactic and semantic operations.

Lemma 21. Let M and M ′ be terms such that ⊢ M : 1 and ⊢ M ′ : 1. If M →w M
′ then

Red∞M,() = Red∞M ′,().

This is straightforward since any reduction path from M to () must start with the step
M →w M

′, and this is a probability 1 step.

Lemma 22. Let ϕ be a closed positive type and let σ be a closed type. Let (M,u) ∈ R(ϕ)−ε

and (R, r) ∈ R(ϕ⊸ σ)ε. Then (〈R〉M, r u) ∈ R(σ)ε.

Proof. We can write σ = ϕ1 ⊸ · · · ⊸ ϕn ⊸ ψ for some n and ϕ1, . . . , ϕn, ψ positive and
closed. Given (Vi, vi) ∈ V(ϕi)

−ε for i = 1, . . . , n, we have to prove that

(〈R〉M V1 · · ·Vn, r u v1 · · · vn) ∈ (V(ψ))ε

so let (T, t) ∈ (V(ψ) ⊸ R(1))−ε, we have to prove that

(〈T 〉(〈R〉M V1 · · ·Vn), t(r u v1 · · · vn)) ∈ R(1) .

Let S = λxϕ 〈T 〉(〈R〉xV1 · · · Vn) so that ⊢ S : ϕ ⊸ 1. Similarly let s ∈ P[ϕ⊸ 1] be the
linear morphism defined by s u′ = t(r u′ v1 · · · vn) (the fact that s so defined is actually a
morphism in Pcoh results from the symmetric monoidal closeness of that category and from
the fact that r and t are morphisms in Pcoh). Let (V, v) ∈ V(ϕ)−ε, we have (〈R〉V, r v) ∈
R(σ)ε and hence (〈R〉V V1 · · ·Vn), r v v1 · · · vn ∈ R(ψ)ε. Therefore

(〈T 〉(〈R〉V V1 · · ·Vn)), t(r v v1 · · · vn) ∈ R(1)

since we have assumed that (T, t) ∈ (V(ψ) ⊸ R(1))−ε. Since t(r v v1 · · · vn) = s v, and by
Lemma 21, it follows that (〈S〉V, s v) ∈ R(1). Hence (S, s) ∈ R(ϕ ⊸ 1)ε and therefore
(〈S〉M,s u) ∈ R(1) since we have (M,u) ∈ R(ϕ)−ε.

We finish the proof by observing that s u = t(r u v1 · · · vn) and by showing that

Red∞〈T 〉〈R〉M V1···Vn,()
= Red∞〈S〉M,()

For this it suffices to observe (by inspection of the reduction rules) that each reduction path
π from 〈T 〉(〈R〉M V1 · · · Vn) to () is of shape π = λρ where

• λ is a reduction path

〈T 〉(〈R〉M1 V1 · · ·Vn)
p1
→ 〈T 〉(〈R〉M2 V1 · · ·Vn)

p2
→ · · ·

pk→ 〈T 〉(〈R〉Mk+1 V1 · · ·Vn)

where M1 =M , Mk+1 is a value V and M =M1
p1
→M2

p2
→ · · ·

pk→Mk+1 = V
• and ρ is a reduction path from 〈T 〉(〈R〉V V1 · · ·Vn) to ().

Then we have 〈S〉M = 〈S〉M1
p1
→ 〈S〉M2

p2
→ · · ·

pk→ 〈S〉V
1
→ 〈T 〉(〈R〉V V1 · · ·Vn), the last step

resulting from the definition of S. In that way, we have defined a probability preserving
bijection between the reduction paths from 〈T 〉(〈R〉M1 V1 · · ·Vn) to () and the reduction
paths from 〈S〉M to (), proving our contention.
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Lemma 23. Let ϕi be closed positive types and (Mi, ui) ∈ R(ϕi)
ε for i ∈ {ℓ, r}. Then

((Mℓ,Mr) , uℓ ⊗ ur) ∈ R(ϕℓ ⊗ ϕr)
ε.

Proof. Let (T, t) ∈ (V(ϕℓ ⊗ ϕr) ⊸ R(1))−ε, we must prove that (〈T 〉 (Mℓ,Mr) , t(uℓ⊗ur)) ∈
R(1). Let S = λxϕℓ

ℓ λxϕr
r 〈T 〉 (xℓ, xr) and s ∈ P[ϕℓ ⊸ (ϕr ⊸ 1)] be defined by s uℓ ur =

t(uℓ⊗ur) (again, s is a morphism in Pcoh by symmetric monoidal closeness of that category).
It is clear that (S, s) ∈ (V(ϕℓ) ⊸ (V(ϕr) ⊸ R(1)))−ε. By Lemma 22 we get (〈S〉Mℓ, s uℓ) ∈
(V(ϕr) ⊸ R(1))−ε and then (〈S〉MℓMr, t(uℓ ⊗ ur) ∈ R(1). Observing that there is a
probability preserving bijection between the reduction paths from 〈S〉MℓMr to () and the
reduction paths from 〈T 〉 (Mℓ,Mr) to (), we conclude that (〈T 〉 (Mℓ,Mr) , t(uℓ⊗ur)) ∈ R(1)
as contended (in both terms one has to reduce first Mℓ and then Mr to a value).

Lemma 24. Let ϕℓ and ϕr be closed positive types. If (M,u) ∈ R(ϕℓ⊗ϕr)
ε then (priM,pri u) ∈

R(ϕi)
ε.

Proof. Let (T, t) ∈ (V(ϕi) ⊸ R(1))−ε, we have to prove that (〈T 〉priM, t (pri u)) ∈ R(1).
Let S = λxϕℓ⊗ϕr 〈T 〉prix and s ∈ P[ϕℓ ⊗ ϕr ⊸ 1] be defined by s u0 = t (pri u0) for all
u0 ∈ P[ϕℓ ⊗ ϕr]. Let (W,w) ∈ V(ϕℓ⊗ϕr)

ε, which means that W = (Vℓ, Vr) and w = vℓ⊗ vr
with (Vj , vj) ∈ V(ϕj)

ε for j ∈ {ℓ, r}. We have 〈S〉W →w 〈T 〉Vi and sw = t vi and we
know that (〈T 〉Vi, t vi) ∈ R(1) from which it follows by Lemma 21 that (〈S〉W, sw) ∈ R(1).
So we have proven that (S, s) ∈ (V(ϕℓ ⊗ ϕr) ⊸ R(1))−ε and hence (〈S〉M,s u) ∈ R(1).
We have s u = t (pri u). Moreover we have a probability preserving bijection between the
reduction paths from 〈T 〉priM to () and the reduction paths from 〈S〉M to (), and hence
we have (〈T 〉priM, t (pri u)) ∈ R(1) as contended.

Indeed, any reduction path π from 〈T 〉priM to () has shape π = λρ where λ is a

reduction path 〈T 〉priM = 〈T 〉priMℓ
p1
→ 〈T 〉priMr

p2
→ · · ·

pk→ 〈T 〉priW
1
→ 〈T 〉Vi (with W =

(Vℓ, Vr)) and ρ is a reduction path from 〈T 〉Vi to (). The first steps λ of this reduction are

determined by the reduction path M = Mℓ
p1
→ · · ·

pk→ W from M to the value W . This

reduction path determines uniquely the reduction path 〈S〉M = 〈S〉Mℓ
p1
→ · · ·

pk→ 〈S〉W
1
→

〈T 〉priW
1
→ 〈T 〉Vi followed by the reduction ρ from 〈T 〉Vi to () by ρ.

Lemma 25. Let ϕℓ and ϕr be closed positive types and let (M,u) ∈ R(ϕi)
ε for i = ℓ or

i = r. Then (iniM, ini u) ∈ R(ϕℓ ⊕ ϕr)
ε.

Proof. Let (T, t) ∈ (V(ϕℓ ⊕ ϕr) ⊸ R(1))−ε, we must prove that (〈T 〉iniM, t (ini u)) ∈ R(1).
Let S = λxϕi 〈t〉ini(x) and let s ∈ P[ϕi ⊸ 1]. It is clear that (S, s) ∈ (V(ϕi) ⊸ R(1))−ε

and it follows that (〈S〉M,s u) ∈ R(1) which implies (〈T 〉iniM, t (ini u)) ∈ R(1) by the
usual bijective and probability preserving bijection on reductions.

The next lemma uses notations introduced in Section 3.2.5.

Lemma 26. Let ϕℓ and ϕr be closed positive type and σ be a closed type. Let (M,u) ∈
R(ϕℓ ⊕ ϕr)

ε. For i ∈ {ℓ, r}, let Ri be a term such that yi : ϕi ⊢ Ri : σ and assume that
(λxϕi

i Ri, ri) ∈ R(ϕi ⊸ σ)−ε. Then (case(M,yℓ · Rℓ, yr ·Rr), case(rℓ, rr)u) ∈ R(σ)−ε.

Proof. We can write σ = ψ1 ⊸ · · · ⊸ ψk ⊸ ψ where ψ and the ψj ’s are closed and positive
types. Given (Wj , wj) ∈ V(ψj)

ε for j = 1, . . . , k, we have to prove that

(〈case(M,yℓ ·Rℓ, yr · Rr)〉
# »

W, case(rℓ, rr) u
#»w) ∈ V(ψ)−ε (4.2)

so let (T, t) ∈ (V(ψ) ⊸ R(1))ε, our goal is to prove that

(〈T 〉〈case(M,yℓ · Rℓ, yr ·Rr)〉
# »

W, t (case(rℓ, rr) u
#»w)) ∈ R(1) . (4.3)
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Let S = λxϕℓ⊕ϕr 〈T 〉〈case(x, yℓ · Rℓ, yr · Rr)〉
# »

W and s ∈ P[ϕℓ ⊕ ϕr ⊸ 1] be defined by
s u0 = t (case(rℓ, rr)u0

#»w) for each u0 ∈ P[ϕℓ ⊕ ϕr]. Then we have (S, s) ∈ (V(ϕℓ ⊕ ϕr) ⊸
R(1))ε. Let indeed i ∈ {ℓ, r} and let (V, v) ∈ V(ϕi)

−ε so that (iniV, ini v) ∈ V(ϕℓ ⊕ ϕr)
−ε.

We have 〈S〉iniV →w
∗ 〈T 〉〈Ri [V/yi]〉

# »

W and s (ini v) = t (ri v
#»w) and, by our assumptions

and Lemma 21, (Ri [V/yi] , ri v) ∈ R(σ)−ε and hence (〈Ri [V/yi]〉
# »

W, ri v
#»w) ∈ V(ψ)−ε. By

Lemma 21 it follows that (〈S〉iniV, s (ini v)) ∈ R(1) and hence (S, s) ∈ (V(ϕℓ ⊕ ϕr) ⊸

R(1))ε as contended.
Therefore (〈S〉M,s u) ∈ R(1). There is a bijective and probability preserving correspon-

dence between the reductions from 〈S〉M to () and the reductions from 〈T 〉〈case(M,xℓ ·

〈Rℓ〉xℓ, xr · 〈Rr〉xr)〉
# »

W to (): as usual such reductions start with a reduction M = M1
p1
→

M2
p2
→ · · ·

pk→ Mk = iniV where i ∈ {ℓ, r} and V is a value of type ϕi and (after a few

→w-steps) continue with a reduction from 〈T 〉〈Ri〉V
# »

W to (). Therefore (4.3) holds and
hence we have (4.2), this ends the proof of the lemma.

Lemma 27. Let σ be a closed type and let (M,u) ∈ R(!σ)ε. We have (derM,der u) ∈
R(σ)ε.

Proof. We can write σ = ψ1 ⊸ · · · ⊸ ψk ⊸ ψ where ψ and the ψj ’s are closed and positive
types. Given (Wj , wj) ∈ V(ψi)

−ε, we have to prove that

(〈derM〉
# »

W,der u #»w) ∈ V(ψ)ε (4.4)

so let (T, t) ∈ (V(ψ) ⊸ R(1))−ε, our goal is to prove that

(〈T 〉〈derM〉
# »

W, t (der u #»w)) ∈ R(1) . (4.5)

We set S = λx!σ 〈T 〉〈der x〉
# »

W and we define s ∈ P[!σ ⊸ 1] by s u0 = t (der u0
#»w) for all

u0 ∈ P[!σ], and we prove that (S, s) ∈ (V(!σ) ⊸ R(1))−ε as in the proof of Lemme 26 (for
instance). We finish the proof in the same way, showing (4.5) by establishing a bijective and
probability preserving correspondence between reductions. Our contention (4.4) follows.

Lemma 28. Let ϕ be a closed positive type of shape ϕ = Rec ζ ·ψ. If (M,u) ∈ R(ϕ)ε then
(unfold(M), u) ∈ R(ψ [ϕ/ζ])ε.

Proof. Let (T, t) ∈ (V(ψ [ϕ/ζ]) ⊸ R(1))−ε, we must prove that (〈T 〉unfold(M), u) ∈
R(1). As usual one defines S = λxϕ 〈T 〉unfold(x) and one proves that (S, t) ∈ (V(ϕ) ⊸

R(1))−ε. This results from the fact that if (V, v) ∈ V(ϕ)ε then V = fold(W ) with
(W,v) ∈ V(ψ [ϕ/ζ])ε, from Lemma 21 and from the fact that unfold(fold(W )) →w W (and
of course from our assumption on (T, t)). It follows that (〈S〉M, t u) ∈ R(1) from which we
deduce (〈T 〉unfold(M), u) ∈ R(1) by the usual reasoning involving a bijective probability
preserving correspondence on reductions.

Lemma 29. Let ϕ be a closed positive type of shape ϕ = Rec ζ ·ψ. If (M,u) ∈ R(ψ [ϕ/ζ])ε

then (fold(M), u) ∈ R(ϕ)ε.

Proof. Let (T, t) ∈ (V(ϕ) ⊸ R(1))−ε, we must prove that (〈T 〉fold(M), u) ∈ R(1). As usual

one defines S = λxψ[ϕ/ζ] 〈T 〉fold(x) and one proves that (S, t) ∈ (V(ψ [ϕ/ζ]) ⊸ R(1))−ε.
This results easily from the fact that, if (V, v) ∈ V(ψ [ϕ/ζ])ε then (fold(V ), v) ∈ V(ϕ)ε, from
Lemma 21 and from our assumption about (T, t). Therefore we have (〈S〉M, t u) ∈ R(1))
from which we deduce (〈T 〉fold(M), u) ∈ R(1) by the usual reasoning.
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Lemma 30. Let σ be a closed type and let M be a closed term of type σ. Then (M, 0) ∈
R(σ)ε and, if D ⊆ P[σ] is directed and satisfies ∀u ∈ D (M,u) ∈ R(σ)ε then (M, supD) ∈
R(σ)ε. Last, if (M,u) ∈ R(σ)ε and u′ ≤ u then (M,u′) ∈ R(σ)ε.

Proof. We can write σ = ϕ1 ⊸ · · · ⊸ ϕn ⊸ ψ for some n and ϕ1, . . . , ϕn, ψ positive and
closed. Let us prove the second statement. For i = 1, . . . , n, let (Vi, vi) ∈ V(ϕi)

−ε, we must

prove that (〈M〉V1 · · ·Vn, (supD) v1 · · · vn) ∈ V(ψ)
ε
, knowing that

∀u ∈ D (〈M〉V1 · · ·Vn, u v1 · · · vn) ∈ V(ψ)
ε
.

This results from the fact that, given t ∈ P[ψ ⊸ 1], the map u 7→ t (u v1 · · · vn) is Scott
continuous from P[ϕ] to [0, 1]. The first statement of the lemma results from the fact that
this function maps 0 to 0. The last one results from the fact that this function is monotone.

4.4. Uniqueness of the relation. With any closed type σ we have associated a pair of
relations R(σ). We need now to prove that this pair satisfies R(σ)+ = R(σ)− so that we
have actually associated a unique relation with any type.

To this end we prove first that R(σ)+ ⊆ R(σ)−. Defining, for any pair of relations R,
the relation Rop as (R+,R−), this amounts to proving that R(σ) ⊑ R(σ)op. We use the
same notation for the elements of Relv(ϕ) for ϕ positive.

For the next lemma, we use the same notational conventions as above.

Lemma 31. Let
#»

V be a list of pairs of relations such that Vi ∈ Relv(ϕi) and Vi ⊑ Vi
op for

each i. Then R(σ) #»

ζ (
#»

V ) ⊑ R(σ) #»

ζ (
#»

V )
op

and V(ϕ) #»

ζ (
#»

V ) ⊑ V(ϕ) #»

ζ (
#»

V )
op
.

Proof. The proof is by induction on types. All cases result straightforwardly from the
monotony of the logical operations on pairs of relations, but the case of fixpoints of types.
So assume that ϕ = Rec ζ · ψ, let V = V(ϕ) #»

ζ (
#»

V ) and let us prove that V ⊑ Vop. For this,

because of the definition of V as a glb (4.1), it suffices to show that

fold(V(ψ) #»

ζ ,ζ(
#»

V ,Vop)) ⊑ Vop .

By the first statement of Lemma 20 and our assumption on the Vi’s we have

fold(V(ψ) #»

ζ ,ζ(
#»

V ,Vop)) ⊑ fold(V(ψ) #»

ζ ,ζ(
#»

V
op
,Vop)) .

By inductive hypothesis we have fold(V(ψ) #»

ζ ,ζ(
#»

V
op
,Vop)) ⊑ fold(V(ψ) #»

ζ ,ζ(
#»

V ,V))
op

= Vop

since V = fold(V(ψ) #»

ζ ,ζ(
#»

V ,V)) by Lemma 20.

We are left with proving the converse property, namely that R(σ)op ⊑ R(σ) for each
closed type σ. This requires a bit more work, and is based on a notion of “finite” approxi-
mation of elements of the model, that we define by syntactic means as follows.
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4.4.1. Restriction operators. We define14 closed terms pg(n, σ) and pv(n,ϕ) (for n ∈ N, σ a
type and ϕ a positive type) typed as follows: ⊢ pg(n, σ) : !σ ⊸ σ and ⊢ pv(n,ϕ) : ϕ⊸ ϕ.

pg(n,ϕ) = λx!ϕ 〈pv(n,ϕ)〉der x

pg(n,ϕ⊸ σ) = λf !(ϕ⊸σ) λxϕ 〈pg(n, σ)〉(〈der f〉〈pv(n,ϕ)〉x)!

pv(n,1) = λx1 x

pv(n, !σ) = λx!σ (〈pg(n, σ)〉x)!

pv(n,ϕℓ ⊗ ϕr) = λxϕℓ⊗ϕr (〈pv(n,ϕℓ)〉prℓx, 〈p
v(n,ϕr)〉prrx)

pv(n,ϕℓ ⊕ ϕr) = λxϕℓ⊕ϕr case(x, xℓ · inℓ〈p
v(n,ϕℓ)〉xℓ, xr · inr〈p

v(n,ϕr)〉xr)

pv(0,Rec ζ · ϕ) = λxRec ζ·ϕΩRec ζ·ϕ

pv(n + 1,Rec ζ · ϕ) = λxRec ζ·ϕ fold(〈pv(n,ϕ [Rec ζ · ϕ/ζ])〉unfold(x))

This is a well-founded lexicographic inductive definition on triples (n, σ, l) (where l ∈ {v, g})
if we order the symbols v and g by v < g. We consider actually only triples (n, σ, l) such
that σ is positive if l = v.

We describe similarly the interpretation of these terms: we give an explicit description of
the matrices [pg(n, σ)] and [pv(n,ϕ)] . To this end, we define a family of sets Il(n, σ) ⊆ |[σ]|
by induction on (n, σ, l) (where n ∈ N, l ∈ {v, g} and σ is a closed type which is positive if
l = v).

• Iv(n, !σ) = Mfin(I
g(n, σ))

• Iv(n,ϕℓ ⊗ ϕr) = Iv(n,ϕℓ)× Iv(n,ϕr)
• Iv(n,ϕℓ ⊕ ϕr) = {ℓ} × Iv(n,ϕℓ) ∪ {r} × Iv(n,ϕr)
• Iv(0,Rec ζ · ψ) = ∅
• Iv(n+ 1,Rec ζ · ψ) = Iv(n,ϕ [Rec ζ · ψ/ζ])
• Ig(n,ϕ) = Iv(n,ϕ)
• Ig(n,ϕ⊸ σ) = Iv(n,ϕ) × Ig(n, σ).

Lemma 32. Let n ∈ N, ϕ be a closed positive type and σ be a closed type. One has

[pv(n,ϕ)] (a,b) =

{
1 if a = b ∈ Iv(n,ϕ)

0 otherwise.
[pg(n, σ)] (c,b) =

{
1 if c = [b] and b ∈ Ig(n, σ)

0 otherwise.

Proof. By Theorem 16, for a closed positive type ϕ and for u ∈ P![ϕ]!, it suffices to prove
that

[pv(n,ϕ)] (u)a =

{
ua if a ∈ Iv(n,ϕ)

0 otherwise

And for a closed type σ and for u ∈ P[σ], it suffices to prove

[pg(n, σ)] (u!)a =

{
ua if a ∈ Ig(n, σ)

0 otherwise

Both statements are easily proved by induction.

14This definition as well as our reasoning below features some similarities with step-indexing that we
would like to understand better.
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We need now to prove that, given u ∈ P[σ], the sequence [pg(n, σ)] (u!) is monotone
and has u as lub.

Lemma 33. For any triple (n, σ, l) where σ is positive if l = v, one has Il(n, σ) ⊆ Il(n+1, σ).
Moreover

∞⋃

n=0

Il(n, σ) = |[σ]| .

Proof. The first statement is straightforward, by induction on (n, σ, l). For the second
statement, we only have to prove the right-to-left inclusions. We define the height h(a) of
an element a of |[σ]| as follows.

• h(∗) = 1
• h(a1, a2) = 1 + max (h(a1), h(a2)) (this definition is used when ϕ is a tensor and
when σ is a linear implication)

• h(i, a) = 1 + h(a)
• h([a1, . . . , ak]) = 1 + max (h(a1), . . . , h(ak))

Then by induction on h(a) one proves that

∀a ∈ |[σ]| ∃n ∈ N a ∈ Il(n, σ)

We deal only with the statement relative to Iv(n,ϕ). The closed positive type ϕ is of shape

ϕ = Rec ζ1 · · · ·Rec ζk · ψ

where ψ is not of shape Rec ζ · ρ. We introduce auxiliary closed types ϕ1, . . . , ϕk as follows:

ϕ1 = ϕ = Rec ζ1 · · · ·Rec ζk · ψ

ϕ2 = Rec ζ2 · · · ·Rec ζk · ψ [ϕ1/ζ1]

...

ϕk+1 = ψ [ϕ1/ζ1, ϕ2/ζ2, . . . , ϕk/ζk]

and all these types have the same interpretation in Pcoh!. The type ψ cannot be one of
the type variables ζi as otherwise we would have |[ϕ]| = ∅, contradicting our assumption
that a belongs to this set. Assume that ψ = !σ so that we must have a = [b1, . . . , bl] with
bi ∈ |[σ′]| (where σ′ = σ [ϕ1/ζ1, ϕ2/ζ2, . . . , ϕk/ζk]) for each i = 1, . . . , l. We have h(bi) < h(a)
for each i so that we can apply the inductive hypothesis: for each i there is ni such that
bi ∈ Ig(ni, σ

′). Using the monotonicity property (first statement of the lemma) and setting
n = max(n1, . . . , nl) we have bi ∈ Ig(n, σ′) and hence a ∈ Iv(n, !σ′). Therefore a ∈ Iv(n+k, ϕ)
(coming back to the definition of this set). The other cases are dealt with similarly.

Lemma 34. Let σ be a closed type and let ϕ be a closed positive type. If u ∈ P[σ] then
the sequence ([pg(n, σ)] u!)n∈N is monotone (in P[σ]) and has u as lub. If u ∈ P[ϕ] then the
sequence ([pv(n,ϕ)] u)n∈N is monotone and has u as lub.

Proof. Immediate consequence of Lemmas 32 and 33.
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4.4.2. Main Inclusion Lemma. Now we are in position of proving the key lemma in the
proof of the uniqueness of relations.

Lemma 35. Let σ be a closed type, n ∈ N and l ∈ {v, g}. If l = g and (M,u) ∈ R(σ)−

then (M, [pg(n, σ)] u!) ∈ R(σ)+. If l = v and σ is a closed positive type ϕ then (V, v) ∈

V(ϕ)− ⇒ (V, [pv(n,ϕ)] v) ∈ (V(ϕ))
+
= R(ϕ)+.

Proof. By lexicographic induction on triples (n, σ, l) (with σ positive when l = v).
Until further notice, we assume that l = v.
The only case where “n decreases” in this induction is when ϕ = Rec ζ · ψ, we start

with this case.
Assume that ϕ = Rec ζ · ψ and that (V, v) ∈ V(ϕ)−. If n = 0 we have [pv(n,ϕ)] v = 0

and hence (V, [pv(n,ϕ)] v) ∈ R(ϕ)+ by Lemma 30. Assume that the implication holds
for n and let us prove it for n + 1. Let (V, v) ∈ V(ϕ)−, that is V = fold(W ) with
(W,v) ∈ V(ψ [ϕ/ζ])−. We have [pv(n + 1,Rec ζ · ψ)] v = [pv(n,ψ [ϕ/ζ])] v by definition.
By inductive hypothesis we have

(W, [pv(n,ψ [ϕ/ζ])] v) ∈ R(ψ [ϕ/ζ])+ (4.6)

and we must prove that (fold(W ), [pv(n,ψ [ϕ/ζ])] v) ∈ R(ϕ)+. Let (T, t) ∈ (V(ϕ) ⊸ R(1))−,

we must prove that (〈T 〉fold(W ), t([pv(n,ψ [ϕ/ζ])] v)) ∈ R(1). Let S = λxψ[ϕ/ζ] 〈T 〉fold(x),
we have (S, t) ∈ (V(ψ [ϕ/ζ]) ⊸ R(1))− by Lemma 21 and therefore

(〈S〉W, t([pv(n,ψ [ϕ/ζ])] v)) ∈ R(1)

by (4.6) and Lemma 22 and this implies (〈T 〉fold(W ), t ([pv(n,ψ [ϕ/ζ])] v)) ∈ R(1) by
Lemma 21.

Assume that ϕ = !σ and that (V, v) ∈ V(!σ)−, that is V = M ! and v = u! with
(M,u) ∈ R(σ)−. By inductive hypothesis we have (M, [pg(n, σ)]u!) ∈ R(σ)+ and hence
(M !, ([pg(n, σ)]u!)!) ∈ V(!σ)+ and since ([pg(n, σ)]u!)! = [pv(n, !σ)] u! we get

(V, [pv(n, !σ)] v) ∈ V(!σ)+ ⊆ R(!σ)+

as expected.
Assume that ϕ = ϕℓ ⊗ ϕr and that (V, v) ∈ V(ϕℓ ⊗ ϕr)

−, that is V = (Vℓ, Vr) and

v = vℓ ⊗ vr with (Vi, vi) ∈ V(ϕi)
− for i ∈ {ℓ, r}. By inductive hypothesis we have

(Vi, [p
g(n,ϕi)] vi) ∈ R(ϕi)

+. By Lemma 23 we get ((Vℓ, Vr) , [p
g(n,ϕℓ)] vℓ ⊗ [pg(n,ϕr)] vr) ∈

R(ϕℓ ⊗ ϕr)
+, that is ((Vℓ, Vr) , [p

g(n,ϕℓ ⊗ ϕr)] (vℓ ⊗ vr)) ∈ R(ϕℓ ⊗ ϕr)
+.

Assume that ϕ = ϕℓ ⊕ ϕr and (V, v) ∈ V(ϕℓ ⊕ ϕr)
−. This means that for some i ∈

{ℓ, r}, one has V = iniW and v = ini w for (W,w) ∈ V(ϕi)
−. By inductive hypothesis

we have (W, [pg(n,ϕi)] w) ∈ R(ϕi)
+ and hence (iniW, ini ([p

g(n,ϕi)] w)) ∈ R(ϕℓ ⊕ ϕr)
+ by

Lemma 25, that is (iniW, [p
g(n,ϕℓ ⊕ ϕr)] w) ∈ R(ϕℓ ⊕ ϕr)

+.
We assume now that l = g.
If σ is a closed positive type ϕ and let (M,u) ∈ R(σ)−, we must prove that

(M, [pg(n, σ)] u!) ∈ R(σ)+

which follows directly from the definition of pg(n,ϕ) and from the inductive hypothesis
applied to (n,ϕ, v).

Assume last that σ = ϕ ⊸ τ and that (M,u) ∈ R(ϕ⊸ τ)−, we must prove that
(M, [pg(n,ϕ⊸ τ)] u!) ∈ R(ϕ⇒ τ)+. Let (V, v) ∈ V(ϕ)−, we must prove that

(〈M〉V, [pg(n,ϕ⊸ τ)] u! v) ∈ R(τ)+ (4.7)
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which follows from the fact that [pg(n,ϕ⊸ τ)] u! v = [pg(n, τ)] (u([pv(n,ϕ)] v))!. Indeed the
inductive hypothesis applied to (n,ϕ) yields (V, [pv(n,ϕ)] v) ∈ R(ϕ)+ and hence (〈M〉V, u ([pv(n,ϕ)] v)) ∈
R(τ)+ by Lemma 22, from which we derive (4.7) by Lemma 34 and Lemma 30.

Lemma 36. For any closed type σ one has R(σ)− = R(σ)+.

Proof. Immediate consequence of lemmas 30, 34 and 35.

From now on we simply use the notation R(σ) instead of R(σ)− and R(σ)+.

4.5. Logical relation lemma. We can prove now the main result of this section.

Theorem 37 (Logical Relation Lemma). Assume that x1 : ϕ1, . . . , xk : ϕk ⊢ M : σ
and let (Vi, vi) ∈ R(ϕi) (where Vi is a value and vi ∈ P![ϕi]) for i = 1, . . . , k. Then
(M [V1/x1, . . . , Vk/xk] , [M ]x1,...,xk #»v ) ∈ R(σ) where #»v = (v1, . . . , vk).

Remark. One would expect to have rather assumptions of the shape “(Vi, vi) ∈ V(ϕi)”; the
problem is that we don’t know whether V(ϕi)

+ = V(ϕi)
−.

Proof. By induction on the typing derivation of M , that is, on M . We set P = (x1 :
ϕ1, . . . , xk : ϕk) and, given a term R, we use R′ for the term R [V1/x1, . . . , Vk/xk]. We also
use #»v for the sequence v1, . . . , vk and #»x for the sequence x1, . . . , xk.

The case M = xi is straightforward.
Assume thatM = N ! and that ϕ = !σ with P ⊢ N : σ. By inductive hypothesis we have

(N ′, [N ]
#»x #»v ) ∈ R(σ). Therefore ((N ′)!, ([N ]

#»x #»v )!) ∈ V(!σ)ε (for ε = + or ε = −)15. We

have V(!σ)ε ⊆ V(!σ)ε = R(!σ)ε = R(!σ) and hence (M ′, [M ]
#»x #»v )) ∈ R(!σ) as contended.

Assume that M = (Nℓ, Nr) and σ = ψℓ ⊗ ψr with P ⊢ Ni : ψi for i ∈ {ℓ, r}. By

inductive hypothesis we have (N ′
i , [Ni]

#»x #»v ) ∈ R(ψi). By Lemma 23 we get

(
(
N ′
ℓ, N

′
r

)
, [(Nℓ, Nr)]

#»x #»v ) ∈ R(ψℓ ⊗ ψr)

as contended, since [(Nℓ, Nr)]
#»x #»v = [Nℓ]

#»x #»v ⊗ [Nr]
#»x #»v .

The case M = iniN (and σ = ψℓ ⊕ ψr) is handled similarly, using Lemma 25.
Assume that M = fold(N) and σ = ϕ = Rec ζ · ψ with P ⊢ N : ψ [ϕ/ζ]. By inductive

hypothesis we have (N ′, [N ]
#»x #»v ) ∈ R(ψ [ϕ/ζ]) which implies (fold(N ′), [N ]

#»x #»v ) ∈ R(ϕ) by
Lemma 29.

Assume that M = λxϕN and σ = ϕ ⊸ τ , with P, x : ϕ ⊢ N : τ . We must prove that

(λxϕN ′, [λxϕN ]
#»x #»v ) ∈ (V(ϕ) ⊸ R(τ))ε for an arbitrary ε ∈ {−,+}. So let (V, v) ∈ V(ϕ)−ε.

Since V(ϕ)−ε ⊆ R(ϕ), we have (N ′ [V/x] , [N ]
#»x ,x ( #»v , v)) ∈ R(τ) by inductive hypothesis.

It follows that (〈λxϕN ′〉V, [λxϕN ]
#»x #»v v) ∈ R(τ) by Lemma 21, proving our contention.

Assume thatM = 〈R〉N with P ⊢ R : ϕ⊸ σ and P ⊢ N : ϕ where ϕ is a closed positive

type. By inductive hypothesis we have (R′, [R]
#»x ( #»v )) ∈ R(ϕ ⊸ σ) and (N ′, [N ]

#»x #»v ) ∈

R(ϕ) and hence (〈R′〉N ′, [R]
#»x #»v ([N ]

#»x #»v )) ∈ R(σ) by Lemma 22, that is (M ′, [M ]
#»x #»v ) ∈

R(σ).
Assume thatM = fixx!σN with P, x : !σ ⊢ N : σ. The function f : P[σ] → P[σ] defined

by

f(u) = [N ]
#»x ,x ( #»v , u!)

15It is not clear whether V(ϕ)− = V(ϕ)+ for any closed positive type ϕ, but we don’t need this property
in this proof, so we leave this technical question unanswered.
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is Scott continuous and we have [M ]
#»x #»v = supk∈N f

k(0). By induction on k, we prove that

∀k ∈ N (M ′, fk(0)) ∈ R(σ) . (4.8)

The base case is proven by Lemma 30. Assume that (M ′, fk(0)) ∈ R(σ). Choosing
an arbitrary ε, we have ((M ′)!, (fk(0))!) ∈ V(!σ)ε ⊆ R(!σ) and hence by our “outer-
most” inductive hypothesis we have (N ′

[
(M ′)!/x

]
, fk+1(0)) ∈ R(σ) from which we get

(M ′, fk+1(0)) ∈ R(σ) by Lemma 21 and this ends the proof of (4.8). We conclude that

(M ′, [M ]
#»x #»v ) ∈ R(σ) by Lemma 30.

Assume thatM = derN with P ⊢ N : !σ. By inductive hypothesis we have (N ′, [N ]
#»x #»v ) ∈

R(!σ) which implies (derN ′,der([N ]
#»x #»v )) ∈ R(σ) by Lemma 27, that is (M ′, [M ]

#»x #»v ) ∈
R(σ).

Assume thatM = prjN with j ∈ {ℓ, r}, σ = ϕℓ⊗ϕr and P ⊢M : ϕℓ⊗ϕr. By inductive

hypothesis we have (N ′, [N ]
#»x #»v ) ∈ R(ϕℓ⊗ϕr) and hence (prjN

′,prj ([N ]
#»x #»v )) ∈ R(ϕj) by

Lemma 24 that is (M ′, [M ]
#»x #»v ) ∈ R(ϕj).

Assume that M = case(N, yℓ · Rℓ, yr · Rr) with P ⊢ N : ϕℓ ⊕ ϕr and P, yj : ϕj ⊢

Rj : σ for j ∈ {ℓ, r}. By inductive hypothesis we have (N ′, [N ]
#»x #»v ) ∈ R(ϕℓ ⊕ ϕr) and

(λy
ϕj

j R′
j ,
[
λy

ϕj

j Rj

] #»x
#»v ) ∈ R(ϕj ⊸ σ) for j ∈ {ℓ, r} (to prove this latter fact, one chooses

ε ∈ {−,+} and considers an arbitrary (V, v) ∈ V(ϕj)
−ε, we have (V, v) ∈ R(ϕj) and hence

(R′
j [V/yj] , [Rj ]

#»x ,yj ( #»v , v)) ∈ R(σ) by inductive hypothesis, which implies

(〈λy
ϕj

j R′
j〉V,

[
λy

ϕj

j Rj

] #»x
#»v v) ∈ R(σ)

by Lemma 21). By Lemma 26 we get

(case(N ′, yℓ ·R
′
ℓ, yr · R

′
r), case(

[
λyϕℓ

ℓ Rℓ
] #»x #»v ), [λyϕr

r Rr]
#»x #»v ))([N ]

#»x #»v )) ∈ R(σ)

that is (M ′, [M ]
#»x ( #»v )) ∈ R(σ), by Lemma 21.

Assume that M = unfold(N) where P ⊢ N : ϕ with ϕ = Rec ζ ·ψ. We apply Lemma 28
straightforwardly.

Assume that M = () and the typing derivation consists of the axiom P ⊢ () : 1 so that
σ = 1. We have (M, [M ] ) ∈ R(1) by definition since Red∞M,() = 1 = [M ] .

Assume last thatM = coin(p) for some p ∈ [0, 1]∩Q and the typing derivation consists of
the axiom P ⊢ coin(p) : 1⊕ 1 so that σ = 1⊕ 1. We must prove that (coin(p), [coin(p)] ) ∈
R(1 ⊕ 1). Remember that [coin(p)] = pe(ℓ,∗) + (1 − p)e(r,∗). Let ε ∈ {−,+} and let
(T, t) ∈ (V(1⊕ 1) ⊸ R(1))ε, we must prove that (〈T 〉coin(p), t(pe(ℓ,∗)+(1−p)e(r,∗))) ∈ R(1).
We have

Red∞〈T 〉coin(p),() = pRed∞〈T 〉inℓ(),() + (1− p)Red∞〈T 〉inr(),()

since the first reduction step must be coin(p)
p
→ inℓ() or coin(p)

1−p
→ inr(). By our assumption

on (T, t) we have Red∞〈T 〉ini() ≥ t(e(i,∗)) and hence Red∞〈T 〉coin(p),() ≥ t(pe(ℓ,∗) +(1− p)e(r,∗)) as

contended, by linearity of t.

Theorem 38 (Adequacy). Let M be a closed term such that ⊢M : 1. Then [M ] = Red∞M,().

By Corollary 18 and Theorem 37.
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5. Full Abstraction

We prove now the Full Abstraction Theorem 41, that is the converse of the Adequacy
Theorem.

5.1. Outline of the proof. We reason by contrapositive. Assume that two closed terms
M1 andM2 have different semantics. Remember from Section 3.2, that a closed term of type
σ is interpreted as a vector with indices in the web |[σ]|, so that there is a ∈ |[σ]| such that
[M1]a 6= [M2]a. We want to design a term that will separate M1 and M2 observationally.

We define a testing term ⊢ a− : !ι ⊸ (!σ ⊸ 1) that will depend only on the structure
of the element a of the web. We then use properties of the semantics (namely that terms
of type !ι ⊸ τ can be seen as power series) to find reals ~p such that 〈a−〉ran(~p)! separates
M1 and M2:

Red∞
〈〈a−〉ran(~p)!〉M !

1,()
6= Red∞

〈〈a−〉ran(~p)!〉M !
2,()

Let us detail the key points of the proof. Remember from Section 3.2.7 that, because ⊢ a− :
!ι⊸ (!σ ⊸ 1), its interpretation [a−] can be seen as a power series

[̂a−](~ζ) =
[
a−
]
~ζ ! =


 ∑

[k1,...,kn]∈|!ι|

[
a−
]
[k1,...,kn],b

n∏

i=1

ζki



b∈|!σ⊸1|

with infinitely many parameters ~ζ = (ζ0, . . . , ζn, . . . ). Moreover, if
∑∞

i=0 ζi ≤ 1, then ~ζ ∈ P[ι]

and [̂a−](~ζ) ∈ P[!σ ⊸ 1] (see Theorem 6).
The first key point is to remark that the testing term a− is defined in such a way that

[a−] has actually only finitely many parameters ζ0, . . . , ζ|a|− (meaning that if the support

of the multiset c is not included in {0, . . . , |a|−}, then [a−](c,b) = 0). Now, for any u ∈ P[σ],[
λy!σ λx!ι 〈〈a−〉x〉y

]
u! ∈ P[!ι⊸ 1]. It is also a power series that depends on the same

finitely many parameters ζ0, . . . , ζ|a|− .

The second key point is a separation property of [a−]: we prove that, in the power

series
[
λy!σ λx!ι 〈〈a−〉x〉y

]
u!, the coefficient of the unitary monomial16

∏|a|−

k=0 ζk is equal

to m−(a)ua with a coefficient m−(a) 6= 0 which depends only on a. Now, by assump-
tion, [M1]a and [M2]a have different coefficient. For i = 1, 2, we have

[
λx!ι 〈〈a−〉x〉M !

i

]
=[

λy!σ λx!ι 〈〈a−〉x〉y
]
[Mi]

!. Thus, the power series
[
λx!ι 〈〈a−〉x〉M !

i

]
(for i = 1, 2) have dif-

ferent coefficients.
The last key point uses classical analysis: if two power series with non-negative real

coefficients and finitely many parameters have different coefficients, then they differ on non-
negative arguments ~p close enough to zero:

∑
pi ≤ 1, so that ~p ∈ P[ι] and

[
λx!ι 〈〈a−〉x〉M !

1

]
~p ! 6=[

λx!ι 〈〈a−〉x〉M !
2

]
~p !.

Finally, in order to substitute in a− the parameters ~ζ with the reals ~p, we use ran(~p)

as introduced in Paragraph 2.3. Indeed,
[
〈〈a−〉ran(~p)!〉M !

i

]
= ̂[

λx!ι 〈〈a−〉x〉M !
i

]
~p !. We

conclude thanks to the Adequacy Theorem 38 that ensures that

Red∞
〈〈a−〉ran(~p)!〉M !

1,()
6= Red∞

〈〈a−〉ran(~p)!〉M !
2,()

16That is, the monomial where each exponent is equal to one.
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5.2. Notations. In order to define the testing term a−, we will reason by induction and
we will need to associate three kinds of testing terms with the points of the webs. More
precisely:

• Given a positive type ϕ and a ∈ |[ϕ]|, we define a term a0 such that

⊢ a0 : !ι⊸ ϕ⊸ 1.

• Given a general type σ and a ∈ |[σ]|, we define terms a+ and a− such that

⊢ a+ : !ι⊸ σ ⊢ a− : !ι⊸ !σ ⊸ 1.

We also introduce natural numbers |a|0, |a|− and |a|+ depending only on a. They

represent the finite numbers of parameters on which the power series [̂a0], [̂a−] and [̂a+]
depend respectively.

We denote as m0(a), m−(a) and m+(a) natural numbers depending only on a and

that will appear as the coefficient of the unitary monomial
∏|a|0

k=0 ζk,
∏|a|−

k=0 ζk and
∏|a|+

k=0 ζk
respectively of the corresponding power series. These numbers are all > 0.

We use the terms introduced in the probabilistic tests paragraph of Subsection 2.3 and
whose semantics are given in Subsection 3.3:

• ran( #»p ) which reduces to i with probability pi for
∑k−1

i=0 pi ≤ 1,
• M0 ·N which reduces to V with probability p q if M0 reduces to () with probability
p and N reduces to V with probability q,

• M0 ∧ . . . ∧Mk−1 which reduces to () with probability
∏k−1
i=0 pi if Mi reduces to ()

with probability pi,
• 〈chooseσk(M0, . . . ,Mk−1)〉P which reduces to Mi with probability pi if pi is the prob-
ability of P to reduce to i,

• 〈ext (l, r)〉derZ and 〈wink(~n)〉derZ to partition the parameters derZ. Indeed Z
will denote a variable of type !ι and derZ has to be considered as the sequence

of parameters
#»

ζ of the power series interpreting testing terms. |a|0, |a|− and
|a|+ represent the number of parameters on which the respective testing terms de-

pend. We use 〈wini(~n)〉derZ to extract subsequences of
#»

ζ that will be given as
arguments to subterms in the inductive definition of the testing terms. Remem-

ber that 〈wini(n0, . . . , nk)〉derZ
pl→ l if l is in the ith window of size ni, that is

n0 + · · · + ni−1 ≤ l ≤ n0 + · · · + ni − 1 and pl is the probability that derZ reduces
to l, that is the non-negative real parameter ζl. This is a key ingredient in the com-
putation of the coefficient of the unitary monomial of the interpretation of testing
terms by induction on type and on the structure of a.

5.3. Testing terms. We define the terms a0, a+ and a− and the associated natural num-
bers |a|0, |a|+ and |a|−, by induction on the structure of the point a.

Let ϕ be a positive type and a ∈ |[ϕ]|. We define a0 and a+ by induction on the size of
a using the structure of ϕ
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Let ϕ = !τ and a = [b0, . . . , bk−1] with bi ∈ |[τ ]|. By inductive hypothesis, we have built
terms ⊢ b−i : !ι⊸ !τ ⊸ 1 and ⊢ b+i : !ι⊸ τ . Then we set

a0 = λZ !ι λx!τ 〈〈b−0 〉
(
〈win0(|b0|

−, . . . , |bk−1|
−)〉derZ

)!
〉x ∧ · · ·

∧ 〈〈b−k−1〉
(
〈wink−1(|b0|

−, . . . , |bk−1|
−)〉derZ

)!
〉x,

m0(a) =

k−1∏

i=0

m−(bi), and |a|0 = |b0|
− + · · ·+ |bk−1|

− .

a+ = λZ !ι
(
〈chooseτk

(
〈b+0 〉

(
〈win1(k, |b0|

+, · · · , |bk−1|
+)〉derZ

)!
, . . . ,

〈b+k−1〉
(
〈wink(k, |b0|

+, · · · , |bk−1|
+)〉derZ

)!)
〉derZ

)!
,

m+(a) = a!
k−1∏

i=0

m+(bi), and |a|+ = k + |b0|
+ + · · ·+ |bk−1|

+ .

Remember that the factorial a! of a multiset a has been defined in Paragraph 3.2.7 as the
number of permutations that fix a.

If ϕ = ϕℓ ⊗ ϕr and a = (bℓ, br) with bi ∈ |[ϕi]| for i ∈ {ℓ, r}, then we set

a0 = λZ !ι λxϕ 〈〈b0ℓ 〉
(
〈win0(|bℓ|

0, |br|
0)〉derZ

)!
〉prℓx ∧ 〈〈b0r〉

(
〈win1(|bℓ|

0, |br|
0)〉derZ

)!
〉prrx,

m0(a) = m0(bℓ)m0(br), and |a|0 = |bℓ|
0 + |br|

0 .

a+ = λZ !ι
(
〈b+ℓ 〉

(
〈win0(|bℓ|

+, |br|
+)〉derZ

)!
, 〈b+r 〉

(
〈win1(|bℓ|

+, |br|
+)〉derZ

)!)
,

m+(a) = m+(bℓ)m+(br) and |a|+ = |bℓ|
+ + |br|

+ .

If ϕ = ϕℓ ⊕ ϕr and a = (ℓ, aℓ) with b ∈ |[ϕℓ]| (the case a = (r, ar) is similar), then we set

a0 = λZ !ι λxϕℓ⊕ϕr case(x, yℓ · 〈〈a
0
ℓ 〉Z〉yℓ, yr · Ω

1), m0(a) = m0(aℓ) and |a|0 = |aℓ|
0 .

a+ = λZ !ι inℓ〈a
+
ℓ 〉Z, m+(a) = m+(aℓ) and |a|+ = |aℓ|

+ .

Finally, for a general type σ and a ∈ |[σ]|, we define a+ and a−.

If σ = ϕ is positive, then we have already defined a+.
Let us now define a−. This term does not depend on the structure of ϕ:

a− = λZ !ι λx!ϕ 〈〈a0〉Z〉der x, m−(a) = m0(a) and |a|− = |a|0 .
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If σ = ϕ⊸ τ and a = (b, c) with b ∈ |[ϕ]| and c ∈ |[τ ]|, then we set

a+ = λZ !ι λxϕ 〈〈b0〉
(
〈win0(|b|

0, |c|+)〉derZ
)!
〉x · 〈c+〉

(
〈win1(|b|

0, |c|+)〉derZ
)!
,

m+(a) = m0(b)m+(c) , and |a|+ = |b|0 + |c|+ .

a− = λZ !ι λf !(ϕ⊸τ) 〈〈c−〉
(
〈win1(|b|

+, |c|−)〉derZ
)!
〉
(
〈der f〉〈b+〉

(
〈win0(|b|

+, |c|−)〉derZ
)!)!

m−(a) = m+(b)m−(c), and |a|− = |b|+ + |c|− .

It is easy to check that these terms satisfy the announced typing judgments. It is also
clear that m0(a), m+(a) and m−(a) are non zero natural numbers.

We will now tackle the proof of the main observation: that is that the semantics of a− is
a power series with finitely many parameters and whose coefficient of the unitary monomial
can be seen as a morphism in P[!σ ⊸ 1].

Lemma 39 introduces notations for the unitary monomials and provides useful proper-
ties for proving the key Lemma 40 which gives the coefficients of these monomials.

Lemma 39. Let σ be a general type and t ∈ P[!ι⊸ σ].

(1) Assume that there is k ∈ N such that for any c ∈ |[σ]|, the power series t̂c over P[ι]

depends on the k first parameters. For any c ∈ |[σ]|, let us denote as c1

~ζ

(
t̂
)
c
the

coefficient of the monomial ζ0 . . . ζk−1 of t̂c. Then, k−k c1

~ζ

(
t̂
)
∈ P[σ].

(2) Assume moreover that σ = ϕ ⊸ τ where ϕ is a positive type and τ a general type.

Let m ∈ P[τ ] and a ∈ |[ϕ]|. If ∀u ∈ P![ϕ]! c1

~ζ

(
t̂
)
u = mua then ∀u ∈ P[ϕ] c1

~ζ

(
t̂
)
u =

mua.

Proof. We prove (1).

First notice that ∀c ∈ |[σ]|, the coefficient of the monomial
∏k−1
i=0 ζi is c1

~ζ

(
t̂
)
c

=

t([0,...,k−1],c). Now, let
#»
1
k be the sequence of k coefficients all equal to 1

k :

t̂c(
~1
k ) =

∑

µ∈|[!ι]|
supp(µ)⊆{0,...,k−1}

t(µ,c)
1
k

#µ

so that c1

~ζ

(
t̂
)
c
k−k ≤ t̂(~1k )c. Since

#»
1
k ∈ P[ι], t̂(~1k ) ∈ P[σ] which is downward closed, we have

that k−k c1

~ζ

(
t̂
)
∈ P[σ].

Now we prove (2).
For any a ∈ |[ϕ]|, there is A such that ua ≤ A for any u ∈ P[ϕ] (see Subsection 3.2).

Hence, for any u ∈ P[ϕ], uaAm ∈ P[τ ] and we deduce thanks to Lemma 3 that u 7→ uamA−1

is in P[ϕ⊸ τ ]. Without loss of generality, we can choose A ≥ kk so that u 7→ uamA−1

and u 7→ A−1c1

~ζ

(
t̂
)
u are both in P[ϕ⊸ τ ]. Now, since [ϕ]! is dense (see Theorem 16), if

u 7→ A−1 c1

~ζ

(
t̂
)
u and u 7→ A−1 uam are equal on all coalgebraic points u ∈ P![ϕ]!, they are

equal (see Definition 12). Thus, for all u ∈ P[ϕ], uam = c1

~ζ

(
t̂
)
u.
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We are now ready to prove that the coefficient of the unitary monomial of a testing
term associated with a point a of the web allows to extract the a-coefficient of an argument,
up to a non-zero coefficient depending only on a.

This is central in the proof of Full Abstraction. Let us first introduce some notations
that will be used along this proof.

Intuitively, for s ∈ P[!ι⊸ σ], we reason on power series ŝ with values in P[σ]. But
formally, we reason on the non-negative real power series ŝa′ defined for each a′ ∈ |[σ]| and

for all parameters17 ~ζ ∈ P[ι] as ŝa′(~ζ) = (ŝ(~ζ))a′ = (s ~ζ
!
)a′ (see Paragraph 3.2.7).

We want to compute the unitary monomial of ŝ which will be in P[σ]. We define it for
each a′ ∈ |[σ]| as c1

~ζ
(s)a′ = c1

~ζ
(ŝa′).

We will also use the fact that a morphism t ∈ P[ϕ⊸ 1] is defined by the collection of
t(a′,∗) for a′ ∈ |[ϕ]| and is extensionally characterized by its values t u on every u ∈ P[ϕ].

Indeed, for any a′ ∈ |[ϕ]|, there is ε > 0 such that εea′ ∈ P[ϕ] and t(a′,∗) = 1
ε (t εea′)∗ by

linearity of matrix multiplication.

Lemma 40. Let σ be a type and a ∈ |[σ]|.

(1) Assume that σ = ϕ is positive. If a′ ∈ |[ϕ]|, then [̂a0](a′,∗) is a power series over P[ι]

depending on |a|0 parameters, so we define c1

~ζ

([
a0
])

(a′,∗)
= c1

~ζ

(
[̂a0](a′,∗)

)
and check

that c1

~ζ

([
a0
])

∈ P[ϕ⊸ 1] and that for any u ∈ P([ϕ]), c1

~ζ

([
a0
])
u = m0(a)ua.

(2) Assume that σ is a general type. For any a′ ∈ |[σ]|, [̂a+]a′ is a power series over

P[ι] depending on |a|+ parameters, so we define c1

~ζ
([a+])a′ = c1

~ζ

(
[̂a+]a′

)
and check

that c1

~ζ
([a+]) ∈ P[σ] and that c1

~ζ
([a+]) = m+(a) ea where ea is the base vector such

that (ea)a′ = δa′,a for a′ ∈ |[σ]|.

(3) Let σ be a general type. For any a′ ∈ |[!σ]|, [̂a−](a′,∗) is a power series over P[ι]

depending on |a|− parameters, so we define c1

~ζ
([a−])(a′,∗) = c1

~ζ

(
[̂a−](a′,∗)

)
and check

that c1

~ζ
([a−]) ∈ P[!σ ⊸ 1] and that for any u ∈ P[σ], c1

~ζ
([a−]) u! = m−(a)ua.

Proof. Let us argue by mutual induction on the size of a and the structure of ϕ.

Let ϕ be a positive type and a ∈ |[ϕ]|. We prove (2) and (1) by induction on the
structure of ϕ

Assume that ϕ = !τ and that a = [b0, . . . , bk−1]. with bi ∈ |[τ ]|.

We prove (1). Let a′ = [b′0, . . . , b
′
k′−1] ∈ [!τ ] with b′j ∈ |[τ ]| and ~ζ ∈ P[ι] be the

concatenation of the finite sequences18 ~ζ i ∈ P[ι] such that the length of ~ζ i is |bi|
−.

By Theorem 16, [̂a0](a′,∗)(
~ζ) = (

[
a0
]
~ζ
!
)(a′,∗) ∈ P[!τ ⊸ 1] is completely determined by

the function u 7→
[
a0
]
~ζ
!
u! defined on P[τ ]. By inductive hypothesis, [̂a0](a′,∗) depends on

17We follow the common mathematical practice of using the same notation
#»

ζ = (ζ0, . . . , ζn) to refer to
the formal parameters of a power series and to real arguments of the corresponding function.

18We assume that the support of indices of the sequences are disjoint even if this requires some renaming.
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finitely many parameters |a|0 = |b0|
− + · · ·+ |bk−1|

−, since

[
a0
]
~ζ
!
u! =

k−1∏

i=0

[
b−i
]
~ζ i

!
u! and therefore c1

~ζ

([
a0
])
u! =

k−1∏

i=0

c1

~ζi

([
b−i
])
u!.

Again, by inductive hypothesis it follows that

c1

~ζ

([
a0
])
u! =

k−1∏

i=0

m−(bi)ubi = m0(a) (u!)a.

We can apply (2) of Lemma 39, so that we have c1

~ζ

([
a0
])
u = m0(a)ua for all u ∈ P[!τ ].

We prove (2). Let a′ = [b′0, . . . , b
′
k′−1] ∈ [!τ ] and ~ζ ∈ P[ι] be the concatenation of the

finite sequences ~ζ∗, ~ζ0, . . . , ~ζk−1 ∈ P[ι] such that the length of
#»

ζ ∗ is k and the length of
~ζ i is |bi|

+ for i ≥ 0. By inductive hypothesis, [̂a+]a′ depends on finitely many parameters
|a|0 = k + |b0|

+ + · · ·+ |bk−1|
+, since

[̂a+]a′(
~ζ) = (

[
a+
]
~ζ
!
)a′ =

(
k−1∑

i=0

ζ∗i
[
b+i
]
~ζ i

!

)!

a′

=

k′−1∏

j=0

(
k−1∑

i=0

ζ∗i
[
b+i
]
~ζ i

!

)

b′j

. (5.1)

We want to compute the coefficient of the unitary monomial, which contains exactly one

copy of each parameter of each
#»

ζ i. If k′ 6= k then expression (5.1) contains no monomial

where each parameter of
#»

ζ ∗ appears exactly once, so that c1

~ζ
([a+])a′ = 0 in that case. If

k′ = k and Sk is the set of permutations over k, then by using the fact that factorial
a! = #{ρ ∈ Sk | ∀i bi = bρ(i)}, by denoting the Kronecker symbol as δa,a′ and by the
inductive hypothesis, we get:

c1

~ζ

([
a+
])
a′
=
∑

ρ∈Sk

k−1∏

i=0

c1

~ζi

([
b+i
])
b′
ρ(i)

= a!

k−1∏

i=0

m+(bi)δbi,b′i = m+(a) δa,a′ = m+(a) (ea)a′ .

Assume that ϕ = ϕℓ ⊗ ϕr and that a = (bℓ, br) with ai ∈ |[ϕi]|. Let ~ζ ∈ P[ι] be the

concatenation of the finite sequences ~ζℓ, ~ζr ∈ P[ι] such that the length of ~ζ i is |bi|
+.

We prove (1). Let a′ = (b′ℓ, b
′
r) ∈ |[ϕℓ ⊗ ϕr]|. By Theorem 16, [̂a0](a′,∗)(

~ζ) = (
[
a0
]
~ζ
!
)(a′,∗) ∈

P[ϕℓ ⊗ ϕr ⊸ 1] is completely determined by the function u 7→
[
a0
]
~ζ
!
u! defined on P[ϕℓ ⊗ ϕr].

Besides, if u ∈ P!([ϕℓ ⊗ ϕr]
!), then u = uℓ ⊗ ur where ui = pr⊗i (u) ∈ P!([ϕi]

!) for i ∈ {ℓ, r}

(see Lemma 13). Therefore, by inductive hypothesis, [̂a0](a′,∗) depends on finitely many

parameters |a|0 = |bℓ|
0 + |br|

0, since
[
a0
]
~ζ
!
u =

[
b0ℓ
]
~ζℓ

!
uℓ
[
b0r
]
~ζr

!
ur and therefore c1

~ζ

([
a0
])
u = c1

~ζℓ

([
b0ℓ
])
uℓ c

1

~ζr

([
b0r
])
ur.

Hence, by inductive hypothesis c1

~ζ

([
a0
])
u = m0(bℓ)(uℓ)bℓ m0(br)(ur)br = m0(a)ua for u ∈

P![ϕ]!. We conclude by Lemma 39, that this holds also for u ∈ P[ϕ].
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We prove (2). Let a′ = (b′ℓ, b
′
r) ∈ |[ϕℓ ⊗ ϕr]|. By inductive hypothesis, [̂a+]a′ depends

on finitely many parameters |a|+ = |bℓ|
+ + |br|

+, since

[̂a+]a′(
~ζ) = (

[
a+
]
~ζ !)a′ = (

[
b+ℓ
]
~ζℓ

!
)b′

ℓ
⊗ (
[
b+r
]
~ζr

!
)b′r

We deduce using inductive hypothesis that

c1

~ζ

([
a+
])
a′
= c1

~ζℓ

([
b+ℓ
])
b′
ℓ

c1

~ζr

([
b+r
])
b′r

= m+(bℓ) δbℓ,b′ℓ m+(br) δbr ,b′r = m+(a) δa,a′ .

Assume that ϕ = ϕℓ ⊕ ϕr and that a = (ℓ, aℓ) with aℓ ∈ |[ϕℓ]|. (the case a = (r, ar) is
similar).

We prove (1). Let a′ = (i, a′i) ∈ |[ϕℓ ⊕ ϕr]|. By Theorem 16, [̂a0](a′,∗)(
~ζ) = (

[
a0
]
~ζ
!
)(a′,∗) ∈

P[ϕℓ ⊕ ϕr ⊸ 1] is completely determined by the function u 7→
[
a0
]
~ζ
!
u defined on P![ϕℓ ⊕ ϕr]

!.

Besides, if u ∈ P!([ϕℓ ⊕ ϕr]
!), then there is i ∈ {ℓ, r} such that u = iniui with ui ∈ P!([ϕi]

!)

(see Lemma 13). Therefore, by inductive hypothesis, [̂a0](a′,∗) depends on finitely many

parameters |a|0 = |aℓ|
0, since if i = ℓ, then

[
a0
]
~ζ
!
u =

[
λxϕℓ⊕ϕr case(x, yℓ · 〈a

0
ℓ 〉yℓ, yr · Ω

1)
]
~ζ
!
u =

[
a0ℓ
]
~ζ
!
uℓ

and if i = r then
[
a0
]
~ζ
!
u =

[
Ω1
]
= 0. So we can compute that c1

~ζ

([
a0
])
u = m0(aℓ)(uℓ)aℓ =

m0(a)ua for u ∈ P![ϕ]! and this still holds for u ∈ P[ϕ] by Lemma 39.

We prove (2). Let a′ = (i, a′i) ∈ |[ϕℓ ⊕ ϕr]|. By inductive hypothesis, [̂a+]a′ depends on
finitely many parameters |a|+ = |aℓ|

+, since

[̂a+]a′(
~ζ) = (

[
a+
]
~ζ
!
)a′ = (

[
inℓa

+
ℓ

]
~ζ
!
)(i,a′

i
) = inℓ(

[
a+ℓ
]
~ζ
!
)i,a′

i
= δℓ,i (

[
a+ℓ
]
~ζ
!
)a′

i
.

We can therefore compute c1

~ζ
([a+])(i,a′i)

= δℓ,i c
1

~ζ

([
a+ℓ
])
a′i

= m+(a) δa,(i,a′i) by inductive

hypothesis.

Finally, for a general type σ and a ∈ |[σ]|, we prove (2) and (3).

If σ = ϕ is positive, we have already proved (2). Let us prove (3). Let a ∈ |[ϕ]|. Let

a′ ∈ |[!ϕ]|. By Theorem 16 and Lemma 13, [̂a−](a′,∗)(
~ζ) = ([a−] ~ζ

!
)(a′,∗) ∈ P[!τ ⊸ 1] is com-

pletely determined by u 7→ [a−] ~ζ
!
u! defined on P[τ ]. Therefore, by inductive hypothesis,

[̂a−](a′,∗) depends on finitely many parameters |a|− = |a|0, since

[
a−
]
~ζ
!
u! =

[
a0
]
~ζ
!
u and therefore c1

~ζ

([
a−
])
u! = c1

~ζ

([
a0
])
u

By inductive hypothesis, c1

~ζ

([
a0
])
u = m0(a)ua = m−(a)ua.
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Last, let σ = ϕ⊸ τ . Let a = (b, c) ∈ |[σ]|.

We prove (2). Let a′ = (b′, c′) ∈ |[σ]|. Let ~ζ ∈ P[ι] be the concatenation of the finite

sequences ~ζ1, ~ζ2 ∈ P[ι] such that the length of ~ζ1 is |b|0 and the length of ~ζ2 is |c|+. By
inductive hypothesis, for any u ∈ P[ϕ],

[̂a+](~ζ)u =
[
a+
]
~ζ
!
u = (

[
b0
]
~ζ1

!
u)∗ (

[
c+
]
~ζ2

!
).

Now, let ε > 0 such that εeb′ ∈ P[ϕ], we compute

[̂a+](b′,c′)(
~ζ
!
) = 1

ε (
[
a+
]
~ζ
!
εeb′)c′ =

1
ε (
[
b0
]
~ζ1

!
εeb′)∗ (

[
c+
]
~ζ2

!
)c′ = [̂b0](b′,∗)(

~ζ1) [̂c+]c′(
~ζ2).

Therefore, by inductive hypothesis, [̂a+](b′,c′) depends on finitely many coefficients |a|+ =

|b|0 + |c|+. We compute using inductive hypothesis that

c1

~ζ

([
a+
])

(b′,c′)
= c1

~ζ1

([
b0
])

(b′,∗)
c1

~ζ2

([
c+
])
c′
= m0(b) δb,b′ m

+(c) δc,c′ .

We conclude that c1

~ζ
([a+]) = m0(b)m+(c) eb,c = m+(a) ea.

We prove (3). Let a′ = [(b′0, c
′
0), . . . , (b

′
k−1, c

′
k−1)]) ∈ |[!σ]|. Let ~ζ ∈ P[ι] be the concate-

nation of the finite sequences ~ζ1, ~ζ2 ∈ P[ι] such that the length of ~ζ1 is |b|+ and the length

of ~ζ2 is |c|−. For any w ∈ P[!(ϕ ⊸ τ ]), we have:

[
a−
]
~ζ
!
w =

[
c−
]
~ζ2

!
(
der[ϕ⊸τ ](w)

[
b+
]
~ζ1

!
)!
.

Let ε > 0 such that εea′ ∈ P[!(ϕ ⊸ τ)], then

[̂a−](a′,∗)(
~ζ) = 1

ε (
[
a−
]
~ζ
!
εea′)∗ =

1
ε (
[
c−
]
~ζ2

!
(
der[ϕ⊸τ ](εea′)

[
b+
]
~ζ1

!
)!
)∗.

By inductive hypothesis, we get that [̂a−](a′,∗) depends on |a|− = |b|0 + |c|− coefficients.

Let now u ∈ P[ϕ⊸ τ ], then by Lemma 13 der[(ϕ⊸τ)](u
!) = u and we compute:

c1

~ζ

([
a−
])
u! = c1

~ζ1

(
c1

~ζ2

([
c−
]) (

u
[
b+
]
~ζ1

!
)!)

.

By inductive hypothesis, we have c1

~ζ2
([c−]) (u [b+] ~ζ1

!
)! = m−(c) (u [b+] ~ζ1

!
)c. Moreover,

notice that u ∈ P[ϕ⊸ τ ], seen as a morphism in Pcoh([ϕ], [τ ]) is linear, and there is ε > 0
such that εeb ∈ P[ϕ]), so that we can apply u to eb. Now, by using inductive hypothesis,
we get that c1

~ζ1
(u [b+])c = (u c1

~ζ1
([b+]))c = (um+(b) eb)c = m+(b)u(b,c). Therefore, we have

c1

~ζ
([a−]) u! = m+(b)m−(c)u(b,c) = m−(a)ua.

Theorem 41 (Full Abstraction).
If ⊢M1 : σ and ⊢M2 : σ satisfy M1 ∼M2 then [M1] = [M2].

Proof. By contrapositive. Assume that [M1] 6= [M2]. There is a ∈ |[σ]| such that [M1]a 6=
[M2]a. Then by Lemma 40,

[
λx!ι 〈〈a−〉x〉M !

i

]
, for i ∈ {1, 2}, are power series with different

coefficients, namely the coefficients of the monomial ζ0 . . . ζ|a|−−1 are m−(a) [Mi]a for i ∈

{1, 2} as
[
λx!ι 〈〈a−〉x〉M !

i

] #»

ζ
!
= [a−]

#»

ζ
!
[Mi]

!. There is ~ζ = (ζ0, . . . , ζ|a|−−1) ∈ P[ι] with ζi ∈

Q ∩ [0, 1] such that [a−] ~ζ
!
[M1]

! 6= [a−] ~ζ
!
[M2]

!. Yet,
[
〈〈a−〉ran(

#»

ζ )!〉M !
i

]
= [a−] ~ζ

!
([Mi]).

By Theorem 38, we get that 〈〈a−〉ran(
#»

ζ )!〉M !
1 and 〈〈a−〉ran(

#»

ζ )!〉M !
2 converge to () with

different probabilities. It follows that M1 6∼M2.
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