
HAL Id: hal-01345847
https://hal.science/hal-01345847v1

Preprint submitted on 19 Jul 2016 (v1), last revised 22 Jul 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PROBABILISTIC CALL BY PUSH VALUE
Thomas Ehrhard, Christine Tasson

To cite this version:
Thomas Ehrhard, Christine Tasson. PROBABILISTIC CALL BY PUSH VALUE. 2016. �hal-
01345847v1�

https://hal.science/hal-01345847v1
https://hal.archives-ouvertes.fr

PROBABILISTIC CALL BY PUSH VALUE

THOMAS EHRHARD AND CHRISTINE TASSON

CNRS, IRIF, UMR 8243, Univ Paris Diderot,, Sorbonne Paris Cité, F-75205 Paris, France
e-mail address: thomas.ehrhard@pps.univ-paris-diderot.fr

CNRS, IRIF, UMR 8243, Univ Paris Diderot,, Sorbonne Paris Cité, F-75205 Paris, France
e-mail address: christine.tasson@pps.univ-paris-diderot.fr

Abstract. We introduce a probabilistic extension of Levy’s Call-By-Push-Value. This
extension consists simply in adding a “flipping coin” boolean closed atomic expression.
This language can be understood as a major generalization of Scott’s PCF encompassing
both call-by-name and call-by-value and featuring recursive (possibly lazy) data types. We
interpret the language in the previously introduced denotational model of probabilistic co-
herence spaces, a categorical model of full classical Linear Logic, interpreting data types as
coalgebras for the resource comonad. We prove adequacy and full abstraction, generalizing
earlier results to a much more realistic and powerful programming language.

1. Introduction

Call-by-Push-Value [16] is a class of functional languages generalizing the lambda-calculus
in several directions. From the point of view of Linear Logic we understand it as a half-
polarized system bearing some similarities with e.g. classical Parigot’s lambda-mu-calculus,
this is why we call it ΛHP. The main idea of Laurent and Regnier interpretation of call-by-
name lambda-mu in Linear Logic [14] (following actually[11]) is that all types of the min-
imal fragment of the propositional calculus (with ⇒ as unique connective) are interpreted
as negative types of Linear Logic which are therefore naturally equipped with structural
morphisms: technically speaking, these types are algebras of the ?-monad of Linear Logic.
This additional structure of negative types allows to perform logical structural rules on the
right side of typing judgments even if these formulas are not necessarily of shape ?σ, and
this is the key towards giving a computational content to classical logical rules, generalizing
the fundamental discovery of Griffin on typing call/cc with Peirce Law [12].

From our point of view, the basic idea of ΛHP is quite similar, though somehow dual
and used in a less systematic way: data types are interpreted as positive types of Linear
Logic equipped therefore with structural morphisms (as linear duals of negative formulas,
they are coalgebras of the !-comonad) and admit therefore structural rules on the left side
of typing judgment even if they are not of shape !σ. This means that a function defined on
a data type can have a linear function type even if it uses its argument in a non-linear way:

1998 ACM Subject Classification: MANDATORY list of acm classifications.
Key words and phrases: MANDATORY list of keywords.

LOGICAL METHODS

IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© T. Ehrhard and C. Tasson

Creative Commons

1

2 T. EHRHARD AND C. TASSON

this non-linearity is automatically implemented by means of the structural morphisms the
positive data type is equipped with.

The basic positive type in Linear Logic is !σ (where σ is any type): it is the very idea
of Girard’s call-by-name translation of the lambda-calculus into Linear Logic to represent
the implication type σ ⇒ τ by means of the decomposition !σ ⊸ τ . The new idea of ΛHP

is to generalize this use of the linear implication to any type construction of shape ϕ ⊸ τ
where ϕ is a positive type, without imposing any linearity restriction on the usage of the
argument of type ϕ used by a function of type ϕ ⊸ τ . This non-symmetrical restriction
in the use of the linear implication motivates our description of ΛHP as a “half-polarized”
system: in a fully polarized system as Laurent’s Polarized Linear Logic LLP [14], one would
also require the type σ to be negative in ϕ⊸ σ (the last system presented in [3] implements
this idea) and the resulting formalism would host classical computational primitives such
as call/cc as well. The price to pay, as illustrated in [1], is a less direct access to data types:
it is impossible to give a function from integers to integers the expected type ι⊸ ι (where
ι is the type of flat natural numbers satisfying ι = 1⊕ ι), the simplest type one can give to
such a term is ι⊸ ?ι which complicates its denotational interpretation1.

Not being polarized on the right side of implications, ΛHP remains “intuitionistic” just
as standard functional programming languages whose paradigmatic example is PCF. So
what is the benefit of this special status given to positive formulas considered as “data
types”? There are several answers to this question.

• First, and most importantly, it gives a call-by-value access to data types: when
translating PCF into Linear Logic, the simplest type for a function from integers to
integers is !ι ⊸ ι. This means that arguments of type ι are used in a call-by-name
way: such arguments are evaluated again each time they are used. This can of
course be quite inefficient. It is also simply wrong if we extend our language with
a random integer generator since in that case each evaluation of such an argument
can lead to a different value: in PCF there is no way to keep memory of the value
obtained for one evaluation of such a parameter and probabilistic programming is
therefore impossible. In ΛHP data types such as ι can be accessed in call-by-value,
meaning that they are evaluated once and that the resulting value is kept for further
computation: this is typically the behavior of a function of type ι⊸ ι. This is not
compulsory however and an explicit ! type constructor still allows to define functions
of type !ι⊸ ι in ΛHP, with the usual PCF behavior.

• Positive types being closed under positive Linear Logic connectives (direct sums
and tensor product) and under “least fix-point” constructions, it is natural to allow
corresponding constructions of positive types in ΛHP as well, leading to a language
with rich data type constructions (various kinds of trees, streams etc are freely
available) and can be accessed in call-by-value as explained above for integers. From
this data types point of view, the ! Linear Logic connective corresponds to the type of
suspensions which are boxes (in the usual Linear Logic sense) containing unevaluated
pieces of program.

1One can also consider ? as the computational monad of linear continuations and use a translation from
direct style into monadic style (which, for this monad, is just a version of the familiar CPS translation). This
is just a matter of presentation and of syntactic sugar and does not change the denotational interpretation
in the kind of concrete models of Linear Logic we have in mind such as the relational model, the coherence
space model etc.

PROBABILISTIC CBPV 3

• Since the Linear Logic type constructors ⊸ and ! are available in ΛHP (with
the restriction explained above on the use of ⊸ that the left side type must be
positive), one can represent in ΛHP both Girard’s translations from lambda-calculus
into Linear Logic introduced in [10]: the usual one which is call-by-name and the
“boring one” which is call-by-value. So in some sense ΛHP allows to freely combine
these two styles of functional program evaluation.

Concretely, in ΛHP, a term of positive type can be a value, and then it is discardable
and duplicable and, accordingly, its denotational interpretation is a morphism of coalgebras:
values are particular terms whose interpretation is easily checked to be such a morphism,
which doesn’t preclude other terms of positive type to have the same property of course, in
particular terms reducing to values! Being a value is a property which can be decided in time
at most the size of the term and values are freely duplicable and discardable. The “β-rules”
of the calculus (the standard β-reduction as well as the similar reduction rules associated
with tensor product and direct sum) are subject to restrictions on certain subterms of
redexes to be values (because they must be duplicable and discardable) and these restrictions
make sense thanks to this strong decidability property of being a value.

Probabilities in ΛHP. Because of the possibility offered by ΛHP of handling values in
a call-by-value manner, this language is particularly suitable for probabilistic functional
programming. Contrarily to the common monadic viewpoint on effects, we consider an
extension of the language where probabilistic choice is a primitive coin(p) of type 1⊕1 (the
type of booleans)2 parameterized by p ∈ [0, 1]∩Q which is the probability of getting t (and
1−p is the probability of getting f). So our probabilistic extension is in direct style, but, more
importantly, the denotational semantics we consider is itself in “direct style” and does not
rely on any auxiliary computational monad of probability distributions, measures, random
variables or whatsoever (see [13] for the difficulties related with the monadic approach to
probabilistic computations).

On the contrary, we interpret our language in the model of probabilistic coherence
spaces [2] that we already used for providing a fully abstract semantics for probabilistic
PCF [8]. A probabilistic coherence space X is given by an at most countable set |X|
(the web of X) and a set PX of |X|-indexed families of non-negative real numbers, to be
considered as some kind of “generalized probability distributions”. This set of families of
real numbers is subject to a closure property implementing a simple intuition of probabilistic
observations. Probabilistic coherence spaces are a model of classical Linear Logic and can be
seen as ω-continuous domains equipped with an operation of convex linear combination, and
the linear morphisms of this model are exactly the Scott continuous functions commuting
with these convex linear combinations.

As shown in [2] probabilistic coherence spaces have all the required completeness prop-
erties for interpreting recursive type definitions (that we used in [6] for interpreting the pure
lambda-calculus) and so we are able to associate a probabilistic coherence space with all
types of ΛHP.

In this model the type 1⊕1 is interpreted as the set of sub-probability distributions on
{t, f} so that we have a straightforward interpretation of coin(p). Similarly the type of flat
integers ι is interpreted as a probabilistic coherence space N such that |N| = N and PN is
the set of all probability distributions on the natural numbers. Given probabilistic spaces

2An not of type T (1⊕ 1) where T would be a computational monad of probabilistic computations.

4 T. EHRHARD AND C. TASSON

X and Y , the space X ⊸ Y has |X| × |Y | as web and P(X ⊸ Y) is the set of all |X| × |Y |
matrices which, when applied to an element of PX gives an element of PY . The web of the
space !X is the set of all finite multisets of elements of |X| so that an element of !X ⊸ Y
can be considered as a power series on as many variables as there are elements in |X| (the
composition law associated with the Kleisli category of the !-comonad is compatible with
this interpretation of morphisms as power series).

From a syntactic point of view, the only values of 1 ⊕ 1 are t and f , so coin(p) is
not a value. Therefore we cannot reduce 〈λx1⊕1M〉coin(p) to M [coin(p)/x] and this is a
good thing since then we would face the problem that the boolean values of the various
occurrences of coin(p) might be different. We have first to reduce coin(p) to a value, and the
reduction rules of our probabilistic ΛHP stipulate that coin(p) reduces to t with probability
p and to f with probability 1 − p (in accordance with the kind of operational semantics
that we considered in our earlier work on this topic, starting with [2]). So 〈λx1⊕1M〉coin(p)
reduces to M [t/x] with probability p and to M [f/x] with probability 1 − p, which is
perfectly compatible with the intuition that in ΛHP application is a linear operation (and
that implication is linear: the type of λx1⊕1M is (1⊕ 1) ⊸ σ for some type σ): in this
operational semantics as well as in the denotational semantics outlined above, linearity
corresponds to commutation with (probabilistic) convex linear combinations.

Contents. The results presented in this paper illustrate the tight connection between the
syntactic and the denotational intuitions underpinning our understanding of this calculus.
We prove first an Adequacy Theorem whose statement is extremely simple: given a closed
term M of type 1 (which has exactly one value ()), the denotational semantics of M , which
is an element of [0, 1], coincides with its probability to reduce to () (such a term can only
diverge or reduce to ()). In spite of its simple statement the proof of this result requires
some efforts mainly because of the presence of unrestricted recursive types in ΛHP. The
method used in the proof relies on an idea of Pitts [19] and is described in the introduction
of Section 3.4.

Then we prove Full Abstraction in Section 4 adapting the technique used in [6] to
the present ΛHP setting. The basic idea consists in associating, with any element a of the
web of the probabilistic coherence space [σ] interpreting the type σ, a term a− of type
!σ ⊸ !ι⊸ 1 such that, given two elements w and w′ of P[σ] such that wa 6= w′

a, the
elements [a−]w! and [a−] (w′)! of P(!ι⊸ 1) are different power series depending on a finite
number n of parameters (this number n depends actually only on a) so that we can find
a rational number valued sub-probability distribution for these parameters where these
power series take different values in [0, 1]. Applying this to the case where w and w′ are
the interpretations of two closed terms M and M ′ of type σ, we obtain, by combining
a− with the rational sub-probability distribution which can be represented in the syntax
using coin(p) for various values of p, a ΛHP closed term C of type !σ ⊸ 1 such that the
probability of convergence of 〈C〉M ! and 〈C〉(M ′)! are different (by adequacy). This proves
that if two (closed) terms are operationally equivalent then they have the same semantics
in probabilistic coherence spaces, that is, equational full abstraction.

Further developments. These results are similar to the ones reported in [9] but are actu-
ally different, and there is no clear logical connection between them, because the languages
are quite different, and therefore, the observation contexts also. And this even in spite of

PROBABILISTIC CBPV 5

the fact that PCF can be faithfully encoded in ΛHP. This seems to show that the semanti-
cal framework for probabilistic functional programming offered by probabilistic coherence
spaces is very robust and deserves further investigations. One major outcome of the present
work is a natural extension of probabilistic computation to rich data-types, including types
of potentially infinite values (streams etc).

Our full abstraction result cannot be extended to inequational full abstraction with
respect to the natural order relation on the elements of probabilistic coherence spaces: a
natural research direction will be to investigate other (pre)order relations and their possible
interactive definitions. Also, it is quite tempting to replace the equality of probabilities in the
definition of contextual equivalence by a distance; this clearly requires further developments.

2. Probabilistic Call By Push Value

We introduce a probabilistic extension Λp
HP of CBPV (where HP stands for “half polarized”).

Types are given by the following BNF syntax. We define by mutual induction two kinds
of types: positive types and general types, given type variables ζ, ξ. . . :

positive ϕ,ψ, . . . := 1 | !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ (2.1)

general σ, τ . . . := ϕ | ϕ⊸ σ (2.2)

We consider the types up to the equation Fix ζ · ϕ = ϕ [(Fix ζ · ϕ)/ζ].
Terms are given by the following BNF syntax, given variables x, y, . . . :

M,N . . . := x | () | M ! | (M,N) | in1M | in2M

| λxϕM | 〈M〉N | case(M,x1 ·N1, x2 ·N2)

| pr1M | pr2M | der(M) | fixx!σM

| fold(M) | unfold(M)

| coin(p), p ∈ [0, 1] ∩ Q

This calculus can be seen as a version of Levy’s CBPV [15] in which the type constructor
F is kept implicit (and U is “!”). It is close to SFPL [17]. We use LL inspired notations:
M ! corresponds to thunk(M) and der(M) to force(M).

Figure 1 provides the typing rules for these terms. A typing context is an expression
P = (x1 : ϕ1, . . . , xk : ϕk) where all types are positive and the xis are pairwise distinct
variables.

2.1. Reduction rules. Values are particular ΛHP terms (they are not a new syntactic
category) defined by the following BNF syntax:

V,W . . . := x | () | M ! | (V,W) | in1V | in2V | fold(V) .

Figure 2 defines a deterministic weak reduction relation →w and a probabilistic reduc-

tion
p
→ relation. This reduction is weak in the sense that we never reduce within a ”box”

M ! or under a λ.
The distinguishing feature of this reduction system is the role played by values in the

definition of →w. Consider for instance the case of the term pr1 (M1,M2); one might expect
this term to reduce directly to M1 but this is not the case. One needs first to reduce M1

and M2 to values before extracting the first component of the pair (the terms pr1 (M1,M2)
and M1 have not the same denotational interpretation in general). Of course replacing Mi

6 T. EHRHARD AND C. TASSON

P, x : ϕ ⊢ x : ϕ
P, x : ϕ ⊢M : σ

P ⊢ λxϕM : ϕ⊸ σ

P ⊢M : ϕ⊸ σ P ⊢ N : ϕ

P ⊢ 〈M〉N : σ

P ⊢M : σ

P ⊢M ! : !σ P ⊢ () : 1
P ⊢M1 : ϕ1 P ⊢M2 : ϕ2

P ⊢ (M1,M2) : ϕ1 ⊗ ϕ2

P ⊢M : ϕi
P ⊢ iniM : ϕ1 ⊕ ϕ2

P ⊢M : !σ
P ⊢ der(M) : σ

P ⊢M : ϕ1 ⊗ ϕ2

P ⊢ priM : ϕi

P, x : !σ ⊢M : σ

P ⊢ fixx!σM : σ
P ⊢M : ϕ1 ⊕ ϕ2 P, x1 : ϕ1 ⊢M1 : σ P, x2 : ϕ2 ⊢M2 : σ

P ⊢ case(M,x1 ·M1, x2 ·M2) : σ

P ⊢ coin(p) : 1⊕ 1

P ⊢M : ψ [Fix ζ · ψ/ζ]

P ⊢ fold(M) : Fix ζ · ψ

P ⊢M : Fix ζ · ψ

P ⊢ unfold(M) : ψ [Fix ζ · ψ/ζ]

Figure 1: Typing system for ΛHP

with M !
i allows a lazy behavior. Similarly, in the →w rule for case, the term on which the

test is made must be reduced to a value (necessarily of shape iniV if the expression is well
typed) before the reduction is performed. As explained in the Introduction this allows to
“memoize” the value V for futher usage: the value is passed to the relevant branch of the
case through the variable xi.

We say that M is weak normal if there is no reduction M
p
→ M ′. It is clear that any

value is weak normal. WhenM is closed,M is weak normal iff it is a value or an abstraction.

Given two terms M , M ′ and a real number p ∈ [0, 1], M
p
→M ′ means that M reduces

in one step to M ′ with probability p.
In order to simplify the presentation we choose in Figure 2 a reduction strategy. For

instance we decide that, for reducing (M1,M2) to a value, one needs first to reduce M1 to a
value, and then M2; this choice is of course completely arbitrary. A similar choice is made
for reducing terms of shape 〈M〉N , where we require the argument to be reduced first. This
choice is less arbitrary as it will simplify a little bit the proof of adequacy in Section 3.4
(see for instance the proof of Lemma 21).

We could perfectly define a more general weak reduction relation as in [4] for which
we could prove a “diamond” confluence property but we would then need to deal with a
reduction transition system where, at each node (term), several probability distributions
of reduced terms are available and so we would not be able to describe reduction as a
simple (infinite dimensional) stochastic matrix. We could certainly also define more general
reduction rules allowing to reduce redexes anywhere in terms (apart for coin(p) which can be
reduced only when in linear position) but this would require the introduction of additional
σ-rules as in [5]. As in that paper, confluence can probably be proven, using ideas coming
from [7, 21] for dealing with reduction in an algebraic lambda-calculus setting.

2.2. Observational equivalence. In order to define observational equivalence, we need to
represent the probability of convergence of a term to a normal form. As in [2], we consider
the reduction as a discrete time Markov chain whose states are terms and stationary states

are weak normal terms. We then define a stochastic matrix Red ∈ [0, 1]Λ
p
HP

×Λp
HP (indexed by

PROBABILISTIC CBPV 7

der(M !) →w M 〈λxϕM〉V →w M [V/x] pri (V1, V2) →w Vi

fixx!σM →w M
[
(fixx!σM)!/x

]
case(iniV, x1 ·M1, x2 ·M2) →w Mi [V/xi]

unfold(fold(V)) →w V

M →w M
′

M
1
→M ′ coin(p)

p
→ in1() coin(p)

1−p
→ in2()

M
p
→M ′

der(M)
p
→ der(M ′)

M
p
→M ′

〈M〉V
p
→ 〈M ′〉V

N
p
→ N ′

〈M〉N
p
→ 〈M〉N ′

M
p
→M ′

priM
p
→ priM

′

M1
p
→M ′

1

(M1,M2)
p
→ (M ′

1,M2)

M2
p
→M ′

2

(V,M2)
p
→ (V,M ′

2)

M
p
→M ′

iniM
p
→ iniM

′

M
p
→M ′

case(M,x1 ·M1, x2 ·M2)
p
→ case(M ′, x1 ·M1, x2 ·M2)

Figure 2: Weak and Probabilistic reduction axioms and rules for Λp
HP

terms) as

RedM,M ′ =

p if M
p
→M ′

1 if M is weak-normal and M ′ =M

0 otherwise.

Saying that Red is stochastic means that the coefficients of Red belong to [0, 1] and that,
for any given term M , one has

∑
M ′ RedM,M ′ = 1 (actually there are at most two terms M ′

such that RedM,M ′ 6= 0).
Then, for all M,M ′ ∈ Λp

HP, if M
′ is weak-normal then the sequence (RednM,M ′)∞n=1 is

monotone and included in [0, 1], and therefore has a lub that we denote as Red∞M,M ′ which

defines a sub-stochastic matrix (taking Red∞M,M ′ = 0 when M ′ is not weak-normal).

When M ′ is weak-normal, the number p = Red∞M,M ′ is the probability that M reduces

to M ′ after a finite number of steps.
Let us say when two closed terms M1, M2 of type σ are observationally equivalent :

M1 ∼M2, if for all closed term C of type !σ ⊸ 1, Red∞
〈C〉M !

1,()
= Red∞

〈C〉M !
1,()

.

For simplicity we consider only closed terms M1 and M2. We could also define an obser-
vational equivalence on non closed terms, replacing the term C with a context C[] which
could bind free variables of the Mi’s, this would not change the results of the paper.

2.3. Examples.

Ever-looping program. Given any type σ, we define Ωσ = fixx!σ der(x) which satisfies ⊢ Ωσ :
σ. It is clear that Ωσ →w der((Ωσ)!) →w Ωσ so that we can consider Ωσ as the ever-looping
program of type σ.

Booleans. We define the type o = 1 ⊕ 1. We define the “true” constant as t = in1() and
the “false” constant as f = in2().

8 T. EHRHARD AND C. TASSON

Natural numbers. We define the type ι of unary natural numbers by ι = 1⊕ ι (by this we
mean that ι = Fix ζ ·(1⊕ζ)). We define 0 = in1() and n+ 1 = in2n so that we have P ⊢ n : ι
for each n ∈ N.

Then, given a term M , we define the term suc(M) = in2M , so that we have
P ⊢M : ι

P ⊢ suc(M) : ι

Last, given terms M , N1 and N2 and a variable x, we define an “ifz” conditional by
if(M,N1, (x)N2) = case(M,z ·N1, x ·N2) where z is not free in N1, so that

P ⊢M : ι P ⊢ N1 : σ P, x : ι ⊢ N2 : σ

P ⊢ if(M,N1, (x)N2) : σ
We exhibit terms using this constructions in the paragraph on Probabilistic tests just below.
The first ones dicep(M1,M2) and ran(#»p) do not use the possibility to save the value of the
test. The second one probk exploits this call-by-value feature.

Streams. Let ϕ be a positive type and Sϕ be the positive type defined by Sϕ = ϕ ⊗ !Sϕ,
that is Sϕ = Fix ζ · (ϕ ⊗ !ζ). We can define a term M such that ⊢ M : Sϕ ⊸ ι⊸ ϕ which
computes the nth element of a stream:

M = fix f !(Sϕ⊸ι⊸ϕ) λxSϕ λyι if(y, pr1x, (z)〈der(f)〉der(pr2x) z)

Conversely, we can define a term N such that ⊢ N : !(ι ⊸ ϕ) ⊸ Sϕ which turns a
function into the stream of its successive application to an integer.

N = fixF !(!(ι⊸ϕ)⊸Sϕ) λf !(ι⊸ϕ)
(
〈der(f)〉0, (〈der(F)〉(λxι 〈der(f)〉suc(x))!)!

)

Observe that the recursive call of F is encapsulated into a box, which makes the construction
lazy.

Lists. There are various possibilities for defining a type of lists of elements of a positive
type ϕ. The simplest definition is λ0 = 1⊕ (ϕ⊗ λ0). This corresponds to the ordinary ML
type of lists. But we can also define λ1 = 1 ⊕ (ϕ⊗ !λ1) and then we have a type of lazy
lists (or terminable streams) where the tail of the list is computed only when required.

We could also consider λ2 = 1 ⊕ (!σ ⊗ λ2) which allows to manipulate lists of objects
of type σ (which can be a general type) without accessing their elements.

Probabilistic tests. If P ⊢ Mi : σ for i = 1, 2, we set dicep(M1,M2) = if(coin(p),M1, (z)M2)
such that P ⊢ dicep(M1,M2) : σ. If Mi reduces to a value Vi with probability qi, then
dicep(M1,M2) reduces to Vi with probability p qi.

Let n ∈ N and let #»p = (p0, . . . , pn) be such that pi ∈ [0, 1] ∩ Q and p0 + · · · + pn ≤ 1.
Then one defines a closed term ran(#»p), such that ⊢ ran(#»p) : ι, which reduces to i with
probability pi for each i ∈ {0, . . . , n}. The definition is by induction on n.

ran(#»p) =

0 if p0 = 1 whatever be the value of n

if(coin(p0), 0, (z)Ω
ι) if n = 0

if(coin(p0), 0, (z) succ(ran(
p1

1−p0
, . . . , pn

1−p0
))) otherwise

PROBABILISTIC CBPV 9

As another example of use of the conditional, we define, by induction on k, a family of
terms probk such that ⊢ probk : ι⊸ 1:

prob0 = λxι if(x, (), (z)Ωι) probk+1 = λxι if(x,Ωι, (z)〈probk〉z)

For M such that ⊢ M : ι, the term 〈probk〉M reduces to () with a probability which is
equal to the probability of M to reduce to k.

Now, we introduce terms that will be used in the definition of testing terms the proof
of Full Abstraction in Section 4.

First, we define prodk such that ⊢ prodk : 1
⊗k

⊸ σ ⊸ σ:

prod0 = λyσ y prodk+1 = λx1 prodk .

Given M1, . . . ,Mk such that P ⊢Mi : 1 and P ⊢ N : ϕ, the term 〈〈〈prodk+1〉M1 · · · 〉Mk〉N
reduces to a value V with probability p1 · · · pk q where pi is the probability of Mi to reduce
to () and q is the probability of N to reduce to V . We use the notations:

M1 ·N = 〈〈prod2〉M1〉N M1 ∧ · · · ∧Mk = 〈〈prodk〉M1· · ·〉Mk,

so that P ⊢ M1 · N : ϕ and the probability that M1 · N reduces to V is p1 q and P ⊢
M1 ∧ · · · ∧Mk : 1 and M1 ∧ · · · ∧Mk reduces to () with probability p1 · · · pk.

Notation. Given terms M1, . . . ,Mn, we define a term N = (M1, . . . ,Mn) by induction on
n: if n = 0 then N = () and if n > 0 then N = ((M1, . . . ,Mn−1),Mn). We freely identify
(M) with M and extend the notation priN in the obvious way.

Given a type σ and k ∈ N, we define a term choosek such that ⊢ choosek : ι⊸ σ⊗k ⊸ σ

choose0 = λξι Ωσ

choosek+1 = λξι λxσ1 · · ·λxσk+1 if(ξ, x1, (ζ)〈〈choosek〉ζ〉(x2, . . . , xk+1)) .

Given a P such that P ⊢ P : ι and terms N1, . . . , Nk such that P ⊢ Ni : σ for any i, we use
the notation,

k∑

i=1

P (i) ·Ni = 〈〈choosek〉P 〉(N1, . . . , Nk).

The term
∑k

i=1 P (i) ·Ni reduces to Vi with probability pi qi where pi is the probability that
P reduces to i which is symbolized by the notation P (i) and qi is the probability that Ni

reduces to Vi.

As we will see more precisely in the semantics, a term of type ι can be seen as a
sub-probability distribution over N. Given 1 ≤ l ≤ r, we introduce the term of type ι⊸ ι:

ext (l, r) = λzι 〈〈chooser〉z〉(Ω
ι, . . . ,Ωι︸ ︷︷ ︸
l−1

, l, . . . , r).

such that if ⊢ P : ι, then 〈ext (l, r)〉P extracts the sub-probability distribution with support

between l and r. Indeed, 〈ext (l, r)〉P reduces to
∑k

i=l P (i)i.
We also introduce, for #»n = (n1, . . . , nk) a sequence of k natural numbers, a term wini(

#»n)
of type ι ⊸ ι which extracts the sub-probability distribution whose support is in the ith

window of length ni:

wini(
#»n) = ext (n1 + · · ·+ ni−1 + 1, n1 + · · ·+ ni) .

10 T. EHRHARD AND C. TASSON

3. Probabilistic Coherent Spaces

3.1. Semantics of LL, in a nutshell. The kind of denotational models we are interested
in, in this paper, are those induced by a model of LL, as explained in [4]. We remind the
basic definitions and notations, referring to that paper for more details.

3.1.1. Models of Linear Logic. A model of LL consists of the following data.
A symmetric monoidal closed category (L,⊗, 1, λ, ρ, α, σ) where we use simple juxta-

position g f to denote composition of morphisms f ∈ L(X,Y) and g ∈ L(Y,Z). We use
X ⊸ Y for the object of linear morphisms from X to Y , ev ∈ L((X ⊸ Y)⊗X,Y) for the
evaluation morphism and cur ∈ L(Z ⊗X,Y) → L(Z,X ⊸ Y) for the linear curryfication
map. For convenience, and because it is the case in the concrete models we consider (such
as Scott Semantics [4] or Probabilistic Coherent Spaces here), we assume this SMCC to be
a ∗-autonomous category with dualizing object ⊥. We use X⊥ for the object X ⊸ ⊥ of L
(the dual, or linear negation, of X).

L is cartesian with terminal object ⊤, product &, projections pri. By ∗-autonomy L is
co-cartesian with initial object 0, coproduct ⊕ and injections ini.

We are given a comonad ! : L → L with co-unit derX ∈ L(!X,X) (dereliction) and
co-multiplication digX ∈ L(!X, !!X) (digging) together with a strong symmetric monoidal
structure (Seely isos m0 and m2) for the functor ! , from the symmetric monoidal cate-
gory (L,&) to the symmetric monoidal category (L,⊗) satisfying an additional coherence
condition wrt. dig.

We use ? for the “De Morgan dual” of ! : ?X = (!(X⊥))⊥ and similarly for morphisms.
It is a monad on L.

3.1.2. The Eilenberg-Moore category. It is then standard to define the category L! of !-
coalgebras. An object of this category is a pair P = (P ,hP) where P ∈ Obj(L) and
hP ∈ L(P , !P) is such that derP hP = Id and digP hP = !hP hP . Then f ∈ L!(P,Q) iff

f ∈ L(P ,Q) such that hQ f = !f hP . The functor ! can be seen as a functor from L to L!

mapping X to (!X,digX) and f ∈ L(X,Y) to !f . It is right adjoint to the forgetful functor
U : L! → L. Given f ∈ L(P ,X), we use f ! ∈ L!(P, !X) for the morphism associated with f

by this adjunction, one has f ! = !f hP . If g ∈ L!(Q,P), we have f ! g = (f g)!.
Then L! is cartesian (with product of shape P ⊗ Q = (P ⊗ Q,hP⊗Q) and terminal

object (1,h1), still denoted as 1). This category is also co-cartesian with coproduct of
shape P ⊕ Q = (P ⊕ Q,hP⊕Q) and initial object (0,h0) still denoted as 0. The complete

definitions can be found in [4]. We use cP ∈ L!(P,P ⊗ P) (contraction) for the diagonal
and wP ∈ L!(P, 1) (weakening) for the unique morphism to the terminal object.

We also consider occasionally the Kleisli category3 L! of the comonad !: its objects
are those of L and L!(X,Y) = L(!X,Y). The identity at X in this category is derX and
composition of f ∈ L!(X,Y) and g ∈ L!(Y,Z) is defined as

g ◦ f = g !f digX .

This category is cartesian closed but this fact will not play an essential role in this work.

3It is the full subcategory of L! of free coalgebras, see any introductory text on monads and co-monads.

PROBABILISTIC CBPV 11

3.1.3. Fix-points. For any object X, we assume to be given fixX ∈ L(!(!X ⊸ X),X), a

morphism such that4 ev (der!X⊸X ⊗ fix!X) ◦ c!(!X⊸X) which will allow to interpret term
fix-points.

In order to interpret fix-points of types, we assume that the category L is equipped
with a notion of embedding-retraction pairs, following a standard approach. We use L⊆

for the corresponding category. It is equipped with a functor F : L⊆ → Lop × L such
that F(X) = (X,X) and for which we use the notation (ϕ−, ϕ+) = F(ϕ) and assume that
ϕ− ϕ+ = IdX . We assume furthermore that L⊆ has all countable directed colimits and that
the functor E = pr2 F : L⊆ → L is continuous. We also assume that all the basic operations
on objects (⊗, ⊕, ()⊥ and !) are continuous functors from L⊆ to itself5.

Then it is easy to carry this notion of embedding-retraction pairs to L!, defining a
category L!

⊆, to show that this category has all countable directed colimits and that the

functors ⊗ and ⊕ are continuous on this category: L!
⊆(P,Q) is the set of all ϕ ∈ L⊆(P ,Q)

such that ϕ+ ∈ L!(P,Q). One checks also that ! defines a continuous functor from L⊆ to
L!
⊆. This allows to interpret recursive types, more details can be found in [3].

3.1.4. Interpreting types. Using straightforwardly the object 1 and the operations ⊗, ⊕, !
and ⊸ of the model L as well as the completeness and continuity properties explained

in Section 3.1.3, we associate with any positive type ϕ and any repetition-free list
#»

ζ =
(ζ1, . . . , ζn) of type variables containing all free variables of ϕ a continuous functor [ϕ]!#»

ζ
:

(L!
⊆)

n → L!
⊆ and with any general type σ and any list

#»

ζ = (ζ1, . . . , ζn) of pairwise distinct

type variables containing all free variables of σ we associate a continuous functor [σ] #»

ζ :

(L!
⊆)

n → L⊆.

When we write [σ] or [ϕ]! (without subscript), we assume implicitly that the types σ
and ϕ have no free type variables. Then [σ] is an object of L and [ϕ]! is an object of L!. We
have [ϕ] = [ϕ]! that is, considered as a generalized type, the semantics of a positive type ϕ

is the carrier of the coalgebra [ϕ]!.
Given a typing context P = (x1 : ϕ1, . . . , xk : ϕk), we define [P] = [ϕ1]

!⊗· · ·⊗ [ϕk]
! ∈ L!.

In the model or probabilistic coherence spaces considered in this paper, we define L⊆

in such a way that the only isos are the identity maps. This implies that the types Fix ζ ·ϕ
and ϕ [(Fix ζ · ϕ)/ζ] are interpreted as the same object (or functor). Such definitions of L⊆

are possible in many other models (relational, coherence spaces, hypercoherences etc).
We postpone the description of term interpretation because this will require construc-

tions specific to our probabilistic semantics, in addition to the generic categorical ingredients
introduced so far.

3.2. The model of probabilistic coherence spaces. Given a countable set I and u, u′ ∈
(R+)I , we set 〈u, u′〉 =

∑
i∈I uiu

′
i. Given F ⊆ (R+)I , we set F⊥ = {u′ ∈ (R+)I | ∀u ∈

F 〈u, u′〉 ≤ 1}.

4It might seem natural to require the stronger uniformity conditions of Conway operator [20]. This does
not seem to be necessary as far as soundness of our semantics is concerned even if the fix-point operators
arising in concrete models satisfy these further properties.

5This is a rough statement; one has to say for instance that if ϕi ∈ L⊆(Xi, Yi) for i = 1, 2 then (ϕ1⊗ϕ2)
− =

ϕ−
1 ⊗ ϕ−

2 etc. The details can be found in [4].

12 T. EHRHARD AND C. TASSON

A probabilistic coherence space (PCS) is a pair X = (|X|,PX) where |X| is a countable

set and PX ⊆ (R+)|X| satisfies

• PX⊥⊥ = PX (equivalently, PX⊥⊥ ⊆ PX),
• for each a ∈ |X| there exists u ∈ PX such that ua > 0,
• for each a ∈ |X| there exists A > 0 such that ∀u ∈ PX ua ≤ A.

If only the first of these conditions holds, we say that X is a pre-probabilistic coherence
space (pre-PCS).

The purpose of the second and third conditions is to prevent infinite coefficients to
appear in the semantics. This property in turn will be essential for guaranteeing the mor-
phisms interpreting proofs to be analytic functions, which will be the key property to prove
full abstraction. So these conditions, though cosmetics at first sight, are important for our
ultimate goal.

Lemma 1. Let X be a pre-PCS. The following conditions are equivalent:

• X is a PCS,
• ∀a ∈ |X| ∃u ∈ PX ∃u′ ∈ PX⊥ ua > 0 and u′a > 0,
• ∀a ∈ |X| ∃A > 0∀u ∈ PX ∀u′ ∈ PX⊥ ua ≤ A and u′a ≤ A.

The proof is straightforward.
We equip PX with the most obvious partial order relation: u ≤ v if ∀a ∈ |X| ua ≤ va

(using the usual order relation on R).
Given u ∈ (R+)|X| and I ⊆ |X| we use p(u, I) for the element v of (R+)|X| such that

va = ua if a ∈ I and va = 0 otherwise. Of course u ∈ PX ⇒ p(u, I) ∈ PX.

Theorem 2. PX is an ω-continuous domain. Given u, v ∈ PX and α, β ∈ R+ such that
α+ β ≤ 1, one has αu+ βv ∈ PX.

This is an easy consequence of the hypothesis PX⊥⊥ ⊆ PX. See [2] for details.

3.2.1. Morphisms of PCSs. Let X and Y be PCSs. Let t ∈ (R+)|X|×|Y | (to be understood

as a matrix). Given u ∈ PX, we define t u ∈ R+|Y |
by (t u)b =

∑
a∈|X| ta,bua (application

of the matrix t to the vector u)6. We say that t is a (linear) morphism from X to Y if
∀u ∈ PX tu ∈ PY , that is

∀u ∈ PX ∀v′ ∈ PY ⊥
∑

(a,b)∈|X|×|Y |

ta,buav
′
b ≤ 1 .

The diagonal matrix Id ∈ (R+)|X|×|X| given by Ida,b = 1 if a = b and Ida,b = 0 otherwise is
a morphism. In that way we have defined a category Pcoh whose objects are the PCSs and
whose morphisms have just been defined. Composition of morphisms is defined as matrix
multiplication: let s ∈ Pcoh(X,Y) and t ∈ Pcoh(Y,Z), we define t s ∈ (R+)|X|×|Z| by

(t s)a,c =
∑

b∈|Y |

sa,btb,c

and a simple computation shows that t s ∈ Pcoh(X,Z). More precisely, we use the fact
that, given u ∈ PX, one has (t s)u = t (s u). Associativity of composition holds because
matrix multiplication is associative. IdX is the identity morphism at X.

6This is an unordered sum, which is infinite in general. It makes sense because all its terms are ≥ 0.

PROBABILISTIC CBPV 13

Given u ∈ PX, we define ‖u‖X = sup{〈u, u′〉 | u′ ∈ PX⊥}. By definition, we have
‖u‖X ∈ [0, 1].

3.2.2. Multiplicative constructs. One sets X⊥ = (|X|,PX⊥). It results straightforwardly
from the definition of PCSs that X⊥ is a PCS. Given t ∈ Pcoh(X,Y), one has t⊥ ∈
Pcoh(Y ⊥ ,X⊥) if t⊥ is the transpose of t, that is (t⊥)b,a = ta,b.

One defines X ⊗ Y by |X ⊗ Y | = |X| × |Y | and

P(X ⊗ Y) = {u⊗ v | u ∈ PX and v ∈ PY }⊥⊥

where (u⊗ v)(a,b) = uavb. Then X ⊗ Y is a pre-PCS.

We have

P(X ⊗ Y ⊥)⊥ = {u⊗ v′ | u ∈ PX and v′ ∈ PY ⊥}⊥ = Pcoh(X,Y) .

It follows that X ⊸ Y = (X ⊗ Y ⊥)⊥ is a pre-PCS. Let (a, b) ∈ |X| × |Y |. Since X
and Y ⊥ are PCSs, there is A > 0 such that uav

′
b < A for all u ∈ PX and v′ ∈ PY ⊥ .

Let t ∈ (R+)|X⊸Y | be such that t(a′,b′) = 0 for (a′, b′) 6= (a, b) and t(a,b) = 1/A, we have
t ∈ P(X ⊸ Y). This shows that ∃t ∈ P(X ⊸ Y) such that t(a,b) > 0. Similarly we can find

u ∈ PX and v′ ∈ PY ⊥ such that ε = uav
′
b > 0. It follows that ∀t ∈ P(X ⊸ Y) one has

t(a,b) ≤ 1/ε. We conclude that X ⊸ Y is a PCS, and therefore X ⊗ Y is also a PCS.

Lemma 3. Let X and Y be PCSs. One has P(X ⊸ Y) = Pcoh(X,Y). That is, given

t ∈ (R+)|X|×|Y |, one has t ∈ P(X ⊸ Y) iff for all u ∈ PX, one has t u ∈ PY .

This results immediately from the definition above of X ⊸ Y .

Lemma 4. Let X1, X2 and Y be PCSs. Let t ∈ (R+)|X1⊗X2⊸Y |. One has t ∈ Pcoh(X1 ⊗
X2, Y) iff for all u1 ∈ PX1 and u2 ∈ PX2 one has t (u1 ⊗ u2) ∈ PY .

Proof. The condition stated by the lemma is clearly necessary. Let us prove that it is
sufficient: under this condition, it suffices to prove that

t⊥ ∈ Pcoh(Y ⊥ , (X1 ⊗X2)
⊥) .

Let v′ ∈ PY ⊥ , it suffices to prove that t⊥ v′ ∈ P(X1 ⊗X2)
⊥ . So let u1 ∈ PX1 and u2 ∈ PX2,

it suffices to prove that 〈t⊥ v′, u1 ⊗ u2〉 ≤ 1, that is 〈t (u1 ⊗ u2), v
′〉 ≤ 1, which follows from

our assumption. 2

Let si ∈ Pcoh(Xi, Yi) for i = 1, 2. Then one defines

s1 ⊗ s2 ∈ (R+)|X1⊗X2⊸Y1⊗Y2|

by (s1 ⊗ s2)((a1,a2),(b1,b2)) = (s1)(a1,b1)(s2)(a2,b2) and one must check that

s1 ⊗ s2 ∈ Pcoh(X1 ⊗X2, Y1 ⊗ Y2) .

This follows directly from Lemma 4. Let 1 = ({∗}, [0, 1]). There are obvious choices of
natural isomorphisms

λX ∈ Pcoh(1⊗X,X)

ρX ∈ Pcoh(X ⊗ 1,X)

αX1,X2,X3 ∈ Pcoh((X1 ⊗X2)⊗X3,X1 ⊗ (X2 ⊗X3))

σX1,X2 ∈ Pcoh(X1 ⊗X2,X2 ⊗X1)

14 T. EHRHARD AND C. TASSON

which satisfy the standard coherence properties. This shows that (Pcoh, 1, λ, ρ, α, σ) is a
symmetric monoidal category.

3.2.3. Internal linear hom. Given PCSs X and Y , let us define ev ∈ (R+)|(X⊸Y)⊗X⊸Y | by

ev(((a′,b′),a),b) =

{
1 if (a, b) = (a′, b′)

0 otherwise.

Then it is easy to see that (X ⊸ Y, ev) is an internal linear hom object in Pcoh, showing
that this SMCC is closed. If t ∈ Pcoh(Z ⊗ X,Y), the corresponding linearly curryfied
morphism cur(t) ∈ Pcoh(Z,X ⊸ Y) is given by cur(t)(c,(a,b)) = t((c,a),b).

3.2.4. ∗-autonomy. Take ⊥ = 1, then one checks readily that (Pcoh, 1, λ, ρ, α, σ,⊥) is a
∗-autonomous category. The duality functor X 7→ (X ⊸ ⊥) can be identified with the
strictly involutive contravariant functor X 7→ X⊥ .

3.2.5. Additives. Let (Xi)i∈I be a countable family of PCSs. We define a PCS &i∈I Xi by

|&i∈I Xi| =
⋃
i∈I{i} × |Xi| and u ∈ P(&i∈I Xi) if, for all i ∈ I, the family u(i) ∈ (R+)|Xi|

defined by u(i)a = u(i,a) belongs to PXi.

Lemma 5. Let u′ ∈ (R+)|&i∈I Xi|. One has u′ ∈ P(&i∈I Xi)
⊥ iff

• ∀i ∈ I u′(i) ∈ PX⊥
i

• and
∑

i∈I ‖u
′(i)‖

X⊥
i

≤ 1.

The proof is quite easy. It follows that &i∈I Xi is a PCS. Moreover we can define
pri ∈ Pcoh(&j∈I Xj ,Xi) by

(pri)(j,a),a′ =

{
1 if j = i and a = a′

0 otherwise.

Then (&i∈I Xi, (pri)i∈I) is the cartesian product of the family (Xi)i∈I in the category Pcoh.
The coproduct (⊕i∈I Xi, (ini)i∈I) is the dual operation, so that

| ⊕
i∈I

Xi| =
⋃

i∈I

{i} × |Xi|

and u ∈ P(⊕i∈I Xi) if ∀i ∈ I u(i) ∈ PXi and
∑

i∈I ‖u(i)‖Xi
≤ 1. The injections inj ∈

Pcoh(Xj ,⊕i∈I Xi) are given by

(ini)a′,(j,a) =

{
1 if j = i and a = a′

0 otherwise.

Given morphisms si ∈ Pcoh(Xi, Y) (for each i ∈ I), then the unique morphism s ∈
Pcoh(⊕i∈I Xi, Y) is given by s(i,a),b = (si)a,b and denoted as casei∈Isi (in the binary case,
we use case(s1, s2)).

PROBABILISTIC CBPV 15

3.2.6. Exponentials. Given a set I, a finite multiset of elements of I is a function b : I → N

whose support supp(b) = {a ∈ I | b(a) 6= 0} is finite. We use Mfin(I) for the set of all
finite multisets of elements of I. Given a finite family a1, . . . , an of elements of I, we use
[a1, . . . , an] for the multiset b such that b(a) = #{i | ai = a}. We use additive notations for

multiset unions:
∑k

i=1 bi is the multiset b such that b(a) =
∑k

i=1 bi(a). The empty multiset
is denoted as 0 or []. If k ∈ N, the multiset kb maps a to k b(a).

Let X be a PCS. Given u ∈ PX and b ∈ Mfin(|X|), we define ub =
∏
a∈|X| u

b(a)
a ∈ R+.

Then we set u! = (ub)b∈Mfin(|X|) and finally

!X = (Mfin(|X|), {u! | u ∈ PX}⊥⊥)

which is a pre-PCS.
We check quickly that !X so defined is a PCS. Let b = [a1, . . . , an] ∈ Mfin(|X|). Because

X is a PCS, and by Theorem 2, for each i = 1, . . . , n there is u(i) ∈ PX such that u(i)ai > 0.
Let (αi)

n
i=1 be a family of strictly positive real numbers such that

∑n
i=1 αi ≤ 1. Then

u =
∑n

i=1 αiu(i) ∈ PX satisfies uai > 0 for each i = 1, . . . , n. Therefore u!b = ub > 0. This
shows that there is U ∈ P(!X) such that Ub > 0.

Let now A ∈ R+ be such that ∀u ∈ PX ∀i ∈ {1, . . . , n} uai ≤ A. For all u ∈ PX we
have ub ≤ An. We have

(P(!X))⊥ = {u! | u ∈ PX}
⊥⊥⊥

= {u! | u ∈ PX}⊥ .

Let t ∈ (R+)|!X| be defined by tc = 0 if c 6= b and tb = A−n > 0; we have t ∈ (P(!X))⊥ . We
have exhibited an element t of (P(!X))⊥ such that tb > 0. By Lemma 1 it follows that !X
is a PCS.

3.2.7. Kleisli morphisms as functions. Let s ∈ (R+)|!X⊸Y |. We define a function ŝ : PX →

R+|Y |
as follows. Given u ∈ PX, we set

ŝ(u) = s u! =

 ∑

c∈|!X|

sc,bu
c

b∈|Y |

.

Theorem 6. One has s ∈ P(!X ⊸ Y) iff, for all u ∈ PX, one has ŝ(u) ∈ PY .

This is an immediate consequence of the definition.

Theorem 7. Let s ∈ Pcoh(!X,Y). The function ŝ is Scott-continuous. Moreover, given

s, s′ ∈ Pcoh(!X,Y), one has s = s′ (as matrices) iff ŝ = ŝ′ (as functions PX → PY).

This is an easy consequence of the fact that two polynomials of n variables with real
coefficients are identical iff they are the same function on any open subset of Rn.

So we can consider the elements of Pcoh!(X,Y) (the morphisms of the Kleisli category
of the comonad ! on the category Pcoh) as particular Scott continuous functions PX → PY
and this identification is compatible with the definition of identity maps and of composition
in Pcoh!, see Section 3.1.2. Of course, not all Scott continuous function are morphisms in
Pcoh!.

Theorem 8. Let s, s′ ∈ Pcoh!(X,Y) be such that s ≤ s′ (as elements of P(!X ⊸ Y)). Then

∀u ∈ PX ŝ(u) ≤ ŝ′(u). Let (s(i))i∈N be a monotone sequence of elements of Pcoh!(X,Y)
and let s = supi∈N s(i). Then ∀u ∈ PX ŝ(u) = supi∈I ŝi(u).

16 T. EHRHARD AND C. TASSON

The first statement is obvious. The second one results from the monotone convergence
Theorem.

Given a multiset b ∈ Mfin(I), we define its factorial b! =
∏
i∈I b(i)! and its multinomial

coefficient mn(b) = (#b)!/b! ∈ N+ where #b =
∑

i∈I b(i) is the cardinality of b. Remember
that, given an I-indexed family a = (ai)i∈I of elements of a commutative semi-ring, one has
the multinomial formula (∑

i∈I

ai

)n
=

∑

b∈Mn(I)

mn(b)ab

where Mn(I) = {b ∈ Mfin(I) | #b = n}.
Given c ∈ |!X | and d ∈ |!Y | we define L(c, d) as the set of all multisets r inMfin(|X| × |Y |)

such that

∀a ∈ |X|
∑

b∈|Y |

r(a, b) = c(a) and ∀b ∈ |Y |
∑

a∈|X|

r(a, b) = d(b) .

Let t ∈ Pcoh(X,Y), we define !t ∈ (R+)!X⊸!Y by

(!t)c,d =
∑

r∈L(c,d)

d!

r!
tr .

Observe that the coefficients in this sum are all non-negative integers.

Lemma 9. For all u ∈ PX one has !t u! = (t u)!.

This results from a simple computation applying the multinomial formula.

Theorem 10. For all t ∈ Pcoh(X,Y) one has !t ∈ Pcoh(!X, !Y) and the operation t 7→ !t
is functorial.

Immediate consequences of Lemma 9 and Theorem 7.

3.2.8. Description of the exponential comonad. We equip now this functor with a struc-
ture of comonad: let derX ∈ (R+)|!X⊸X| be given by (derX)b,a = δ[a],b (the value of the

Kronecker symbol δi,j is 1 if i = j and 0 otherwise) and digX ∈ (R+)|!X⊸!!X| be given by
(digX)b,[b1,...,bn] = δ∑n

i=1 bi,b
. Then we have derX ∈ Pcoh(!X,X) and digX ∈ Pcoh(!X, !!X)

simply because

d̂erX(u) = u and d̂igX(u) = (u!)!

for all u ∈ PX, as easily checked. Using these equations, one also checks easily the naturality
of these morphisms, and the fact that (! ,der,dig) is a comonad.

As to the monoidality of this comonad, we introduce m0 ∈ (R+)|1⊸!⊤| by m0
∗,[] = 1 and

m2
X,Y ∈ (R+)|!X⊗!Y⊸!(X&Y)| by (m2

X,Y)b,c,d = δd,1·b+2·c where i·[a1, . . . , an] = [(i, a1), . . . , (i, an)].

It is easily checked that the required commutations hold (again, we refer to [18]).

PROBABILISTIC CBPV 17

3.2.9. Fix-points in Pcoh!. For any object Y of Pcoh, a morphism t ∈ Pcoh!(Y, Y) defines
a Scott-continuous function f = t̂ : P(Y) → P(Y) which has a least fix-point supn∈N f

n(0).
Let X be an object of Pcoh and set Y = !(!X ⊸ X) ⊸ X. Then we have a morphism
t = cur s ∈ Pcoh!(Y, Y) where s ∈ Pcoh(!Y ⊗ !(!X ⊸ X),X) is defined as the following
composition of morphisms in Pcoh:

!Y ⊗ !(!X ⊸ X) !Y ⊗ !(!X ⊸ X)⊗ !(!X ⊸ X)

!X ⊗ (!X ⊸ X) X

!Y ⊗ c!X⊸X

(ev (derY ⊗ !(!X ⊸ X)))! ⊗ der(!X⊸X)

ev σ

Then t̂ is a Scott continuous function PY → PY whose least fix-point is fix, considered as

a morphism fix ∈ Pcoh!(!X ⊸ X,X), satisfies fîx(u) = sup∞n=0 û
n(0).

3.2.10. The partially ordered class of probabilistic coherence spaces. We define the category
Pcoh⊆. This category is actually a partially ordered class whose objects are those of Pcoh.
The order relation, denoted as ⊆, is defined as follows: X ⊆ Y if |X| ⊆ |Y | and the
matrices η+X,Y and η−X,Y defined, for a ∈ |X| and b ∈ |Y |, by (η+X,Y)a,b = (η−X,Y)b,a = δa,b
satisfy η+X,Y ∈ Pcoh(X,Y) and η−X,Y ∈ Pcoh(Y,X). In other words: given u ∈ PX, the

element η+X,Y u of (R+)|Y | obtained by extending u with 0’s outside |X| belongs to PY . And

conversely, given v ∈ PY , the element η−X,Y v of (R+)|X| obtained by restricting v to |X|
belongs to PX. Considering Pcoh⊆ as a category, ηX,Y is a notation for the unique element
of Pcoh⊆(X,Y) when X ⊆ Y , in accordance with the notations of Paragraph 3.1.3.

Lemma 11. If X ⊆ Y then X⊥ ⊆ Y ⊥ , η+
X⊥ ,Y ⊥ = (η−X,Y)

⊥ and η−
X⊥ ,Y ⊥ = (η+X,Y)

⊥.

The proof is a straightforward verification.
We contend that Pcoh⊆ is directed co-complete. Let (Xγ)γ∈Γ be a countable directed

family in Pcoh⊆ (so Γ is a countable directed poset and γ ≤ γ′ ⇒ Xγ ⊆ Xγ′), we have to
check that this family has a least upper bound X. We set |X| =

⋃
γ∈Γ |Xγ | and PX = {w ∈

(R+)|X| | ∀γ ∈ Γ η−X,Y w ∈ PXγ}. This defines an object of Pcoh which satisfies PX =

{η+Xγ ,X
u | γ ∈ Γ and u ∈ PXγ}

⊥⊥ and is therefore the lub of the family (Xγ)γ∈Γ in Pcoh⊆.

This object X is denoted
⋃
γ∈ΓXγ . One checks easily that (

⋃
γ∈ΓXγ)

⊥ =
⋃
γ∈ΓX

⊥
γ .

Then the functor E : Pcoh⊆ → Pcoh defined by E(X) = X and E(ηX,Y) = η+X,Y
is continuous: given a directed family (Xγ)γ∈Γ whose lub is X and given a collection of
morphisms tγ ∈ Pcoh(Xγ , Y) such that tγ′ η

+
Xγ ,Xγ′

= tγ for any γ, γ′ ∈ Γ such that γ ≤ γ′,

there is exactly one morphism t ∈ Pcoh(X,Y) such that t η+Xγ ,X
= tγ for each γ ∈ Γ. Given

a ∈ |X| and b ∈ |Y |, ta,b = (tγ)a,b for any γ such that a ∈ |Xγ | (our hypothesis on the tγ ’s
means that (tγ)a,b does not depend on the choice of γ).

All the operations of Linear Logic define monotone continuous functionals on Pcoh⊆

which moreover commute with the functor F. This means for instance that if X ⊆ Y then
!X ⊆ !Y , η+!X,!Y = !(η+X,Y), η

−
!X,!Y = !(η−X,Y) and !(

⋃
γ∈ΓXγ) =

⋃
γ∈Γ !Xγ and similarly for ⊗

and ⊕. As a consequence, and as a consequence of Lemma 11, if Xi ⊆ Yi for i = 1, 2 then
X1 ⊸ X2 ⊆ Y1 ⊸ Y2, η

+
X1⊸X2,Y1⊸Y2

= η−X1,Y1
⊸ η+X1,Y1

and η−X1⊸X2,Y1⊸Y2
= η+X1,Y1

⊸

η−X1,Y1
and ⊸ commutes with directed colimits in Pcoh⊆.

18 T. EHRHARD AND C. TASSON

This notion of inclusion on probabilistic coherence spaces extends to coalgebras as
outlined in Section 3.1.3 (again, we refer to [4] for more details). We describe briefly this
notion of inclusion in the present concrete setting.

Let P and Q be object of Pcoh!, we have P ⊆ Q in Pcoh!
⊆ if P ⊆ Q and hQ η

+
P,Q =

!(η+P ,Q) hP . The lub of a directed family (Pγ)γ∈Γ of coalgebras (for this notion of substruc-

ture) is the coalgebra P =
⋃
γ∈Γ Pγ defined by P =

⋃
γ∈Γ Pγ and hP is characterized by the

equation hP η
+
Pγ ,P

= !η+Pγ ,P
hPγ which holds for each γ ∈ Γ.

As outlined in Section 3.1.4, this allows to interpret any type σ as an object [σ] of
Pcoh and any positive type ϕ as an object [ϕ]! such that [ϕ]! = [ϕ], in such a way that the

coalgebras [Fix ζ · ϕ]! and [ϕ [Fix ζ · ϕ/ϕ]]! are exactly the same. We use hϕ for h[ϕ]!.

3.2.11. Dense coalgebras. Let P be an object of Pcoh!, so that P = (P ,hP) where P is
a probabilistic coherence space and hP ∈ Pcoh(P , !P) satisfies digP hP = !hP hP . Given

coalgebras P and Q, a morphism t ∈ Pcoh(P ,Q) is coalgebraic (that is t ∈ Pcoh!(P,Q)) if
hQ t = !t hP . In particular, we say that u ∈ P(P) is coalgebraic if, considered as a morphism

from 1 to P , u belongs to Pcoh!(1, P). This means that u! = hP u.

Definition 12. Given an object P of Pcoh!, we use P!(P) for the set of coalgebraic elements
of P(P).

The following lemma is useful in the sequel and holds in any model of Linear Logic.

Lemma 13. Let X be a probabilistic coherence space, one has P!(!X) = {u! | u ∈ PX}. Let

P1 and P2 be objects of Pcoh!.
P1⊗P2 is the cartesian product of P1 and P2 in Pcoh!. The function P!(P1)×P!(P2) →

P!(P1 ⊗ P2) which maps (u, v) to u ⊗ v is a bijection. The projections pr⊗i ∈ Pcoh!(P1 ⊗
P2, Pi) are characterized by pr⊗i (u1 ⊗ u2) = ui.

The function {1}×P!(P1)∪{2}×P!(P2) → P!(P1 ⊕ P2) which maps (i, u) to ini(u) is a
bijection. This injection has a left inverse pri ∈ Pcoh(P1 ⊕ P2, Pi) defined by (pri)(j,a),b =
δi,jδa,b, which is not a coalgebra morphism in general.

Proof. Let v ∈ P!(!X), we have v! = h!X v = digX v hence (derX v)! = !derX v
! =

!derX digX v = v. The other properties result from the fact that the Eilenberg-Moore
category Pcoh! is cartesian and co-cartesian with ⊗ and ⊕ as product and co-product,
see [18] for more details.

Because of these properties we write sometimes (u1, u2) instead of u1⊗u2 when ui ∈ P!Pi
for i = 1, 2.

Definition 14. An object P of Pcoh! is dense if, for any object Y of Pcoh and any two
morphisms t, t′ ∈ Pcoh(P , Y), if t u = t′ u for all u ∈ P!(P), then t = t′.

Theorem 15. For any probabilistic coherence space X, !X is a dense coalgebra. If P1 and
P2 are dense coalgebras then P1⊗P2 and P1⊕P2 are dense. The colimit of a directed family
of dense coalgebras is dense.

Proof. Let X be an object of Pcoh, one has P!(!X) = {u! | u ∈ PX} by Lemma 13. It
follows that !X is a dense coalgebra by Theorem 7. Assume that P1 and P2 are dense
coalgebras. Let t, t′ ∈ Pcoh(P1⊗P2, Y) be such that t w = t′w for all w ∈ P!(P1 ⊗ P2). We

PROBABILISTIC CBPV 19

have cur (t), cur (t′) ∈ Pcoh(P1, P 2 ⊸ Y) so, using the density of P1, it suffices to prove

that cur (t)u1 = cur (t′) u1 for each u1 ∈ P!(P1). So let u1 ∈ P!(P1) and let s = cur (t) u1
and s′ = cur (t′)u1. Let u2 ∈ P!(P2), we have s u2 = t (u1 ⊗ u2) = t′ (u1 ⊗ u2) = s′ u2 since
u1⊗u2 ∈ P!(P1 ⊗ P2) and therefore s = s′ since P2 is dense. Let now t, t′ ∈ Pcoh(P1⊕P2, Y)

be such that t w = t′ w for all w ∈ P!(P1 ⊕ P2). To prove that t = t′, it suffices to prove
that t ini = t′ ini for i = 1, 2. Since Pi is dense, it suffices to prove that t ini u = t′ ini u for
each u ∈ P!(Pi) which follows from the fact that inI u ∈ P!Pi. Last let (Pγ)γ∈Γ be a directed

family of dense coalgebras (in Pcoh!
⊆) and let P =

⋃
γ∈Γ Pγ , and let t, t′ ∈ Pcoh!(P , Y) be

such that t w = t′w for all w ∈ P!(P). It suffices to prove that, for each γ ∈ Γ, one has
t η+Pγ ,P

= t′ η+Pγ ,P
and this results from the fact that Pγ is dense and η+Pγ ,P

is a coalgebra

morphisms (and therefore maps P!(Pγ) to P!(P)).

The sub-category Pcoh! of dense coalgebras is cartesian and co-cartesian and is well-
pointed by Theorem 15. We use Pcoh!

den for this sub-category.

3.2.12. Interpreting types and terms in Pcoh. Given a type σ with free type variables

contained in the repetition-free list
#»

ζ , and given a sequence
#»

P of length n of objects of
Pcoh!, we define [σ] #»

ζ (
#»

P) as an object of Pcoh and when ϕ is a positive type (whose free

variables are contained in
#»

ζ) we define [ϕ]!#»
ζ
(

#»

P) as an object of Pcoh!. These operations

are continuous and their definition follows the general pattern described in Section 3.1.4.

Theorem 16. For any closed positive type ϕ, the coalgebra [ϕ]! is dense.

This is an immediate consequence of Theorem 15.
Then o = 1 ⊕ 1 satisfies |[o]| = {(1, ∗), (2, ∗)} and u ∈ (R+)|[o]| satisfies u ∈ P[o] iff

u(1,∗) + u(2,∗) ≤ 1. The coalgebraic structure of this object is given by

(ho)(i,∗),[(j1,∗),...,(jk,∗)] =

{
1 if j = j1 = · · · = jk

0 otherwise.

The object N = [ι] satisfies N = 1 ⊕ N so that |N| = {(1, ∗), (2, (1, ∗)), (2, (2, (1, ∗))), . . . }
and we use n for the element of |N| which has n occurrences of 2. Given u ∈ (R+)|N|, we use

l(u) for the element of (R+)|N| defined by l(u)n = un+1. By definition of N, we have u ∈ PN

iff u0 + ‖l(u)‖N ≤ 1, and then ‖u‖N = u0 + ‖l(u)‖N. It follows that u ∈ PN iff
∑∞

n=0 un ≤ 1
and of course ‖u‖N =

∑∞
n=0 un. Then the coalgebraic structure hι is defined exactly as ho

above. In the sequel, we identify |N| with N.
Given a typing context P = (x1 : ϕ1, . . . , xk : ϕk), a type σ and a term M such that

P ⊢ M : σ, M is interpreted as a morphism [M]P ∈ Pcoh([P], [σ]). For all constructs of
the language but probabilistic choice, this interpretation uses the generic structures of the
model described in Section 3.1, the description of this interpretation can be found in [4].
We set [coin(p)] = pe(1,∗) + (1− p)e(2,∗).

If x1 : ϕ1, . . . , xk : ϕk ⊢ M : σ, the morphism [M]P is completely characterized by its
values on (u1, . . . , uk) ∈ P!([P]!). We describe now the interpretation of terms using this
observation.

• [()] = 1 ∈ P1 = [0, 1].

• [xi]
P (u1, . . . , uk) = ui.

•
[
N !
]P

(u1, . . . , uk) = ([N]P (u1, . . . , uk))
!.

20 T. EHRHARD AND C. TASSON

• [(M1,M2)]
P (u1, . . . , uk) = [M1]

P (u1, . . . , uk)⊗ [M2]
P (u1, . . . , uk).

• [iniN]P (u1, . . . , uk) = ini([N]P (u1, . . . , uk)).

• [der(N)]P (u1, . . . , uk) = der[σ]([N]P (u1, . . . , uk)), assuming that P ⊢ N : !σ.

• If P ⊢ N : ϕ ⊸ σ and P ⊢ R : ϕ then [N]P (u1, . . . , uk) ∈ P([ϕ] ⊸ [σ]), and

[R]P (u1, . . . , uk) ∈ P([ϕ]) and using the application of a matrix to a vector we have

[〈N〉R]P (u1, . . . , uk) = [N]P (u1, . . . , uk) [R]
P (u1, . . . , uk).

• If P, x : ϕ ⊢ N : σ then [λxϕN]P (u1, . . . , uk) ∈ P([ϕ] ⊸ [σ]) is completely de-

scribed by the fact that, for all u ∈ P!([ϕ]!), one has [λxϕN]P (u1, . . . , uk)u =

[N]P,x:ϕ (u1, . . . , uk, u). This is a complete characterization of this interpretation by
Theorem 16.

• If P ⊢ N : ϕ1 ⊕ ϕ2 and P, yi : ϕi ⊢ Ri : σ for i = 1, 2, then
[case(N, y1 · R1, y2 ·R2)]

P (u1, . . . , uk) = [R1]P,y1:ϕ1
(u1, . . . , uk,pr1([N]P (u1, . . . , uk)))+

[R2]P,y2:ϕ2
(u1, . . . , uk,pr2([N]P (u1, . . . , uk))) where pri ∈ Pcoh(P1 ⊕ P2, Pi) is the

ith “projection” introduced in 3.2.11, left inverse for ini.

• If P, x : !σ ⊢ N : σ then [N]P,x:!σ ∈ Pcoh([P]⊗![σ], [σ]) and
[
fixx!σN

]P
(u1, . . . , uk) =

sup∞n=0 f
n(0) where f : P[σ] → P[σ] is the Scott-continuous function given by

f(u) = [N]P,x:!σ (u1, . . . , uk, u
!).

• If P ⊢ N : ψ [Fix ζ · ψ/ζ] then [fold(N)]P = [N]P which makes sense since [ψ [Fix ζ · ψ/ζ]] =
[Fix ζ · ψ].

• If P ⊢ N : Fix ζ · ψ then [unfold(N)]P = [N]P .

Theorem 17 (Soundness). If M satisfies P ⊢M : σ then

[M]P =
∑

P⊢M ′:σ

RedM,M ′

[
M ′
]
P

The proof is a straightforward verification.

3.3. Examples of term interpretations. We give the interpretation of terms that we
gave as examples in Subsection 2.3.

• [Ωσ] =
[
fixx!σ der(x)

]
= 0

• [t] = e(1,∗) and [f] = e(2,∗)
• [n] = n for n ∈ N

• [suc(M)]Pn+1 (u1, . . . , uk) = [M]n (u1, . . . , uk)

• [if(M,N1, (x)N2)]
P (u1, . . . , uk) = [M]P0 (u1, . . . , uk) [N1]

P (u1, . . . , uk)

+
∑∞

n=0 [M]Pn+1 (u1, . . . , uk) [N2]
P (u1, . . . , uk)(n)

• [dicep(M1,M2)]
P (u1, . . . , uk) = p [M1]

P (u1, . . . , uk) + (1− p) [M2]
P (u1, . . . , uk)

• [ran(#»p)] =
∑n

i=1 pi
• [〈probℓ〉M]P (u1, . . . , uk) = [M]Pℓ (u1, . . . , uk)e∗
• [M1 ·N]P (u1, . . . , uk) = [M1]

P (u1, . . . , uk) [N]P (u1, . . . , uk)

• [M1 ∧ · · · ∧Mℓ]
P (u1, . . . , uk) =

∏ℓ
i=1 [Mi]

P (u1, . . . , uk)

•
[∑k

i=1N(i) ·Mi

]P
(u1, . . . , uk) =

∑k
i=1 [N]i · [Mi]

P (u1, . . . , uk)

PROBABILISTIC CBPV 21

• ∀u ∈ P!([ι]!), [ext (l, r)] (u) =
∑r

i=l uii and

[wini(
#»n)] (u) =

n1+···+ni∑

ℓ=n1+···+ni−1+1

uℓℓ

3.4. Adequacy. Our goal is to prove an Adequacy Theorem stating that, for any closed
termM such that ⊢M : 1, the probability thatM reduces to () is larger than [M] ∈ P[1] ≃
[0, 1]. In spite of its very simple statement, the proof of this property is rather long mainly
because we have to deal with the recursive type definitions allowed by our syntax. As usual,
the proof is based on the definition of a logical relations between terms and elements of the
model (more precisely, given any type σ, we have to define a relation between closed terms
of types σ and elements of P[σ]; let us call such a relation a σ-relation).

Since we have no positivity restrictions on the occurrence of type variables wrt. which
recursive types are defined, we use a very powerful technique introduced in [19] for defining
this logical relation. Indeed a type variable ζ can have positive and negative occurrences
in a positive type ϕ, consider for instance the case ϕ = !(ζ ⊸ ζ). To define the logical
relation associated with Fix ζ · ϕ, we have to find a fix-point for the operation which maps
a (Fix ζ · ϕ)-relation R to the relation Φ(R) = !(R ⊸ R) (which can be defined using
R as a “logical relation” in a fairly standard way). Relations are naturally ordered by
inclusion, and this strongly suggests to define the above fix-point using this order relation
by e.g. Tarski’s Fix-point Theorem. The problem however is that Φ is neither a monotone
nor an anti-monotone operation on relations, due to the fact that ζ has a positive and a
negative occurrence in ϕ.

It is here that Pitts’s trick comes in: we replace the relations R with pairs of relations
R = (R−,R+) ordered as follows: R ⊑ S if R+ ⊆ S+ and S− ⊑ R−. Then we define
accordingly Φ(R) as a pair of relations by Φ(R)− = !(R+

⊸ R−) and Φ(R)+ = !(R−
⊸

R+). Now the operation Φ is monotone wrt. the ⊑ relation and it becomes possible to apply
Tarski’s Fix-point Theorem to Φ and get a pair of relations R such that R = Φ(R). The
next step consists in proving that R− = R+. This is obtained by means of an analysis of
the definition of the interpretation of fixpoints of types as colimits in the category Pcoh⊆.
One is finally in position of proving a fairly standard “Logical Relation Lemma” from which
adequacy follows straightforwardly.

In this short description of our adequacy proof, many technicalities have obviously
been hidden, the most important one being that values are handled in a special way so
that we actually consider two kinds of pairs of relations. Also, a kind of “biorthogonality
closure” plays an essential role in the handling of positive types, no surprise for the readers
acquainted with Linear Logic, see for instance the proof of normalization in [10].

3.4.1. Pairs of relations and basic operations. Given a closed type σ, we define Rel(σ) as
the set of all pairs of relations R = (R−,R+) such that, for ε ∈ {+,−}, each element of Rε

is a pair (M,u) where ⊢ M : σ and u ∈ P[σ]. For a closed positive type ϕ, we also define
Relv(ϕ) as the set of all pairs of relations V = (V−,V+) such that, for ε ∈ {+,−}, each
element of Vε is a pair (V, v) where ⊢ V : ϕ is a value and v ∈ P![ϕ].

Given R,S ∈ Rel(σ), we write R ⊑ S if R+ ⊆ S+ and S− ⊑ R−. We define similarly
V ⊑ W for V,W ∈ Relv(ϕ). Then Rel(σ) is a complete meet-lattice, the infimum of a

22 T. EHRHARD AND C. TASSON

• Let R ∈ Rel(σ), we define !R ∈ Relv(!σ) by: !Rε = {(M !, u!) | (M,u) ∈ Rε} for
ε ∈ {−,+}.

• Let Vi ∈ Relv(ϕi) for i = 1, 2. We define (V1⊗V2)
ε = {((V1, V2) , v1⊗v2)} | (Vi, vi) ∈

Vεi } for ε ∈ {−,+}, so that V1 ⊗ V2 ∈ Relv(ϕ1 ⊗ ϕ2).
• Let Vi ∈ Relv(ϕi) for i = 1, 2. We define (V1 ⊕ V2)

ε = {(iniV, ini(v))} | i ∈
{1, 2} and (V, v) ∈ Vεi } for ε ∈ {−,+}, so that V1 ⊕ V2 ∈ Relv(ϕ1 ⊕ ϕ2).

• Let V ∈ Relv(ϕ) and R ∈ Rel(σ). We define V ⊸ R ∈ Rel(ϕ⊸ σ) as follows: (V ⊸

R)ε = {(M,u) | ⊢ M : ϕ ⊸ σ, u ∈ P[ϕ⊸ σ] and ∀(V, v) ∈ V−ε (〈M〉V, u(v)) ∈
Rε}.

• Last, given V ∈ Relv(ϕ), we define V ∈ Rel(ϕ) as follows: V
ε
is the set of all

(M,u) such that ⊢ M : ϕ, u ∈ P[ϕ] and, for all (T, t) ∈ (V ⊸ R(1))−ε, one has
(〈T 〉M, t(u)) ∈ R(1).

Figure 3: Logical operations for pairs of relations

collection (Ri)i∈I being
d
i∈I Ri = (

⋃
i∈I R

−
i ,
⋂
i∈I R

+
i). The same holds of course for

Relv(ϕ) and we use the same notations.
We define R(1) as the set of all pairs (M,p) such that ⊢M : 1, p ∈ [0, 1] and Red∞M,() ≥

p.
We define in Figure 3 logical operations on these pairs of relations. The last one is the

aforementioned biorthogonality closure operation on pairs of relations.
Observe that all these operations are monotone wrt. ⊑. For instance V ⊑ W ∧ R ⊑

S ⇒ (V ⊸ R) ⊑ (W ⊸ S), and V ⊑ W ⇒ V ⊑ W.

3.4.2. Fixpoints of pairs of relations. To deal with fix-point types Fix ζ · ϕ, we need to
consider types parameterized by relations as follows.

Let σ be a type and let
#»

ζ = (ζ1, . . . , ζn) be a list of type variables without repetitions
and which contains all free variables of σ. For all list #»ϕ = (ϕ1, . . . , ϕn) of closed positive
types, we define

R(σ) #»

ζ :

n∏

i=1

Relv(ϕi) → Rel(σ
[

#»ϕ/
#»

ζ
]
) .

Let also ϕ be a positive type whose free variables are contained in
#»

ζ , we define

V(ϕ) #»

ζ :
n∏

i=1

Relv(ϕi) → Relv(ϕ
[

#»ϕ/
#»

ζ
]
) .

The definition is by simultaneous induction on σ and ϕ. All cases but one consist in applying
straightforwardly the above defined logical operations on pairs of relations, for instance

R(ϕ⊸ τ) #»

ζ (
#»

V) = V(ϕ) #»

ζ (
#»

V) ⊸ R(σ) #»

ζ (
#»

V) and R(ϕ) #»

ζ (
#»

V) = V(ϕ) #»

ζ (
#»

V) .

We are left with the case of recursive definitions of types, so assume that ϕ = Fix ζ · ψ. Let
#»ϕ = (ϕ1, . . . , ϕn) be a list of closed positive types and let

#»

V ∈
∏n
i=1 Rel

v(ϕi), we set

V(ϕ) #»

ζ (
#»

V) =
l

{V ∈ Relv(ϕ
[

#»ϕ/
#»

ζ
]
) | fold(V(ψ) #»

ζ ,ζ(
#»

V ,V)) ⊑ V} (3.1)

PROBABILISTIC CBPV 23

where we use the following notation: given W ∈ Relv(ψ
[

#»ϕ/
#»

ζ , ϕ
[

#»ϕ/
#»

ζ
]
/ζ
]
), fold(W) ∈

Relv(ϕ
[

#»ϕ/
#»

ζ
]
) is given by fold(W)ε = {(fold(W), v) | (W,v) ∈ Wε} for ε ∈ {+,−}.

We recall the statement of Tarski’s fix-point theorem.

Theorem 18. Let S and T be complete meet semi-lattices and let f : S × T → T be a
monotone function. For x ∈ S, let g(x) be the meet of the set {y ∈ T | f(x, y) ≤ y}. Then
the function g is monotone and satisfies f(x, g(x)) = g(x) for each x ∈ S.

Applying this theorem we obtain, by induction on types, the following property.

Lemma 19. For any type σ and any positive type ϕ, the maps R(σ) #»

ζ and V(ϕ) #»

ζ are

monotone wrt. the ⊑ order relation. If ψ is a positive type,
#»

ζ = (ζ1, . . . , ζn, ζ) is a repetition-

free list of type variables containing all the free variables of ψ and ϕ = Fix ζ · ψ and
#»

V =
(V1, . . . ,Vn) is a list of pairs of relations such that Vi ∈ Relv(ϕi) for each i, then V =

R(ϕ) #»

ζ (
#»

V) satisfies V = fold(R(ψ) #»

ζ ,ζ)(
#»

V ,V).

3.4.3. Some useful closeness lemmas. We state and prove a series of lemmas expressing that
our pairs of relations are closed under various syntactic and semantic operations.

Lemma 20. Let M and M ′ be terms such that ⊢ M : 1 and ⊢ M ′ : 1. If M →w M
′ then

Red∞M,() = Red∞M ′,().

This is straightforward since any reduction path from M to () must start with the step
M →w M

′, and this is a probability 1 step.

Lemma 21. Let ϕ be a closed positive type and let σ be a closed type. Let (M,u) ∈ R(ϕ)−ε

and (R, r) ∈ (ϕ⊸ σ)ε. Then (〈R〉M, r(u)) ∈ R(σ)ε.

Proof. We can write σ = ϕ1 ⊸ · · · ⊸ ϕn ⊸ ψ for some n and ϕ1, . . . , ϕn, ψ positive and
closed. Given (Vi, vi) ∈ V(ϕi)

−ε, we have to prove that

(〈R〉M V1 · · ·Vn, r(u)(v1) · · · (vn)) ∈ (V(ψ))ε

so let (T, t) ∈ (V(ψ) ⊸ R(1))−ε, we have to prove that

(〈T 〉(〈R〉M V1 · · ·Vn), t(r(u)(v1) · · · (vn))) ∈ R(1) .

Let S = λxϕ 〈T 〉(〈R〉xV1 · · · Vn) so that ⊢ S : ϕ⊸ 1. Similarly let s ∈ P[ϕ⊸ 1] be defined
by s(u′) = t(r(u′)(v1) · · · (vn)). For each (V, v) ∈ V(ϕ)ε we have (〈S〉V, s(v)) ∈ R(1) by our
assumption about (T, t) and by Lemma 20. It follows that (S, s) ∈ R(ϕ ⊸ 1)−ε and since
we have (M,u) ∈ R(ϕ)−ε, it follows that (〈S〉M,s(u)) ∈ R(1).

We finish the proof by showing that

Red∞〈R〉M V1···Vn,()
= Red∞〈S〉M,()

For this it suffices to observe (by inspection of the reduction rules) that each reduction path
π from 〈T 〉(〈R〉M V1 · · · Vn) to () is of shape π = λρ where

• λ is a reduction path

〈T 〉(〈R〉M1 V1 · · ·Vn)
p1
→ 〈T 〉(〈R〉M2 V1 · · ·Vn)

p2
→ · · ·

pk→ 〈T 〉(〈R〉Mk+1 V1 · · ·Vn)

where M1 =M , Mk+1 is a value V and M =M1
p1
→M2

p2
→ · · ·

pk→Mk+1 = V
• and ρ is a reduction path from 〈T 〉(〈R〉V V1 · · ·Vn) to ().

24 T. EHRHARD AND C. TASSON

Then we have 〈S〉M = 〈S〉M1
p1
→ 〈S〉M2

p2
→ · · ·

pk→ 〈S〉V
1
→ 〈T 〉(〈R〉V V1 · · ·Vn), the last step

resulting from the definition of S. In that way, we have defined a probability preserving
bijection between the reduction paths from 〈T 〉(〈R〉M1 V1 · · ·Vn) to () and the reduction
paths from 〈S〉M to (), proving our contention.

Lemma 22. Let ϕi be closed positive types and (Mi, ui) ∈ R(ϕi)
ε for i = 1, 2. Then

((M1,M2) , u1 ⊗ u2) ∈ R(ϕ1 ⊗ ϕ2)
ε.

Proof. Let (T, t) ∈ (V(ϕ1 ⊗ ϕ2) ⊸ R(1))−ε, we must prove that (〈T 〉 (M1,M2) , t(u1 ⊗
u2)) ∈ R(1). Let S = λxϕ1

1 λxϕ2
2 〈T 〉 (x1, x2) and s ∈ P[ϕ1 ⊸ (ϕ2 ⊸ 1)] be defined by

s(u1)(u2) = t(u1⊗u2). It is clear that (S, s) ∈ (V(ϕ1) ⊸ (V(ϕ2) ⊸ R(1)))−ε. By Lemma 21
we get (〈S〉M1, s(u1)) ∈ (V(ϕ2) ⊸ R(1))−ε and then (〈S〉M1M2, t(u1 ⊗ u2) ∈ R(1).
Observing that there is a probability preserving bijection between the reduction paths
from 〈S〉M1M2 to () and the reduction paths from 〈T 〉 (M1,M2) to (), we conclude that
(〈T 〉 (M1,M2) , t(u1 ⊗ u2)) ∈ R(1) as contended (in both terms one has to reduce first M1

and then M2 to a value).

Lemma 23. Let ϕ1 and ϕ2 be closed positive types. If (M,u) ∈ R(ϕ1 ⊗ ϕ2)
ε then

(priM,pri(u)) ∈ R(ϕi)
ε.

Proof. Let (T, t) ∈ (V(ϕi) ⊸ R(1))−ε, we have to prove that (〈T 〉priM, t(pri(u))) ∈ R(1).
Let S = λxϕ1⊗ϕ2 〈T 〉prix and s ∈ P[ϕ1 ⊗ ϕ2 ⊸ 1] be defined by s(u0) = t(pri(u0)) for all
u0 ∈ P[ϕ1 ⊗ ϕ2]. Let (W,w) ∈ V(ϕ1⊗ϕ2)

ε, which means thatW = (V1, V2) and w = v1⊗v2
with (Vj , vj) ∈ V(ϕj)

ε for j = 1, 2. We have 〈S〉W →w 〈T 〉Vi and s(w) = t(vi) and we know
that (〈T 〉Vi, t(vi)) ∈ R(1) from which it follows by Lemma 20 that (〈S〉W, s(w)) ∈ R(1).
So we have proven that (S, s) ∈ (V(ϕ1 ⊗ ϕ2) ⊸ R(1))−ε and hence (〈S〉M,s(u)) ∈ R(1).
We have s(u) = t(pri(u)). Moreover we have a probability preserving bijection between the
reduction paths from 〈T 〉priM to () and the reduction paths from 〈S〉M to (), and hence
we have (〈T 〉priM, t(pri(u))) ∈ R(1) as contended.

Indeed, any reduction path π from 〈T 〉priM to () has shape π = λρ where λ is a

reduction path 〈T 〉priM = 〈T 〉priM1
p1
→ 〈T 〉priM2

p2
→ · · ·

pk→ 〈T 〉priW
1
→ 〈T 〉Vi (with W =

(V1, V2)) and ρ is a reduction path from 〈T 〉Vi to (). The first steps λ of this reduction are

determined by the reduction path M = M1
p1
→ · · ·

pk→ W from M to the value W . This

reduction path determines uniquely the reduction path 〈S〉M = 〈S〉M1
p1
→ · · ·

pk→ 〈S〉W
1
→

〈T 〉priW
1
→ 〈T 〉Vi followed by the reduction ρ from 〈T 〉Vi to () by ρ.

Lemma 24. Let ϕ1 and ϕ2 be closed positive types and let (M,u) ∈ R(ϕi)
ε for i = 1 or

i = 2. Then (iniM, ini(u)) ∈ R(ϕ1 ⊕ ϕ2)
ε.

Proof. Let (T, t) ∈ (V(ϕ1 ⊕ ϕ2) ⊸ R(1))−ε, we must prove that (〈T 〉iniM, t(ini(u))) ∈
R(1). Let S = λxϕi 〈t〉ini(x) and let s ∈ P[ϕi ⊸ 1]. It is clear that (S, s) ∈ (V(ϕi) ⊸

R(1))−ε and it follows that (〈S〉M,s(u)) ∈ R(1) which implies (〈T 〉iniM, t(ini(u))) ∈ R(1)
by the usual bijective and probability preserving bijection on reductions.

Lemma 25. Let ϕ1 and ϕ2 be closed positive type and σ be a closed type. Let (M,u) ∈
R(ϕ1 ⊕ ϕ2)

ε. For i = 1, 2, let Ri be a term such that yi : ϕi ⊢ Ri : σ and assume that
(λxϕi

i Ri, ri) ∈ R(ϕi ⊸ σ)−ε. Then (case(M,y1 ·R1, y2 · R2), case(r1, r2)(u)) ∈ R(σ)−ε.

Proof. We can write σ = ψ1 ⊸ · · · ⊸ ψk ⊸ ψ where ψ and the ψj ’s are closed and positive
types. Given (Wj , wj) ∈ V(ψi)

ε, we have to prove that

(〈case(M,y1 ·R1, y2 · R2)〉
»

W, case(r1, r2)(u)(
#»w)) ∈ V(ψ)−ε (3.2)

PROBABILISTIC CBPV 25

so let (T, t) ∈ (V(ψ) ⊸ R(1))ε, our goal is to prove that

(〈T 〉〈case(M,y1 ·R1, y2 · R2)〉
»

W, t(case(r1, r2)(u)(
#»w))) ∈ R(1) . (3.3)

Let S = λxϕ1⊕ϕ2 〈T 〉〈case(x, y1·R1, y2·R2)〉
»

W and s ∈ P[ϕ1 ⊕ ϕ2 ⊸ 1] be defined by s(u0) =
t(case(r1, r2)(u0)(

#»w)) for each u0 ∈ P[ϕ1 ⊕ ϕ2]. Then we have (S, s) ∈ (V(ϕ1 ⊕ ϕ2) ⊸

R(1))ε. Let indeed i ∈ {1, 2} and let (V, v) ∈ V(ϕi)
−ε so that (iniV, ini(v)) ∈ V(ϕ1 ⊕ϕ2)

−ε.

We have 〈S〉iniV →w
∗ 〈T 〉〈Ri [V/yi]〉

»

W and s(ini(v)) = t(ri(v)(
#»w)) and, by our assumptions

and Lemma 20, (Ri [V/yi] , ri(v)) ∈ R(σ)−ε and hence (〈Ri [V/yi]〉
»

W, ri(v)(
#»w)) ∈ V(ψ)−ε.

By Lemma 20 it follows that (〈S〉iniV, s(ini(v))) ∈ R(1) and hence (S, s) ∈ (V(ϕ1 ⊕ ϕ2) ⊸
R(1))ε as contended.

Therefore (〈S〉M,s(u)) ∈ R(1). There is a bijective and probability preserving corre-
spondence between the reductions from 〈S〉M to () and the reductions from 〈T 〉〈case(M,x1 ·

〈R1〉x1, x2 · 〈R2〉x2)〉
»

W to (): as usual such reductions start with a reduction M = M1
p1
→

M2
p2
→ · · ·

pk→ Mk = iniV where i ∈ {1, 2} and V is a value of type ϕi and (after a few

→w-steps) continue with a reduction from 〈T 〉〈Ri〉V
»

W to (). Therefore (3.3) holds and
hence we have (3.2), this ends the proof of the lemma.

Lemma 26. Let σ be a closed type and let (M,u) ∈ R(!σ)ε. We have (der(M),der(u)) ∈
R(σ)ε.

Proof. We can write σ = ψ1 ⊸ · · · ⊸ ψk ⊸ ψ where ψ and the ψj ’s are closed and positive
types. Given (Wj , wj) ∈ V(ψi)

−ε, we have to prove that

(〈der(M)〉
»

W,der(u)(#»w)) ∈ V(ψ)ε (3.4)

so let (T, t) ∈ (V(ψ) ⊸ R(1))−ε, our goal is to prove that

(〈T 〉〈der(M)〉
»

W, t(der(u)(#»w))) ∈ R(1) . (3.5)

We set S = λx!σ 〈T 〉〈der(x)〉
»

W and we define s ∈ P[!σ ⊸ 1] by s(u0) = t(der(u0)(
#»w)) for all

u0 ∈ P[!σ], and we prove that (S, s) ∈ (V(!σ) ⊸ R(1))−ε as in the proof of Lemme 25 (for
instance). We finish the proof in the same way, showing (3.5) by establishing a bijective and
probability preserving correspondence between reductions. Our contention (3.4) follows.

Lemma 27. Let ϕ be a closed positive type of shape ϕ = Fix ζ · ψ. If (M,u) ∈ R(ϕ)ε then
(unfold(M), u) ∈ R(ψ [ϕ/ζ])ε.

Proof. Let (T, t) ∈ (V(ψ [ϕ/ζ]) ⊸ R(1))−ε, we must prove that (〈T 〉unfold(M), u) ∈
R(1). As usual one defines S = λxϕ 〈T 〉unfold(x) and one proves that (S, t) ∈ (V(ϕ) ⊸

R(1))−ε. This results from the fact that if (V, v) ∈ V(ϕ)ε then V = fold(W) with
(W,v) ∈ V(ψ [ϕ/ζ])ε, from Lemma 20 and from the fact that unfold(fold(W)) →w W (and of
course from our assumption on (T, t)). It follows that (〈S〉M, t(u)) ∈ R(1) from which we
deduce (〈T 〉unfold(M), u) ∈ R(1) by the usual reasoning involving a bijective probability
preserving correspondence on reductions.

Lemma 28. Let ϕ be a closed positive type of shape ϕ = Fix ζ · ψ. If (M,u) ∈ R(ψ [ϕ/ζ])ε

then (fold(M), u) ∈ R(ϕ)ε.

Proof. Let (T, t) ∈ (V(ϕ) ⊸ R(1))−ε, we must prove that (〈T 〉fold(M), u) ∈ R(1). As usual

one defines S = λxψ[ϕ/ζ] 〈T 〉fold(x) and one proves that (S, t) ∈ (V(ψ [ϕ/ζ]) ⊸ R(1))−ε.
This results easily from the fact that, if (V, v) ∈ V(ψ [ϕ/ζ])ε then (fold(V), v) ∈ V(ϕ)ε, from
Lemma 20 and from our assumption about (T, t). Therefore we have (〈S〉M, t(u)) ∈ R(1))
from which we deduce (〈T 〉fold(M), u) ∈ R(1) by the usual reasoning.

26 T. EHRHARD AND C. TASSON

Lemma 29. Let σ be a closed type and let M be a closed term of type σ. Then (M, 0) ∈
R(σ)ε and, if D ⊆ P[σ] is directed and satisfies ∀u ∈ D (M,u) ∈ R(σ)ε then (M, supD) ∈
R(σ)ε. Last, if (M,u) ∈ R(σ)ε and u′ ≤ u then (M,u′) ∈ R(σ)ε.

Proof. We can write σ = ϕ1 ⊸ · · · ⊸ ϕn ⊸ ψ for some n and ϕ1, . . . , ϕn, ψ positive and
closed. Let us prove the second statement. For i = 1, . . . , n, let (Vi, vi) ∈ V(ϕi)

−ε, we must

prove that (〈M〉V1 · · ·Vn, (supD)(v1) · · · (vn)) ∈ V(ψ)
ε
, knowing that

∀u ∈ D (〈M〉V1 · · ·Vn, u(v1) · · · (vn)) ∈ V(ψ)
ε
.

This results from the fact that, given t ∈ P[ψ ⊸ 1], the map u 7→ t(u(v1) · · · (vn))) is Scott
continuous from P[ϕ] to [0, 1]. The first statement of the lemma results from the fact that
this function maps 0 to 0. The last one results from the fact that this function is monotone.

3.4.4. Uniqueness of the relation. With any closed type σ we have associated a pair of
relations R(σ). We need now to prove that this pair satisfies R(σ)+ = R(σ)− so that we
have actually associated a unique relation with any type.

To this end we prove first that R(σ)+ ⊆ R(σ)−. Defining, for any pair of relations R,
the relation Rop as (R+,R−), this amounts to proving that R(σ) ⊑ R(σ)op. We use the
same notation for the elements of Relv(ϕ) for ϕ positive.

For the next lemma, we use the same notational conventions as above.

Lemma 30. Let
#»

V be a list of pairs of relations such that Vi ∈ Relv(ϕi) and Vi ⊑ Vi
op for

each i. Then R(σ) #»

ζ (
#»

V) ⊑ R(σ) #»

ζ (
#»

V)
op

and V(ϕ) #»

ζ (
#»

V) ⊑ V(ϕ) #»

ζ (
#»

V)
op
.

Proof. The proof is by induction on types. All cases result straightforwardly from the
monotony of the logical operations on pairs of relations, but the case of fixpoints of types.
So assume that ϕ = Fix ζ · ψ, let V = V(ϕ) #»

ζ (
#»

V) and let us prove that V ⊑ Vop. For this,

because of the definition of V as a glb (3.1), it suffices to show that

fold(V(ψ) #»

ζ ,ζ(
#»

V ,Vop)) ⊑ Vop .

By Lemma 19 and our assumption on the Vi’s we have

fold(V(ψ) #»

ζ ,ζ(
#»

V ,Vop)) ⊑ fold(V(ψ) #»

ζ ,ζ(
#»

V
op
,Vop)) .

By inductive hypothesis we have fold(V(ψ) #»

ζ ,ζ(
#»

V
op
,Vop)) ⊑ fold(V(ψ) #»

ζ ,ζ(
#»

V ,V))
op

= Vop

since V = fold(V(ψ) #»

ζ ,ζ(
#»

V ,V)) by Lemma 19.

We are left with proving the converse property, namely that R(σ)op ⊑ R(σ) for each
closed type σ. This requires a bit more work, and is based on a notion of “finite” approxi-
mation of elements of the model, that we define by syntactic means as follows.

PROBABILISTIC CBPV 27

3.4.5. Restriction operators. By lexicographic ordering on pairs7 (n, σ) where n ∈ N and σ
is a type, we define closed terms p(n, σ) and pv(n,ϕ) (when ϕ is positive) typed as follows:
⊢ p(n, σ) : !σ ⊸ σ and ⊢ pv(n,ϕ) : ϕ⊸ ϕ.

p(n,ϕ) = λx!ϕ 〈pv(n,ϕ)〉der(x)

p(n,ϕ⊸ σ) = λf !(ϕ⊸σ) λxϕ 〈p(n, σ)〉(〈der(f)〉〈pv(n,ϕ)〉x)!

pv(n,1) = λx1 x

pv(n, !σ) = λx!σ (〈p(n, σ)〉x)!

pv(n,ϕ1 ⊗ ϕ2) = λxϕ1⊗ϕ2 (〈pv(n,ϕ1)〉pr1x, 〈p
v(n,ϕ2)〉pr2x)

pv(n,ϕ1 ⊕ ϕ2) = λxϕ1⊕ϕ2 case(x, x1 · in1〈p
v(n,ϕ1)〉x1, x2 · in2〈p

v(n,ϕ2)〉x2)

pv(0,Fix ζ · ϕ) = λxFix ζ·ϕΩFix ζ·ϕ

pv(n+ 1,Fix ζ · ϕ) = λxFix ζ·ϕ fold(〈pv(n,ϕ [Fix ζ · ϕ/ζ])〉unfold(x))

We describe now the interpretation of these terms: we give an explicit description of the
matrices [p(n, σ)] and [pv(n,ϕ)] . To this end, we define two families of sets I(n, σ) ⊆ |[σ]|
and Iv(n,ϕ) ⊆ |[ϕ]| by induction on (n, σ) and (n,ϕ) (where n ∈ N, ϕ is a closed positive
type and σ is a closed type).

• Iv(n, !σ) = Mfin(I(n, σ))
• Iv(n,ϕ1 ⊗ ϕ2) = Iv(n,ϕ1)× Iv(n,ϕ2)
• Iv(n,ϕ1 ⊕ ϕ2) = {1} × Iv(n,ϕ1) ∪ {2} × Iv(n,ϕ2)
• Iv(0,Fix ζ · ψ) = ∅
• Iv(n+ 1,Fix ζ · ψ) = Iv(n,ϕ [Fix ζ · ψ/ζ])
• I(n,ϕ) = Iv(n,ϕ)
• I(n,ϕ⊸ σ) = Iv(n,ϕ)× I(n, σ).

Lemma 31. Let n ∈ N, ϕ be a closed positive type and σ be a closed type. One has

[p(n,ϕ)] (a,b) =

{
1 if a = b ∈ Iv(n,ϕ)

0 otherwise.
[p(n, σ)] (c,b) =

{
1 if c = [b] and b ∈ I(n, σ)

0 otherwise.

Proof. By Theorem 16, for a closed positive type ϕ and for u ∈ P![ϕ]!, it suffices to prove
that

[pv(n,ϕ)] (u)a =

{
ua if a ∈ Iv(n,ϕ)

0 otherwise

And for a closed type σ and for u ∈ P[σ], it suffices to prove

[p(n, σ)] (u!)a =

{
ua if a ∈ I(n, σ)

0 otherwise

Both statements are easily proved by induction.

7This definition as well as our reasoning below features some similarities with step-indexing that we would
like to understand better.

28 T. EHRHARD AND C. TASSON

We need now to prove that, given u ∈ P[σ], the sequence [p(n, σ)] (u!) is monotone and
has u as lub.

Lemma 32. For a closed type σ and a closed positive type ϕ, we have

∀n ∈ N I(n, σ) ⊆ I(n + 1, σ) and Iv(n,ϕ) ⊆ Iv(n+ 1, ϕ)
∞⋃

n=0

I(n, σ) = |[σ]| and
∞⋃

n=0

Iv(n,ϕ) = |[ϕ]|

Proof. The first statement is straightforward, by induction on (n, σ) and (n,ϕ). For the
second statement, we only have to prove the right-to-left inclusions. We define the height
h(a) of an element a of |[σ]| or |[ϕ]| as follows.

• h(∗) = 1
• h(a1, a2) = 1 + max (h(a1), h(a2)) (this definition is used when ϕ is a tensor and
when σ is a linear implication)

• h(i, a) = 1 + h(a)
• h([a1, . . . , ak]) = 1 + max (h(a1), . . . , h(ak))

Then by induction on h(a) one proves that

∀a ∈ |[σ]| ∃n ∈ N a ∈ I(n, σ)

and a similar statement for ϕ. We deal only with the statement relative to Iv(n,ϕ). The
closed positive type ϕ is of shape

ϕ = Fix ζ1 · · · ·Fix ζk · ψ

where ψ is not of shape Fix ζ · ρ. We introduce auxiliary closed types ϕ1, . . . , ϕk as follows:

ϕ1 = ϕ = Fix ζ1 · · · ·Fix ζk · ψ

ϕ2 = Fix ζ2 · · · ·Fix ζk · ψ [ϕ1/ζ1]

...

ϕk+1 = ψ [ϕ1/ζ1, ϕ2/ζ2, . . . , ϕk/ζk]

and all these types have the same interpretation in Pcoh!. The type ψ cannot be one of
the type variables ζi as otherwise we would have |[ϕ]| = ∅, contradicting our assumption
that a belongs to this set. Assume that ψ = !σ so that we must have a = [b1, . . . , bl] with
bi ∈ |[σ′]| (where σ′ = σ [ϕ1/ζ1, ϕ2/ζ2, . . . , ϕk/ζk]) for each i = 1, . . . , l. We have h(bi) < h(a)
for each i so that we can apply the inductive hypothesis: for each i there is ni such that
bi ∈ I(ni, σ

′). Using the monotonicity property (first statement of the lemma) and setting
n = max(n1, . . . , nl) we have bi ∈ I(n, σ′) and hence a ∈ Iv(n, !σ′). Therefore a ∈ Iv(n+k, !σ′)
(coming back to the definition of this set). The other cases are dealt with similarly.

Lemma 33. Let σ be a closed type and let ϕ be a closed positive type. If u ∈ P[σ] then the
sequence ([p(n, σ)] (!u))n∈N is monotone (in P[σ]) and has u as lub. If u ∈ P[ϕ] then the
sequence ([pv(n,ϕ)] (u))n∈N is monotone and has u as lub.

Proof. Immediate consequence of Lemmas 31 and 32.

PROBABILISTIC CBPV 29

3.4.6. Main Inclusion Lemma. Now we are in position of proving the key lemma in the
proof of the uniqueness of relations.

Lemma 34. Let σ be a closed type and let n ∈ N. If (M,u) ∈ R(σ)− then (M, [p(n, σ)] (u!)) ∈
R(σ)+. Let ϕ be a closed positive type and let n ∈ N. If (V, v) ∈ V(ϕ)− then (V, [pv(n,ϕ)](v)) ∈

(V(ϕ))
+
= R(ϕ)+.

Proof. By simultaneous lexicographic induction on (n, σ) and (n,ϕ). The only case where
“n decreases” in this induction is when ϕ = Fix ζ · ψ, we start with this case.

Assume that ϕ = Fix ζ · ψ and that (V, v) ∈ V(ϕ)−. If n = 0 we have [pv(n,ϕ)](v) = 0
and hence (V, [pv(n,ϕ)](v)) ∈ R(ϕ)+ by Lemma 29. Assume that the implication holds
for n and let us prove it for n + 1. Let (V, v) ∈ V(ϕ)−, that is V = fold(W) with
(W,v) ∈ V(ψ [ϕ/ζ])−. We have [pv(n+ 1,Fix ζ · ψ)](v) = [pv(n,ψ [ϕ/ζ])](v) by definition.
By inductive hypothesis we have

(W, [pv(n,ψ [ϕ/ζ])](v)) ∈ R(ψ [ϕ/ζ])+ (3.6)

and we must prove that (fold(W), [pv(n,ψ [ϕ/ζ])] (v)) ∈ R(ϕ)+. Let (T, t) ∈ (V(ϕ) ⊸ R(1))−,

we must prove that (〈T 〉fold(W), t([pv(n,ψ [ϕ/ζ])] (v))) ∈ R(1). Let S = λxψ[ϕ/ζ] 〈T 〉fold(x),
we have (S, t) ∈ (V(ψ [ϕ/ζ]) ⊸ R(1))− by Lemma 20 and therefore

(〈S〉W, t([pv(n,ψ [ϕ/ζ])](v))) ∈ R(1)

by (3.6) and Lemma 21 and this implies (〈T 〉fold(W), t([pv(n,ψ [ϕ/ζ])] (v))) ∈ R(1) by
Lemma 20.

Assume that ϕ = !σ and that (V, v) ∈ V(!σ)−, that is V = M ! and v = u! with
(M,u) ∈ R(σ)−. By inductive hypothesis we have (M, [p(n, σ)] (u!)) ∈ R(σ)+ and hence
(!M, ([p(n, σ)] (u!))!) ∈ V(!σ)+ and since ([p(n, σ)] (u!))! = [pv(n, !σ)] (u!) we get

(V, [pv(n, !σ)] (v)) ∈ V(!σ)+ ⊆ R(!σ)+

as expected.
Assume that ϕ = ϕ1 ⊗ ϕ2 and that (V, v) ∈ V(ϕ1 ⊗ ϕ2)

−, that is V = (V1, V2)
and v = v1 ⊗ v2 with (Vi, vi) ∈ V(ϕi)

− for i = 1, 2. By inductive hypothesis we have
(Vi, [p(n,ϕi)] (vi)) ∈ R(ϕi)

+. By Lemma 22 we get ((V1, V2) , [p(n,ϕ1)] (v1)⊗[p(n,ϕ2)] (v2)) ∈
R(ϕ1 ⊗ ϕ2)

+, that is ((V1, V2) , [p(n,ϕ1 ⊗ ϕ2)] (v1 ⊗ v2)) ∈ R(ϕ1 ⊗ ϕ2)
+.

Assume that ϕ = ϕ1 ⊕ ϕ2 and (V, v) ∈ V(ϕ1 ⊕ ϕ2)
−. This means that for some

i ∈ {1, 2}, one has V = iniW and v = ini(w) for (W,w) ∈ V(ϕi)
−. By inductive hypothesis

we have (W, [p(n,ϕi)] (w)) ∈ R(ϕi)
+ and hence (iniW, ini([p(n,ϕi)] (w))) ∈ R(ϕ1 ⊕ ϕ2)

+ by

Lemma 24, that is (iniW, [p(n,ϕ1 ⊕ ϕ2)] (w)) ∈ R(ϕ1 ⊕ ϕ2)
+.

Assume that σ is a closed positive type ϕ and let (M,u) ∈ R(σ)−, we must prove that
(M, [p(n, σ)] (u!)) ∈ R(σ)+ which follows directly from the definition of p(n,ϕ) and from
the inductive hypothesis.

Assume last that σ = ϕ ⊸ τ and that (M,u) ∈ R(ϕ⊸ τ)−, we must prove that
(M, [p(n,ϕ⊸ τ)] (u!)) ∈ R(ϕ ⇒ τ)+. Let (V, v) ∈ V(ϕ)−, we must prove that

(〈M〉V, [p(n,ϕ⊸ τ)] (u!)(v)) ∈ R(τ)+ (3.7)

which follows from the fact that [p(n,ϕ⊸ τ)] (u!)(v) = [p(n, τ)] (u([pv(n,ϕ)] (v)))!. In-
deed the inductive hypothesis applied to (n,ϕ) yields (V, [pv(n,ϕ)] (v)) ∈ R(ϕ)+ and hence
(〈M〉V, u([pv(n,ϕ)] (v)))) ∈ R(τ)+ by Lemma 21, from which we derive (3.7) by Lemma 33
and Lemma 29.

30 T. EHRHARD AND C. TASSON

Lemma 35. For any closed type σ one has R(σ)− = R(σ)+.

Proof. Immediate consequence of lemmas 29, 33 and 34.

From now on we simply use the notation R(σ) instead of R(σ)− and R(σ)+.

3.4.7. Logical relation lemma. We can prove now the main result of this section.

Theorem 36 (Logical Relation Lemma). Assume that x1 : ϕ1, . . . , xk : ϕk ⊢ M : σ
and let (Vi, vi) ∈ R(ϕi) (where Vi is a value and vi ∈ P![ϕi]) for i = 1, . . . , k. Then
(M [V1/x1, . . . , Vk/xk] , [M]x1,...,xk (v1, . . . , vk)) ∈ R(σ).

Proof. By induction on the typing derivation of M , that is, on M . We set P = (x1 :
ϕ1, . . . , xk : ϕk) and, given a term R, we use R′ for the term R [V1/x1, . . . , Vk/xk]. We also
use #»v for the sequence v1, . . . , vk and #»x for the sequence x1, . . . , xk.

The case M = xi is straightforward.
Assume thatM = N ! and that ϕ = !σ with P ⊢ N : σ. By inductive hypothesis we have

(N ′, [N]
#»x (#»v)) ∈ R(σ). Therefore ((N ′)!, [N]

#»x (#»v)!) ∈ V(!σ)ε (for ε = + or ε = −)8. We

have V(!σ)ε ⊆ V(!σ)ε = R(!σ)ε = R(!σ) and hence (M ′, [M]
#»x (#»v))) ∈ R(!σ) as contended.

Assume that M = (N1, N2) and σ = ψ1⊗ψ2 with P ⊢ Ni : ψi for i = 1, 2. By inductive

hypothesis we have (N ′
i , [Ni]

#»x (#»v)) ∈ R(ψi). By Lemma 22 we get ((N ′
1, N

′
2) , [(N1, N2)]

#»x (#»v)) ∈

R(ψ1 ⊗ ψ2) as contended, since [(N1, N2)]
#»x (#»v) = [N1]

#»x (#»v)⊗ [N2]
#»x (#»v).

The case M = iniN (and σ = ψ1 ⊕ ψ2) is handled similarly, using Lemma 24.
Assume that M = fold(N) and σ = ϕ = Fix ζ · ψ with P ⊢ N : ψ [ϕ/ζ]. By inductive

hypothesis we have (N ′, [N]
#»x (#»v)) ∈ R(ψ [ϕ/ζ]) which implies (fold(N ′), [N]

#»x (#»v)) ∈ R(ϕ)
by Lemma 28.

Assume that M = λxϕN and σ = ϕ ⊸ τ , with P, x : ϕ ⊢ N : τ . We must prove
that (λxϕN ′, [λxϕN]

#»x (#»v)) ∈ (V(ϕ) ⊸ R(τ))ε for an arbitrary ε ∈ {−,+}. So let (V, v) ∈

V(ϕ)−ε. Since V(ϕ)−ε ⊆ R(ϕ), we have (N ′ [V/x] , [N]
#»x ,x (#»v , v)) ∈ R(τ) by inductive

hypothesis. It follows that (〈λxϕN ′〉V, [λxϕN]
#»x (#»v)(v)) ∈ R(τ) by Lemma 20, proving our

contention.
Assume that M = 〈R〉N with P ⊢ R : ϕ ⊸ σ and P ⊢ N : ϕ where ϕ is a

closed positive type. By inductive hypothesis we have (R′, [R]
#»x (#»v)) ∈ R(ϕ ⊸ σ) and

(N ′, [N]
#»x (#»v)) ∈ R(ϕ) and hence (〈R′〉N ′, [R]

#»x (#»v)([N]
#»x (#»v))) ∈ R(σ) by Lemma 21, that

is (M ′, [M]
#»x (#»v)) ∈ R(σ).

Assume thatM = fixx!σN with P, x : !σ ⊢ N : σ. The function f : P[σ] → P[σ] defined
by

f(u) = [N]
#»x ,x (#»v , u!)

is Scott continuous and we have [M]
#»x (#»v) = supk∈N f

k(0). By induction on k, we prove
that

∀k ∈ N (M ′, fk(0)) ∈ R(σ) . (3.8)

The base case is proven by Lemma 29. Assume that (M ′, fk(0)) ∈ R(σ). Choosing
an arbitrary ε, we have ((M ′)!, (fk(0))!) ∈ V(!σ)ε ⊆ R(!σ) and hence by our “outer-
most” inductive hypothesis we have (N ′

[
(M ′)!/x

]
, fk+1(0)) ∈ R(σ) from which we get

8It is not clear whether V(ϕ)− = V(ϕ)+ for any closed positive type ϕ, but we don’t need this property
in this proof, so we leave this technical question unanswered.

PROBABILISTIC CBPV 31

(M ′, fk+1(0)) ∈ R(σ) by Lemma 20 and this ends the proof of (3.8). We conclude that

(M ′, [M]
#»x (#»v)) ∈ R(σ) by Lemma 29.

Assume that M = der(N) with P ⊢ N : !σ. By inductive hypothesis we have

(N ′, [N]
#»x (#»v)) ∈ R(!σ) which implies (der(N ′),der([N]

#»x (#»v))) ∈ R(σ) by Lemma 26, that

is (M ′, [M]
#»x (#»v)) ∈ R(σ).

Assume thatM = prjN with j ∈ {1, 2}, σ = ϕ1⊗ϕ2 and P ⊢M : ϕ1⊗ϕ2. By inductive

hypothesis we have (N ′, [N]
#»x (#»v)) ∈ R(ϕ1⊗ϕ2) and hence (prjN

′,prj([N]
#»x (#»v))) ∈ R(ϕj)

by Lemma 23 that is (M ′, [M]
#»x (#»v)) ∈ R(ϕj).

Assume that M = case(N, y1 · R1, y2 · R2) with P ⊢ N : ϕ1 ⊕ ϕ2 and P, yj : ϕj ⊢

Rj : σ for j = 1, 2. By inductive hypothesis we have (N ′, [N]
#»x (#»v)) ∈ R(ϕ1 ⊕ ϕ2) and

(λy
ϕj

j R′
j ,
[
λy

ϕj

j Rj

] #»x
(#»v)) ∈ R(ϕj ⊸ σ) for j = 1, 2 (to prove this latter fact, one chooses

ε ∈ {−,+} and considers an arbitrary (V, v) ∈ V(ϕj)
−ε, we have (V, v) ∈ R(ϕj) and hence

(R′
j [V/yj] , [Rj]

#»x ,yj (#»v , v)) ∈ R(σ) by inductive hypothesis, which implies

(〈λy
ϕj

j R′
j〉V,

[
λy

ϕj

j Rj

] #»x
(#»v))(v) ∈ R(σ)

by Lemma 20). By Lemma 25 we get

(case(N ′, y1 ·R
′
1, y2 · R

′
2), case([λy

ϕ1
1 R1]

#»x
(#»v)), [λyϕ2

2 R2]
#»x
(#»v)))(u)) ∈ R(σ)

that is (M ′, [M]
#»x (#»v)) ∈ R(σ), by Lemma 20.

Assume that M = unfold(N) where P ⊢ N : ϕ with ϕ = Fix ζ · ψ. We apply Lemma 27
straightforwardly.

Assume that M = () and the typing derivation consists of the axiom P ⊢ () : 1 so that
σ = 1. We have (M, [M]) ∈ R(1) by definition since Red∞M,() = 1 = [M] .

Assume last that M = coin(p) for some p ∈ [0, 1]∩Q and the typing derivation consists
of the axiom P ⊢ coin(p) : 1⊕1 so that σ = 1⊕1. We must prove that (coin(p), [coin(p)]) ∈
R(1⊕1). Remember that [coin(p)] = pe(1,∗) + (1− p)e(2,∗). Let ε ∈ {−,+} and let (T, t) ∈
(V(1 ⊕ 1) ⊸ R(1))ε, we must prove that (〈T 〉coin(p), t(pe(1,∗) + (1− p)e(2,∗))) ∈ R(1). We
have

Red∞〈T 〉coin(p),() = pRed∞〈T 〉in1(),() + (1− p)Red∞〈T 〉in2(),()

since the first reduction step must be coin(p)
p
→ in1() or coin(p)

1−p
→ in2(). By our assumption

on (T, t) we have Red∞〈T 〉ini() ≥ t(e(i,∗)) and hence Red∞〈T 〉coin(p),() ≥ t(pe(1,∗) + (1 − p)e(2,∗))

as contended, by linearity of t.

Theorem 37 (Adequacy). Let M be a closed term such that ⊢M : 1. Then [M] = Red∞M,().

Proof. By Theorem 36 we have [M] ≤ Red∞M,(). We prove the converse. By Theorem 17 we

have [M] =
∑

⊢M ′:1 Red
n
M,M ′ [M ′] ≥

∑
⊢M ′:1 Red

n
M,M ′ [M ′] ≥ RednM,() for each n ∈ N. The

announced inequality results from the fact that Red∞M,() = supn∈NRednM,().

32 T. EHRHARD AND C. TASSON

4. Full Abstraction

We prove now the converse of Adequacy Theorem. For this purpose we associate testing
terms with points of the model. More precisely:

• Given a positive type ϕ and a ∈ |[ϕ]|, we define a term a0 such that ⊢ a0 : ϕ ⊸

!ι⊸ 1.
• Given a general type σ and a ∈ |[σ]|, we define terms a− such that ⊢ a− : !σ ⊸ !ι⊸ 1

and a+ such that ⊢ a+ : !ι⊸ σ. Moreover if σ is positive, the term a+ is a value.

The main observation (see Lemma 38) is that for a closed term M of type σ, the seman-
tics of 〈a−〉M ! is an entire series with finitely many parameters and whose coefficient of the
unitary monomial9 is equal to m−(a) [M]a where m−(a) 6= 0 depends only on a. Therefore
(see Theorem 39) two closed termsMi with different semantics, i.e. such that there is a point
a ∈ |[σ]| such that [M1]a 6= [M2]a, will generate two different entire series

[
〈a−〉M !

i

]
. Finally,

it is possible to find parameters
#»

ζ such that λxσ 〈〈a−〉x!〉ran(
#»

ζ)! separates M1 and M2 as

〈λxσ 〈〈a−〉x!〉ran(
#»

ζ)!〉Mi is interpreted as
[
〈a−〉M !

i

]
(

#»

ζ) and by Adequacy Theorem 37.

4.1. Notations. For any u ∈ P[σ] and v ∈ P[ϕ],
[
a0
]
(v), [a−] (u) and [a+] are real entire

series over P[ι]. Notice that an element of P[ι] is a sequence
#»

ζ of positive reals ζi indexed by

integers. Moreover, for
#»

ζ ∈ P[ι],
[
a0
]
(u)(

#»

ζ), [a−] (u)(
#»

ζ) and [a+] (
#»

ζ) depend on finitely

many parameters corresponding respectively to the |a|0, |a|− and |a|+ first coefficients of

the sequence
#»

ζ (where |a|0, |a|− and |a|+ are natural numbers depending only on a). We
denote as m0(a), m−(a) and m+(a) natural numbers depending only on a and that will
appear as coefficients of the corresponding entire series.

For any variables x : ϕ, y : σ, Z : !ι, we use the following notations: a0(x,Z) = 〈〈a0〉x〉Z,
a−(y, Z) = 〈〈a−〉y〉Z and a+(Z) = 〈〈a+〉〉Z.

We use the terms introduced in the probabilistic tests paragraph of Subsection 2.3 and
whose semantics is given in Subsection 3.3.

4.2. Testing terms. We give the definition of the terms a0, a− and a+ and the associated
natural numbers |a|0, |a|− and |a|+, by induction on the structure of the point a.

Let ϕ = !σ and a = [b1, . . . , bk] with bi ∈ |[σ]|. By inductive hypothesis, we have terms
⊢ b−i : !σ ⊸ !ι⊸ 1 and ⊢ b+i : !ι⊸ σ. Then we set

a0 = λxϕ λZ !ι b−1 (der(x), 〈win1(
»

|bi|
−)〉Z) ∧ · · · ∧ b−k (der(x), 〈wink(

»

|bi|
−)〉Z),

m0(a) =
k∏

i=1

m−(bi), and |a|0 = |b1|
− + · · ·+ |bk|

− .

a+ = λZ !ι

k∑

i=1

der(〈ext (1, k)〉Z)(i) · b+i (〈wini(k + |b1|
+, |b2|

+, · · · , |bk|
+)〉Z)

!

,

m+(a) = a!
k∏

i=1

m+(bi), and |a|+ = k + |b1|
+ + · · ·+ |bk|

+ .

9That is, the monomial where each exponent is equal to one.

PROBABILISTIC CBPV 33

If ϕ = ϕ1 ⊗ ϕ2 and a = (b1, b2) with bi ∈ |[ϕi]| for i = 1, 2, then we set

a0 = λxϕ1⊗ϕ2 λZ !ι b01(pr1x, 〈win1(|b1|
0, |b2|

0)〉Z) ∧ b02(pr2x, 〈win2(|b1|
0, |b2|

0)〉Z),

m0(a) = m0(b1)m0(b2), and |a|0 = |b1|
0 + |b2|

0 .

a+ =
(
b+1 (〈win1(|b1|

+, |b2|
+)〉Z), b+2 (〈win2(|b1|

+, |b2|
+)〉Z)

)
,

m+(a) = m+(b1)m+(b2) and |a|+ = |b1|
+ + |b2|

+ .

If ϕ = ϕ1 ⊕ ϕ2 and a = (1, b) with b ∈ |[ϕ1]| (case a = (2, b) is similar), then we set

a0 = λxϕ1⊕ϕ2 λZ !ι case(x, y1 · b
0(y1, Z), y2 · Ω

1), m0(a) = m0(b) and |a|0 = |b|0 .

a+ = λZ !ι in1b
+(Z), m+(a) = m+(b) and |a|+ = |b|+ .

For a general type σ and a ∈ |[σ]|, we define now a− and a+.
If σ = ϕ is positive, then we have already defined a0 and a+ and we set

a− = λX !ϕ λZ !ι a0(der(X), Z), m−(a) = m0(a) and |a|− = |b|− .

If σ = ϕ⊸ τ and a = (b, c) with b ∈ |[ϕ]| and c ∈ |[τ]| then we set

a− = λF !(ϕ⊸τ) λZ !ι c−((〈der(F)〉b+(〈win1(|b|
+, |c|−)〉Z))!, 〈win2(|b|

+, |c|−)〉Z)

m−(a) = m+(b)m−(c), and |a|− = |b|+ + |c|− .

a+ = λZ !ι λxϕ b0(x, 〈win1(|b|
0, |c|+)〉Z) · c+(〈win2(|b|

0, |c|+)〉Z) ,

m+(a) = m0(b)m+(c) , and |a|+ = |b|0 + |c|+ .

It is easy to check that these terms satisfy the announced typing judgments. It is also clear
that the term a+ is always a value and that m0(a), m−(a) and m+(a) are non zero natural
numbers.

Lemma 38. Let σ be a general type and a ∈ |[σ]|.
For any u ∈ P[σ], [a−] (u) is an entire series over P[ι] depending on |a|− parameters

and the coefficient, denoted as c1

~ζ
([a−] (u)), of the monomial ζ1 . . . ζ|a|− is m−(a)ua.

For any a′ ∈ |[σ]|, [a+]a′ is an entire series over P[ι] depending on |a|+ parameters whose
coefficient c1

~ζ
([a+]a′) of the monomial ζ1 . . . ζ|a|+ is m+(a) δa′,a (the Kronecker symbol).

If σ is a positive type ϕ, if u ∈ P!([ϕ]!) is a coalgebraic point, then [a0](u) is an entire se-
ries over P[ι] depending on |a|0 parameters and the coefficient c1

~ζ

([
a0
]
(u)
)
of the monomial

ζ1 . . . ζ|a|0 is m0(a)ua.

Proof. By mutual induction on the structure of a.

If ϕ = !σ and a = [b1, . . . , bk]. Let a′ = [b′1, . . . , b
′
k′] ∈ [!σ] and ~ζ ∈ P[ι] be the

concatenation of the finite sequences ~ζ i ∈ P[ι] such that the length of
#»

ζ 0 is k and the length

of ~ζ i is |bi|
+ for i ≥ 1.

[
a+
]
a′
(~ζ) =

(
k∑

i=1

ζ0i
[
b+i
]
(~ζ i)

)!

a′

=
k′∏

j=1

(
k∑

i=1

ζ0i
[
b+i
]
(~ζ i)

)

b′j

.

34 T. EHRHARD AND C. TASSON

We want to compute the coefficient of the unitary monomial which contains exactly one

copy of each parameter of every
#»

ζ i. If k′ 6= k, then it is not possible to get a monomial

with exactly once each parameter of
#»

ζ 0, so that c1

~ζ
([a+])a′ = 0. If k′ = k and Sk is the set

of permutations over k, then by using the induction hypothesis, we get

c1

~ζ

([
a+
])
a′
=
∑

ρ∈Sk

k∏

i=1

c1

~ζi

([
b+i
])
b′
ρ(i)

= a!

k∏

i=1

m+(bi)δbi,b′i = m+(a) δa,a′ .

Let u ∈ P!([ϕ]!), that is u ∈ Pcoh!(1, [ϕ]!) is coalgebraic, let ~ζ ∈ P[ι] be the concatenation

of the finite sequences ~ζ i ∈ P[ι] such that the length of ~ζ i is |bi|
−. Then

[
a0
]
(u)(~ζ) =

k∏

i=1

[
b−i
]
(u)(~ζ i) and c1

~ζ

([
a0
]
(u)
)
=

k∏

i=1

c1

~ζi

([
b−i
]
(der[σ] u)

)
.

Besides, since u is coalgebric by assumption, we know that u = der[σ](u)
! (see Lemma 13).

By inductive hypothesis it follows that

c1

~ζ

([
a0
]
(u)
)
=

k∏

i=1

m−(bi) der[σ](u)bi = m0(a)ua.

Let ϕ = ϕ1⊗ϕ2 and a = (b1, b2) with ai ∈ |[ϕi]|. Let ~ζ ∈ P[ι] be the concatenation of the

finite sequences ~ζ1, ~ζ2 ∈ P[ι] such that the length of ~ζ i is |bi|
+. Let a′ = (b′1, b

′
2) ∈ |[ϕ1 ⊗ ϕ2]|.

[
a+
]
(~ζ) =

[
b+1
]
(~ζ1)⊗

[
b+2
]
(~ζ2) and c1

~ζ

([
a+
])
a′
= c1

~ζ1

([
b+1
])
b′1

c1

~ζ2

([
b+2
])
b′2

By inductive hypothesis, we get that c1

~ζ

(
[a+] (~ζ)

)
a′
= m+(b1) δb1,b′1 m+(b2) δb2,b′2 = m+(a) δa,a′ .

If u ∈ P!([ϕ]!), then u = u1 ⊗ u2 where ui = pr⊗i (u) ∈ P!([ϕi]
!) for i = 1, 2 (see Lemma 13).

Therefore
[
a0
]
(u)(~ζ) =

[
b01
]
(u1)(~ζ

1)
[
b02
]
(u2)(~ζ

2) and c1

~ζ

([
a0
]
(u)
)
= c1

~ζ1

([
b01
]
(u1)

)
c1

~ζ2

([
b02
]
(u2)

)

and hence by inductive hypothesis c1

~ζ

([
a0
]
(u)(~ζ)

)
= m+(b1)(u1)b1 m+(b2)(u2)b2 = m0(a)ua

If ϕ = ϕ1 ⊕ ϕ2 and a = (1, a1) with a1 ∈ |[ϕ1]| (the case a = (2, a2) is similar), then
[
a+
]
(~ζ) =

[
in1a

+
1

]
(~ζ) and c1

~ζ

([
a+
])

(i,a′)
= δ1,i c

1

~ζ

([
a+1
])
a′
= m+(a) δa,(i,a′)

Let u ∈ P!([ϕ]!). There is i ∈ {1, 2} such that u = iniui with ui ∈ P!([ϕi]
!) (see Lemma 13).

If i = 1, then
[
a0
]
(u)(~ζ) =

[
λxϕ1⊕ϕ2 case(x, y1 · 〈a

0
1〉y1, y2 · Ω

1)
]
(u)(~ζ) =

[
a01
]
(u1)(~ζ)

and if i = 2 then
[
a0
]
(u)(~ζ) =

[
Ω1
]
= 0. So that c1

~ζ

([
a0
]
(u)
)
= m0(a1)(u1)a1 = m0(a)ua.

Let now ϕ be a positive type and let a ∈ |[ϕ]|. Let u ∈ P[ϕ], we have
[
a−
]
(u!)(~ζ) =

[
a0
]
(u)(~ζ) and c1

~ζ

([
a−
]
(u!)

)
= c1

~ζ

([
a0
]
(u)
)
.

Thanks to Theorem 16, since u 7→ c1

~ζ

(
[a−] (u!)

)
and u 7→ ua ∈ Pcoh([ϕ], [1]) are equal

on coalgebraic points u ∈ P!([ϕ]!), they are equal on every point u ∈ P[ϕ], therefore
c1

~ζ

(
[a−] (u!)

)
= m−(a)ua.

PROBABILISTIC CBPV 35

Last, let σ = ϕ ⊸ τ and let a = (b, c) ∈ |[σ]|. Let ~ζ ∈ P[ι] be the concatenation of the

finite sequences ~ζ1, ~ζ2 ∈ P[ι] such that the length of ~ζ1 is |b|0 and the length of ~ζ2 is |c|+.

Then, [a+] (~ζ) can be seen as a function in Pcoh([ϕ], [τ]) and we consider also c1

~ζ
([a+]) as

a function in Pcoh([ϕ], [τ]). By inductive hypothesis, for each u ∈ P!([ϕ]!),
[
a+
]
(~ζ)(u) =

[
b0
]
(u)(~ζ1)

[
c+
]
(ζ2)

and c1

~ζ

([
a+
])

(u)c′ = c1

~ζ1

([
b0
]
(u)
)
c1

~ζ2

([
c+
]
c′

)
= ub m+(c) δc,c′ .

Since we have u 7→ c1

~ζ
([a+]) (u)c′ and u 7→ ub m+(c) δc,c′ are equal on coalgebric points.

By Theorem 16 they are equal on every point u ∈ P[ϕ] and in particular on eb′ we have
c1

~ζ
([a+]) (eb′)c′ = m0(b) δb,b′ m+(c)δc,c′ = m+(a)δa,a′ (indeed, there is ε > 0 such that εeb′ ∈

P[ϕ] and the functions are linear).

Let now u ∈ P[ϕ⊸ τ] and ~ζ ∈ P[ι] be the concatenation of the finite sequences ~ζ1, ~ζ2 ∈

P[ι] such that the length of ~ζ1 is |b|+ and the length of ~ζ2 is |c|−.
[
a−
]
(u!)(

#»

ζ) =
[
c−
]
(u(
[
b+
]
(~ζ1))!)(~ζ2)

and c1

~ζ

([
a−
]
(u!)

)
= c1

~ζ1

(
c1

~ζ2

([
c−
]
(u(
[
b+
]
(~ζ1))!)

))
.

By induction hypothesis, we have c1

~ζ2

(
[c−] (u([b+] (~ζ1))!)

)
= m−(c)u([b+] (~ζ1))c. Moreover,

since u ∈ Pcoh([ϕ], [τ]) is linear, we get that c1

~ζ1
(u([b+])c) = m+(b)u(eb)c. Therefore, we

get that, c1

~ζ

(
[a−] (u!)

)
= m−(a)ua.

Theorem 39 (Full Abstraction). If ⊢ M1 : σ and ⊢ M2 : σ satisfy M1 ∼ M2 then [M1] =
[M2].

Proof. Towards a contradiction, assume that [M1] 6= [M2]. There is a ∈ |[σ]| such that

[M1]a 6= [M2]a. Then by Lemma 38,
[
〈a−〉M !

1

]
= [a−] ([M1]

!) and
[
〈a−〉M !

2

]
= [a−] ([M2]

!)
are entire series with different coefficients, namely the coefficients of the monomial ζ1 . . . ζ|a|−

are m−(a) [Mi]a for i ∈ {1, 2}. There is ~ζ = (ζ1, . . . , ζ|a|−) ∈ P[ι] with ζi ∈ Q∩[0, 1] such that

[a−] ([M1]
!)(~ζ) 6= [a−] ([M2]

!)(~ζ). Yet, if Z = ran(~ζ)!, then
[
〈〈a−〉M !

i〉Z
]
= [a−] ([Mi]

!)(~ζ).

By Theorem 37, we get that 〈〈a−〉M !
1〉Z and 〈〈a−〉M !

1〉Z converge to () with different
probabilities. It follows that M1 6∼M2.

References

[1] Shahin Amini and Thomas Ehrhard. On classical pcf, linear logic and the MIX rule. In Stephan Kreutzer,
editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015,
Berlin, Germany, volume 41 of LIPIcs, pages 582–596. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2015.

[2] Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order proba-
bilistic computation. Information and Computation, 152(1):111–137, 2011.

[3] Thomas Ehrhard. Call-By-Push-Value from a Linear Logic Point of View. In Peter Thiemann, editor,
Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pages
202–228. Springer, 2016.

36 T. EHRHARD AND C. TASSON

[4] Thomas Ehrhard. Call-By-Push-Value from a Linear Logic point of view. To appear, accepted at ESOP
2016, available on https://www.irif.univ-paris-diderot.fr/~ehrhard, 2016.

[5] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus gen-
eralizing call-by-name and call-by-value. To appear, accepted at PPDP 2016, available on
https://www.irif.univ-paris-diderot.fr/~giuliog/.

[6] Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of probabilistic
coherent spaces. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science,
LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 87–96. IEEE Computer Society, 2011.

[7] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer Science,
309(1-3):1–41, 2003.

[8] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coherence spaces are fully ab-
stract for probabilistic PCF. In Suresh Jagannathan and Peter Sewell, editors, POPL, pages 309–320.
ACM, 2014.

[9] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Full Abstraction for Probabilistic PCF. Tech-
nical report, Preuves, Programmes et Systèmes, 2015. Submitted for publication to a journal.

[10] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[11] Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in Computer Sci-

ence, 1(3):225–296, 1991.
[12] Timothy G. Griffin. The formulae-as-types notion of control. In Proceedings of the 17h ACM Symposium

on Principles of Programming Languages (POPL), pages 47–57. Association for Computing Machinery,
January 1990.

[13] Achim Jung and Regina Tix. The troublesome probabilistic powerdomain. Electronic Notes in Theoret-
ical Computer Science, 13:70–91, 1998.

[14] Olivier Laurent and Laurent Regnier. About Translations of Classical Logic into Polarized Linear
Logic. In 18th IEEE Symposium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ot-
tawa, Canada, Proceedings, pages 11–20. IEEE Computer Society, 2003.

[15] Paul Blain Levy. Adjunction Models For Call-By-Push-Value With Stacks. Electronic Notes in Theo-
retical Computer Science, 69:248–271, 2002.

[16] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of Semantics Struc-
tures in Computation. Springer-Verlag, 2004.

[17] Michael Marz, Alexander Rohr, and Thomas Streicher. Full Abstraction and Universality via Realis-
ability. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 174–182. IEEE Computer Society, 1999.

[18] Paul-André Melliès. Categorical semantics of linear logic. Panoramas et Synthèses, 27, 2009.
[19] Andrew M. Pitts. Computational Adequacy via ”Mixed” Inductive Definitions. In Stephen D. Brookes,

Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical
Foundations of Programming Semantics, 9th International Conference, New Orleans, LA, USA, April
7-10, 1993, Proceedings, volume 802 of Lecture Notes in Computer Science, pages 72–82. Springer, 1993.

[20] Alex K. Simpson and Gordon D. Plotkin. Complete Axioms for Categorical Fixed-Point Operators. In
15th Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, California, USA, June
26-29, 2000, pages 30–41. IEEE Computer Society, 2000.

[21] Lionel Vaux. The algebraic lambda-calculus. Mathematical Structures in Computer Science, 19(5):1029–
1059, 2009.

https://www.irif.univ-paris-diderot.fr/~ehrhard
https://www.irif.univ-paris-diderot.fr/~giuliog/

	1. Introduction
	Probabilities in HP.
	Contents.
	Further developments.

	2. Probabilistic Call By Push Value
	2.1. Reduction rules
	2.2. Observational equivalence
	2.3. Examples

	3. Probabilistic Coherent Spaces
	3.1. Semantics of LL, in a nutshell
	3.2. The model of probabilistic coherence spaces
	3.3. Examples of term interpretations
	3.4. Adequacy

	4. Full Abstraction
	4.1. Notations
	4.2. Testing terms.

	References

