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Abstract

Standard approaches to tackle high-dimensional supervised classification problem often include vari-

able selection and dimension reduction procedures. The novel methodology proposed in this paper

combines clustering of variables and feature selection. More precisely, hierarchical clustering of variables

procedure allows to build groups of correlated variables in order to reduce the redundancy of information

and summarizes each group by a synthetic numerical variable. Originality is that the groups of variables

(and the number of groups) are unknown a priori. Moreover the clustering approach used can deal with

both numerical and categorical variables (i.e. mixed dataset). Among all the possible partitions resulting

from dendrogram cuts, the most relevant synthetic variables (i.e. groups of variables) are selected with

a variable selection procedure using random forests. Numerical performances of the proposed approach

are compared with direct applications of random forests and variable selection using random forests on

the original p variables. Improvements obtained with the proposed methodology are illustrated on two

simulated mixed datasets (cases n > p and n < p, where n is the sample size) and on a real proteomic

dataset. Via the selection of groups of variables (based on the synthetic variables), interpretability of

the results becomes easier.

Keywords: clustering of variables; random forests; supervised classification; variable selection
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1 Introduction

This paper addresses the problems of dimension reduction and variable selection in the context of supervised

classification. In this framework, there are often two objectives : prediction (to be able to predict classes

associated to new observations) and feature selection (to extract the most interesting variables). Typically

in a medical context, the first goal could be to succeed in predicting if patients will or will not respond well

to a treatment, given e.g. their gene expression profile, whereas the second aim could be to determine which

part of the genome is responsible for the good or bad response to the treatment. These two objectives can

be related, because it may be easier to perform prediction if useless variables have already been eliminated.

Those goals are indeed especially relevant when dealing with e.g. genomics or proteomics data, where the

number p of variables largely exceeds the number n of available observations.

A classical way of addressing such issues is to use a variable selection technique (see e.g. Guyon and Elisseeff,

2003; Tibshirani, 1996; Zou and Hastie, 2005). The hope is that the method will be able to select the most

interesting variables, while preserving good prediction performances. Moreover, data often come with many

highly correlated variables and succeeding in selecting all variables in a group of correlated variables can be

very difficult. Even if obtaining all these variables does not always appear to be interesting for prediction

purpose, it can be useful for interpretation purpose, depending on the application.

We stress that the framework considered in this work is the supervised classification framework, in which

an output variable is observed. Hence, we do not address the problem of variable selection in a clustering (or

unsupervised classification) context as e.g. in Raftery and Dean (2006); Tadesse et al. (2005); Maugis et al.

(2009).

In this article, we propose and evaluate a novel methodology for dimension reduction and variable selec-

tion, which combines clustering of variables and feature selection using random forests. The clustering of

variables method, introduced in (Chavent et al., 2012a) and denoted by CoV hereafter, allows to eliminate

redundancy of explanatory variables. This clustering approach can deal with both numerical and categorical

variables (i.e. mixed dataset). Note that this method clusters the variables, which differs from the (more

classical) problem of individuals clustering (Kaufman and Rousseeuw, 1990; Gordon, 1999). The clustering

of variables groups together highly correlated variables and provides for each group (cluster) a synthetic

variable which is a numerical variable summarizing the variables within the cluster. The main advantage

of this approach is to eliminate redundancy and to keep all the variables together in a cluster during the

rest of the analysis. Moreover it reduces the dimension of the data by replacing the p original variables

by K synthetic variables (where K denotes the selected number of clusters). In the proposed methodology

the number K of synthetic variables is optimized according to prediction performance of a random forest
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classifier trained with those synthetic variables. Let K∗ denote the optimal number of clusters of variables.

Note that the reduction of dimension provides K∗ synthetic variables which only use the original variables

within the selected clusters, unlike the principal components in principal component analysis (PCA) (Jolliffe,

2002). Hence, in CoV, an original variable takes action in the construction of a unique synthetic variable,

which makes the interpretation easier. Once the dimension reduction is done, the most important synthetic

variables are then selected using a procedure based on random forests (RF), introduced in Genuer et al.

(2010). This variable selection procedure, denoted VSURF hereafter, is applied to the reduced dataset

consisting of the n observations described with the K∗ synthetic variables, and leads to provide m ≤ K∗

relevant synthetic variables. Thus the prediction for new observations can be done with a predictor built on

these m selected synthetic variables (i.e. a list of clusters of variables). Hence, the output of the proposed

method is a classifier and a set of selected variables with the additional information of the group structure

of those variables. This additional information can be of great interest depending of the application, and as

far as we know, this type of methodology has not already been introduced in the literature.

Note that the proposed approach does not require definition of a priori groups of variables. Hence, it is

different from (sparse) group lasso or (sparse) group partial least squares (PLS) approaches (Yuan and Lin,

2006; Simon et al., 2013; Liquet et al., 2015). In addition, our method also differs from sparse PLS techniques

(Chun and Keles, 2010; Lê Cao et al., 2011), which perform dimension reduction and variable selection with-

out any group structure information.

In the proposed methodology combining CoV and VSURF, the synthetic variables are linear combi-

nations of the variables within a group, and the VSURF procedure is purely non parametric. This avoids

to make assumptions between the response variable and synthetic variables (which are unknown at the be-

ginning of the algorithm). Moreover, since we heavily use the classifier (to choose the optimal number K∗

of synthetic variables and to select the m most important of them), RF is chosen as an easy-to-use and

well-performing algorithm (Fernández-Delgado et al., 2014).

Finally, let us stress that the main objective of this paper is to introduce a novel procedure which

- selects groups of informative variables,

- can deal with mixed data,

- provides good numerical performance,

- and eases interpretation of results.

The rest of the paper is organized as follows. Sections 2.1 and 2.2 give an overview of both the clustering

of variables method and the feature selection procedure. The methodology combining CoV and VSURF is
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then described in Section 2.3. In Section 3, the numerical performances of this methodology are compared,

via a simulation study, with a straightforward applications of VSURF or RF (on the original p variables)

and with application of RF on all the synthetic variables given by CoV. Two cases are addressed: n > p

and n < p. A real proteomic dataset is analyzed in Section 4. Finally, let us mention that the proposed

methodology is available and implemented in the R package CoVVSURF1 including the simulation procedure

exhibited in Section 3.

2 Description of the methodology

First, the two underlying methods, CoV for unsupervised dimension reduction and VSURF for both

variable selection and prediction, are presented respectively in Sections 2.1 and 2.2. Then, the proposed

methodology combining CoV and VSURF, named CoV/VSURF hereafter, is described in Section 2.3.

Let us consider a p-dimensional explanatory variable X = (X1, . . . , Xj, . . . , Xp)′ and a univariate re-

sponse variable Y , which takes its values in {1, . . . , L}. Let n be the number of observations of these

variables. More precisely, let us consider a set of p1 numerical variables measured on the n observations

denoted by {x1, . . . , xp1 }, and a set of p2 categorical variables denoted by {x̃1, . . . , x̃p2 } with p1 + p2 = p.

Let X = [x1, . . . , xp1 , x̃1, . . . , x̃p2 ] be the corresponding data matrix of dimension n × p. The i-th row of X

is denoted xi. Let y be the vector of the n observations of the response variable.

2.1 Clustering of variables

The objective of clustering of variables is to sort variables into homogeneous clusters, that is to construct

clusters of variables which are strongly related to each other and thus provide similar information. The idea

is to summarize all the variables belonging to a cluster by a synthetic numerical variable which is the most

“linked” to all the variables within this cluster. In this section, we focus on a clustering method based on the

principal component analysis method PCAmix (Kiers, 1991; Chavent et al., 2012b) defined for a mixture

of categorical and numerical variables. More precisely, we present the ascendant hierarchical clustering

algorithm implemented in the R (R Core Team, 2017) package ClustOfVar (Chavent et al., 2012a).

Note that like PCA, CoV is a dimension reduction method but, contrary to PCA, it can be helpful for

variable selection. Indeed, each synthetic variable of CoV is a linear combination of a subset of variables (the

variables within the corresponding cluster) whereas the principal components in PCA are linear combination

of all the original variables. Hence, selecting synthetic variables of CoV means selecting of subsets of original

variables, which is not the case when selecting principal components in PCA.

1https://github.com/robingenuer/CoVVSURF
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Synthetic variable of a cluster Ck

This variable is defined as the numerical variable fk ∈ R
n which is the “most linked” to all the variables in

Ck:

fk = arg max
u∈Rn







∑

xj∈Ck

r2
u,xj +

∑

x̃j∈Ck

η2
u|x̃j






, (1)

where r2
u,xj ∈ [0, 1] is the squared Pearson correlation between the numerical variables u and xj , and

η2
u|x̃j ∈ [0, 1] is the correlation ratio between u and the categorical variable x̃j (which measures the part of

the variance of u explained by the levels of x̃j). It has been shown that:

• fk is the first principal component of the PCAmix method applied to the variables in Ck.

• fk is a linear combination of the numerical variables and of the dummy (indicator) variables of the

levels of the categorical variables in Ck. This linear combination can be used to predict the value

(score) of a new observation on the synthetic variable of Ck.

Details on the PCAmix method and on the prediction of principal component scores can be found in the

Appendix. Note that the PCAmix algorithm is implemented in the R package PCAmixdata (Chavent et al.,

2017).

Homogeneity H of a cluster Ck

The following criterion H measures the adequacy between the variables within the cluster and its associated

synthetic variable fk. It is defined as follows:

H(Ck) =
∑

xj∈Ck

r2
xj ,fk +

∑

x̃j∈Ck

η2
fk|x̃j = λk

1 , (2)

where λk
1 denotes the first eigenvalue of PCAmix applied to the cluster Ck.

The first term (based on the squared Pearson correlation r2) quantifies the link between the numerical

variables in Ck and fk, independently of the sign of the relationship, whereas the second term (based on the

correlation ratio η2) measures the link between the categorical variables in Ck and fk. The homogeneity of

a cluster is then maximized when all the numerical variables are perfectly correlated (or anti-correlated) to

fk and when all the correlation ratios of the categorical variables are equal to 1. In that case, all variables

in cluster Ck bring the same information which is summarized by the corresponding synthetic variable fk.

Homogeneity H of a partition PK = {C1, . . . , CK}

5



The homogeneity criterion H is defined as the sum of the homogeneities of its clusters:

H(PK) =

K∑

k=1

H(Ck) = λ1
1 + . . . + λK

1 . (3)

A hierarchical clustering algorithm

The objective of this algorithm is to find a partition of the p available (numerical and/or categorical) variables.

This partition must be such that the variables within a cluster are strongly related to each other in the sense

of the homogeneity criterion introduced previously. More specifically, for a given number K of clusters, the

aim is to find a partition PK which maximizes the homogeneity function H defined in (3). To this end, a

hierarchical clustering algorithm can be used and is described hereafter.

This algorithm builds a set of p nested partitions of variables as follows.

• Step l = 0: Initialization. Start with the partition in p clusters (i.e. one variable per cluster).

• Step l = 1, . . . , p − 2: Aggregation of two clusters. The objective is to aggregate two clusters

of the partition in p − l + 1 clusters to get a new partition in p − l clusters. To this end, we have to

choose the two clusters A and B which provide the smallest dissimilarity d(A, B) defined as:

d(A, B) = H(A) + H(B) − H(A ∪ B) = λA
1 + λB

1 − λA∪B
1 . (4)

This dissimilarity (aggregation measure) quantifies the lost of homogeneity observed when the two

clusters A and B merge. Based on this measure of aggregation, the new partition in p − l clusters

maximizes H among all the partitions in p − l clusters obtained by aggregation of two clusters of the

partition in p − l + 1 clusters.

• Step l = p−1: Stop. The final partition in one cluster (i.e. containing all the p variables) is obtained.

2.2 Variable selection using random forests

In this section, we focus on the VSURF procedure. This method is based on random forests (Breiman,

2001), which provide a non-parametric predictor, with very good prediction performance in lots of applied

situations including high-dimensional data (see e.g. Verikas et al., 2011). Implemented in the R package

VSURF (Genuer et al., 2015), the VSURF procedure is fully automatic (i.e. it does not need a pre-specified

number of variables to select) and can be applied for both supervised classification and regression problems.

In this paper, we focus on the supervised classification case.

Random Forests
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A Random Forests (RF in the sequel) predictor is obtained by aggregating a collection of randomly perturbed

decision trees. The randomness comes at two levels: the individuals level with a preliminary bootstrap sample

draw, and the variables level with random variables sub-samples draws before splitting a node of a tree.

Let ĥ1, . . . , ĥq be an ensemble of q binary tree predictors. The number of trees q is usually set to several

hundreds. Each tree is a piece-wise constant function, which associates a class label for every input vector. A

binary tree is made of internal nodes (which are split in two children nodes) and leaves (also called terminal

nodes). The collection of the leaves forms a partition of the input space. The first node (which contains

all data) is called the root of the tree, and a node is pure if it contains observations belonging to the same

class. Finally each internal node t is split according to a splitting variable Xjt and a splitting value vt. RF

methodology is detailed in the following algorithm, which is implemented in the randomForest R package

(Liaw and Wiener, 2002).

Input: a learning sample of size n and an input vector X .

Goal: predict the class label associated to X .

• For each l = 1, . . . , q :

– Bootstrap sample. Draw a bootstrap sample of the learning set, by randomly choosing n

observations among the n available, with replacement.

– Tree construction.

∗ Initialize the tree by putting all observations of the bootstrap sample in the root node.

∗ While it exists an impure node among current terminal nodes, for each impure terminal node,

randomly choose a subset of mtry variables among the p variables without replacement, seek

the best split of the node only among splits involving the selected variables, and split the

node into two children nodes according to the best split (see details below).

– Tree prediction.

Let X go down the tree and note the leaf it falls into. Return ĥl(X), the class label of the

observations of the learning set belonging to this leaf.

• Aggregation.

Return the majority class among trees predictions: f̂(X) = argmax
c∈{1,...,L}

∑q
l=1 1

ĥl(X)=c
.

For supervised classification, the Gini index is used for heterogeneity measure of a node, in terms of class

labels. It is defined, for a node t, as Gini(t) =
∑

c∈{1,...,L} pc(t)(1 − pc(t)), where pc(t) is the proportion of

observations of class c in node t. Hence, the best split of a node t is the one minimizing Gini(t) over all possible
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splits. For a numerical variable, possible splits are of the form {Xj ≤ v} with v ∈ [min(xj), max(xj)[. This

split means that observations with a j-th variable value not larger than v are sent to the left child node and

the others to the right one. For a categorical variable, possible splits are of the form {Xj ∈ Mj} where Mj

is a subset of the j-th variable levels (except empty set and total set).

Note that compared to Classification And Regression Trees (CART) introduced in Breiman et al. (1984),

trees are fully developed and are not pruned.

OOB error and variable importance

During a RF run, an estimation of the prediction error and a measure of variable importance can be computed.

Out-Of-Bag (OOB) error of a RF f̂ is defined as OOBerror(f̂) = 1
n

Card {i ∈ {1, . . . , n} | yi 6= ŷi}, where ŷi

is the majority class label among predictions of the trees ĥl for which yi is OOB, that is for which yi was

not chosen in the bootstrap sample used to build ĥl. Variable Importance (VI) also uses the OOB samples

(all observations of the learning set not included in a bootstrap sample) to compute a measure of the link

between Y and a variable Xj. The idea is that the more the mean error of a tree on its OOB sample increases

when the link between Xj and Y is broken, the more important the variable is.

Variable Selection Using Random Forests

The VSURF procedure works with three steps.

• The first one begins by sorting variables based on random forests VI, and eliminates useless variables

by an adaptive thresholding. The threshold is set to the estimation of the standard deviation (over

multiple RF runs) of the VI of an unimportant variable.

• The second one starts with the previously kept variables and performs an ascendant variable introduc-

tion strategy, which builds embedded RF models. The model which attains the minimum OOB error

rate is then selected, and the variables set on which it is based is called the interpretation set.

• The third step consists in eliminating the redundancy of interpretation variables and leads to a smaller

variables set called the prediction set. It consists in a step-wise ascendant strategy, which at each step

verifies that the next variable to introduce helps to decrease enough the OOB error rate.

More details on those three steps can be found in Genuer et al. (2015).

2.3 The CoV/VSURF procedure

We now describe the proposed methodology, which combines CoV and VSURF, in the following algorithm.

First, the algorithm performs “groups of informative variables” selection in (a). It encompasses the ascendant
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hierarchical clustering of variables, the optimal choice of the number of clusters of variables according to

prediction performance, and the selection of the most important synthetic variables. Then, in (b), the

algorithm computes a prediction of a new observation x, by building a classifier based on the groups of

variables selected in (a).

Input: a dataset (X, y) and a new observation x of X .

Goal: select groups of informative variables and predict the class label of x.

(a) Groups of informative variables selection:

1. Apply CoV on X to obtain a hierarchy (a tree) of variables.

2. For each K = 2, . . . , p, cut CoV tree in K clusters, train a RF with the K synthetic variables

f1, . . . , fK as predictors and y as output variable and compute its OOB error rate.

3. Choose the optimal number K∗ of clusters, which leads to the minimum OOB error rate.

Cut CoV tree in K∗ clusters.

4. Perform VSURF with the K∗ synthetic variables f1, . . . , fK∗

as predictors and y as output

variable. Denote by m ≤ K∗ the number of selected informative synthetic variables (corresponding

to the interpretation set of VSURF).

(b) Prediction of a new observation x:

1. Train a random forest, f̂ , on the dataset consisting of the m selected synthetic variables and y.

2. Compute the scores of x on the m selected synthetic variables and predict its class label using f̂ .

The main feature of this algorithm is that it outputs a list of m selected informative synthetic variables.

Since each synthetic variable is built on a subset of original variables, the algorithm implicitly leads to select

groups of original variables, the group structure being a priori unknown. Hence, in addition to perform

variable selection, it takes advantage of the clustering of variables to give a list of selected variables with the

additionnal group structure information.

Another interesting feature of the procedure is that even if the ascendant hierarchical clustering of vari-

ables algorithm is unsupervised (in the sense that it does not use response variable y), the final variables

partition is supervised since the number of clusters is optimized in terms of RF classifier prediction error.

This choice is justified by the fact that our main goal is prediction, so we are primarily interested in groups

of informative variables, rather than groups of all variables (e.g., a complex group structure only involving
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non-informative variables does not have to be found by the method to give good prediction). We stress that

each group of informative variables is summarized by its synthetic variable (the first principal component

of the group). These synthetic variables are then used to build the predictive model. Typically, informative

variables should be well represented by their associated synthetic variables. Indeed, assume that the informa-

tion of a predictive variable Xj is not captured by the first principal component of its group C (for instance

Xj is orthogonal—not correlated—to the component). The procedure would then select a higher number

of clusters (K∗) in order to split C into two new informative groups C1 and C2, with e.g. C1 containing

variables highly correlated to the synthetic variable associated to C, and C2 with a synthetic variable that

retrieves the prediction power of Xj.

This procedure is illustrated on simulated samples and a real proteomic dataset, respectively in Section 3

and Section 4. Finally, let us mention that the method CoV/VSURF has been implemented in an R

package, which is available online together with a vignette guide 2.

3 Simulation study

In this section, we evaluate numerical performance of the Cov/VSURF procedure in the framework of su-

pervised classification. In the following simulation model, explanatory variables are structured in informative

or non-informative groups. The underlying groups of variables can be numerical, categorical or mixed. Let

us recall that Cov/VSURF does not take into account a priori the group structure information. We first

describe the simulation model used to generate the data. We then consider an “n > p” (resp. an “n < p”)

simulated dataset to evaluate the proposed methodology in comparison with alternative approaches.

3.1 Simulation model

Let us consider a binary response variable Y and a p-dimensional explanatory variable X . The conditional

probability P (Y = 1|X = x) =: p(x) is modeled as a function of x using the well known logistic regression

model:

log

(
p(x)

1 − p(x)

)

= x′β − 9, (5)

where β ∈ R
p. Note that the term “-9” in (5) is used to center the index X ′β (for the considered choice of

parameters below) and therefore to obtain equibalanced response for Y .

Let us now specify how we construct the p-dimensional explanatory variable X (with p = 120) in order to

get 10 groups of variables (components Xj of X) of several types (numerical, categorical or mixed) such that

2https://github.com/robingenuer/CoVVSURF/blob/master/vignettes/intro_CoVVSURF.Rmd
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some groups of variables are informative or not. Table 1 provides a complete description of the 10 groups

of these p = 120 variables. To sum up, we have a binary response variable and nine groups of correlated

variables: one small and one large informative groups of numerical variables, one moderate non-informative

group of numerical variables, and this structure is repeated for the three groups of categorical variables

and the three groups of mixed variables. In addition, we have 30 non-informative and non-structured

(independent) variables in the last group. Details on data generating process are given below.

Table 1: Overview of the 10 groups of variables in the simulation study.

Type Size Informative Components Names
of variables of group group of β of variables

Numerical Small (3) Yes (1, 2, 3) NumSj with j = 1, . . . , 3
Numerical Moderate (12) No (0, . . . , 0) NumMj with j = 1, . . . , 12
Numerical Large (15) Yes 1

5 (1, . . . , 1
︸ ︷︷ ︸

5

, 2, . . . , 2
︸ ︷︷ ︸

5

, 3, . . . , 3
︸ ︷︷ ︸

5

) NumLj with j = 1, . . . , 15

Categorical Small (3) Yes (1, 2, 3) CategSj with j = 1, . . . , 3
Categorical Moderate (12) No (0, . . . , 0) CategMj with j = 1, . . . , 12
Categorical Large (15) Yes 1

5 (1, . . . , 1
︸ ︷︷ ︸

5

, 2, . . . , 2
︸ ︷︷ ︸

5

, 3, . . . , 3
︸ ︷︷ ︸

5

) CategLj with j = 1, . . . , 15

Mixed Small (3) Yes (1, 2, 3) MixedSj with j = 1, . . . , 3
Mixed Moderate (12) No (0, . . . , 0) MixedMj with j = 1, . . . , 12
Mixed Large (15) Yes 1

5 (1, . . . , 1
︸ ︷︷ ︸

5

, 2, . . . , 2
︸ ︷︷ ︸

5

, 3, . . . , 3
︸ ︷︷ ︸

5

) MixedLj with j = 1, . . . , 15

Numerical Big (30) No (0, . . . , 0) Noisej with j = 1, . . . , 30

Let Z be the following multivariate Gaussian distribution Np(µ, Σ) where p = 120, µ = 0p and the

covariance matrix Σ is a block-diagonal matrix in order to get 10 groups of variables. These groups are

independent from each other. Let us also introduce the parameter ρ ∈ [−1, 1] to control the link between

the variables within a group. The covariance matrix of Z is then defined as:

Σ = diag
(
Σ3,ρ, Σ15,ρ, Σ12,ρ, Σ3,ρ, Σ15,ρ, Σ12,ρ, Σ3,ρ, Σ15,ρ, Σ12,ρ, σ2I30

)
, (6)

where Σs,ρ is an s × s matrix, whose coefficients are all equal to ρ except on the diagonal where they are

equal to 1, σ2 > 0 and I30 is the identity matrix of dimension 30. When ρ is close to 1, we obtain nine

groups of highly correlated numerical variables and one group of 30 variables which are independent. In the

following, we set ρ = 0.9.

We then generate n mutually independent random p-dimensional vectors z1, . . . , zn from the Gaussian

distribution Np(µ, Σ). From the zi’s, we first construct the output variable values yi ∈ {0, 1} using the

logistic regression model (5) and β coordinates given in Table 1. Since the zi’s original data are numerical,

we have to binarize some numerical variables Zj to obtain categorical ones by thresholding at their median
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value: if the variable value is less than the median, the value of the corresponding binarized variable Xj is

0, and this value is 1 otherwise. In the 3 groups of mixed variables, one third of the variables are binarized

(the last, last 4, last 5 variables in the small, medium and large group respectively).

3.2 An “n > p” simulated dataset

Application of CoV/VSURF to a learning dataset

From the previous model, a learning sample of n = 600 observations of the p = 120 explanatory variables

and of the binary response variable Y is generated. The method CoV is applied to the 600 × 120 matrix

of explanatory variables. The dendrogram of the hierarchy of the 120 variables (also called the CoV tree)

is given in Figure 1. This dendrogram suggests a partition in 9 clusters. However, in our methodology, the

number of clusters is not chosen according to the shape of the dendrogram but according to the prediction

of the binary response variable Y . For each value of K between 2 and 120, we cut the CoV tree, build a

random forest on the K synthetic variables of the corresponding K-clusters partition and compute the RF

OOB error rate. This procedure is illustrated Figure 2. The (nearly) optimal value we get for this learning

dataset is K∗ = 9. This partition in K∗ = 9 clusters retrieves almost the complete structure of the data. We

recover 8 of the 9 groups of correlated variables, while all noise variables are pulled together in a large cluster

with the last group of correlated variables (the small one). However, the synthetic variable of this cluster

does not really take the noise variables into account, whose loadings (coefficients in the linear combination)

are very low contrary to the loadings of the variables of the small group of correlated variables. Since this

small group of numerical variables is informative, it means that this synthetic variable is also informative.

VSURF is then applied on the K∗ = 9 synthetic variables of the previously chosen partition. VSURF

selects 6 synthetic variables, corresponding to the 6 informative groups of variables. From the interpretation

point of view, we succeed in selecting all informative variables, with in addition the clustering structure.

For comparison, VSURF directly applied on the 120 original variables selects 39 variables among the 54

informative ones, with at least one per informative group (the large group of categorical variables being the

least recovered).

Prediction performances on a test dataset

In addition to the learning dataset, a test sample of n = 600 observations is now generated. We focus

on the prediction performances of the proposed methodology CoV/VSURF on this test sample and do

comparisons with 3 other methodologies:

• VSURF: variable selection using random forests is applied on the original 120 variables,

• RF: random forests are applied on the original 120 variables,
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Figure 1: CoV tree of the p = 120 variables based on the learning sample of size n = 600. Heights correspond
to dissimilarities between two aggregated clusters. Rectangles indicate the partition in K∗ = 9 clusters (in
green, the m = 6 clusters selected by VSURF, and in red the remaining unrelevant clusters).

13



0 20 40 60 80 100 120

0
.1

0
0

.2
0

0
.3

0

Partition cardinal

O
O

B
 e

rr
o

r 
ra

te

Figure 2: Random Forests OOB error rate according to the number of clusters of the partitions obtained by
cutting the CoV tree for the simulated learning dataset of n = 600 observations. The dashed red vertical
line corresponds to K∗ = 9 clusters.

• CoV/RF: random forests are applied on the K∗ synthetic variables obtained by CoV.

Note that the test sample of size n = 600 is fixed all along this simulation study. We obtain in Figure 3 the

boxplots of test error rates.
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(a) Single learning dataset
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(b) Replication of 50 learning datasets

Figure 3: Comparison of test error rates with learning datasets of size n = 600. CoV/VSURF and
CoV/RF correspond to VSURF and random forests (RF) applied on the K∗ synthetic variables given
by CoV. VSURF and RF refer to methods applied on the original 120 variables. (a) Test error rates of
100 forests trained on one learning dataset. (b) Averaged (over 100 forests) test error rates computed on 50
learning datasets.

On the left-hand side of Figure 3, boxplots correspond to 100 runs of random forests. More precisely,

• For CoV/VSURF and CoV/RF, the clustering of variables is performed once and the optimal

number K∗ of clusters is chosen automatically using OOB error rate. For Cov/RF, 100 forests are

trained on the K∗ synthetic variables, while for Cov/VSURF, 100 forests are trained on the m < K∗

synthetic variables selected by VSURF (which is then performed also a single time).

• For VSURF, 100 forests are trained on the variables selected with one run of VSURF applied on the

p = 120 original variables.
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• For RF, 100 forests are trained on the original variables.

The results are better with CoV/VSURF and CoV/RF i.e. when VSURF and RF are applied after the

dimension reduction using CoV. In addition, the approach CoV/VSURF is slightly better than CoV/RF

in this setting. Also, the variability due to the random nature of the RF is relatively small here and very

similar with the four approaches.

On the right-hand side of Figure 3, 50 learning datasets are generated in order to take into account the

variability of the results due to the random nature of the simulation procedure. The four methodologies

explained above for a single learning dataset are applied on each dataset. Boxplots correspond then to the 50

averaged (over 100 forests) test error rates. The results are better here with CoV/VSURF and CoV/RF.

The improvement obtained by grouping variables together before the classifier run is confirmed here, despite

the variability due to the random simulation procedure.

To sum up, using CoV is in a dimension reduction step leads — at least for this example — to a gain in

prediction both with RF and VSURF. Moreover applying VSURF in CoV/VSURF procedure permits

to select informative groups of linked variables without loss in prediction. In the next section, the exact same

experiment is repeated but in a more challenging situation where only n = 60 (< p = 120) observations are

generated.

3.3 An “n < p” simulated dataset

Now, we simulate a learning sample of n = 60 observations of the p = 120 explanatory variables and of the

binary response variable Y . The CoV method is applied to the 60 × 120 matrix of explanatory variables.

Note that we set the number of trees q to 2000 in all our experiments. The dendrogram of the hierarchy is

represented in Figure 4. This tree suggests to retain the partition in K = 9 clusters which matches with the

underlying partition in 9 groups of correlated variables (i.e. the informative and non informative structured

groups of variables) while the 30 noise variables are pulled together either with the small group of numerical

variables or with the small group of mixed variables.

Our methodology chooses to cut the dendrogram in K∗ = 10 clusters (see Figure 5). The structure in 9

groups of correlated variables is conserved and the 10-th cluster only contains 8 noise variables. VSURF

applied on the K∗ = 10 associated synthetic variables selects m = 4 of them. The two groups of informative

numerical variables and the two groups of informative mixed variables are retained.

Thus, contrary to the case with n = 600 observations (see Figure 1), where the group structure is

perfectly identified and all informative variables selected, in this more difficult context where n < p, the

CoV/VSURF methodology still retrieves the group structure in the dendrogram (see Figure 4) but misses
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Figure 4: CoV tree of the p = 120 variables based on the learning sample of size n = 60. Heights correspond
to dissimilarities between two aggregated clusters. Rectangles indicate the partition in K∗ = 10 clusters (in
green, the m = 4 clusters selected by VSURF, and in red the remaining unrelevant clusters).
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the informative groups of categorical variables in the selection step. This can be explained by the fact that

those variables are binary, hence less explanatory than the numerical ones. VSURF applied on the 120

original variables only selects 8 variables, with at least one per group selected by our approach, and still no

informative categorical variable are retained.
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Figure 5: Random Forests OOB error rate according to CoV partition cardinal for the learning dataset of
n = 60 observations. The dashed red vertical line corresponds to K∗ = 10 clusters.

To study prediction performance of the proposed methodology CoV/VSURF, the same test sample

as in the previous section is used, and Figure 6 is obtained in the same way than in the n = 600 case.

Those graphs show that the variability due to random forests (left-hand side) remains relatively small

compared to the variability due to random generation of the 50 learning dataset (right-hand side). In this

more difficult situation, all methodologies are fairly comparable in prediction, with a slight advantage to

CoV/RF. However, the methodology CoV/VSURF has the advantage to select groups of informative

variables, without increasing prediction error rate.
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(a) Single learning dataset
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(b) Replication of 50 learning datasets

Figure 6: Comparison of test error rates with learning datasets of size n = 60. CoV/VSURF and CoV/RF
correspond to VSURF and random forests (RF) applied on the K∗ synthetic variables given by CoV.
VSURF and RF refer to methods applied on the original 120 variables. (a) Test error rates of 100 forests
trained on one learning dataset. (b) Averaged (over 100 forests) test error rates computed on 50 learning
datasets.
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3.4 Sensitivity analysis

To conclude this simulation study, we conduct a sensitivity analysis with respect to the simulated group

structure. Indeed, in the previous simulation model, the covariance matrix Σ (see Equation 6) induces a

very clear group structure in the data, which could be somehow unrealistic for real applications. Thus, we

relax this structure by adding a between-groups correlation coefficent δ ≥ 0. More precisely, the intra-groups

correlaction structure is unchanged, but two variables from two different groups have now a correlation of δ,

while noise variables remain independent with every other variables.
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(a) n = 600, δ = 0.3
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(b) n = 600, δ = 0.6
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(c) n = 60, δ = 0.3
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(d) n = 60, δ = 0.6

Figure 7: Comparison of test error rates with learning datasets of size n = 600 (top) and n = 60 (bottom)
including a between-groups correlation of δ = 0.3 (left) and δ = 0.6 (right). Boxplots correspond to the
averaged (over 100 forests) test error rates computed on 50 learning datasets.

Figure 7 illustrates the results in the two previsous cases with n = 600 and n = 60, where δ takes the

values 0.3 and 0.6. Boxplots correspond to the 50 averaged (over 100 forests) test error rates associated to

50 randomly generated datasets as in Figures 3(b) and 6(b).

Those results show that the comparison between the four methods CoV/VSURF, CoV/RF, VSURF

and RF is quite stable, with a clear advantage in terms of prediction for methods using clustering of variables

in the case n = 600 and similar performances of the four methods in the case n = 60.

Furthermore, we investigate the results of the CoV/VSURF procedure applied to one dataset (results
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not shown here) for several values of δ. It reveals that the method is not perturbed by values of δ up to 0.6

(the clustering of variables is accurate and the selection of synthetic variables is satisfactory), and that for

larger values it naturally begins to give very small number of groups. For example in the extreme case of

δ = 0.9, the method groups together all variables (except noise variables) as expected.

4 Proteomic data application

In this section, the CoV/VSURF procedure is illustrated with an application on a real proteomic dataset.

This dataset comes from a clinical study sponsored by University Hospital in Bordeaux. It involved n = 44

patients with a rectum cancer who undertook a treatment of chemotherapy and radiotherapy, before a

surgery intervention. Some patients responded favorably to the treatment and hence had a smaller tumor at

t1, the time of surgery, compared to t0, a time just before the beginning of the treatment, and some patients

did not. The main goal of this study was to predict if the patient will be a good treatment responder or not,

using proteomic information, measured at t0. Indeed, it is useless to give the treatment to a bad responder,

for which other alternatives should be tried. A secondary objective is to select the proteins which best

discriminate the two kinds of treatment response.

The dataset contains p = 4786 numerical explanatory variables which measure protein abundances.

Measurements are done on peptides (one protein is made of several peptides). The total number of peptides

is p = 4786, whereas total number of proteins is 868. A priori knowledge of what peptide is part of which

protein is not used in our approach, but it will be used for interpretation purpose. This helps us to interpretate

the resulting group structure and permits to illustrate the interest of our method for other problems where

no a priori group structure is known.

The CoV/VSURF methodology is then applied to this dataset. Since the number p of variables is

relatively large, the number K∗ of clusters of peptides is chosen among 2 and 2000. The resulting random

forests OOB error rates are displayed in Figure 8 and the (nearly) optimal number of clusters is K∗ = 68.

The VSURF method, applied on those K∗ = 68 synthetic variables, selects 4 of them. These 4 synthetic

variables are sorted by decreasing order of their variable importance (VI). The corresponding 4 groups of

peptides gather respectively 37, 61, 20, 25 peptides, that is a total of 143 peptides. Those 143 peptides

come from 73 different proteins. The most homogeneous one is the 4th with 22 peptides (over 25) coming

from the same protein, PZP (Pregnancy Zone Protein). The 3rd one contains 18 peptides (over 20) coming

from two different proteins, IGHD (Ig Delta Chain) protein and THRB (Prothrombin) protein. The second

cluster is the more heterogeneous with 61 peptides coming from 50 different proteins. The first one contains

13 peptides (over 37) coming from A2GL (Alpha 2 Glycoprotein), 6 from CRP (C-reactive protein).
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Figure 8: Random forests OOB error rate according to CoV partition cardinal (number of peptides clusters)
for the proteomic data. The two dashed red vertical lines correspond respectively to partitions in K∗ = 68
and K = 142 clusters. For visibility, the x-axis is truncated around K = 500 clusters (the error rate remains
quite stable until K = 2000).

The cluster with highest VI, made of 37 peptides, is the one responsible of the large decrease of OOB

error rates in Figure 8: it appears when the number of synthetic variables goes from 67 to 68 i.e. when the

OOB error rate decreases from around 40% to 20%. In addition, when this particular cluster is split into two

new clusters (when the partition cardinal K reaches 142), the OOB error increases significantly from 20%

to 30%. This confirms the importance of this cluster of peptides to predict treatment response. Note that,

among the peptides selected by CoV/VSURF, we find peptides that come from APOA1 (Apolipoprotein

A1), HPT (Haptoglobin), TRFE (Serotransferrin) and PGRP2 (N-Acetylmuramoyl L-Alanine Amidase).

Those proteins make sense to oncologists in this context, who are currently investigating in more depth the

relation between those proteins and the response to the treatment. In addition, when VSURF is applied

alone on the original data, only 35 peptides are selected. So, VSURF gives a sparse variable selection (less

peptides are selected), but with no group structure.

To get an estimation of classification error rates for this real dataset, we perform an external leave-one-

out cross-validation to fairly estimate prediction performance of our approach (see Ambroise and McLachlan,

2002). This means that, for each patient in this study, we perform the entire methodology CoV/VSURF

on the dataset containing all other patients, before predicting him. As before, we compare the performance

with the three approaches CoV/RF, VSURF and RF. Figure 9 provides the results. According to these

boxplots, there is almost no difference between the performances of CoV/VSURF, CoV/RF and VSURF

(recall that since n = 44, one more good classification of an individual gives approximately a 0.02 decrease in

error rate). It is important to highlight that only the CoV/VSURF procedure selects groups of informative

peptides without increasing the prediction error. To conclude this real data study, CoV/VSURF achieves

the double objective of predicting if the patient is a good treatment responder and determining groups of

peptides responsible for the good or the bad response to the treatment.
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Figure 9: Comparison of leave-one out error rates of 100 forests for proteomic data. CoV/VSURF and
CoV/RF correspond to VSURF and random forests (RF) applied on the K∗ = 68 synthetic variables
given by CoV. VSURF and RF refer to methods applied on the original p = 4786 peptides.
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least square approaches applied in genomics context. Bioinformatics, 32(1):35–42.

Maugis, C., Celeux, G., and Martin-Magniette, M.-L. (2009). Variable selection for clustering with gaussian

mixture models. Biometrics, 65(3):701–709.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.

Raftery, A. E. and Dean, N. (2006). Variable selection for model-based clustering. Journal of the American

Statistical Association, 101(473):168–178.

22



Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group lasso. Journal of Computa-

tional and Graphical Statistics, 22(2):231–245.

Tadesse, M. G., Sha, N., and Vannucci, M. (2005). Bayesian variable selection in clustering high-dimensional

data. Journal of the American Statistical Association, 100(470):602–617.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Statistical Methodology), pages 267–288.

Verikas, A., Gelzinis, A., and Bacauskiene, M. (2011). Mining data with random forests: A survey and

results of new tests. Pattern Recognition, 44(2):330–349.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 67(2):301–320.

23


	1 Introduction
	2 Description of the methodology
	2.1 Clustering of variables
	2.2 Variable selection using random forests
	2.3 The CoV/VSURF procedure

	3 Simulation study
	3.1 Simulation model
	3.2 An ``n > p'' simulated dataset
	3.3 An ``n < p'' simulated dataset
	3.4 Sensitivity analysis

	4 Proteomic data application

