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Abstract

The bandit classification problem considers learning the labels of a time-
indexed data stream under a mere “hit-or-miss” binary guiding. Adapting the
OVA (“one-versus-all”) hinge loss setup, we develop a sparse and lightweight
solution to this problem. The issued sequential norm-minimal update solves
the classification problem in finite time in the separable case, provided enough
redundancy is present in the data. An O(

√
T ) regret is moreover expected

in the non-separable case. The algorithm shows effectiveness on both large
scale text-mining and machine learning datasets, with (i) a favorable compar-
ison with the more demanding confidence-based second-order bandits setups
on large scale datasets and (ii) a good sparsity and efficacy when a kernel
approach is applied to non-separable datasets.

Keywords: Contextual bandits, Hinge loss, Online learning, Kernel
methods

1. Introduction

Categorical online learning is a well-documented family of learning prob-
lems in which (i) a time order is defined on the sequence of input examples
x1, ..., xt, ... with the classifier update taking place after each example pre-
sentation and (ii) the output space is categorical, i.e. a single response yt,
among K > 1 possibilities, is expected at trial t. The multiclass learning
task typically addresses object recognition (such as OCR, face recognition,
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speech recognition etc.) and recommender systems. In contrast with the of-
fline approach, online learning takes the form of an iterative process, relying
on a time-ordered sequence of observations, actions and feedbacks (where the
feedback is the observable outcome of the action). Two well-known setups
obey to this class, i.e. the contextual bandit setup (see Lai and Robbins
(1985) and Auer et al. (2002)) and supervised online learning setup (see
Rosenblatt (1958), Duda et al. (1973) and Freund and Schapire (1999)), the
two setups mainly differing by the nature of the feedback. Whether abundant
or scarce, deterministic or stochastic, stationary or adversarial, the feedback
characteristics critically shape the design of the learning algorithms.

The case we address in the following is the one-bit feedback in multi-
class classification tasks, occasionally called the bandit feedback classifica-
tion problem (see Kakade et al. (2008)), for the outcome is either 0 (failure)
or 1 (success). This case lies at the crossroad of the supervised online learn-
ing setup and the bandit setup. A one-bit feedback reflects a “hit-or-miss”
learning situations, in which a single bit indicates to the learner whether its
categorical response was correct (“hit”) or incorrect (“miss”). Wether simple
in its principle, this problem is bound to the online approach and was only
recently addressed by the community (see Kakade et al. (2008), Crammer
and Gentile (2013), etc.). Apart from the original work of Kakade et al.
(2008), most recent approaches to this problem are based on regularized
linear models (see Li et al. (2010), Hazan and Kale (2011), Crammer and
Gentile (2013), Ngo et al. (2013)), to which the powerful methods of contex-
tual bandit, including UCB-like non-stochastic exploration strategy (see Lai
and Robbins (1985)), do apply. While providing almost optimal convergence
rates, online multivariate setups suffer from a quadratic complexity in space
that limits their applicability to large-dimensional datasets.

In contrast, the sequential approach to quadratic optimization, as pro-
posed by Anlauf and Biehl (1989) and Crammer et al. (2006), may both pro-
vide upper bounds on error rate and a smaller memory footprint, i.e. only
display linear scaling in space. We adapt in this paper a similar view to the
bandit feedback case, where online learning relies on a local norm minimiza-
tion under standard linear-convex constraints. Our conservative approach
allows to determine similar regret bounds than the original paper of Cram-
mer et al. (2006), providing strong guaranties on convergence capabilities,
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that are confronted to other methods over synthetic and real datasets1.

2. Outlook

2.1. Online learning
Online learning is a process in which an agent (the “learner”) probes its

environment sequentially to obtain information that is eventually used to
improve its fitness. The universe being initially hidden, the online approach
works on probing the database (universe) through individual queries that
step-by-step unveil the environment.

The sequential organization of learning is present in the most traditional
setups such as the Bandit problems (see Robbins (1952)) and in the Per-
ceptron algorithm (see Rosenblatt (1958)). The general setup we consider
here is the case of an “open-loop” actionnable universe. The time-indexed
observations x1, ..., xt, ... are independent (causally disconnected). Each ob-
servation causes the learner to output a single action ỹt out of K > 1 possible
actions. Every action provides a feedback ft that is an information about a
value of interest (or reward) rt that needs to be maximized over time. The
feedback is explicit in most contextual bandit setups, i.e. ft = rt (see Lai
and Robbins (1985) and Auer et al. (2002)) while it takes the form of a cat-
egory ft = yt in traditional online learning setups, that indirectly provides
a quantity to maximise through a loss function l(xt, ỹt, ft) = −r(xt, ỹt, ft)
(see Duda et al. (1973), Freund and Schapire (1999), Kivinen et al. (2004),
Crammer et al. (2006)). Solving the problem thus means both learning the
universe from experience and optimizing the final reward.

2.2. Linear models
Multiclass classification requires finding an appropriate class y ∈ {1, ...K}

for every observation vector x ∈ Rd. The decision function (or policy) allows
to carry out a categorical response ỹ. The decision function embodies both
prior information about the regularity of the universe and experience-based
information. A reasonable assumption is to consider that close-by contexts

1This work was partly presented at the ECML-PKDD doctoral consortium (see Zhong
and Daucé (2015)). Substantial refinements and new notations are used in the present
paper. The kernel extension, with corresponding developments and simulations, were not
present in the conference article.
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should provide close-by rewards distributions. The linear approach to classi-
fication means define a set of linear mappings:

W = (w1, .., wK) ∈ RKd (1)

so that, for every observation x and every category k, a similarity score
〈wk, x〉 is carried out. The linear assumption allows (i) to settle choice (or
action) over class similarity prediction and (ii) to update models over pre-
diction accuracy.

The set of linear mappings can either be considered class-prototypes or
class-separatrices. The first case implements a model-based approach, and
the second a discriminant-based approach. In the first case, second order
gradient descent methods such as natural gradient (see Amari et al. (2000)),
Gauss-Newton (see Le Cun and Bottou (2004)), and second order perceptron
(see Cesa-Bianchi et al. (2005)) provide almost optimal convergence rates
while scaling quadratically with observation vector dimension. In the sec-
ond case, the quadratic optimization approach (see Anlauf and Biehl (1989),
Crammer et al. (2006)) only provide upper bounds on the error rate but
display linear scaling in size, label-unbalance robustness and more generally
provide a smaller memory footprint.

2.3. One-bit bandit feedback
The one-bit bandit feedback offers a specific online learning setup that

implements, in a principled way, the scarce labelling information problem.
After reading ỹt, instead of providing a label, the universe provides a single
bit of information called the label hit, i.e. ft = 1 if ỹt = yt and ft = 0
elsewhere. The objective, just as in the supervised case, is to avoid label
misses and maximise labels hits. A specific update function needs to be
defined to allow for label hit improvement over time.

Banditron. This problem was coined the “bandit feedback classification prob-
lem” by Kakade et al. (2008). Taking inspiration from the multiclass percep-
tron (Duda et al. (1973)), a time-effective algorithm, called the “Banditron”,
is established: K linear mappings w1, ..., wK are defined and the candidate
response ŷ relies on a best-match policy, i.e.

ŷt = argmax
k∈{1,..,K}

〈wk,t−1, xt〉 (2)
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Contrarily to the supervised case, an exploration policy needs to be defined
to efficiently sample the decision space. The Banditron adopts a simple
ε−greedy search allowing non-matching responses to be occasionally chosen
in a uniform way:

P (Ỹt = k) = (1− ε)δ(k, ŷt) +
ε

K
(3)

with ε ∈ [0, 1] and δ(i, j) = 1 if i = j, and 0 elsewhere. Given a set of linear
mappings Wt−1 and an actual output ỹt, the update at time t is :

Wt = Wt−1 +
δ(ỹt, yt)X

ỹt
t

P (Ỹt = ỹt)
−X ŷt

t (4)

with the convention:

Xk
t , (~0, ...,xt, ...,~0) ∈ RKd (5)

|
k

a sequence of null vectors, except at position k where the observation vector
xt is found, so that 〈W,Xk

t 〉 = 〈wk, xt〉. The expectation of the update is
shown to be that of the multiclass perceptron, and a convergence to the
corresponding classifier is obtained.

Second-order models. Apart from Kakade et al. (2008), a majority of learn-
ing setups address the bandit classification problem using derivatives of
the linUCB (see Auer (2002)) and/or second-order perceptron (see Cesa-
Bianchi et al. (2005)). Those setups allow to carry out confidence intervals
over reward predictions, based on the observation vectors covariance matrix
〈X ỹt

t

>
X ỹt
t 〉t, and adopt the UCB exploration policy (see Lai and Robbins

(1985)), providing O(
√
T ) regret bounds in the stationary case (see Li et al.

(2010), Hazan and Kale (2011), Crammer and Gentile (2013), Ngo et al.
(2013)). The close to optimal regret bounds obtained in that case are harmed
by a quadratic space complexity and a lack of sparsity that justifies our closer
inspection to the separatrix-based setup.

2.4. Online risk minimization
The computational efficiency of the perceptron (Rosenblatt (1958)), as

well as the SVM (Vapnik (1998)), critically relies on their sparsity, i.e. their
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capability to store only the most relevant observation vectors regarding clas-
sification task (the so-called “support vectors”). Fewer vectors in a classifier
provide better generalization capabilities and participate in regularization.
Under the discriminant approach to linear classification, a set of separating
hyperplanes are expected to optimally separate the input space according to
the misclassification risk. This risk can for instance be estimated through a
margin principle (see Vapnik (1998)), imposing a non-zero distance of known
class exemplars to the classification boundaries.

Following Kivinen et al. (2004) and Crammer et al. (2006), we consider
a sequential approach to risk minimization, where classifiers are updated
through local measures of a hinge loss function:

lt = l(xt,Wt−1, yt)

Different hinge loss functions and corresponding margin constraints can
be defined depending on the task and feedback characteristics. Under the
multiclass setting, two principal margin constraint schemes can be set up,
namely the relative margin and the normative margin.

• Compliant with the Kessler’s construction (see Duda et al. (1973)),
the relative margin setup (see Crammer and Singer (2003)) establish
a distance reference a, so that the linear score of the class-compliant
separatrix 〈wy, x〉 is expected to overtake the other linear scores by at
least a, i.e. (taking a = 1)

〈wy, x〉 ≥ 1 + max
k 6=y
〈wk, x〉 (6)

and a corresponding relative multiclass hinge loss is:

l(x,W, y) =

[
1− 〈wy, x〉+ max

k 6=y
〈wk, x〉

]
+

(7)

with [u]+ equal to u if u ≥ 0 and 0 elsewhere.

• Compliant with the one-vs-all (OVA) construction (see also Allwein
et al. (2000)), the normative margin setup imposes the classifier to
provide a response that overtakes in norm a reference value a. Taking
a = 1 for reference, it tells ∀k:

〈wk, x〉 ≥ 1 if y = k (8)
〈wk, x〉 ≤ −1 if y 6= k (9)
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and a corresponding normative multiclass hinge loss is:

l(x,W, y) =
K∑
k=1

[1 + (1− 2δ(y, k))〈wk, x〉]+ (10)

The normative setup puts additional constraints on the classification task
(see Crammer and Singer (2003)), but in counterpart provides mapping-
independence across the different classes.

The hinge loss function comes with an implicit set point, namely lt =
0, that grants response correctness under a margin constraint. In Kivinen
et al. (2004), a loss-minimizer gradient descent update is combined with a
norm-minimizer on the decision function, while Crammer et al. (2006) adopt
a quadratic norm-minimal condition minW ||W − Wt−1||2 on each update.
In both cases local changes are shown to provide global improvement, e.g.
Kivinen et al. (2004) show the stochastic gradient to converge to a global
minimum and Crammer et al. (2006) show the total number of updates to
be bounded in the linearly-separable case.

3. Our approach

3.1. Local quadratic optimization
On contrary to their supervised counterpart, class-separatrices updates

in the Banditron (Kakade et al. (2008)) and PAB (Zhong et al. (2015)) are
dense over time, loosing the Kernel-extension capability (at reasonable com-
putational cost). The ability to store only the most relevant observation
vectors is however a critical property of the discriminant approach we try to
preserve in the bandit setup considered here. Adapting the one-vs-all nor-
mative margin constraint (presented in eqs.(8-9)) to the bandit case implies
consider now the loss function:

lt = l(xt,Wt−1, yt, ỹt)

= [1 + (1− 2δ(yt, ỹt))〈Wt−1, X
ỹt
t 〉]+ (11)

with ỹt ∈ {1, ..., K} the single label to be compared with yt, or :

lt = [1− 〈Wt−1, X
ỹt
t 〉]+ if yt = ỹt (12)

lt = [1 + 〈Wt−1, X
ỹt
t 〉]+ elsewhere (13)

7



Algorithm 1 Bandit Passive-Aggressive (BPA)
Parameters: ε, C
Set W ← ~0
for t in [1, . . . , T ] do
Read xt
Choose ỹt
Read ft = δ(yt, ỹt)

lt ←
[
1 + (1− 2ft)〈W,X ỹt

t 〉
]
+

W ← W + lt
‖xt‖2+ 1

2C

(2ft − 1)X ỹt
t

end for

In Crammer et al. (2006), a quadratic update norm minimization objec-
tive under a class-accuracy linear constraint lt is considered. The weight
update is the solution of :

Wt = arg min
W

1

2
‖W −Wt−1‖2 + Cξ2 s.t. lt ≤ ξ

where C is an optional misclassification stiffness parameter. It provides here
the following update :

Wt = Wt−1 +
lt

‖xt‖2 + 1
2C

(2δ(yt, ỹt)− 1)X ỹt
t

which leads to algorithm 1.
This setup is called “passive-aggressive” for it combines a conservative

approach (ignore xt if lt = 0) with a tight update (optimize the classifier
according to xt if lt > 0). In its original formulation (C → ∞), this learn-
ing setup implements a “one-shot” update, i.e. carries out a zero-loss after
update. A finite stiffness parameter C provides a more progressive (less “ag-
gressive”) update, allowing to deal more smoothly with outliers at the cost
of a lesser sparsity.

Solving the system carries out in our case a single update of the ỹth
t

separatrix. A rapid inspection shows that the full label information set could
be used in the label hit case (y = ỹ), allowing for K separatrices updates
instead of one. This primary intuition is however not considered here, for
multiple updates may put a too strong momentum on label hits. We show in
the following that our careful and conservative approach is enough to provide
strong convergence guarantees in most cases.
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3.2. Linear separability
The passive-aggressive setup provides solid error bounds in the linearly-

separable case. When trying to upper-bound the number of mistakes, it is
worth considering an alternate classifier U that provides an alternate feedback
l∗t = l(xt, U, yt, ỹt). By construction, if the data vectors are separable under
OVA constraints (see eq. (8-9)), there exist at least one classifier U such that
∀(t, ỹt), l∗t = 0. In that case, the following theorem holds:

Theorem 1. Let (x1, y1), ..., (xT , yT ) be a sequence of separable examples
where xt ∈ Rd, yt ∈ {1, ..., K} and ‖ xt ‖6 R for all t, let ỹ1, ..., ỹT be a
sequence of responses, with ỹt ∈ {1, ..., K}, and let U ∈ RKd be such that
∀t, l∗t = 0. Then, assuming C →∞, the cumulative squared loss of algorithm
1 is bounded by:

T∑
t=1

l2t 6 R2 ‖ U ‖2 (14)

(proof in Appendix A)
The result obtained in that case is formally similar, and even slightly

tighter2, than the one obtained by Crammer et al. (2006) in the multiclass
case. Note however that the reference classifier U being defined in RKd, while
observation vectors are in Rd, a linear dependence on the label set cardinality
K is to be expected.

This result states, in short, that a finite number of updates is needed to
fit the classification constraints expressed by the observed series of losses.
In particular, for large series (ỹ1, ..., ỹt, ...), there is a point t∗ at which all
subsequent observed losses are equal to zero. This result grants the classifier
finite complexity in the separable case whatever the number of samples.

There is however an important caveat to be mentioned. Indeed, given the
(ỹ1, ..., ỹT ) sequence, only T feedbacks signals out of KT potential feedbacks
are actually read, and each separatrix wk relies on a sub-series of observations
{t : ỹt = k}. The sequence probes the environment without necessarily un-
covering all of it. The theorem provides a bound on the observed cumulative
loss, ignoring every unobserved losses. Consequently, the loss (or squared
loss) is not an upper bound of the classification mistake. The theorem thus
does not guarantees that every example will be correctly classified in the

2using a relative hinge-loss, the multiclass upper bound is 4R2 ‖ U ‖2.
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end. This would depends on (i) the particular policy followed in the course
of learning and (ii) additional assumptions on sample regularity.

Let us now consider that a fixed policy is applied throughout the session,
and let us assume that every sample x from class k lies in a convex set Ck
(observation sets convexity). Considering the theorem grants a zero loss after
a fixed number of updates, let us note W ∗ this zero-loss final classifier and
t∗ the date of the final update. Then ∀k ∈ 1, ..., K,

Greedy deterministic policy. If ỹ1, ..., ỹt, ... obey to a greedy deterministic
choice, i.e.

∀t ∈ {1, ..., T}, ỹt = h(xt) = argmax
l∈{1,...,K}

〈wl,t, xt〉

and if ∃t ≥ t∗ such that ỹt = yt = k, then, as lt is satisfied by W ∗, 〈w∗k, xt〉 ≥
1. Then, if ∃x ∈ Ck with h(x) 6= k, the zero-loss constraint implies that
〈w∗k, x〉 < 〈w∗h(x), x〉 ≤ −1. Then, following the convexity assumption, ∃ρ ∈
[0, 1] such that xρ = ρx + (1 − ρ)xt ∈ Ck with −1 < 〈w∗k, xρ〉 < 1, so that
l(xρ,W

∗, k, h(xρ)) 6= 0 in any case, which breaks the zero loss condition. So,
@x ∈ Ck with h(x) 6= k, i.e. every sample from Ck is correctly classified.

Random uniform policy. If ỹ1, ..., ỹT obey to a uniform random choice (inde-
pendent from W ), i.e.

∀t ∈ {1, ..., T}, P (Ỹt = l) =
1

K

the separatrix wk is probed on average T/K times. By a simple combinatorial
argument, the chance not finding t > t∗ such that ỹt = yt = k exponentially
decreases with t− t∗.

ε-greedy policy. Finally, an ε-greedy choice, i.e.

∀t ∈ {1, ..., T}, P (Ỹt = l) = (1− ε)δ(l, h(xt)) +
ε

K

with a (fixed) exploration parameter ε ∈ [0, 1] alternates between uniform
sampling and greedy choice. Then, finding t > t∗ such that ỹt = yt = k
is provided almost surely by the uniform sampling, while the greedy choice
combined with the convexity assumption leverages the correct classification
of every sample belonging to class k.

We consistently adopt an ε-greedy approach in simulations, i.e. comply
with the Kakade et al. (2008) formula.
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3.3. Stationary case
If we turn now to an arbitrary classifier U , i.e. do not take for granted the

separability assumption, then, for any given dataset, the following theorem
holds :

Theorem 2. Let (x1, y1), ..., (xT , yT ) be a sequence of examples where xt ∈
Rd, yt ∈ {1, ..., K} and ‖ xt ‖6 R for all t, let ỹ1, ..., ỹT be a sequence
of responses, with ỹt ∈ {1, ..., K}. Then for any U ∈ RKd, and assuming
C →∞, the cumulative squared loss of algorithm 1 is bounded by:

T∑
t=1

l2t 6

R ‖ U ‖ +2

√√√√ T∑
t=1

(l∗t )
2

2

(proof in Appendix B)
This bound is once again similar to that obtained by Crammer et al.

(2006) in the supervised case. It tells in short that, for large T , the average
squared loss will be in the worst case four time that of any linear classifier
U (including that of a loss-minimizer classifier U∗). In approximation3, the
final loss is thus expected to be on average twice that of the best classifier.
As shown in Crammer et al. (2006)), this error bound is less tight than that
of Freund and Schapire (1997), and additional regularization (with finite C)
is needed to attain O(

√
T ) regret, we do not develop here for brevity.

Given the aggressiveness of the algorithm, this “loss-doubling” can be
interpreted the following way: in the long run, each non-zero loss encountered
is expected to provoke an aggressive (overfitting) update, that will need on
average a same amount of loss in subsequent rounds to recover. When the
proportion of outliers is not to strong, the separability assumption can be seen
as a boundary condition to which the classifier periodically returns between
temporary excursions throughout disrupting updates and recovery.

Like previously, this result is not a strict bound on the classification error,
for a mere sample of the total OVA losses is visited in one run. The separable
case is now the boundary condition toward which the classifier continually
returns, for which specific policies need to be assumed to provide effective
final classification (see previous section).

3.4. Gradient-descent approach

3If the loss variance is small, i.e. 〈l2t 〉t ' 〈lt〉2t .
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Algorithm 2 H-horizon Stochastic Gradient Descent (SGD)
Parameters: ε, η, λ, H
Set W ← ~0, n← 0, binf ← 1
for t in [1, . . . , T ] do
Read xt
Choose ỹt
Read ft = δ(yt, ỹt)

lt ←
[
1 + (1− 2ft)〈W,X ỹt

t 〉
]
+

if lt > 0 then
n← n+ 1
αn ← η(2ft − 1)
Store Xn = X ỹt

t

if n > H then
binf ← n−H + 1
Erase Xn−H from memory

end if
for i in [binf, ..., n− 1] do
αi ← (1− ηλ)αi

end for
W ←

∑n
i=binf

αiXi

end if
end for

Aside the quadratic optimization setup presented above, the gradient-
based approach to sparse online discriminative classification, as proposed by
Kivinen et al. (2004), relies on minimizing the regularized risk:

R(W ) = E
[
l +

λ

2
‖W‖2

]
with λ a regularization parameter.

Taking lt as in eq.(11), the regularized risk gradient estimator at each
step t can be shown to be:

gt =

{
λWt−1 + (1− 2δ(yt, ỹt))X

ỹt
t if lt > 0

λWt−1 elsewhere (lt = 0)

and a stochastic gradient descent approach with learning parameter η pro-
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vides the following update:

Wt =

{
(1− ηλ)Wt−1 − η(1− 2δ(yt, ỹt))X

ỹt
t if lt > 0

(1− ηλ)Wt−1 elsewhere (lt = 0)

In practice, the classifier output remaining unchanged when lt = 0, and,
following a conservative approach, we omit the update in that case.

Then, the classifier can be made explicit in the form of a sum over obser-
vation vectors :

Wt =
t∑

t′=1

αt′X
ỹt′
t

with:
αt′ = 1{lt′>0}(1− ηλ)σt−σt′−1η(2δ(yt′ , ỹt′)− 1)

with 1{u} equal to 1 when u is true and 0 elsewhere, and σt the number of
updates at time t, i.e.

σt =
t∑

t′=1

1{lt′>0}

and the cardinality of the non-zero coefficients correspond to the number of
observation vectors effectively stored in memory.

Then, following Kivinen et al. (2004), a strict control on the number of
prototype vectors may be imposed, though “old” coefficients exponentially
vanish while new updates take place. A H-horizon truncation principle may
be adopted, with every αt′ such that σt − σt′ > H set to 0. The truncation
error can then be shown to exponentially decrease with H (see Kivinen et al.
(2004)). This approach is of course well-adapted to the non-stationary case,
where context-related categories change over time.

3.5. Kernel Extension
The extension of the linear discriminant setup to RKHS (Reproducible

Kernel Hilbert Space) redescription spaces allows to deal with non-linearly
separable learning sets at the cost of additional free parameters (kernel spe-
cific parameters).

Let K(., .) a mapping from Rd×Rd to R+ having the reproducing property
(see Schölkopf and Smola (2002)). Let K(x, .) be the projection of example
x in H. Then, by construction, a scalar product 〈., .〉H in H is such that:

∀w ∈ H, 〈w,K(x, .)〉H = w(x)
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Keeping previous notations, each classifier W = (w1, ..., wk) is now defined
in HK and:

Xk , (0(.), ...,K(x, .), ..., 0(.)) ∈ HK (15)
|
k

with 0(.) a null function. Then, taking:

〈W,Xk〉 , 〈wk,K(x, .)〉H = wk(x)

all previous definitions an results apply in the redescription space.
In particular, considering algorithm 1 and noting αt = lt

K(xt,xt)+ 1
2C

(2ft−1),
we have:

Wt =
t∑

t′=1

αt′X
ỹt′
t′

so that, taking definition (15), and setting ∀k, Tk,t = {t′ ≤ t : ỹt′ = k and lt′ >
0}, each separatrix wk,t is now defined by a set of prototypes {xt′}t′∈Tk,t so
that

wk,t =
∑
t′∈Tk,t

αt′K(xt′ , .)

The total number of prototypes is incremented each time a non-zero loss
is read out. From theorem 1, we know this number is bounded since every
dataset is separable in infinite-dimensional redescription spaces.

4. Experiments

4.1. Datasets
Different algorithms are evaluated on two synthetic and three real-world

datasets. Their principal characteristics are provided in table 1.
Under the contextual bandit setup, most numerical experiments found

in literature concentrate on text-mining applications (see for instance Cram-
mer and Gentile (2013)), having both large dimensional sparse vector text
representations, a large number of examples, and up to 30-50 labels. Such
databases provide a good testbed for realistic scale constraints, with linear
models generally effective to separate the data. In order to both test scaling
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Table 1: Five datasets considered, with n the number of instances, d the vectors dimension
and K the number of labels.

Dataset n d K
SynSep 105 400 9
SynNonSep 105 400 9
RCV1-v2 105 47236 53
Segment 2310 19 7
Pendigits 7494 16 10

and sparsity, we here both consider text mining databases and more tra-
ditional machine learning databases, having smaller memory footprint but
stronger non-linear constraints.

Our two first datasets mimick text documents vectors, with small 400-
dimensional vocabulary. 105 instances, belonging to 9 different classes, are
generated. The detailed construction of those datasets is given in Kakade
et al. (2008). In the first one, called SynSep, the different classes are lin-
early separable. In the second one, called SynNonSep, a 5% label noise is
introduced, rendering the dataset non separable.

The third dataset comes from the Reuters RCV1-v2 collection (see Lewis
et al. (2004)). This dataset is a typical text mining setup, containing both
high dimensional vectors (47,236 vocabulary entries) and a large number of
instances (105). The original dataset contains multi-label instances. In order
to fit the single label setup, we adopt the preprocessing method proposed by
Bekkerman and Scholz (2008), issuing a 53-class dataset.

The two last datasets are typical machine learning real-world datasets,
having a smaller number of instances and a smaller dimension, allowing to
test sparsity in the Kernel embedding case. The fourth dataset, named Seg-
ment (UCI’s Image Segmentation Data Set – Lichman (2013)), owns 2310
instances. Each feature vector is build from 3 × 3 pixels excerpts from nat-
ural images, with 19 features per instance and 7 classes. The fifth dataset,
named Pendigits (UCI’s Pen-Based Recognition of Handwritten Digits Data
Set – Alimoglu et al. (1996)), is based on the preprocessed (normalization
and downsampling) of (x, y) coordinate encoded handwritten digits. It owns
7494 instances, with 16 features per instance and 10 classes.
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4.2. Algorithms

Table 2: Parameters setting for different algorithms and different datasets. P stands for
Perceptron, PA for Passive Agressive, B for Banditron, C for Confidit, BPA for the
Bandit Passive Aggressive (algorithm 1), K-B for the kernel Banditron, K-BPA for the
kernel realization of BPA (algorithm 1) and K-SGD for the kernel realization of SGD
(algorithm 2).

Dataset P PA B C BPA
Synsep ∅ C →∞ ε = 0.014 η = 103 ε = 0.4

C →∞
SynNonSep ∅ C = 10−2 ε = 0.65 η = 103 ε = 0.8

C = 10−2

RCV1-v2 ∅ C = 10−2 ε = 0.4 η = 102 ε = 0.2
C = 10−2

K-B BPA K-BPA K-SGD
Segment σ = 1 ε = 0.3 σ = 1 σ = 1

ε = 0.1 ε = 0.3 H = 200
Pendigits σ = 10 ε = 0.3 σ = 10 σ = 10

ε = 0.1 ε = 0.3 H = 500

Only online learning methods are here considered for comparison. For a
given dataset, each instance is presented once. The classifier update starts
right after the first instance presentation, and finishes at the last one. For
each instance, a single response is carried out, and a single corresponding
feedback is obtained.

For comparison, both full-feedback and one-bit feedback learning setups
are tested:

• The multiclass perceptron (see Duda et al. (1973)) and the multiclass
passive-aggressive setup (see Crammer et al. (2006)) have a full feed-
back at disposal.

• The Banditron (Kakade et al. (2008)), Confidit (Crammer and Gentile
(2013)), and our algorithms BPA (algorithm 1) and HGD (algorithm
2) only have a one-bit feedback at disposal.

In the specific kernel case (Segment and Pendigits databases), the non-
separability assumption allows to withdraw the stiffness parameter, i.e. to
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consider C → ∞. The Kernel function used in simulations is the Laplacian
kernel, i.e. :

K(x, y) = exp

(
−‖ x− y ‖

σ

)
whose radius is set by parameter σ > 0. The Confidit Algorithm, for which
the kernel extension is not straightforward, is not tested in that case.

In order to faithfully compare the methods, the different parameters (if
any) are calculated by cross-validation over the final classification rate. The
resulting parameters, as used in simulations, are given in table 2.

4.3. Metrics
The metrics used to compare the different algorithms are the cumulative

error rate and the average error rate.

• The cumulative error rate is defined at each round t as the sum of errors
until t, i.e.:

Mt =
t∑

t′=1

1ŷt′ 6=yt′

with ŷt as defined in eq. (2).

• The average error rate, carried out over 100-round sliding windows,
allows for a more refined estimate of the continuing improvement over
learning sessions, i.e.:

∀t > 99, m̄t =
1

100

t∑
t′=t−99

1ŷt′ 6=yt′

Remark. Both the Banditron and our bandit reduction to the OVA Passive-
Aggressive setup (Algorithm 1) use an ε-greedy exploration policy, that has
direct effect on the classification rate, for the actual response ỹt differs from ŷt
in a proportion equal to ε. This residual exploration error persists whatever
effective the classifier W is at separating the data. In order to properly
compare algorithms, we need to evenly evaluate improvement across ε values,
i.e. only use the internal noise-free estimate ŷt for evaluation.

Under the kernel approach, the number of prototype vectors is expected
to grow up across the learning session, making the response delay grow in
proportion. The actual calculation time ct is measured at each round during
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learning sessions, and an average over 100 ms sliding windows is calculated
as follows:

∀t > 99, c̄t =
1

100

t∑
t′=t−99

ct′

4.4. Results
We investigate on Figure 1 the effect of the exploration parameter ε on the

final classification rate, for the Banditron and the Bandit Passive-Aggressive
(algorithm 1). Apart from better final classification rate, the passive aggres-
sive setup is shown insensitive to variable ε, on contrary to the Banditron
having a known exploration rate dependence. Greedy exploitation and pure
exploration show similar effectiveness in our case. In practice, this result al-
lows consider decreasing exploration rates over learning sessions, for to take
advantage of the classification rates attained in the course of learning.

The Perceptron, Passive-Aggressive (PA), Banditron, Confidit and Ban-
dit Passive Aggressive (BPA) cumulative errors are compared on figure 2 over
the SynSep, SynNonSep and Reuters RCV1-v2 datasets.

The first dataset being linearly separable, a final error bound is rapidly
attained by all methods except for the Banditron showing only a monotonic
decrease of the error rate. The convergence is shown even faster for the
supervised methods (Perceptron and PA), for barely 20 errors are observed
over 105 instances.

In the SynNonSep case, as the 5% label noise is irreductible, all methods
show a linear growth of the cumulative error. However, the slower increase
seen on Confidit and BPA point out a better resilience to label noise, when
compared to the supervised setup. This resilience, that was noticed in Cram-
mer and Gentile (2013) and Ngo et al. (2013), thus extends here to the BPA
approach.

The Reuters RCV1-v2 database provides a scale-realistic testbed. The
sub-linear cumulative error rate shown by all methods indicate that learning
is effective in all case, with, however, a clear gap between the Banditron and
the other methods. In detail, the two supervised algorithms outperform by
little BPA, followed by Confidit, and then the Banditron far behind. The first
four methods show almost similar final slopes, on contrary to the Banditron
showing a higher final error rate (see figure 1). The good performances
of BPA and Confidit are noticeable here, for the number of classes is high
(53) and the labelling information consequently very scarce. Moreover, the

18



Exploration rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
in

a
l 
e
rr

o
r 

ra
te

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
SynNonSep

Banditron
BPA

Exploration rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
in

a
l 
e
rr

o
r 

ra
te

0

0.05

0.1

0.15

0.2

0.25

0.3
Reuters

Banditron
BPA

Figure 1: Banditron and Bandit Passive Aggressive (BPA) final error rate in function of
the exploration rate ε, on SynNonSep (top) and Reuters (bottom) datasets. Parameters
are in table 2.
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marked prevailing of BPA over Confidit is also noticeable for its algorithmic
complexity is much less4.

The Segment and Pendigits datasets, to which Linear BPA, kernel BPA,
kernel SGD and kernel Banditron are applied on figures 3 and 4, present a
dramatic decrease in size, with vectors of only 19 features in Segment and
only 16 in Pendigits. These more reduced feature spaces are counterbalanced
by a stronger non-separability, that dictates the use of kernel methods. On-
line learning with kernels being generally burdened by the increasing size
of the prototype vectors set (see Kivinen et al. (2004)), we check here for
the sparsity of the different setups. In particular, we compare the K-BPA
native sparsity (algorithm 1) with the explicit sparsity control of the SGD
method (algorithm 2), while the linear BPA provides a baseline reference,
and the kernel-Banditron illustrates the upper bound computational cost of
a non-sparse update.

The increasing computational cost over time is shown on figure 3. Apart
from the linear BPA baseline constant cost, all kernel-based setups show a
monotonic increase over time, with the most parsimonious trend obtained
by the K-SGD, followed by the K-BPA, and then the K-Banditron constant
trend. The computational cost of a learning session is consequently 0(T ) for
the linear BPA (best case), O(T 2) for the K-Banditron (worst case) and in
between for the two other cases. The BPA algorithm is expected to reach
a constant cost after the final number of prototypes is reached, this number
being set to 200 on the Segment database and 500 on the Pendigits one. A
plateau is roughly observed after 1000 trials on the Segment database, while
a continuing complexity rise is observed at slow rate in the other case. The
K-BPA, while still more costly, shows a very close-by trend on the Segment
database, and a more marked difference on the Pendigits database. These
results confirm in general the sparsity effectiveness, and the subsequent re-
duced computational cost, of the K-BPA setup.

Now turning to the classification rates, the cumulative errors obtained
by the linear BPA, kernel BPA, kernel SGD and kernel Banditron on the
Segment and Pendigits databases are shown on figure 4. The first thing
to be noticed is the prevailing of the Kernel setups over the linear one in
both cases, and particularly on the Segment database where the linear BPA

4Confidit uses a second order sample covariance estimate, this covariance matrix being
reduced to a mere diagonal in the high-dimensional case (see Crammer and Gentile (2013)).

21



Figure 3: Linear BPA (algorithm 1), kernel BPA (algorithm 1), kernel SGD (algorithm 2)
and kernel Banditron average computational cost over trial number on Segment (top) and
Pendigits (bottom) databases. Parameters are in table 2.
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Figure 4: Linear BPA (algorithm 1), kernel BPA (algorithm 1), kernel SGD (algorithm 2)
and kernel Banditron cumulative errors over trial number on Segment (top) and Pendig-
its(bottom) databases. Parameters are in table 2.
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hardly shows improvement over time. The banditron is generally close to
this worst-case scenario, while the K-SGD, despite a good initial startup,
experience difficulty to capitalize improvement over time (more particularly
on the Pendigits case). In contrast, the kernel BPA is clearly found to out-
perform the other methods, in particular regarding the final error rate: the
final less than 2% error rate obtained on the Pendigits database (not shown)
overtakes the other methods, but also approaches the state-of-the-art classi-
fication rates obtained in offline/full feedback settings.

5. Conclusion

We have shown that a conservative reduction of the OVA hinge-loss pro-
vides an effective and lightweight solutions to the bandit classification prob-
lem (as defined by Kakade et al. (2008)). In particular, when adapting the
passive aggressive setup proposed in the supervised case by Crammer et al.
(2006), we prove similar bounds on the observed cumulative squared loss.
Here, however, the bound is not an upper bound of the classification error.
Additional regularity assumptions, such as observation sets convexity, or a
partly uniform sampling of the label space, need to be considered to provide
comparable upper error bounds. In addition, as in Crammer et al. (2006),
a soft margin stiffness parameter C needs to be optimized to reach O(

√
T )

regret in the stationary case.
The numerical simulations provide favorable results on both large scale

text mining datasets and non-linearly separable machine learning datasets.
When comparing our approach with the Banditron, a first result is the explo-
ration parameter ε insensitivity, allowing to consider ε decrease over time in
practical implementations. When comparing with confidence-based second-
order contextual bandit approaches (see Crammer and Gentile (2013)), our
approach also shows favorable results on a scale-realistic dataset, while own-
ing a much lesser complexity. A good resilience to label noise is also shown
on a synthetic dataset, for the passive-aggressive method encompass a soft
margin principle allowing to efficiently deal with outliers.

In complement, a kernel approach was implemented on non-linearly sep-
arable datasets, and shown effective when both considering sparsity (such as
addressed by Kivinen et al. (2004)), and final classification accuracy, with,
for instance, a close to state-of-the-art 98% final accuracy observed after one
pass on the Pendigits 10-class problem.
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In conclusion, our approach provides many practical advantages when
considering the bandit classification problem, among which (i) simplicity,
with easy algorithmic implementation, (ii) linear scaling in space, (iii) spar-
sity, (iv) linear scaling to the labels space cardinality, (v) kernel compatibility
and (vi) resilience to label noise. It moreover reveals surprisingly effective
when compared to the more elaborate noise-aware UCB-like setups. This is,
to our best knowledge, the first adaptation of sparse online learning principles
to the bandit case, providing avenue toward effective kernel implementations
of non-linearly separable contextual bandit setups. Our OVA reduction may
even generalize to slightly more demanding tasks, like the multi-label setup
generally considered in recommender systems. Complement investigations
are however needed to address both the non-stationary and adversarial cases.
The H-horizon window approach, as proposed by Kivinen et al. (2004), may
in some cases be substituted, for it shows both effectiveness, sparsity and
adaptivity in simulations.

From a more general standpoint, the bandit classification problem im-
plements a form of active learning in scarcely labeled environments, with a
limited (1 bit) information budget at each round. Apart for text mining and
recommender systems, it would probably need additional developments to
reach full relevance in real-world problems having both a sequential organi-
zation and undergoing a strict “win-or-loose” return. In the case of artificial
games, for instance, both multiple moves and temporal credit assignment (see
Sutton and Barto (1998)) would need to be considered in addition. Prob-
lems implying non-vectorial spaces (like graph spaces) and corresponding
similarity metrics may also be addressed, just like it is the case for other
margin-based risk-minimizer techniques (see Chen et al. (2009)).
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Appendix A. Proof of Theorem 1

Proof. Define ∆t to be:

∆t =‖ Wt−1 − U ‖2 − ‖ Wt − U ‖2
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Summing ∆t over all t from 1 to T collapses to:
T∑
t=1

∆t =
T∑
t=1

(
‖ Wt−1 − U ‖2 − ‖ Wt − U ‖2

)
=‖ W0 − U ‖2 − ‖ WT − U ‖2

Given that W0 = ~0,
T∑
t=1

∆t =‖ U ‖2 − ‖ WT − U ‖26‖ U ‖2 (A.1)

Using the definition of update :

∆t = −2

〈
Wt−1 − U, (2ft − 1)

lt
‖ xt ‖2

X ỹt
t

〉
−
∥∥∥∥ lt
‖ xt ‖2

X ỹt
t

∥∥∥∥2
So, taking ‖ X ỹt

t ‖=‖ xt ‖, it comes:

∆t =2lt
(1− 2ft)〈Wt−1, X

ỹt
t 〉 − (1− 2ft)〈U,X ỹt

t 〉
‖xt‖2

− l2t
‖ xt ‖2

Then, noting that:

lt = [1 + (1− 2ft) · 〈Wt−1, X
ỹt
t 〉]+

l∗t = [1 + (1− 2ft) · 〈U,X ỹt
t 〉]+

that ∆t = 0 when lt = 0, and that l∗t ≥ 1 + (1− 2ft) · 〈U,X ỹt
t 〉, it comes :

∆t >2lt
lt − l∗t
‖ xt ‖2

− l2t
‖ xt ‖2

=
l2t − 2ltl

∗
t

‖ xt ‖2

Given that U is such that ∀t ∈ [1, ..., T ] , l∗t = 0,

⇒‖ U ‖2>
T∑
t=1

∆t >
T∑
t=1

l2t
‖ xt ‖2

>
T∑
t=1

l2t
R2

⇒
T∑
t=1

l2t 6 R2· ‖ U ‖2
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Appendix B. Proof of Theorem 2

Proof. From the proof of Theorem 1,

T∑
t=1

l2t 6 R2· ‖ U ‖2 +2
T∑
t=1

ltl
∗
t

To upper bound the right side of the above inequality, we denote at =√∑T
t=1 l

2
t and bt =

√∑T
t=1(l

∗
t )

2,

2(atbt)
2 − 2(

T∑
t=1

ltl
∗
t )

2 =
T∑
i=1

T∑
j=1

l2i (l
∗
j )

2 +
T∑
i=1

T∑
j=1

l2j (l
∗
i )

2

− 2
T∑
i=1

T∑
j=1

liljl
∗
i l
∗
j

=
T∑
i=1

T∑
j=1

(lil
∗
j − ljl∗i )2 > 0

T∑
t=1

l2t 6 R2· ‖ U ‖2 +2
T∑
t=1

ltl
∗
t 6 R2· ‖ U ‖2 +2atbt

then considering:
a2t − 2atbt + b2t 6 R2 ‖ U ‖2 +b2t

we obtain :
at 6 bt +

√
R2 ‖ U ‖2 +b2t

and using the fact that
√
a+ b 6

√
a+
√
b,

at 6 R ‖ U ‖ +2bt

so that :
T∑
t=1

l2t 6

R ‖ U ‖ +2

√√√√ T∑
t=1

(l∗t )
2

2
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