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Abstract  27 

Many phytophagous insects are agricultural pests, and control methods require accurate 28 

monitoring and decisions based on the determination of population age structure. The 29 

reproductive output (fecundity, egg size and percent egg hatch) is a central life history trait 30 

because it determines the offspring number, and temporal oviposition patterns are of primary 31 

importance in conditioning larval hatching and the occurrence of later larval instars in time. In 32 

turn, these phenomena determine the window for natural enemy attack and thus impact the 33 

context of biological control programs. In addition, for most phytophagous insects, the quality 34 

of the host plants that larvae consume determines the insects’ reproductive output. The 35 

purpose of the present study was to determine whether the number of eggs laid, egg size and 36 

egg hatch percentage vary with female age and the cultivar on which females develop as 37 

larvae, as well as the temporal effects of these parameters. This determination was performed 38 

in laboratory experiments where larvae were reared on artificial diets based on dried fruits of 39 

seven cultivars. Our results showed that the cultivars had a significant effect on female 40 

temporal oviposition. Independent of the food tested, the numbers of oviposited eggs, their 41 

size and percent egg hatch decreased with daily oviposition rank. Such temporal patterns must 42 

be incorporated in age-structured mathematical models used in the design of control 43 

strategies. Temporal oviposition and variation in egg quality traits will also be useful in 44 

biological control programs, especially when based on egg or larval parasitoids, which is thus 45 

discussed. 46 

 47 

Keywords: Lobesia botrana, fecundity, egg size, percent egg hatch, cultivars, female age 48 

 49 
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Key message 50 

• In insects, temporal oviposition and hatching success are critical to reproductive 51 

success and in determining population age structure and the windows in which 52 

juvenile and other instars are available to parasitoids.  53 

• We hypothesized that variability in larval food would influence the temporal 54 

characteristics of female oviposition and several egg quality traits of Lobesia botrana.  55 

• We found a significant effect of grape cultivar on the temporal oviposition and egg 56 

quality traits.  57 

• These results could be useful for adjusting the release of the natural enemies of eggs in 58 

biological control strategies and for age structure population temporal models.  59 

 60 

 61 

62 
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Introduction 63 

 64 

The abundance of phytophagous insects and the optimal regulation of their interactions with 65 

their trophic resources are determined by numerous interacting biotic and abiotic factors. 66 

Consequently, substantial literature on phytophagous insects has been devoted to 67 

understanding the factors that govern female reproductive output because this output 68 

determines the potential number of offspring produced. The female reproductive output 69 

depends on at least three determinant life history traits: fecundity, egg size and percent egg 70 

hatch. The number of eggs laid by a female is clearly important to determine their 71 

reproductive potential, but egg size (often correlated to percent egg hatch) is also considered a 72 

crucial reproductive parameter. Numerous studies have examined the relationship between 73 

egg size and fitness components of the progeny. Such studies often demonstrate that within a 74 

species, small eggs are less likely to hatch (Fox and Czesak 2000 and references therein), and 75 

hatching individuals from larger eggs have higher fitness than those from smaller eggs 76 

(Karlsson 1989; Fox and Czesak 2000; Roff 2002; Torres-Vila and Rodriguez-Molina 2002).  77 

Many insect species are pests and are responsible for huge annual losses in global crop 78 

production (Thacker 2002). Most of the control methods currently used to increase crop 79 

production rely on accurate monitoring and decisions, which require precise information on 80 

the biology and the ecology of the pest (Tammaru and Javois 2000). In capital breeder insects 81 

(whose individual reproductive potential is limited by the nutrition ingested during the larval 82 

stages), larval food quality is one of the most important factors that determine female 83 

reproductive output (Awmack and Leather 2002). Several studies have shown the influence of 84 

plant quality on larval development, larval survival, and female reproductive output (Awmack 85 

and Leather 2002; Thiéry and Moreau 2005; Moreau et al. 2006a; 2006b; 2007). However, 86 

most studies have considered the effect of the host plant on fecundity, egg size and percent 87 
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egg hatch without considering the temporal effect on these life history traits. This information 88 

is lacking because for the same fecundity, the temporal oviposition pattern could be 89 

dramatically different. For instance, all eggs could be laid in a single session, or an equal 90 

number of eggs could be laid each day throughout the life of the female. These different 91 

temporal oviposition patterns can lead to differences in population growth rate and the timing 92 

of further larval instars. They can also influence biological control management by modifying 93 

the optimal windows of attack for natural enemies (e.g., egg parasitoids or predators and 94 

larval parasitoids). Information on temporal oviposition is needed for progress in the study of 95 

pest population age structure determination and the construction of basic life tables (Carey 96 

2001 for a review; Ainseba et al. 2011; Farahani et al. 2012). To our knowledge, only a few 97 

studies have examined the effect of the host plant on temporal oviposition (see Hafiz 2006; 98 

Samih and Izadi 2006), and no studies have examined the egg size and percent egg hatch 99 

throughout the oviposition period, which are necessary for a complete understanding of the 100 

variation in insect oviposition and integration into life history tables. 101 

The European grapevine moth, Lobesia botrana (Denis and Schiffermueller, 102 

Lepidoptera: Tortricidae), is certainly the most harmful grape pest in Europe, north Africa and 103 

west Asia (Bovey 1966; Roehrich and Boller 1991; Iorati et al. 2011; Thiéry et al. 2014;), and 104 

its recent introduction to Chilean and California vineyards highlights the problem of pest 105 

management (Gutierrez et al. 2012; Varela et al. 2013). Lobesia botrana may cause serious 106 

damage to the grape directly by consuming flower clusters and fruits, or by facilitating 107 

infection by pathogenic fungi such as grey mould disease, Botrytis cinerea (Persoon, 108 

Helotiales: Sclerotiniaceae), or black mould, Aspergillus spp. (Micheli, Eurotiales: 109 

Trichocomaceae) (Cozzi et al. 2006; Thiéry 2008; Delbac and Thiéry 2015). It may also 110 

facilitate attack by secondary pests, including fruit flies (Barata et al. 2012) such as 111 

Drosophila melanogaster (Meigen, Diptera: Drosophilidae) (Gravot et al. 2001) and D. 112 
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suzukii (Matsumura, Diptera: Drosophilidae) (Rouzes et al. 2012). Therefore, L. borana is a 113 

highly problematic pest in vineyards and requires permanent monitoring and control (Thiéry 114 

2008; 2011; Ortega-Lopez et al. 2014). This pest is an ideal candidate for testing the effect of 115 

the host plant on temporal oviposition because (i) previous studies have shown strong effects 116 

of cultivars where larvae feed on both larval developmental and reproductive life history traits 117 

(Moreau et al. 2006a; 2006b; 2006c; 2007; Thiéry et al. 2014) and (ii) information on 118 

temporal oviposition is needed for advancements in grape pest mathematical models (Ainseba 119 

et al. 2011). 120 

The present work focuses on the temporal oviposition of the main pest of European 121 

vineyards and on how the host plant can affect this temporal pattern. Therefore, we determine 122 

whether the cultivar on which the females feed as larvae affect the number of eggs laid, egg 123 

size, and egg hatch percentage, as well as the temporal patterns of these three life history 124 

traits. To examine this dependence, we conducted laboratory experiments by rearing larvae on 125 

artificial diets derived from seven different cultivars (Chardonnay, Chasselas, 126 

Gewurztraminer, Grenache, Merlot, Pinot and Riesling). We then measured individual female 127 

oviposition based on time, egg size and percent egg hatch. 128 

  129 

Materials and Methods 130 

 131 

Study system, origin and maintenance of moths 132 

 133 

The strain of L. botrana (INRA Bordeaux) used for this study originated from individuals 134 

collected in a French Sauternes vineyard (cultivar Semillon) in 1997, to which wild adults are 135 

periodically added. This rearing line is maintained with a substantial number of caged adults 136 

(several thousand a week) to avoid genetic drift. This laboratory strain has conserved genetic 137 
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variability because considerable variation is found in the larval and adult behaviours and in 138 

larval immune parameters (Vogelweith et al. 2011). The stock colony is maintained without 139 

diapause on a semi-artificial diet (as described in Thiéry and Moreau 2005), with the 140 

following composition: 150 ml water, 3 g agar, 9 g maize flour, 11 g wheat germ, 9 g yeast, 141 

0.9 g ascorbic acid, 0.3 g benzoic acid, 0.3 ml maize oil, 0.3 g nipagin, and 0.2 g iprodione, at 142 

24 ± 1 °C, 60 ± 10% RH with a photoperiod 15: 8 h light/dark + 1 of dusk. The first 15-143 

photophase hours were at 1000-lux luminosity, and the last hour (dusk) was at 25 lux. All 144 

tests were performed under these conditions.  145 

 146 

Larval diet treatments and general procedure 147 

 148 

The influence of different grape cultivars on L. botrana was tested using a standardized 149 

procedure (Thiéry and Moreau 2005; Moreau et al. 2006a; 2006b). Compared to direct 150 

feeding on bunches in the laboratory or in the field, this procedure has at least three main 151 

advantages: a) feeding isolated larvae prevents competition and subsequent food deprivation; 152 

b) it prevents differences in grape bunch compactness, which impact larval feeding behaviour 153 

(our unpublished observations) and the climatic environment (temperature and insolation) of 154 

the larvae (Pieri and Fermaud 2005); and c) it prevents infections by fungi on grapes, which 155 

may affect larval fitness as shown by Savoupoulou-Soultani and Tzanakakis (1988) and 156 

Mondy and Corio-Costet (2000).  157 

To avoid immature competition, larvae were reared individually to pupation in 158 

Eppendorf tubes filled with 1.5 ml of a medium containing the following (for 100 159 

Eppendorfs): 150 ml water, 5 g agar, 6 g cellulose powder, 4 g vitamin-free casein, 3.5 g 160 

glucose, 2 g mineral salt, 0.12 g cholesterol, 0.12 g maize oil, 0.25 g benzoic acid, 0.1 g 161 

nipagin and 12 g freeze-dried grape fruit powder. Freeze dried material was obtained from 162 



8 

 

 

freshly collected grape flower clusters within 12 h of collection using a Christ alpha 1-4 LD 163 

plus device. This classic procedure preserves fresh foods (Ratti 2001) and is typically used for 164 

secondary metabolites in grapes (see Michalczyk et al. 2009). The grape cultivar dried 165 

powders were obtained from grape flower clusters of V. vinifera cv. Chardonnay, Chasselas, 166 

Gewurztraminer, Grenache, Merlot, Pinot and Riesling, all of which were harvested from our 167 

gene collection of grape plants “Domaine de la Grande Ferrade”, INRA-Bordeaux. The 168 

insecticide-free grape flower clusters were collected at the beginning of the growing season 169 

(beginning of May 2003) at phenological stages 23-27 (Eichhorn and Lorenz 1977), which 170 

correspond to the grape phenology on which the first annual generation of L. botrana larvae 171 

feeds.  172 

The Eppendorf lids were pierced to allow air circulation. Using a fine brush, newly 173 

hatched larvae (age < 8 h) were transferred individually to the diets in each Eppendorf, with 174 

100 larvae per diet (cultivar). Neonate larvae from eggs produced by thousands of caged 175 

females were randomly chosen and assigned to the different diets. Eppendorf tubes were 176 

randomized in the Eppendorf racks, which were moved within the climatic chamber every 177 

three days to minimize the effect of possible climatic gradients. 178 

The larvae from each diet were monitored daily until pupation. Two-day-old pupae 179 

were then carefully removed from the diet and weighed to the nearest 0.1 mg. Because it is 180 

difficult to weigh adult moths with sufficient accuracy, we used the mass of living pupae as an 181 

index of adult body size. Pupae were then placed individually in glass tubes (70 mm x 9 mm 182 

diameter) covered with cotton plugs and stored in the test room until emergence under the 183 

same conditions previously described. Adults were sexed after emergence by checking their 184 

ventral abdominal extremity (Thiéry, 2008). 185 

All newly emerged female adults resulting from the eight larval diets were used to 186 

evaluate the temporal effect of (1) egg laying (2) egg size and (3) larval hatching. Because it 187 



9 

 

 

has been reported that the cultivars on which larvae develop can modify the female 188 

oviposition preferences (Moreau et al. 2008), we decided not to run the oviposition 189 

experiments on one specific cultivar, which may have interfered with the temporal 190 

oviposition. Thus, we used an inert substrate (i.e., considered equal for all females) where 191 

females could deposit their eggs. Newly emerged females (less than 1 day old)  were 192 

individually confined to 0.5 litre transparent cellophane bags as mating and oviposition 193 

chambers, and they were provided with water ad libitum through a soaked cotton dental wick. 194 

One- or two-day-old virgin males originating from the same diet were added to each caged 195 

virgin female 1 h before dusk, which is just before their sexual activity (Bovey 1966). Only 196 

one male was randomly assigned to each female. Pairs were caged in these bags until the 197 

death of both sexes.  198 

Females could behave and oviposit freely inside the cellophane bag until death. Each 199 

morning, the cellophane bags were checked, and new eggs laid during the previous night were 200 

marked with a specific colour outside the bags. For the analyses, only females that laid a 201 

sufficient number of eggs (> 7 eggs) during their lifetime (because non-mated females can lay 202 

only a few eggs) and that began to lay at the beginning of her life were considered to obtain a 203 

representative picture of the temporal oviposition in this species. We thus obtained the 204 

temporal oviposition for a variable number of females that depended on the sex ratio, larval 205 

survival and mating success: Chardonnay n = 33, Chasselas n = 24, Gewurztraminer n = 24, 206 

Grenache n = 20, Merlot n = 35, Pinot n = 34 and Riesling n = 29. 207 

At the end of the experiment (i.e., when the females were found dead in the bags), we 208 

randomly selected a sample of females that had laid a sufficient number of eggs each day in 209 

each cultivar to assess egg size and percent egg hatch: Chardonnay n = 14, Chasselas n = 9, 210 

Gewurztraminer n = 12, Grenache n = 9, Merlot n = 17, Pinot n = 15 and Riesling n = 10. For 211 

each selected female, three eggs from the walls of the cellophane bags were randomly 212 
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selected per oviposition day, when possible. Indeed, some females sometimes laid less than 213 

three eggs per day, particularly at the end of life. Previous studies we have done (results not 214 

shown in this paper) showed that measuring three eggs per oviposition day and per female 215 

gives the same results than if we measured more eggs whatever the oviposition rank. Each 216 

egg was then measured with an ocular micrometre. The egg surface (estimated as an elliptic 217 

surface, S = π x a x b in mm2, where a and b were the ellipse semi axes) was used as an index 218 

of egg size. The mean egg size per day was estimated for each female from this sample. To 219 

estimate daily fertility (i.e., hatching success), the measured eggs were incubated at 22°C for 220 

10 days until hatching. 221 

 222 

Statistical Analysis 223 

 224 

For all analyses, mixed effects models were performed, including the identity of the females 225 

as a random effect. The pupal mass of the females was also included to control for its 226 

potential effect. The number of eggs laid by day and cultivar was compared using negative 227 

binomial generalized linear mixed effects model (GLMM) accounting for zero-inflated data. 228 

The statistical significance of each parameter was tested with χ2-statistics for unbalanced 229 

design (Fox and Weisberg 2011). The proportion of hatching eggs was arcsine square root 230 

transformed to normalize. However, the transformed variable was not normally distributed 231 

and did not meet the assumption of homoscedasticity, as was the case for the size of eggs laid. 232 

Therefore, the proportion of hatched eggs and their size were compared among cultivars and 233 

days using a linear mixed effects model based on rank transformation (as a more powerful 234 

alternative to the classical nonparametric Friedman test, Baguley 2012). The statistical 235 

significance of each parameter was tested with Wald χ2-statistics for unbalanced design. In 236 

each case, pairwise Wilcoxon multiple comparison post hoc tests were performed (P-values 237 
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were adjusted for multiple comparisons using the Benjamini-Yekutieli step-up procedure, 238 

Benjamini and Yekutieli 2001). The same procedure was used to analyse differences in egg 239 

size.  240 

All statistical analyses were performed using R software (v. 3.1.1, R Development 241 

Core Team 2014) and implemented using the following packages: lme4 (linear mixed effects 242 

models), glmmADMB (negative binomial generalized linear mixed effects model with zero-243 

inflated data) and car (deviance analysis for unbalanced design). 244 

 245 

Results 246 

 247 

1) Number of eggs laid throughout the oviposition period 248 

 249 

The total number of eggs laid did not differ among females fed on the different cultivar diets 250 

(GLMM: χ2 = 4.07, df = 6, P = 0.67) but varied positively according to the mass of the pupae 251 

(χ2 = 18.77, df = 1, P < 0.0001). The number of eggs laid decreased with oviposition day 252 

(female age) with the maximum of eggs laid in the first day of oviposition and with only few 253 

eggs laid at the end of the oviposition period (χ2 = 231.57, df = 6, P < 0.0001, Fig. 1). A 254 

significant interaction between cultivar and day was found (interaction cultivar x day, χ2 = 255 

62.51, df = 36, P < 0.01, Fig. 2), indicating that larval diets with different grape cultivars had 256 

an effect on female temporal oviposition. For some cultivars, such as Gewürztraminer and 257 

Pinot noir, the number of eggs laid remained stable for the first four days of oviposition and 258 

decreased for the remaining oviposition days, whereas for other cultivars, such as 259 

Chardonnay, the numbers of eggs laid decreased linearly with oviposition days (Fig. 2). 260 

 261 

2) Egg size variation throughout the oviposition period 262 
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 263 

The size of the eggs laid by females fed with different cultivars during their larval period did 264 

not differ (linear mixed effect model: χ2 = 11.45, df = 6, P = 0.08) and did not vary with 265 

female pupal mass (χ2 = 0.62, df = 1, P = 0.43). However, the size of eggs decreased with 266 

increasing days (χ2 = 340.92, df = 6, P < 0.0001, Fig. 3). There was also a significant 267 

interaction between day and cultivar (χ2 = 132.26, df = 36, P < 0.0001): for some cultivars, 268 

such as Chardonnay or Riesling, the size of eggs laid remained stable for the first four days of 269 

oviposition and then decreased, whereas for other cultivars, such as Pinot noir, the size of 270 

eggs laid decreased progressively (Fig. 4). 271 

 272 

3) Percent egg hatch throughout the oviposition period 273 

 274 

The percent of hatching eggs did not vary according to the female mass (linear mixed effects 275 

model: χ2 = 0.40, df = 1, P = 0.53) or among cultivars (χ2 = 10.44, df = 6, P = 0.11). However, 276 

the percent of hatched eggs decreased with increasing oviposition days (χ2 = 93.77, df = 6, P 277 

< 0.0001, Fig. 5), with no interaction with cultivar (interaction cultivar x day, χ2 = 38.80, df = 278 

35, P = 0.30). At the beginning of the oviposition period, approximately 90% of eggs hatched, 279 

whereas only approximately 60% of eggs hatched at the end of the oviposition period. 280 

 281 

Discussion  282 

One of the goals of the present study was to assess the temporal effect on three major 283 

life history reproductive traits of L. botrana (fecundity, egg size and percent egg hatch). Our 284 

results show that all three parameters decreased over time. The second goal of this study was 285 

to determine whether larval feeding on a diet containing different cultivars had an effect on 286 

the temporal oviposition patterns and on egg size and percent egg hatch throughout the 287 
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oviposition period. Our results clearly showed that the cultivar on which females developed as 288 

larvae had a significant effect on the temporal oviposition and egg size. However, no effect on 289 

percent egg hatch was detected. This result indicates that food characteristics associated with 290 

the immature stages affect how adult females distribute eggs over time. This phenomenon, 291 

combined with the effect of consuming different cultivars on the larval growth rates, may 292 

explain how the distribution of the next adult generation varies over time (Thiéry et al, 2014). 293 

In the context of our study, the distinction between income and capital breeding 294 

insects is important. Income breeder females mature their eggs throughout their adult life, 295 

whereas capital breeders emerge with a nearly fixed number of ovocytes (Papaj 2000). 296 

Lobesia botrana is considered a capital breeder (species with non-feeding adults); its female 297 

reproductive potential is thus limited by the resources accumulated during the larval stage 298 

(Slansky and Rodriguez 1987; Awmack and Leather 2002). In our experimental design, 299 

females lacked access to any additional food except clear water, so the resources mobilized 300 

for the egg production were derived from reserves accumulated during the larval stage 301 

(Awmack and Leather 2002). Previous studies showed that pupal mass is a good predictor of 302 

fecundity in L. botrana (Moreau et al. 2007). Egg-laying activity is under physiological 303 

pressure from the oogenesis process and oocyte formation (McDonald and Borden 1995; 304 

Chapman et al. 2013). Females used in the present study had an average egg load of 144.6 ± 305 

37.8 eggs and laid approximately 60% of its eggs in the two first days of the laying period. 306 

Subsequently, the number of eggs laid decreased daily until the death of the female. The large 307 

number of eggs laid during the first night could be adaptive because under natural conditions 308 

L. botrana adults have a relatively short life expectancy (ca. one week according to the 309 

climatic conditions) (Moreau et al. 2006a; Moreau et al. 2006b; Thiéry 2008). In addition, the 310 

predation risk for a moth is high because nocturnal insectivores often prey on moths; these 311 

predators include bats, species of owls and other species of birds (Arlettaz et al. 2000). Given 312 
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that there is a delay between encountering a mate and the first egg laid of approximately four 313 

days for a female from our rearing strain (Moreau et al. 2006a) or in the field (Moreau et al. 314 

2007), females have only a few days to lay eggs. In that case, laying a maximum number of 315 

eggs as quickly as possible could be adaptive. This phenomenon was observed, for example, 316 

in Dryas iulia (Fabricius, Lepidoptera: Nymphalidae), whose females laid the greatest number 317 

of eggs at the beginning of the laying sequence (Dunlap-Pianka et al. 1977). 318 

We showed that eggs laid on the first day of oviposition are larger than eggs laid on 319 

the subsequent days. This size decrease is consistent with previous results performed in the 320 

same species (Moreau et al. 2009). Lepidoptera ovaries structure and morphological aspects 321 

of oogenesis are well known (see Swevers et al. 2005 for a review or Chapman et al. 2012 for 322 

a book). Briefly, oocytes are produced in the germarium and begin to move down the 323 

ovariole, enlarging as they pass through the vitellarium, where yolk containing both protein 324 

and lipids is deposited on them (vitellogenesis). The fat body is the principal site of 325 

production of the major yolk protein precursor (YPP), which is vitellogenin (Vg) in most 326 

insects (Swevers et al. 2005). In many butterflies and moths, ovaries contain only 327 

previtellogenic oocytes, and vitellogenesis starts at eclosion. Therefore, their ovarioles usually 328 

contain a series of oocytes in successive stages of development. In L. botrana, we found a 329 

delay of approximately 4 days between encountering a mate and the first egg laid (Moreau et 330 

al. 2006a; Moreau et al. 2007). During this time, the first eggs have time to mature and 331 

enlarge with yolk. The only reason for the differential size is thus the amount of yolk, which 332 

is related to the decreased synthesis by the fat body or its depletion. 333 

The proportion of larvae that hatched from eggs was strongly dependent on the 334 

oviposition days; fewer eggs hatched at the end of the life of females independently of the 335 

cultivars, which is consistent with the amount of yolk in the egg. This decline can be 336 

interpreted as a result of the egg size decrease, which was clearly associated with the egg size 337 
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in that species (Moreau et al. 2006; 2007), most likely because larger eggs have the largest 338 

nutritional provisions inside, as already shown in other species (Berrigan 1991; Fox and 339 

Czesak 2000). This decrease is not due to a decrease in sperm numbers because we showed 340 

that in L. botrana, one male ejaculate contains much more spermatozoids than necessary to 341 

fertilize all female eggs (Muller et al. 2015). 342 

Our results show that the effect of the cultivar on which females developed as larvae 343 

had a significant effect on the temporal oviposition and egg size. For some cultivars, the 344 

number and the size of eggs laid remained stable for the first four days of oviposition and 345 

decreased for the remaining oviposition days, whereas for other cultivars, the numbers of eggs 346 

laid or the size of eggs decreased through oviposition days. However, no effect of cultivar was 347 

detected for percent egg hatch. This effect is very weak in comparison to the profound effect 348 

of cultivar on total number of eggs laid, total mean egg size and mean percent egg hatch that 349 

we have previously demonstrated (Moreau et al. 2006a; 2006b; 2007).  350 

We found here that time within the oviposition period affects the number of eggs laid 351 

and the probability that an egg hatches. These individual temporal effects also influence the 352 

population scale. The data provided here on time-dependent offspring production in L. 353 

botrana could also be useful for the development of age-structured mathematical models of 354 

vineyard infestation such as that developed by Ainseba et al. (2011). Therefore, we also 355 

believe that this feature needs to be incorporated in future L. botrana population age-356 

structured mathematical models. These effects of time would also influence biological control 357 

management based on egg parasitoids, predators and larval parasitoids to determine the 358 

optimal windows in which natural enemies should be released. As an example, several species 359 

of Trichogramma can be used in inundative biological control programs in a variety of crops 360 

against numerous pests (Morrison 1985; Reda Abd el-Monsef 2004; Agamy 2010; Andrade et 361 

al. 2011) including L. botrana with irregular results (Barnay 1999; Hommay et al. 2002; El-362 
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Wakeil et al. 2010). Parasitism efficiency in Trichogramma parasitoids is, of course, 363 

influenced by environmental factors (Calvin et al. 1984; Pizzol et al. 2010) and by intrinsic 364 

factors (Schmidt 1994; Pizzol et al. 2012) such as egg size, quality and age (Roriz et al. 2006; 365 

Moreau et al. 2009; Pizzol et al. 2012). Indeed, large and numerous eggs are often more 366 

conspicuous for the searching females and more suitable for the subsequent development of 367 

their progeny (Van Huis and De Rooy 1998; Moreau et al. 2009; Pizzol et al. 2012). With our 368 

results, the optimal window for parasitoids or predator release must occur when the first eggs 369 

are laid (bigger eggs and more eggs). This optimal window could be calculated because we 370 

showed that for each grape variety, the emergence of L. botrana females occurred as a single 371 

wave after approximately ten days (Thiéry et al. 2014). In addition, considering the cultivar 372 

effect on temporal oviposition could be useful when monitoring eggs in vineyards. 373 

Insecticides against the larvae (growth regulators or Bt) are mostly applied at a typical egg 374 

stage called ‘black head’, which corresponds to 2/3 of the egg incubation period. Shorter or 375 

longer oviposition periods as a function of previous generation food (i.e., the cultivar on 376 

which the female fed as larva) would thus cause, at the population and the vineyard scales, 377 

important variation in these typically monitored stages. We strongly believe that this 378 

information concerning temporal oviposition is needed to advance our knowledge of pest 379 

ecology with the aim of better biological control. 380 
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Figure legends 640 

Fig. 1 Number of eggs laid by a Lobesia botrana female according to the day of oviposition 641 

for all cultivars. Bold line: median; box: middle two quartiles; dashed lines: 1.5 × interquartile 642 

range; open circle: extreme value. The numbers inside the parentheses indicate the number of 643 

females. Columns with the same letter are not significantly different (P > 0.05) based on 644 

pairwise Wilcoxon multiple comparison post hoc tests. 645 

 646 

Fig. 2 Number of eggs laid by Lobesia botrana female according to the day of oviposition and 647 

for each cultivar where the female came from. Bold line: median; box: middle two quartiles; 648 

dashed lines: 1.5 × interquartile range; open circle: extreme value. The numbers inside the 649 

parentheses indicate the number of females. Columns with the same letter are not significantly 650 

different (P > 0.05) based on pairwise Wilcoxon multiple comparison post hoc tests. 651 

 652 

Fig. 3 Egg size according to the day of oviposition for all cultivars. Bold line: median; box: 653 

middle two quartiles; dashed lines: 1.5 × interquartile range; open circle: extreme value. The 654 

numbers inside the parentheses indicate the number of measured eggs. Columns with the 655 

same letter are not significantly different (P > 0.05) based on pairwise Wilcoxon multiple 656 

comparison post hoc tests. 657 

 658 

Fig. 4 Egg size according to the day of oviposition and for each cultivar where the female 659 

come from. Bold line: median; box: middle two quartiles; dashed lines: 1.5 × interquartile 660 

range; open circle: extreme value. The numbers inside the parentheses indicate the number of 661 

measured eggs. Columns with the same letter are not significantly different (P > 0.05) based 662 

on pairwise Wilcoxon multiple comparison post hoc tests. 663 
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Fig. 5 Proportion of hatching eggs according to the day of oviposition for all cultivars. Bold 665 

line: median; box: middle two quartiles; dashed lines: 1.5 × interquartile range; open circle: 666 

extreme value. The numbers inside the parentheses indicate the number of eggs checked for 667 

percent egg hatch. Columns with the same letter are not significantly different (P > 0.05) 668 

based on pairwise Wilcoxon multiple comparison post hoc tests. 669 
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