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Abstract

The accurate description and robust simulation at relatively low cost of a size polydisperse popu-
lation of fine particles in a carrier fluid is still a major challenge for many applications. For this
purpose, moment methods, derived from a population balance equation, represent a very interest-
ing strategy. However, one of the major issues of such methods is the realizability: the numerical
schemes have to ensure that the moment sets stay realizable, i.e. that an underlying distribution
exists. This issue is all the more crucial that some moment vectors can be at the boundary of the
moment space for practical applications, corresponding to a population of particles with only one or
a few sizes. It is then investigated here for the advection operator, for which it is particularly signif-
icant. Then second order realizable kinetic finite volume schemes are designed, with two strategies
for the fluxes evaluation based on the work of Kah et al. (J. Comput. Phys., 231:394-422, 2012)
and of Vikas et al. (J. Comput. Phys., 230:5328-5352, 2011), which are here completely revisited,
analyzed and compared in a Cartesian mesh context. For a potential easiest generalization to un-
structured meshes, simplified but still realizable versions of these schemes are also developed. The
high accuracy of all the schemes is then numerically checked on 1D and 2D test cases, with Carte-
sian meshes, and their robustness is shown, even when some moments vectors are at the boundary
of the moment space.

Keywords: population balance equation, moment method, advection, realizable scheme, finite
volume, kinetic scheme

1. Introduction

Populations of non-inertial particles in a carrier fluid are encountered in several kinds of appli-
cations (see [1] and references therein): soot in combustion applications, nanoparticles synthesis,
microbubbles in biology processes, aerosol technology, ... Its evolution can be described by a pop-
ulation balance equation (PBE) [1, 2, 3, 4], which is a transport equation for the number density
function (NDF) of the particles. This NDF depends on time, spatial location and one or several
internal coordinates, which can for example describe the size of the particles. The PBE includes
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usually the spatial transport terms, describing for example advection and diffusion, and some local-
ized source terms describing, at each spatial location, phenomena such as nucleation, aggregation,
coagulation, breakup, growth or oxidation/dissolution. It is coupled with the equations, usually
Navier-Stokes equations, describing the carrier fluid [5].

In this work, only one internal variable is considered, describing the size of the particles, assuming
for example that they are spherical. In order to be able to describe the size polydispersion of the
particles at a reasonable cost, the use of moment methods seems to be an interesting strategy (see
for example [6, 7, 2]): only a finite set of moments of the NDF are then transported. It can also be
hybridized with a discretization along the internal coordinate [8, 9, 10, 11, 12]. However, two major
issues arise for moment methods. The first one is the closure of the moment equations essentially
due to the source terms in the PBE. Several strategies were used: some of them provide a functional
dependence of the unknown moments using the transported moment set, such as the interpolative
closure (MOMIC) [13]. For the other ones, a NDF, or its corresponding measure, is reconstructed
from the moment set, allowing evaluation of all the unclosed terms. This reconstruction can be for
example the entropy maximization [14, 15, 16], a sum of Dirac delta function (quadrature method of
moment, QMOM) [6] or a superposition of kernel density functions (kernel density element method,
KDEM [17] or extended quadrature method of moment EQMOM [18, 19, 20]). The second major
issue of moment methods is the realizability. Indeed, since the set of variables are the moments
of a non-negative NDF (or, more rigorously, a positive measure) on R+ or a sub-interval of R+, it
belongs to a space strictly included in RN+ , where N is the number of moments [21, 22, 23]. This
space is called the moment space. The numerical methods have to ensure that the variables stay
in this moment space, i.e. that the moments stay realizable. This issue is not always considered,
thus leading to unphysical results (e.g. invalid moment sets). Indeed, the classical schemes for
high-order transport in physical space can lead to invalid moment sets [24, 25, 26], as well as for the
source terms [11, 10], even if the closure itself ensures the realizability at the continuous level. This
happens all the more easily when some moment sets are at the boundary of the moment space, thus
corresponding to a sum of a few weighted Dirac delta functions, as obtained through nucleation.
To circumvent this issue, some authors resort to moment correction algorithms [27, 24] based on a
necessary but eventually not sufficient condition for realizability in order to obtain a valid moment
set. The cost of the method then increases and the correction spoils the overall accuracy.

It is then very important to develop realizable schemes, i.e. schemes directly preserving the
realizability of the moment set. Moreover, an operator splitting strategy, solving separately the
spatial transport of both phases and the source terms was shown to be efficient and well adapted to
industrial-oriented codes [28]. This allows us to deal separately with the spatial transport and the
source terms. Concerning the source terms, realizable schemes were already developed for moment
methods where the closure is based on a reconstruction of the NDF [11, 2, 10]. A realizable
scheme was also provided for the diffusion operator in the case of QMOM [26, 2]. In this work, only
advection then is considered. In practice, this operator, at least when using first order explicit finite
volume methods, is usually much less costly than the potentially complex source term operator,
composed of one ODEs system for each considered moment vector. So, it will be very interesting
to minimize the number of degree of freedom by using a high order scheme for advection, as soon
as its cost is not prohibitive.

A Lagrangian type of scheme has been developed [29]. The advection of the moments is then
obtained through the advection of some numerical particles for which a moment vector is affected.
The resulting scheme is then naturally realizable. However, it suffers from the same drawbacks
as usual Lagrangian methods: the need of interpolation of the carrier phase properties, the non
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easy coupling with this phase and the complexity in term of parallelization for high performance
computing. Moreover, it could need a large number of numerical particles to converge, for which
the eventually costly source terms operator has to be solved. That is why only Eulerian schemes
are studied here. On the one hand, a second-order realizable kinetic finite volume method has
been developed in a structured mesh context [30], when the support of the NDF is compact. It
was recently applied in a context of a mesh refinement [31]. It is based on a kinetic evaluation
of the fluxes thanks to the use of the analytical solution at the kinetic level and on a MUSCL
type of reconstruction on the canonical moments, which define a one to one relation between the
interior of the moment space and the interior of an hypercube. However, it was only applied for
inertial particles and for a four moments method, the algebra being otherwise heavy. On the other
hand, a pseudo–second-order realizable finite volume method [25] has been developed in structured
and unstructured mesh contexts. Fluxes computation is then based on a reconstruction of the
moments at the cell interfaces; it is obtained thank to the Gauss quadrature of the moments, just
reconstructing the weights. However, it was reduced to an even number of moments and suffers
from some accuracy reduction when the quadrature points evolve strongly. In this work, the last
two schemes are completely revisited, generalizing them to any number of moments and allowing
them to deal with the boundary of the moment space. They are also analyzed and compared. This
is done for NDF of support included in [0,+∞), the case of a compact support being discussed
in the appendix. Kinetic schemes are thus derived in a structured mesh context, first with a
reconstruction on variables defining a one to one relation between the interior of the moment space
and (0,+∞)N , where N is the number of moments in the set. Algorithms are then adapted to the
case of the support included in [0,+∞) and generalized to any number of moments. The weight
reconstruction is also considered, for an even or an odd number of moments, in a different way
compared to [25], thus not being dependent of abscissas differences between the cells. Simplified
schemes are then derived with the two kinds of reconstructions, the first one being modified for this
case. It will be generalizable to unstructured meshes in a cell-centered context.

The paper is then organized as follows. In Section 2, the moment equations for the pure
advection case are given, as well as the realizability constraints. Then, in Section 3, realizable
finite volume kinetic schemes are provided and their orders of accuracy discussed. Some simplified
version of these schemes are also given in Section 4, as well as the new constraint on the CFL
to guarantee the realizability. Finally some verifications are given, considering systems with high
numbers of moments, first for 1D configurations with steady or unsteady and compressible carrier
phase velocity fields in Section 5 and for the 2D configuration of the Taylor-Green vortices in
Section 6.

2. Moment transport equation and realizability

In this section, moment equations for the pure advection case are first recalled. Then, the space
in which the moment vector lives is described, as well as the realizability conditions. This can
be done directly, using the Hankel determinants. But some interesting tools are also introduced,
defining a bijection between the interior of the moment space MN and (0,+∞)N .

2.1. Moment equations

Let us consider the NDF, denoted f(t, x, ξ), of some cloud of small particles transported by a
carrier fluid. The parameter ξ, which is the size of the particles, lives in the interval [0,+∞). The
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case of a compact support is discussed in Appendix A. In the case of pure advection, the population
balance equation (PBE) then reduces to:

∂tf + ∂x (u f) = 0, (1)

where u is the fluid velocity, assumed to be a regular function of (t, x) in what follows.
Instead of resolving directly this PBE, one considers a finite set of moments (mk)k∈{0,1,...,N} of

the NDF, the kth order moment mk being defined by:

mk(t, x) =

∫ +∞

0

ξkf(t, x, ξ)dξ. (2)

These moments are the solution of the following system of equations, denoting mN = (m0, . . . ,mN )t:

∂tmN + ∂x (umN ) = 0. (3)

Let us remark that this system is closed, contrary to the often encountered systems in moment
methods. However, it is usually only a part of a more complex problem for which some closure
is needed and can be provided through the reconstruction of a NDF from the moments (see for
example [6, 30, 19]). Moreover, the moment equations seem here independent from one another.
In fact, they are coupled by the fact that the vector mN = (m0,m1, . . . ,mN )t has to be a moment
vector of a positive measure, i.e. has to stay in the moment space. This is the realizability condition,
which is detailed in the next section.

2.2. Moment space: definition and first characterization

Let us denote P the space of finite positive Borel measures on (0,+∞). And for µ ∈ P, let us
denote mN (µ) the vector of moments of µ of order 0 to N , assuming that they are finite:

mN (µ) = (m0(µ), . . . ,mN (µ))
t
, mk(µ) =

∫ +∞

0

xkdµ. (4)

The moment vectors mN = (m0,m1, . . . ,mN )t lives in the Nth-moment space.

Definition 2.1. The Nth-moment space MN on the interval (0,∞) is given by

MN = {mN (µ) | µ ∈ P}.

If a moment vector mN belongs to this space, it is said to be realizable and one then defines

P(mN ) =

{
µ ∈ P | mN =

∫ +∞

0

(1, x, . . . , xN )tdµ

}
.

If mN belongs to the interior of this space, it is said to be strictly realizable.

This Nth-moment space is convex. To characterize it, one can introduce the Hankel determi-
nants, defined by:

H2n+d =

∣∣∣∣∣∣∣
md . . . mn+d

...
...

mn+d . . . m2n+d

∣∣∣∣∣∣∣ , (5)

with d = 0, 1; n ≥ 0. Indeed, one has the following proposition, for which a proof can be found in
[21, 22, 23]:

4



Theorem 2.1. The vector mN = (m0,m1, . . . ,mN )t is realizable if and only if

Hk ≥ 0, k ∈ {0, 1, . . . , N}. (6)

More precisely, it is strictly realizable if and only if

Hk > 0, k ∈ {0, 1, . . . , N} (7)

and it belongs to the boundary of the moment space if and only if there exists k ≤ N such that

H0 > 0, . . . ,Hk−1 > 0, Hk = 0, . . . ,HN = 0. (8)

In this last case, k is denoted N (mN ) and P(mN ) is a singleton: a sum of
⌊
k+1

2

⌋
weighted Dirac

delta functions1.

Let us remark that if N (mN ) is odd, then one of the Dirac delta functions is centered at 0.
The moment space has a rather complex geometry, as explained in the next section. Moreover,

the Hankel determinants provide algebraic relations to determine if a vector belongs to the moment
space but this tool is not easy to use, since we do not want to compute all these determinants. But
other quantities can be derived, linked with a one-to-one mapping of the interior of the moment
space, thanks to the theory of orthogonal polynomials.

2.3. Orthogonal polynomials theory and new characterization of the moment space

Let P be the space of real polynomials. For a positive finite Borel measure µ such that its
moments are well defined and for p, q in P, let us define the scalar product:

〈p, q〉 =

∫
R
p(x)q(x)dµ. (9)

When considering a measure µ with infinite support, a sequence (πk)k≥0 of orthogonal polynomials
relative to this scalar product (〈πkπp〉 = δk,p〈πkπk〉) satisfies the following three term recurrence
relation, with π0 = 1, π−1 = 0 and βk > 0 [32]:

πk+1(x) = (x− αk)πk(x)− βkπk−1(x). (10)

Conversely, if the sequence of polynomials satisfies (10) with βk > 0 for all k ∈ N, then there exists
a measure µ on the real line for which the polynomials are orthogonal. Moreover, this measure is
supported on [0,+∞) if and only if there exists a sequence (ζk)k≥1 of positive numbers such that
the coefficients in the recurrence relation (10) satisfy α0 = ζ1 and for all k ≥ 1 [33]:

βk = ζ2k−1ζ2k, αk = ζ2k + ζ2k+1. (11)

And this measure is supported on [0, 1] if and only if the coefficients ζk form a chain sequence, i.e.
they can be decomposed as ζk = pk(1− pk−1), with p0 = 0 and pk ∈ (0, 1) for k ≥ 0 [34].

When considering a measure with finite support, the sequence of such orthogonal polynomials is
finite and only a finite number of the ζk (or of the pk) can be defined. These coefficients then allow to

1brc denotes here the largest integer less than or equal to the real number r
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characterize the interior of the moment space in the case where the support is included in [0,+∞).
Indeed, for a moment vector mN at the boundary of the moment space MN , corresponding to a
measure with a finite support, one has ζN (mN ) = 0 and the ζk for k > N (mN ) are not defined.

A more geometrical point of view can also be considered [22]. For a vector mk−1 in the interior
of the moment space Mk−1, let us then first define

m−k (mk−1) = min
µ∈P(mk−1)

mk(µ), m+
k (mk−1) = max

µ∈P(mk−1)
mk(µ), (12)

as the lower and upper boundary of the admissible interval for the moment mk of order k, the
lower order moments mk−1 being known. In what follows, only measures supported on [0,+∞) are
considered. In this case, m−k is non-negative and m+

k = +∞. Moreover, m−k strongly depends on
mk−1, meaning that the interval where the kth order moment lives strongly depends on the value
of the lower order moments. Some examples are given in Appendix B.

Then, the strict realizability is characterized either by the positivity of the Hankel determinants
or by the positivity of the ζk and induces a link between the moments. Several algorithms allow
to compute efficiently the recursion coefficient αk and βk and then the ζk from the moments:
Rutishauser’s QD algorithm [35, 36], Gordon’s PD algorithm [37, 38] and variation of an algorithm
attributed to Chebyshev and given by Wheeler in [39]. Since this last one is said to be slightly more
stable in practice [39] and since it will help us to prove some properties on the relation between the
moments and the ζk, let us detail it.

2.4. Chebyshev algorithm for the computation of the ζk and reverse Chebyshev algorithm
Consider the matrix Z with elements Zk,p =< πkx

p >, which must be zero if k > p and which
satisfy Z−1,p = 0, Z0,p = mp and, thanks to the orthogonal polynomials recursion formula:

Zk+1,p = Zk,p+1 − αkZk,p − βkZk−1,p. (13)

Coefficients αk, βk are determined by:

β0 = m0, α0 =
m1

m0
, ∀k > 0 βk =

Zk,k
Zk−1,k−1

, αk =
Zk,k+1

Zk,k
− Zk−1,k

Zk−1,k−1
, (14)

which results from Zk+1,k−1 = 0 = Zk+1,k. Thus, if the Zk,p are known for each k ≤ n and p ≤ k,
then one can compute the αn, βn from (14) and then the Zn+1,p for p = 0, . . . , n+ 1 from (13).

In what follows, it will be also interesting to compute the moments (mk)k∈{1,...,N} from the
(ζk)k∈{1,...,N} and from m0. It can be done by reversing the previous algorithm: the coefficients αk
and βk are given by (11) and setting Z0,0 = m0 and Zk,k = Zk−1,k−1βk for k ∈ {1, . . . ,

⌊
N
2

⌋
} and

Z0,1 = m0ζ1 and Zk,k+1 = Zk,k

(
αk +

Zk−1,k

Zk−1,k−1

)
, for k ∈ {1, . . . , N −

⌊
N
2

⌋
− 1}, one computes, for

i ∈ {2, . . . , N} and k ∈
{

0, . . . ,
⌊
N−i

2

⌋}
:

Zk,k+i = Zk+1,k+i−1 + αkZk,k+i−1 + βkZk−1,k+i−1. (15)

Then mk = Z0,k. This allows to give an important property of the relation between the ζk and the
moments.

Proposition 2.2. The moment mn can be written

mn = m0

[
n∏
k=1

ζk + Pn(ζ1, . . . , ζn−1)

]
,

where Pn(ζ1, . . . , ζn−1) is a polynomial function of degree n.
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Proof. The matrix Z is defined by Z−1,p = 0, Z0,p = mp and equations (13) and (14). Let us
denote Y = Z/m0. We will prove by recursion the more general property (Pp):

(Pp) Yk,k+p =

2k+p∏
i=1

ζi + Pk,k+p(ζ1, . . . , ζ2k+p−1) for k ∈
{

0, . . . ,
⌊
n−p

2

⌋}
, where Pk,k+p is a polyno-

mial function of degree 2k + p of (ζ1, . . . , ζ2k+p−1).

First, one can remark that Y−1,p = 0, Y0,0 = 1, and thanks to (14) and (11), Y0,1 = ζ1 and:

Yk,k =

k∏
i=1

βi =

2k∏
i=1

ζi,
Yk,k+1

Yk,k
=

k∑
i=0

αi =

2k+1∑
i=1

ζi.

This prove (P0) and (P1). Now, let us assume that (Pj) is true for j ∈ {0, . . . , i} and i > 0. The
recursion formula (15) can be rewritten, with p = k + i:

Yk,k+i+1 = Yk+1,k+1+(i−1) + (ζ2k + ζ2k+1)Yk,k+i + ζ2k−1ζ2kYk−1,k−1+i+1.

Since (Pi) and (Pi−1) are true and Y−1,−1+i+1 = 0, this shows that (Pi+1) is true, the term∏2k+i+1
n=1 ζn being in Yk+1,k+1+(i−1) and the rest being a polynomial function of degree 2k + i + 1

of (ζ1, . . . , ζ2k+i). This concludes the proof.

Let us remark that the termm0Pn(ζ1, . . . , ζn−1) corresponds tom−k (mk−1), sincemn−m−n (mn−1) =
m0

∏n
i=1 ζi, as shown in [22]. The polynomials Pn are given in Appendix C for n = 1, . . . , 7.

3. Realizable finite volume kinetic schemes

The major issue of the numerical scheme developed here is to ensure the realizability of the
vector mN . Indeed, Wright [24] showed that independent transport of moments with algorithms of
order greater than one in space can result in the generation of invalid moment sets.

Let us develop a realizable numerical scheme for the 1D configuration. A generalization on 2D
or 3D problems is straightforward for Cartesian meshes thanks to the method of lines.

3.1. General form of the finite volume kinetic scheme

Let us introduce a discretization of the spatial domain into cells [xj− 1
2
, xj+ 1

2
] of center xj =

x
j− 1

2
+x

j+1
2

2 and of width ∆x = xj+ 1
2
− xj− 1

2
. A time discretization t0 = 0 < t1 < · · · < tn < . . .

is also used, with the time steps ∆tn = tn+1 − tn. The properties of the averaged value of the
moments on a cell is used here to define a numerical scheme.

3.1.1. Equations on the averaged value of the moments over a cell

One defines the characteristics X(t; s, y) as the solution of{
dtX(t; s, y) = u(t,X(t; s, y)),
X(s; s, y) = y.

One also defines J(t; s, y) the Jacobian matrix of y 7→ X(t; s, y), for fixed values of t and s.
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Proposition 3.1. For mN = (m0, . . . ,mN )t a moment vector solution of (3), the mean value of

each moment of order k at time tn, denoted mn
k,j =

1

∆x

∫ x
j+1

2
x
j− 1

2

mk(tn, x)dx, satisfies

mn+1
k,j = mn

k,j −
∆tn

∆x

[
F
n

k,j+ 1
2
− Fnk,j− 1

2

]
, (16)

with

F
n

k,j+ 1
2

=
1

∆tn

∫ x
j+1

2

X(tn;tn+1,x
j+1

2
)

mk(tn, x)dx. (17)

Proof. The kth component of the solution of (3) between tn and tn+1 is:

mk(tn+1, x) = mk(tn, X(tn; tn+1, x))J(tn; tn+1, x).

Then, its averaged value can be written, using the change of variables ξ = X(tn; tn+1, x):

mn+1
k,j =

1

∆x

∫ x
j+1

2

x
j− 1

2

mk(tn, X(tn; tn+1, x))J(tn; tn+1, x)dx =
1

∆x

∫ X(tn;tn+1,x
j+1

2
)

X(tn;tn+1,x
j− 1

2
)

mk(tn, ξ)dξ.

This concludes the proof.

This results allows us to develop a kinetic scheme.

3.1.2. Kinetic scheme

Let us denote mn
j = (mn

0,j , . . . ,m
n
N,j)

t an approximation at time tn of the averaged value of the

moment vector over the cell j and Xj+ 1
2

an approximation of X(tn; tn+1, xj+ 1
2
). In what follows,

the CFL like number defined by:

CFL = max
n,j

(
unj,max

∆tn

∆x

)
, unj,max = max

{
u(t, x), x ∈ [xj− 1

2
, xj+ 1

2
], t ∈ [tn, tn+1]

}
(18)

is assumed to be smaller than one in such a way that X(tn; tn+1, xj+ 1
2
) is in the cell j or j + 1.

Moreover, the same property is assumed for Xj+ 1
2
.

First, let us define the approximation of X(tn; tn+1, xj+ 1
2
) that will be used here. For a constant

and uniform fluid velocity, the exact value is used

Xj+ 1
2

= xj+ 1
2
− u∆tn. (19)

Otherwise, one need a good approximation of the velocity and a resolution of the ODE defining
the characteristics with an at least second order of accuracy to obtain third order approximation
of X(tn; tn+1, xj+ 1

2
). For a stationary fluid velocity, a linear reconstruction of this velocity is done

inside the cell. In what follows, we will assume that the fluid velocity is known at the interfaces
and its value inside the cell is given by a linear interpolation. This leads to:

Xj+ 1
2

= xj+ 1
2
−
u(xj+ 1

2
)

δ

(
1− e−δ∆t

n
)
, (20)
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where, denoting δj =
u

(
x
j+1

2

)
−u

(
x
j− 1

2

)
∆x : δ = δj if u(xj+ 1

2
) ≥ 0 and δ = δj+1 if u(xj+ 1

2
) < 0.

Let us remark that Xj+ 1
2
< xj+ 1

2
in the first case and Xj+ 1

2
> xj+ 1

2
in the second one. For an

unstationary fluid velocity, a linear temporal and spatial interpolation of the fluid velocity can be
used. Using an explicit second order Runge et Kutta method for the resolution of the ODEs defining
the characteristics, one obtains:

Xj+ 1
2

= xj+ 1
2
− ∆tn

2

[
(1− δ∆tn)u

(
tn+1, xj+ 1

2

)
+ u

(
tn, xj+ 1

2

)]
, (21)

where, denoting δj =
u

(
tn,x

j+1
2

)
−u

(
tn,x

j− 1
2

)
∆x : δ = δj if u(tn+1, xj+ 1

2
) ≥ 0 and δ = δj+1 if

u(tn+1, xj+ 1
2
) < 0. It leads to a third order approximation of X(tn; tn+1, xj+ 1

2
):

Lemma 3.2. Let us assume that the CFL number is smaller than one and that the parameter Xj+ 1
2

is defined by (19), (20) or (21), depending of the effective dependence of u(t, x) in t and x. Then
Xj+ 1

2
is a third order approximation of X(tn; tn+1, xj+ 1

2
):

Xj+ 1
2
−X(tn; tn+1, xj+ 1

2
) = O(∆x3).

Moreover, Xj+ 1
2
−X(tn; tn+1, xj+ 1

2
)−Xj− 1

2
−X(tn; tn+1, xj− 1

2
) = O(∆x4)

Proof. A Taylor expansion for X(tn; tn+1, xj+ 1
2
) leads to:

X(tn; tn+1, xj+ 1
2
) = xj+ 1

2
+

∫ tn

tn+1

u(t,X(t; tn+1, xj+ 1
2
))dt (22)

=xj+ 1
2
−u(tn+1, xj+ 1

2
)∆tn+

(∆tn)2

2

[
∂tu(tn+1, xj+ 1

2
)+u(tn+1, xj+ 1

2
)∂xu(tn+1, xj+ 1

2
)
]
+O((∆tn)3).

Formula (19) is exact for a constant fluid velocity and, since δ is a first order approximation of
∂xu(tn, xj+ 1

2
), the Taylor expansion of (20) in the case of a stationary fluid velocity and of (21) in

the general case leads to the same zeroth, first and second order terms as in (22). Finally, the last
results is shown from the same kind of developments, adding the third order term.

Following the property of the exact solution given in Proposition 3.1, the scheme that we consider
here is given by the recursion formula:

mn+1
j = mn

j −
∆tn

∆x

[
Fnj+ 1

2
− Fnj− 1

2

]
, (23)

with

Fnj+ 1
2

=
1

∆tn

∫ x
j+1

2

X
j+1

2

mn(x)dx, (24)

the function mn(x) = (mn
0 (x), . . . ,mn

N (x))t being defined from the moments mn
j , in a way described

in Section 3.2.
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3.1.3. Scheme properties

The properties of the scheme will depends on this reconstruction of the moments over the cells.
We impose here the two following properties, assuming that mn

j is in the moment space MN :

• [P1] The averaged value of the reconstructed moment vector mn(x) over each cell j is mn
j :

1

∆x

∫ x
j+1

2

x
j− 1

2

mn(x)dx = mn
j .

• [P2] For each x, the vector mn(x) is in the moment space MN .

For the accuracy, a third property is introduced:

• [P3] From an averaged moment vector mj = 1
∆x

∫ x
j+1

2
x
j− 1

2

m(x)dx, the reconstruction m(x) is

second order accurate: there exists a bounded Lipschitz function ϕm such that

m(x) = m(x) + ∆x2ϕm(x).

This leads to the following theorem:

Theorem 3.3. Let us assume that the CFL number is smaller than one. The finite volume scheme
defined by (23,24) with the properties [P1] and [P2] of the moment reconstruction is realizable.
With the additional property [P3] and using the value of Xj+ 1

2
defined by (19), (20) or (21), then

a second order is obtained for the consistency error.

Proof. The first property [P1], with the definition (24) of the fluxes implies:

mn+1
j =

1

∆x

∫ X
j+1

2

X
j− 1

2

mn(x)dx. (25)

Since the characteristics cannot cross themselves, one have Xj− 1
2
< Xj+ 1

2
. Then [P2] ensures that

mn+1
j is in the moment space.

Moreover, from the exact solution m = (mk)k∈{0,1,...,N} of (3), the consistency error is defined by

εnj =
mn+1
j −mn

j

∆tn
+

F̃n
j+ 1

2

− F̃n
j− 1

2

∆x
,

where mn+1
j = (mn

k,j)k∈{0,1,...,N} is the exact averaged moment vector, mn
k,j = 1

∆x

∫ x
j+1

2
x
j− 1

2

mk(tn, x)dx,

and the flux vector F̃n
j+ 1

2

= 1
∆tn

∫ xj+1
2

X
j+1

2

mn(x)dx is defined with the reconstruction mn(x) obtained

from the mn
j . Thanks to Proposition 3.1, this can be written:

εnj =
1

∆tn∆x
[I1 + I2] ,

with

I1 =

∫ x
j+1

2

X
j+1

2

(mn(x)−m(tn, x))dx−
∫ x

j− 1
2

X
j− 1

2

(mn(x)−m(tn, x))dx

10



and

I2 =

∫ X

(
tn;tn+1,x

j+1
2

)
X
j+1

2

m(tn, x)dx−
∫ X

(
tn;tn+1,x

j− 1
2

)
X
j− 1

2

m(tn, x)dx.

Thanks to [P3], the first term I1 can be written:

I1 = ∆x2

∫ x
j+1

2

X
j+1

2

ϕm(tn,.)(x)dx−
∫ x

j− 1
2

X
j− 1

2

ϕm(tn,.)(x)dx


= ∆x2

[
(xj+ 1

2
−Xj+ 1

2
)ϕm(tn,.)(x1)− (xj− 1

2
−Xj− 1

2
)ϕm(tn,.)(x2)

]
= ∆x2

[
(xj+ 1

2
−Xj+ 1

2
)(ϕm(tn,.)(x1)− ϕm(tn,.)(x2)) + (xj+ 1

2
−Xj+ 1

2
− xj− 1

2
+Xj− 1

2
)ϕm(tn,.)(x2)

]
,

where x1 is between xj+ 1
2

and Xj+ 1
2

and x2 is between xj− 1
2

and Xj− 1
2
. The term xj+ 1

2
−Xj+ 1

2

is of order 1 and it is easy to see, using Taylor expansions, that xj+ 1
2
−Xj+ 1

2
− xj− 1

2
+Xj− 1

2
is of

order 2. Then I1 = O(∆x4). The second term I2 can be written:

I2 = m(tn, Xj+ 1
2
)
[
X
(
tn; tn+1, xj+ 1

2

)
−Xj+ 1

2

]
−m(tn, Xj− 1

2
)
[
X
(
tn; tn+1, xj− 1

2

)
−Xj− 1

2

]
+O(∆x6)

= m(tn, Xj+ 1
2
)
[
X
(
tn; tn+1, xj+ 1

2

)
−Xj+ 1

2
−X

(
tn; tn+1, xj− 1

2

)
+Xj− 1

2

]
+O(∆x4).

The result of Lemma 3.2 allows to conclude the proof.

3.2. Reconstruction of the moments in the cell and flux computation

To complete the scheme (23,24) a spatial reconstruction of the moments from their mean value
is provided, verifying at least properties [P1] and [P2]. The constant reconstruction is the sim-
plest, but leads to low order schemes. A MUSCL type of reconstruction is then envisioned but
this cannot be done directly on the moments: this would inevitably lead to unrealizable moments
(mn

0 (x), . . . ,mn
N (x))t, due to the complex shape of the moment space [30]. Two kinds of recon-

structions are then used here:

• a reconstruction on the variables (ζk)k∈{1,...,N}, which live in [0,+∞),

• a reconstruction on the weights of the quadrature corresponding to the moment vector.

Another kind of reconstruction could also be envisioned: a direct reconstruction at the level of a
NDF, solution of the finite Stieljes moment problem, similarly to what was done in [40, 41] in the
context of linear kinetic equations in slab geometry. In this context, the velocity of the advection
depended on the internal variable ξ in such a way that the moment equations had to be closed;
this was done through the entropy maximization reconstruction [42]. This kind of reconstruction
can be applied in our context in a quite different way presented in Appendix E, using EQMOM
[19, 10] instead of the entropy maximization, which is not really adapted to NDF defined on [0,+∞).
However, it does not allow to deal with the boundary of the moment space and it induces a high
supplementary cost related to the reconstruction (the computation time is then multiplied by at
least 65 when using 5 moments, compared to the schemes described in this section).
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3.2.1. The constant reconstruction based kinetic scheme

From the mean value mn
k,j of the moment in the cell, the first idea is to consider a constant

value of the moments into the cell: mn(x) = mn
j for x ∈]xj− 1

2
, xj+ 1

2
[. The flux can then be written:

Fnj+ 1
2

=
mn
j

∆tn

(
xj+ 1

2
−Xj+ 1

2

)+

−
mn
j+1

∆tn

(
Xj+ 1

2
− xj+ 1

2

)+

.

where u+ = max{0, u}. Its convergence with a first order of accuracy is easily shown with the value
of Xj+ 1

2
defined by (19), (20) or (21).

3.2.2. The ζ reconstruction based kinetic scheme (ζ kinetic scheme)

For a fixed value of n, instead of reconstructing directly mn(x), the corresponding (ζk(x))k∈{1,...,N}
as well as mn

0 (x) are reconstructed. For mn
0 , a classical MUSCL type of reconstruction is used:

mn
0 (x) = mn

0,j +Dn
0,j(x− xj) for x ∈]xj− 1

2
, xj+ 1

2
[.

For each k, a piecewise affine reconstruction ζnk (x) is defined by:

ζnk (x) = ζ̄nk,j +Dn
k,j(x− xj) for x ∈]xj− 1

2
, xj+ 1

2
[.

Each ζ̄nk,j is computed to ensure [P1]. Thanks to Proposition 2.2, this leads to:

∆xmn
k,j =ζ̄nk,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)

k−1∏
i=1

ζni (x)dx+Dn
k,j

∫ x
j+1

2

x
j− 1

2

(x− xj)mn
0 (x)

k−1∏
i=1

ζni (x)dx

+

∫ x
j+1

2

x
j− 1

2

mn
0 (x)Pk(ζn1 (x), . . . , ζnk−1(x))dx.

Let us write ζ̄nk,j = ak,j + bk,jD
n
k,j , where ak,j and bk,j are defined by:

ak,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)

k−1∏
i=1

ζni (x)dx = ∆xmn
k,j −

∫ x
j+1

2

x
j− 1

2

mn
0 (x)Pk(ζn1 (x), . . . , ζnk−1(x))dx,

bk,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)

k−1∏
i=1

ζni (x)dx = −
∫ x

j+1
2

x
j− 1

2

(x− xj)mn
0 (x)

k−1∏
i=1

ζni (x)dx.

Let us remark that |bk,j | is smaller than ∆x
2 . Moreover, thanks to the polynomial form of the

functions, it can be shown that ak,j = ζnk,j + O(∆x2) and bk,j = O(∆x2). Numerically, the term
Pk(ζn1 (x), . . . , ζnk−1(x)) is computed either by using an analytical formula, for k ≤ 7 (see Appendix
C), or by using the reverse Chebyshev algorithm (see Section 2.4), setting ζk = 0 and the integrals
are computed using a Gauss-Legendre quadrature with

⌈
N
2

⌉
+ 1 points.

For m0, a minmod limiter is used: D0,j = minmod
(
mn0,j+1−m

n
0,j

∆x ,
mn0,j−m

n
0,j−1

∆x

)
. Moreover,

as in [43, 30], the slopes Dn
k,j are such that ζnk (x) stays between min{ζnk,j−1, ζ

n
k,j , ζ

n
k,j+1} and

max{ζnk,j−1, ζ
n
k,j , ζ

n
k,j+1} in each cell j, as soon as it is the case for ak,j . One can use [30]:

Dn
k,j=


min

( |ζnk,j+1 − ak,j |
∆x+ 2bk,j

,
|ak,j − ζnk,j−1|

∆x− 2bk,j
,

2ak,j
∆x− 2bk,j

)
if ζnk,j−1<ζ

n
k,j<ζ

n
k,j+1,

−min

( |ζnk,j+1 − ak,j |
∆x+ 2bk,j

,
|ak,j − ζnk,j−1|

∆x− 2bk,j
,

2ak,j
∆x+ 2bk,j

)
if ζnk,j−1>ζ

n
k,j>ζ

n
k,j+1.
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The last condition (in the min) ensures the non-negativity of the reconstruction, as soon as ak,j is
non-negative. Unfortunately, ak,j can eventually be negative, meaning that, even with a constant
reconstruction for ζnk (x), one can obtain unrealizable moments. In this case, a correction has to be
done on the slopes Dn

i,j , with i < k: they are reduced successively for i = k0, ..., k − 1 where k0 is
the maximal value such that ak,j is positive if the Dn

i,j were equal to zero for i ∈ [k0, k − 1]. For
that, starting with i = k0 till i = k−1, each Dn

i,j is multiplied by 0.9 once or several times (at most
5 times here) and if it is not sufficient, it is set to zero. In the worst case, all slopes Dn

i,j are then
set to zero, for i ≥ 1. But when needed, only one limitation is often sufficient. Some accuracy will
then be locally lost, except on the 0th order moment.

The fluxes can then be written, thanks to Proposition 2.2:

Fnk,j+ 1
2

=
1

∆tn

∫ x
j+1

2

X
j+1

2

mn
0 (x)

 k∏
j=1

ζnj (x) + Pk(ζn1 (x), . . . , ζnk−1(x))

 dx, (26)

They are computed using a Gauss-Legendre quadrature with
⌈
N
2

⌉
+ 1 points, since one has to

integrate polynomial of degree at most N+1. The corresponding scheme is called “ζ reconstruction
based kinetic scheme”, abbreviated to “ζ kinetic scheme”. Let us remark that the resolution of the
equation on m0 does not depend on the other moments, even if some corrections are needed for the
positivity of the ak,j . Moreover, the corresponding scheme is TVD for the constant velocity case.
It is also easy to see that a maximum principle is obtained for ζ1 = m1/m0 in this case.

3.2.3. The quadrature weights reconstruction based kinetic scheme (QW kinetic scheme)

Similarly to what was done in [25], the reconstruction is based here on the quadrature of the
moment sets, but in a different way. Let us then define the quadratures weights (wj,α)α∈{1,...,p}
and abscissas (ξj,α)α∈{1,...,p} of the moment set (mn

k,j)k∈{0,...,N}, such that:

mn
k,j =

p∑
α=1

wj,αξ
k
j,α, k ∈ {0, . . . , N},

with p =
⌊
N
2

⌋
+ 1. If the number of moments is even, it is the classical Gauss quadrature with

N = 2p− 1. Then, abscissas and weights are deduced from the eigenvalues and eigenvectors of the
Jacobi matrix with coefficients αk and

√
βk [44], where αk and βk are the coefficient of the three

term recurrence relation (10). Otherwise, N = 2(p − 1) and a Gauss-Radau quadrature is used,
meaning that an abscissa is set to zero: ξj,1 = 0. They are computed in the same way as for the

classical Gauss quadrature, except that αp−1 is set to −βp−1
Πp−1(0)
Πp(0) [44].

Like in [25], the reconstruction of the moments inside the cell j is done through a reconstruction
of the weights:

mn
k (x) =

p∑
α=1

wα(x)ξkj,α, wα(x) = wj,α +Dn
α,j(x− xj), x ∈ [xj− 1

2
, xj+ 1

2
].

The averaged value of mn
k (x) on the jth cell is then automatically mn

k,j . But to define the slopes,
one uses here a quadrature of the neighbor cells with the same abscissas:

mn
k,j−1 =

p∑
α=1

w−j,αξ
k
j,α, mn

k,j+1 =

p∑
α=1

w+
j,αξ

k
j,α, k ∈ {0, . . . , p− 1}. (27)
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The weights (w−j,α)α∈{1,...,p} and (w+
j,α)α∈{1,...,p} are well defined since they are the solution of a

linear system with a Vandermonde matrix of coefficients ξj,α, which are distinct. If a regular initial
condition is considered for (3) and if (mn

k,j)k∈{0,...,N} is far from the boundary of the moment space,

then these weights (w−j,α)α∈{1,...,p} and (w+
j,α)α∈{1,...,p} are usually non-negative since the moment

sets for j− 1, j and j+ 1 are close to each other and the weights wj,α are far from zero. But if it is
not the case, the most negative w+

j,α or w−j,α is set to zero and the corresponding linear system in
(27) is solved for k ∈ {0, . . . , p−2}, thus eliminating the corresponding abscissa ξj,α. This operation
is reproduced till all the w±j,α are non-negative. At worst, only one abscissa will stay in (27). But
for the distributions used in this paper, when needed, only one or two abscissas has to be eliminated
when using 10 moments. One then defines the slopes by using a minmod limiter:

Dn
α,j =

1

2

(
sgn(w+

j,α − wj,α) + sgn(wj,α − w−j,α)
)

min

(
|w+
j,α − wj,α|

∆x
,
|wj,α − w−j,α|

∆x

)
.

The fluxes are then written:

Fnj+ 1
2

=

∑p
α=1

(
wj,α + 1

2D
n
α,j(Xj+ 1

2
− xj− 1

2
)
)

Ξj,α

∆tn

(
xj+ 1

2
−Xj+ 1

2

)+

−

∑p
α=1

(
wj+1,α − 1

2D
n
α,j+1(xj+ 3

2
−Xj+ 1

2
)
)

Ξj+1,α

∆tn

(
Xj+ 1

2
− xj+ 1

2

)+

.

with Ξj,α = (1, ξj,α, . . . , ξ
N
j,α)T . This scheme is called “quadrature weights (QW) reconstruction

based kinetic scheme”, abbreviated to “QW kinetic scheme”. Let us remark that, since the limi-
tation is done separately for each weight, the global reconstruction can not guarantee a maximum
principle on any moments. One can however remark that the ξj,α are bounded by the maximal and
minimal values of the abscissas corresponding to the initial moments. Indeed, the new moments
mn+1
j correspond to a sum of weighted Dirac delta functions at ξj,α and ξj±1,α with α = 1, . . . , p.

Then, the new abscissas are necessarily inbetween these values.

3.2.4. Dealing with the boundary of the moment space

Constant, ζ and QW reconstructions can be done for a moment vector at the boundary of the
moment space. For the ζ reconstruction, the ζk for k > N (mn

j,N ) are not defined but are set to

zero. For the QW reconstruction, the value of p has just to be reduced to
⌊
N (mn

j,N )+1

2

⌋
.

Numerically, the strict realizability is checked at each time step thanks to the ζk. Since they
are deduced from the coefficients of the three term recurrence relation used for the computation of
the quadrature thanks to (11), they are computed in any cases, with at worst a marginal increase
of the cost. However, the computation of ζk can be ill-conditioned, especially if k is large and if
a ζi is very small for i < k. A limit has then to be introduced: when ζk < ε, the corresponding
moment vector is said to be at the boundary of the moment space and one sets ζi = 0 for i ≥ k. In
practice, we used in this work ε = 10−7. The corresponding vector is then projected: the moments
are computed from the new set of ζi.

4. A realizable simplified finite volume scheme

The accuracy of the kinetic schemes comes from the accuracy of the spatial reconstruction as
well as the correct evaluation of the characteristics, to characterize the part of the cell containing
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the particles that will be transferred to another one during the time step. For this last point, a
generalization to multi-dimensional unstructured meshes is not evident. In this section, we then
consider semi-discretized finite volume schemes of the form:

dtmj(t) = − 1

∆x

[
Fj+ 1

2
(t)− Fj− 1

2
(t)
]
, Fj+ 1

2
(t) = u(t, xj+ 1

2
)mj+ 1

2
(t), (28)

where only the reconstructed value mj+ 1
2
(t) of the moment at the interface xj+ 1

2
is considered.

The system (28) will then be solved thanks to a strong stability preserving (SSP) explicit Runge-
Kutta method [45], a second order one here. It is a convex combination of Euler explicit time steps.
The realizability then only have to be shown for the explicit Euler method:

mn+1
j = mn

j −
∆tn

∆x

[
Fnj+ 1

2
− Fnj− 1

2

]
, (29)

with Fn
j+ 1

2

= u(tn, xj+ 1
2
)mn

j+ 1
2

. Moreover, to deal with the boundary of the moment space, a

numerical projection is also done after each of these Euler explicit time steps, as described in
Section 3.2.4.

Two types of reconstruction are done to define the moment vector mj+ 1
2

at the interface, as
for the kinetic scheme: a first one using the ζk variables and a second one using the weights of the
quadrature. The realizability of the scheme is then shown in each case.

4.1. The ζ reconstruction based simplified scheme (ζ simplified scheme)

Here, the reconstruction is quite different from the one of Section 3.2.2 in order to be able to
ensure the realizability with the explicit Euler method. Indeed, from the idea of Berthon [46], the
cell j is split in three parts of size ∆x/3 here, on which the reconstruction of the moment vector is
constant. It is denoted m−j for the left part, m∗j for the middle part and m+

j for the right part, in
such a way that:

mn
j =

1

3

(
m−j + m∗j + m+

j

)
.

The values of the ζk corresponding to the moment vectors mn
j , m−j , m∗j and m+

j are denoted

respectively ζnk,j , ζ
−
k,j , ζ

∗
k,j and ζ+

k,j .
The reconstruction is then done in the following way. For the left and right values, a classical

MUSCL type of reconstruction is used:

m±0 = mn
0,j ±Dn

0,j

∆x

2
, ζ±k,j = ζnk,j ±Dn

k,j

∆x

2
, k ∈ {1, . . . , N}, (30)

with the minmod limiters:

Dn
0,j = minmod

(
mn

0,j+1 −mn
0,j

∆x
,
mn

0,j −mn
0,j−1

∆x

)
, (31)

Dn
k,j = minmod

(
ζnk,j+1 − ζnk,j

∆x
,
ζnk,j − ζnk,j−1

∆x

)
. (32)

Then, the values of m+
j and m−j can be computed. However, the vector m∗j , given by 3mn

j −
m+
j −m−j , is not necessarily realizable. In this case, some values of the Dn

k,j , for k > 0, have to
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be reduced. To ensure the realizability of (m∗0,j ,m
∗
1,j), the following limitation on Dn

1,j has to be
added:

Dn
0,jD

n
1,j <

2

∆x2
mn

1,j .

For the higher order moments, it is harder to derive analytical formulas. Instead, if m∗j is not in
the moment space, a correction has to be done on the slopes Dn

i,j , with i < k: they are reduced
successively for i = k0, ..., k−1 where k0 is the maximal value such that (m∗0,j , . . . ,m

∗
k,j) is realizable

if the Dn
i,j were equal to zero for i ∈ [k0, k − 1]. For that, starting with i = k0 till i = k − 1, each

Dn
i,j is divided by 2 or set to zero if it is not sufficient.

Once the reconstruction is done, the value of the fluxes is obtained by

Fnj+ 1
2

= max{u(tn, xj+ 1
2
), 0}m+

j + min{u(tn, xj+ 1
2
), 0}m−j+1. (33)

The corresponding scheme is called “ζ reconstruction based simplified scheme”, abbreviated to “ζ
simplified scheme”. Under some limitation on the CFL number, it is realizable, as shown in the
following theorem.

Theorem 4.1. From realizable moment vectors (mn
j )j, the equations (29,33) define a realizable

moment vector mn+1
j if the CFL number is smaller than 1/3.

Proof. The vector mn+1
j is given by:

mn+1
j = mn

j − λjm+
j − µ̃j−1m

−
j + µjm

−
j+1 + λ̃j−1m

+
j−1,

where λj = ∆tn

∆x max{u(tn, xj+ 1
2
), 0}, µj = −∆tn

∆x min{u(tn, xj+ 1
2
), 0}, λ̃j−1 = ∆tn

∆x max{u(tn, xj− 1
2
), 0},

µ̃j−1 = −∆tn

∆x min{u(tn, xj− 1
2
), 0} are coefficients between 0 and 1/3. The last two terms define

some moment vectors and the rest can be written
(

1
3 − λj

)
m+
j +

(
1
3 − µ̃j−1

)
m−j + 1

3m∗j and is also
realizable.

4.2. The quadrature weights reconstruction based simplified scheme (QW simplified scheme)

The same reconstruction of the weights is done here as for the kinetic scheme in Section 3.2.3.
Using the same notation, the flux is then given by:

Fj+ 1
2
(t) = max{u(t, xj+ 1

2
), 0}

p∑
α=1

(
wj,α +

∆x

2
Dn
α,j

)
Ξj,α (34)

+ min{u(t, xj+ 1
2
), 0}

p∑
α=1

(
wj+1,α −

∆x

2
Dn
α,j+1

)
Ξj+1,α.

The corresponding scheme is called “quadrature weights (QW) reconstruction based simplified
scheme”, abbreviated to “QW simplified scheme” and is then realizable under some less restrictive
limitation on the CFL number than for the ζ-simplified scheme.

Theorem 4.2. From realizable moment vectors (mn
j )j, the equations (29,34) define a realizable

moment vector mn+1
j if the CFL number is smaller than 1/2.
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Proof. The vector mn+1
j can be written:

mn+1
j =

p∑
α=1

[
wj,α − λj

(
wj,α +

∆x

2
Dn
α,j

)
− µ̃j−1

(
wj,α −

∆x

2
Dn
α,j

)]
Ξj,α

+ µj

p∑
α=1

(
wj+1,α −

∆x

2
Dn
α,j+1

)
Ξj+1,α + λ̃j−1

p∑
α=1

(
wj−1,α +

∆x

2
Dn
α,j−1

)
Ξj−1,α,

with the same definition of λj , µj , λ̃j−1 and µ̃j−1 as in the proof of Theorem 4.1 but now belonging
to [0, 1/2]. The only thing to check is the non-negativity of the weights in the first summation. If
wj,α is zero, then Dn

α,j = 0 and this term is zero. Otherwise, wj,α is positive and this term can be
written:

wj,α

[
1−

(
1 +

∆x

2wj,α
Dn
α,j

)
λj −

(
1− ∆x

2wj,α
Dn
α,j

)
µ̃j−1

]
,

which is non-negative, since necessarily |Dn
α,j | ≤

2wj,α
∆x and λj and µ̃j−1 are smaller than 1/2.

5. Verification: comparisons with analytical solution in 1D configurations

Two configurations are studied here for which analytical solutions are available. For the first
one, moments are transported by a constant fluid velocity in a periodic domain, whereas for the
second one, moments are transported by an unsteady and compressible fluid velocity. In both cases,
three initial conditions can be considered, defined either from the NDF or from the ζk: a regular
one with moments in the interior of the moment space, an oscillating one where the ζk oscillate
at different frequencies to test the robustness of the methods and a multi-modal one, reaching
the boundary of the moment space and typical of what can be obtained in physical systems were
nucleation and aggregation occur. These initial conditions are first described before comparing the
results of our schemes to the analytical solution in both test cases. Then, the schemes are tested
in 1D configurations with a constant or a compressible fluid velocity, considering a high number of
moments, equal to 10 unless mentioned otherwise.

5.1. Initial moments

5.1.1. Regular initial NDF

A regular initial condition is defined through the following beta-NDF:

f0(ξ, x) = 16x2(1− x)2 ξ
λ(x)(1− ξ)µ(x)

β(λ(x), µ(x))
,

with

λ(x) =
7

2
+

3

2
sin(2πx), µ(x) =

7

2
− 3

2
cos(2πx)

and the initial moments are defined by m0
k(x) =

∫ 1

0
ξkf0(ξ, x)dξ. These moments for k ≤ 6, as well

as the corresponding ζk are plotted in Fig. 1. They are regular and periodic.
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Figure 1: Constant fluid velocity test case with the regular initial solution; Right: space evolution of the moments
of order 0 to 6 (top to bottom lines) for the exact initial solution (solid black lines) and for the simulation with the
first order kinetic scheme at time t = 2 (red dashed lines). Left: initial values of the ζk, k ∈ {1, . . . , 6}.

5.1.2. Oscillating initial ζk
An initial solution can be also defined from a choice of the ζk and of m0. Here, oscillating

functions are used for ζk, with a frequency increasing with k, whereas m0 is a polynomial function:

ζ0
k(x) =

x

2

[
1.01 + cos

(
πk

2
x

)]
, m0

0(x) = 16x2(1− x)2. (35)

This allows to recover all the initial moments, which are in the interior of the moment space, but
quite close to the boundary at some points.

5.1.3. Multi-modal initial NDF
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Figure 2: Left: ζk for k=1,2,3,4 as functions of the spatial location x. Right: initial distribution f0(ξ, x) as function
of ξ for x = 0.5, x = 0.6 and x = 0.7 (for the Dirac delta functions, the absolute value of the heights of the scaled
weights is arbitrary).

To test the ability of the methods to deal with the boundary of the moment space and the
transition with the interior of this space, another initial distribution is introduced. It is detailed in
Appendix D and the corresponding moments are regular (C2) functions of x. Then, the distribution
is only one Dirac delta function at ξ = ξ1 = 0.02 for x ∈

[
0, 1

4

]
, in such a way that only ζ1 is not

zero, as seen in Fig. 2(left). It represents a distribution obtained through nucleation. For x ∈
[

1
4 ,

1
3

]
,
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it is a sum of two Dirac delta functions at ξ = ξ1 and ξ = 2ξ1 and ζ2 and ζ3 are positive, with a
discontinuity at x = 1

3 for ζ2. The second peak represents particles obtained by aggregation of two
initial nuclei. A continuous Rosin-Rammler distribution is added for the rest of the domain, in such
a way that the moments are then in the interior of the moment space. The obtained distribution
is plotted in Fig. 2(right) for three different positions. Moreover, the corresponding moments are
plotted in Fig. 7.

5.2. Results with a constant fluid velocity

To test the different schemes, let us first consider a case with a constant velocity. With no
restriction, one assumes u = 1. Moreover, we consider the spatial domain [0, 1] with periodic
boundary conditions. The analytical solution at time t = 2 or t = 5 is then equal to the initial
condition.

5.2.1. Numerical accuracy in a regular case

When considering the regular initial NDF, simulations are done with the three kinetic schemes
on uniform meshes with a CFL number equal to 0.8 and are compared with the analytical solution
at the final time t = 2. First, using a 100 points spatial discretization, the moments of order 0
to 6 obtained at the final time with the first order scheme are plotted in Fig. 1(left), showing its
numerical diffusion whereas the other kinetic schemes lead to very precise results (not shown here).
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Figure 3: Constant fluid velocity test case with the regular initial NDF: L1 norm of the error on the moments of
order 0 to 9 (solid red lines, bottom to top) with the ζ kinetic scheme (left) and the QW kinetic scheme (right) for
a CFL equal to 0.8. The same line of slope 2 is represented by black dashed lines on the two figures.

To evaluate more precisely the accuracy of the methods, the L1 norm of the errors, divided by
the L1 norm of the corresponding moments, are plotted as a function of the cell width in Fig. 3,
using from 16 to 4096 cells. Both the methods are numerically almost second order accurate: the
order is about 1.93 for all moments with the ζ kinetic scheme and 1.91 for the moments of order 0 to
5 with the QW kinetic scheme. Moreover, the ζ kinetic scheme does not introduce any dependance
on the number of considered moments in this case where no corrections are needed on the slope
to ensure le positivity of the ak,j . On the contrary, for the QW kinetic scheme, the number of
considered moments has an influence on the accuracy on all moments. It can be seen in Fig. 4,
where the same normalized L1 norm of the errors are plotted when using 6 and 5 moments with
this scheme. Moreover for half of the highest order moments, the order of accuracy degenerates
to 1 when a fine enough mesh is used (this degenerescence did not yet really appear for the finest
mesh used in the case with 10 moments). It can be explained by the fact that for the weight
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Figure 4: Constant fluid velocity test case with the regular initial solution: L1 norm of the error on the moments
of order 0 to N (solid red lines, bottom to top) with the QW kinetic scheme for a CFL equal to 0.8 and for N = 5
(left) and N = 4 (right). The same line of slope 2 is represented by black dashed lines on the two figures.

reconstruction, only half of the smallest order moments are considered in the neighboring cells. Let
us also remark that, for this case, no abscissa is eliminated to ensure the positivity of the weights
of the reconstruction.

When considering the simplified schemes, the CFL number is set to 0.3. The behavior of the
schemes are similar (and not represented here): both the methods are also numerically almost
second order accurate: the order is about 1.93 for all moments with the ζ simplified scheme and
about 1.9 for the moments of order 0 to 6 with the QW simplified scheme. They are also compared

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-4 -3.5 -3 -2.5 -2 -1.5 -1

lo
ga

rit
hm

 o
f t

he
 e

rr
or

logarithm of the cell width
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-4 -3.5 -3 -2.5 -2 -1.5 -1

lo
ga

rit
hm

 o
f t

he
 e

rr
or

logarithm of the cell width

Figure 5: Constant fluid velocity test case with the regular initial NDF: L1 norm of the error on the moments of
order 0 (left) and 1 (right) with the kinetic (solid lines) of the simplified (dashed lines) schemes for a CFL equal to
0.3, using the constant (black +), the ζ (red) or the QW (blue �) reconstruction.

to the kinetic schemes, using the same CFL equal to 0.3. The errors on the moments of order 0
and 1 are then plotted in Fig. 5. One can first remark that the accuracy of the kinetic schemes is
smaller than for a CFL equal to 0.8, with more than half an order of magnitude for the difference.
It can be checked in this case that the results for the simplified schemes are very little sensitive to
the CFL number. Moreover, the accuracy obtained with the non-constant reconstructions of the
moments are much higher than with the constant reconstruction, allowing to reduce drastically the
number of cells needed for a given accuracy (about a factor 10 on the cell number for an error of
1%). This is an important point for more complex problems where a quite costly ODE system has
to be solved on each cell for the resolution of the source terms. Moreover, the ζ reconstruction gives
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the best results for most of the discretizations.

5.2.2. Verification in extreme cases
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Figure 6: Constant fluid velocity test case with the oscillating initial ζk: space evolution of the moments of order 0
to 4 (left, top to bottom lines) and of order 5 to 8 (right, top to bottom lines for x < 0.7) at time t = 5 for the exact
solution (solid black lines) and for the simulation with the constant reconstruction (top), with the ζ reconstruction
(middle) and the QW reconstruction (bottom) for the kinetic scheme (red dashed line or green dots for QW with 4
moments) and the simplified scheme (blue dotted lines) with 100 points and a CFL equal to 0.3.

Let us consider more challenging test cases. The final time, t = 5, is larger here to amplify the
phenomena. The oscillating initial ζk is first considered. One can see that the ζ schemes, using
100 points and a CFL number equal to 0.3, give accurate results on the moments of order 0 to 4
(see Fig. 6 middle). However, for the highest order moments, the maximum principle is no more
respected and the error is larger than for the first order moments but still smaller than with the
other reconstructions, at least for the kinetic scheme. With the QW schemes using 10 moments
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and the same discretization (Fig. 6 bottom), the results are a little bit less good: the maximum
principle is no more respected for the first order moments with some kind of oscillations around the
analytical solution. However, this oscillations do not blow up and the accuracy is still better than
with the first order scheme, for which the numerical diffusion flatten a lot the results (Fig. 6 top).
Moreover, the accuracy of the QW schemes for the first order moments is improved by the use of
a smaller number of moments.
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Figure 7: Constant fluid velocity test case with the multi-modal initial NDF: space evolution of the moments of order
0 to 4 (left, top to bottom lines) and of order 5 to 8 (right, top to bottom lines) at time t = 5 for the exact solution
(solid black lines) and for the simulation with the ζ reconstruction (top) and the QW reconstruction (bottom) for
the kinetic scheme (red dashed line or green dots for QW with 4 moments) and the simplified scheme (blue dotted
lines) with 100 points and a CFL equal to 0.3.

Computations were done also with the multi-modal initial NDF, representing a more realistic
NDF. The analytical solution as well as the solution computed with the ζ and QW schemes with
100 points and a CFL number equal to 0.3 are represented in Fig. 7. Both schemes do not encounter
any problem simulating this test case, even if the moment vector is at the boundary of the moment
space in some part of the domain. Moreover, in this more realistic case, the maximum principles
are respected and the ζ reconstruction gives the most accurate results when using 10 moments,
but the use of only 4 moments allow to improve the accuracy for the QW schemes. As it will be
shown for the unsteady case, the difference of accuracy on the zeroth and first order moments is
higher between the ζ and QW reconstructions when a finer discretization is used for simulations
with 10 moments. However all methods are still always much more accurate than the schemes using
a constant reconstruction.

22



5.3. Results with an unsteady and compressible fluid velocity

An unsteady fluid velocity u and the corresponding characteristics are given, for x ∈ [0, 1] by:

u(t, x) =
1− x
1 + t

, X(t; s, x) = 1 +
x− 1

1 + t− s
.

The analytical solution is given by:

mN (t, x) = (1 + t)m0
N (1 + (x− 1)(1 + t)) .

For the simulations, we use N = 9 and the final time is t = 1.

5.3.1. Numerical accuracy
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Figure 8: Unsteady fluid velocity test case with the regular initial NDF: L1 norm of the error on the moments of
order 0 to 9 (solid red lines, bottom to top) with the ζ kinetic scheme (left) and the QW kinetic scheme (right) for
a CFL equal to 0.8. The same line of slope 2 is represented by black dashed lines on the two figures.
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Figure 9: Unsteady fluid velocity test case with the multi-modal initial NDF. Left: L1 norm of the error on the
moments of order 0 with the kinetic (solid lines) of the simplified (dashed lines) schemes for a CFL equal to 0.3, using
the constant (black +), the ζ (red) or the QW (blue � when N = 9 and green ◦ when N = 3) reconstruction. Right:
space evolution of the mean value ζ1 (top curves) and the variance ζ1ζ2 (bottom curves) of the NDF at time t = 1
for the exact solution (solid black lines) and for the simulation with the kinetic scheme and a CFL equal to 0.8, using
the constant reconstruction (dashed red lines), the ζ reconstruction (blue dashed line) and the QW reconstruction
(dotted green line), with 100 points.
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N 3 4 5 6 7 8 9
1st order kinetic scheme 1.0 1.1 1.1 1.2 1.3 1.3 1.3

ζ kinetic scheme 2.7 3.1 3.4 3.8 4.1 5.3 6.6
QW kinetic scheme 2.4 2.9 2.8 3.3 3.4 3.9 4.0

1st order simplified scheme 1.4 1.5 1.5 1.6 1.7 1.7 1.8
ζ simplified scheme 3.3 3.4 3.5 3.8 3.9 4.2 4.4

QW simplified scheme 4.4 5.1 5.0 6.0 6.2 7.4 7.5

Table 1: Unsteady fluid velocity test case with the multi-modal initial NDF: normalized computational time for a
CFL number equal to 0.3.

The same kind of simulations are done in the unsteady case as with the stationary one. For the
ζ and QW kinetic schemes and the regular initial NDF, the errors on the moments are shown in
Fig. 8. The numerical order of accuracy is about 1.93 when using the ζ reconstruction and about
1.91 for the moments of order 0 to 5, when using the QW reconstruction. Moreover, in this case,
the influence of the CFL is much smaller than with the constant fluid velocity, probably due to the
interpolation error of the fluid velocity in the case of the kinetic schemes. All methods then give
similar results compared to the constant fluid velocity test case, the ζ reconstruction based schemes
being still a little bit more accurate.

The difference between the two kinds of reconstructions is higher when considering the multi-
modal initial NDF (see Fig. 9 left), this difference being reduced when considering only 4 moments
with the QW reconstruction based schemes. In any cases, the accuracy stay much higher than
with the constant reconstruction. In Fig. 9(right), it can be seen that the ζ and QW kinetic
schemes well capture the mean value of the distribution (corresponding to ζ1), as well as its variance
(corresponding to ζ1ζ2) with only 100 cells. The corresponding plot for the simplified scheme is
very similar and not shown here.

5.3.2. Computational time

In the case of the multi-modal initial NDF, the computational time of the different schemes
with the use of several numbers of moments are given in table 1, when using a CFL number equal
to 0.3 for all methods. This case is chosen since it is representative of physical cases and induces
a fair comparison of the methods: some corrections of the slopes are needed for the ζ schemes as
well as some abscissa eliminations for a few points for the QW schemes.

It shows that the computational time for the high order schemes are about 2.5 to 3 times higher
than for the corresponding first order scheme, for the same discretiation, except for the simplified
QW scheme and for the ζ kinetic scheme with N ≥ 7 where it is about 4 to 5 times higher. Indeed,
when considering the ζ kinetic scheme, no analytical formulas are used for the computation of
the very high order moments from the ζk and the reverse Chebychev algorithm is then used, thus
increasing the cost. Moreover, for the simplified schemes, the computational times are larger due
to the use of the second order SSP Runge-Kutta method, thus needing two reconstructions per
time step. However, the ζ simplified scheme is still competitive, at least for the same CFL, due to
the very simple reconstruction. But the CFL cannot be increased beyond 1/3, whereas the global
computational time of the other methods can be decreased by an increasing of the CFL number.
When considering a global problem, including source terms, the time step can however have to be
limited by the coupling characteristic time between the operators [47, 28].
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Finally, due to the possible reduction of the number of cells, the cost of the schemes developed
here is lower than the one of the first order scheme for the same accuracy. Moreover, the number
of degrees of freedom being then reduced, it implies a reduction of the global cost of the complete
problem with source terms.

6. Results with 2D, steady and incompressible fluid velocity

Figure 10: 2D test case: moment m0 for the reference solution (top left), for the simulations on a 200× 200 uniform
mesh with a CFL number equal to 0.3, using the first order kinetic scheme (top right), the ζ kinetic scheme (bottom
left) and the QW kinetic scheme (bottom right).

Let us consider a 2D configuration of particles in a vortex. The unsteady fluid velocity is then
defined for x ∈ [0, 1/2] and y ∈ [0, 1/2] by:

ux(t, x, y) = sin(2πx) cos(2πy), uy(t, x, y) = − cos(2πx) sin(2πy).

Let us introduce the distance r to the point (1/8, 1/8). A population of particles is initially present
in the vortex, in a disc defined by r < 1/8. Its distribution is given by f0(ξ, 1 − 8r), where f0

corresponds to the multi-modal NDF defined by (D.1), with a weight w3(x) now being equal to 1
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for x ∈ [2/3, 1]. This population is then transported by the fluid till the time t = 0.8. Due to the
incompressibility of the fluid phase, the value of the moments are conserved along the characteristics.
A reference solution is then computed by solving reverse characteristics from each position, using a
high order ODE solver with time step adaptation. For example, the zeroth order moments obtained
with this method is given in Fig. 10(top left).

Simulations are done for moments of order 0 to 9, using a 200× 200 uniform discretization and
a CFL number equal to 0.3. To solve the 2D problem, a dimensional splitting is used: a 1D scheme
is used alternatively on one-dimensional problems in the x and y directions. To obtain a second
order of accuracy with this splitting method but using the same CFL number for each operator,
steps of length ∆t are used on each problem, but alternating the order of these steps in alternate
time steps [48].

Since the kinetic scheme and the simplified one give very similar results, only the results with
the kinetic scheme are presented here. The zeroth order moment is plotted in Fig. 10. One can see
the good level of accuracy of the ζ and QW kinetic schemes, especially compared to the first order
scheme.
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Figure 11: 2D test case: mean value (left) and variance (right) of the distribution as a function of x at y = 0.4 for
the reference solution (black solid line), for the simulations on a 200 × 200 uniform mesh and a CFL number equal
to 0.3, with the first order kinetic scheme (green dots), with the ζ kinetic scheme (red dashed line) and with the QW
kinetic scheme (blue dotted line)

For going further in the comparisons, the mean value of the distribution, i.e. m1/m0 and its
variance, i.e. ζ1ζ2 are plotted in Fig. 11 as functions of x at y = 0.4. The high numerical diffusion
of the first order scheme is still remarkable, whereas the ζ and QW kinetic schemes allow to capture
accurately these quantities.

7. Conclusion

In this paper, we have provided four realizable accurate finite volume schemes for the transport
of moments by a given velocity field, in Cartesian mesh context: for the ones, the flux computation is
based on a follow-up of the characteristics (kinetic schemes) and for the other, it is based on the value
of the moments at the interface (simplified schemes). In any case, a spatial reconstruction of the
moments is needed and done by reconstructing variables that only have to be non-negative: either
the corresponding ζk variables or the weights of the corresponding quadrature. Unlike previous
developed realizable Eulerian schemes, they are able to deal with moments vectors of all sizes, at
least till 10 moments, possibly at the boundary of the moment space, which can occur in practical
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applications. The verifications have been done on various test cases, 1D and 2D, with steady or
unsteady and compressible or incompressible fluid velocities. The developed schemes then showed
their high accuracy, compared to the first order scheme, and their second order of accuracy for
all moments in the case of the ζ reconstruction and for half the lowest order ones for the QW
reconstruction. The kinetic schemes are more accurate than the simplified scheme, especially due
to the fact that a higher CFL number can be used. But their generalization to unstructured meshes
seems less easy than for the simplified schemes. Moreover, the ζ reconstruction leads to slightly
better accuracy than the QW one in most cases. And the accuracy on the QW schemes is much
more sensitive to the number of considered moments and can eventually decrease when this number
increases. Finally, for a given accuracy, the cost of all the developed schemes is usually lower than
the one of the first order scheme. And since they all allow a high reduction of the number of degrees
of freedom, the global cost of the complete problem with source terms can be drastically reduced by
using these schemes, compared to the first order ones, thus showing the great interest of such kind
of schemes. Moreover, we are studying an implementation of a simplified scheme in the open-source
computational fluid dynamics toolbox OpenFOAM as part of the Open-QBMM project [49, 50].
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Appendix A. Case of a compact support

Let us consider here the case where the support of the NDF is included in a known compact
interval of the form [0, ξmax]. The moments are then denoted mk and and the corresponding

“dimensionless” moments are m̃k =
mk

ξk+1
max

. They correspond to moments on the support [0, 1] and

are obtained through the change of variables ξ 7→ ξ

ξmax
. Then, a second kind of Hankel determinant

has to be defined:

H2n+d =

∣∣∣∣∣∣∣
m̃1−d − m̃2−d . . . m̃n − m̃n+1

...
...

...
m̃n − m̃n+1 . . . m̃2n−1+d − m̃2n+d

∣∣∣∣∣∣∣ ,
with d = 0, 1; n ≥ 0. Similarly to the case with support in [0,+∞), one has the following character-
ization of the moment space [22]: the vector mN = (m1, . . . ,mN )

t
is realizable (i.e. in the moment

space) if and only if
Hk ≥ 0 and Hk ≥ 0, k ∈ {0, 1, . . . , N}.

Moreover, it is strictly realizable (i.e. in the interior of the moment space) if and only if these
Hankel determinants are positive.

From the ζk corresponding to the moments mk (then the ζk/ξmax correspond to the m̃k), one
can defined the canonical moments pk by ζk = ξmaxpk(1− pk−1). Their geometrical interpretation
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can be given from the m−k and m+
k , which are now in [0,m0ξ

k
max] [22]:

pk =
mk −m−k (mk−1)

m+
k (mk−1)−m−k (mk−1)

. (A.1)

If mk(µ) is equal to m+
k (mk−1) or m−k (mk−1) for µ ∈ P(mk−1), (i.e. pk is 0 or 1), the measure µ

is a sum of weighted Dirac distributions and mk belongs to the boundary of the moment space.
In this case of compact support, the QW schemes can be applied without any change. However,

the ζ-schemes have to be adapted: the reconstruction has then to be done on the canonical moments
to ensure the realizability for the corresponding support. In the case of the reconstruction for
the kinetic scheme, the reconstructed ζk used for the flux computation in (26) are then ζnk (x) =
ξmaxp

n
k (x)(1− pnk−1(x)) where pnk (x) = p̄nk,j +Dn

k,j(x−xj) on the jth cell and p̄nk,j = ak,j + bk,jD
n
k,j .

The coefficients ak,j and bk,j are now given by:

ak,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)ξkmax

k−1∏
i=1

pni (x)(1−pni (x))dx = ∆xmn
k,j −

∫ x
j+1

2

x
j− 1

2

mn
0 (x)Pk(ζn1 (x), . . . , ζnk−1(x))dx,

bk,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)ξkmax

k−1∏
i=1

pni (x)(1−pni (x))dx = −
∫ x

j+1
2

x
j− 1

2

(x−xj)mn
0 (x)ξkmax

k−1∏
i=1

pni (x)(1−pni (x))dx.

The same kind of slope limiters and corrections are used as fo the ζ kinetic scheme. For the

simplified scheme, the reconstructed ζk are ζ±k,j = ξmaxp
±
k,j(1 − p±k−1,j) with p±k,j = pnk,j ±

Dnk,j
2 ,

the slope Dn
k,j being obtained through a minmod limitation from the pnk,i. The value of the fluxes

are then given by (33). Let us remark that the corresponding schemes can be used in the more
general case of a support in [0,+∞) by using for ξmax the largest value of the abscissas obtained
by a quadrature on each moment set at time tn. Moreover, this value can only decrease with the
transport schemes and the moments are then always bounded.
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Figure A.12: Constant fluid velocity test case with the multi-modal initial NDF: space evolution of the moments of
order 0 to 4 (left, top to bottom lines) and of order 5 to 8 (right, top to bottom lines) at time t = 5 for the exact
solution (solid black lines) and for the simulation with the canonical moments reconstruction for the kinetic scheme
(red dashed lines) and the simplified scheme (blue dotted lines) with 100 points and a CFL equal to 0.3.

These schemes are used in the constant fluid velocity test case with the multi-modal initial
NDF. The 10 moments obtained by the simulation with 100 cells is plotted in Fig. A.12. It shows
a similar accuracy compared to the ζ schemes.
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Appendix B. Examples of realizability constraints for moments on [0,+∞)

The first constraints (6) for the strict realizability of a moment vector (m0,m1, . . . )
t can be

written, making appear the values of m−k (mk−1): m0 > 0, m1 > 0,

m2 >
m2

1

m0
, m3 >

m2
2

m1
, m4 >

m0m
2
3 − 2m1m2m3 +m3

2

m2m0 −m2
1

, . . .

Appendix C. Moments as functions of the ζk

The moments can be written from the ζk: mk = m0

[
Pk(ζ1, . . . , ζk−1) +

∏k
j=1 ζj

]
, as shown in

Proposition 2.2. The first polynomial functions Pk are given by:

P1 =0,

P2(ζ1) =ζ2
1 ,

Pk(ζ1, . . . , ζk−1) =ζ1
[
(ζ1 + ζ2)k−1 + ζ2ζ3Qk(ζ1, . . . , ζk−1)

]
, k ≥ 3,

with

Q3(ζ1, ζ2) =0,

Q4(ζ1, ζ2, ζ3) =2(ζ1 + ζ2) + ζ3,

Q5(ζ1, . . . , ζ4) =3(ζ1 + ζ2)2 + 2(ζ1 + ζ2)(ζ3 + ζ4) + (ζ3 + ζ4)2 + ζ2ζ3,

Q6(ζ1, . . . , ζ5) =4(ζ1 + ζ2)3 + 2(ζ1 + ζ2)(ζ3 + ζ4)2 + (ζ3 + ζ4)3 + 2ζ2ζ3(ζ3 + ζ4)

+ 2ζ4ζ5(ζ1 + ζ2 + ζ3 + ζ4) + ζ4ζ
2
5 + 3ζ3(ζ1 + ζ2)(ζ1 + 2ζ2)

+ 3ζ4(ζ1 + ζ2)2,

Q7(ζ1, . . . , ζ6) =5(ζ1 + ζ2)4 + 2(ζ1 + ζ2)(ζ3 + ζ4)3 + (ζ3 + ζ4)4

+ 3ζ2ζ3(ζ3 + ζ4)2 + 2ζ4ζ5ζ6(ζ1 + ζ2 + ζ3 + ζ4 + ζ5) + ζ4ζ5ζ
2
6

+ 6ζ3ζ4(ζ1 + ζ2)(ζ1 + 2ζ2) + 3ζ4ζ5(ζ1 + ζ2)2 + 4(ζ1 + ζ2)3ζ4

+ 2(ζ1 + ζ2)2(2ζ1 + 5ζ2)ζ3 + 3ζ4ζ5(ζ3 + ζ4)2

+ 4(ζ1 + ζ2)(ζ3 + ζ4)ζ4ζ5 + ζ2
3 (10ζ2

2 + 12ζ1ζ2 + 3ζ2
1 )

+ 3(ζ1 + ζ2)2ζ2
4 + 2ζ4ζ

2
5 (ζ1 + ζ2 + ζ3) + ζ4ζ

3
5 + 3ζ2

4ζ
2
5 + 2ζ2ζ3ζ4ζ5.

Appendix D. Multi-modal initial NDF

The multi-modal NDF is defined by:

f0(ξ, x) = w1(x)δξ1(ξ) + w2(x)δ2ξ1(ξ) + w3(x)R(x, λ(x), k(x)), (D.1)

with ξ1 = 0.02 and where R is the Rosin-Rammler pdf:

R(ξ, λ, k) =
k

λ

(x
λ

)k−1

exp

(
−
(x
λ

)k)
.

The weights w1, w2 and w3 are regular (C2) and fourth order polynomial by part functions. They
are plotted in Fig. D.13(left). The parameters λ and k of the Rosin-Rammler pdf are regular (C2)
and third order polynomials by parts functions plotted in Fig. D.13(right).
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Figure D.13: Left: weights w1, w2 and w3 as functions of the spatial location x. Right: functions λ(x) (black solid
line) and k(x) (red dashed line).

Appendix E. Reconstruction at the level of the NDF

Another way to reconstruct the moments mn(x) is to consider a spatial reconstruction at the
NDF level [40, 41]. Let us then reconstruct a NDF fnj from the moment set (mn

k,j)k∈{0,...,N}, using
EQMOM or entropy maximization and let us define

fn(x, ξ) = fnj (ξ) +Dn
j (ξ)(x− xj), x ∈ [xj− 1

2
, xj+ 1

2
].

The slope is defined thanks to a minmod limiter:

Dn
j (ξ) =

1

2

(
sgn(fnj+1(ξ)− fnj (ξ)) + sgn(fnj (ξ)− fnj−1(ξ)

)
min

( |fnj+1(ξ)− fnj (ξ)|
∆x

,
|fnj (ξ)− fnj−1(ξ)|

∆x

)
and the reconstructed moments for the kinetic scheme are then mn

k (x) =
∫ +∞

0
ξkfn(x, ξ)dξ . Prac-

tically, a quadrature on the ξ variable is used to compute the fluxes. But here, to ensure the [P1]
property, this quadrature has to correspond to the measure fj(ξ)dξ, i.e.

mn
k,j =

∫ +∞

0

ξkfj(ξ)dξ =

Nq∑
α=1

w̄α,jξ
k
α,j =

Nq∑
α=1

wα,jξ
k
α,jf

n
j (ξα,j), k ∈ {0, . . . , N},

where we define wα,j = w̄α,j/f
n
j (ξα,j), since fnj (ξα,j) cannot be zero. In the case of EQMOM

reconstruction, the weights w̄α,j and abscissas ξα,j can correspond to the secondary quadrature
[19, 10]. This then leads to:

mn
k (x) =

∫ +∞

0

ξk
[
fnj (ξ) +Dn

j (ξ)(x− xj)
]

dξ =

Nq∑
α=1

wα,jξ
k
α,j

(
fnj (ξα,j) +Dn

j (ξα,j)(x− xj)
)
.

The corresponding kinetic scheme is then realizable and the flux are written:

Fnj+ 1
2

=
1

∆tn

Nq∑
α=1

(
wj,αf

n
j (ξα,j) +

Dn
α,j

2
(Xj+ 1

2
− xj− 1

2
)

)
Ξj,α

(
xj+ 1

2
−Xj+ 1

2

)+

(E.1)

− 1

∆tn

Nq∑
α=1

(
wj+1,αf

n
j (ξα,j+1)−

Dn
α,j+1

2
(xj+ 3

2
−Xj+ 1

2
)

)
Ξj+1,α

(
Xj+ 1

2
− xj+ 1

2

)+

.
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Figure E.14: Constant fluid velocity test case with a multi-modal initial NDF: space evolution of the moments of
order 0 to 6 (top to bottom) at time t = 1 for the exact solution (solid black lines) and for the simulation with
the kinetic scheme using a reconstruction of the NDF with the gamma-EQMOM (left, red dashed lines) and the
log-normal-EQMOM (right, red dashed lines) with 100 cells and a CFL equal to 0.8.

However, there are three drawbacks for this kind of scheme. First, it depends on the choice of
the NDF reconstruction, since several are possible and it also adds the cost of the reconstruction
itself, which is not negligible. However, such kind of reconstruction is usually needed for the other
operators present in the complete physical problem. The second and more problematic drawback
comes from the impossibility to deal with the boundary of the moment space with this kind of
method. Finally, the maximum principle on the moments may not be preserved. This can be
illustrated on a multi-modal but regular initial NDF:

f0(ξ, x) = 9x2(2− 3x)21[0,2/3](x)R(ξ, λ1, k1) + 9(3x− 1)2(1− x)21[1/3,1](x)R(ξ, λ(x), k(x)),

where R is the Rosin-Rammler pdf and with λ1 = 0.03, k1 = 2. The parameters λ(x) and k(x) are
plotted in Fig. D.13(right). Here, both the gamma and the log-normal EQMOM reconstructions
[19, 20, 10] are used to computed fluxes defined by (E.1). The result of the simulations for 5
moments with the corresponding kinetic scheme with 100 cells and a CFL number equal to 0.8
are plotted in Fig. E.14. The maximal principle is not respected for the zeroth order moment
and the results depend on the reconstruction, with a slightly better behavior here when using the
gamma-EQMOM.
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