
HAL Id: hal-01345689
https://hal.science/hal-01345689v3

Submitted on 3 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizable second-order finite-volume schemes for the
advection of moment sets of the particle size distribution

Frédérique Laurent, Tan Trung Nguyen

To cite this version:
Frédérique Laurent, Tan Trung Nguyen. Realizable second-order finite-volume schemes for the advec-
tion of moment sets of the particle size distribution. Journal of Computational Physics, 2017, 337,
pp.309-338. �10.1016/j.jcp.2017.02.046�. �hal-01345689v3�

https://hal.science/hal-01345689v3
https://hal.archives-ouvertes.fr


Realizable second-order finite-volume schemes for the advection of
moment sets of the particle size distribution

F. Laurenta,b,∗, T. T. Nguyena,b
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bFédération de Mathématiques de l’Ecole Centrale Paris - FR CNRS 3487

Abstract

The accurate description and robust simulation at relatively low cost of a size polydisperse popu-
lation of fine particles in a carrier fluid is still a major challenge for many applications. For this
purpose, moment methods, derived from a population balance equation, represent a very interest-
ing strategy. However, one of the major issues of such methods is the realizability: the numerical
schemes have to ensure that the moment sets stay realizable, i.e. that an underlying distribution
exists. This issue is all the more crucial that some moment vectors can be at the boundary of the
moment space for practical applications, corresponding to a population of particles with only one or
a few sizes. It is then investigated here for the advection operator, for which it is particularly signif-
icant. Then second order realizable kinetic finite volume schemes are designed, with two strategies
for the fluxes evaluation based on the work of Kah et al. [1] and of Vikas et al. [2], which are here
completely revisited, extended to take into account the boundary of the moment space and any
number of moments, analyzed and compared in a Cartesian mesh context. For a potential easiest
generalization to unstructured meshes, simplified but still realizable versions of these schemes are
also developed. The high accuracy of all the schemes is then numerically checked on 1D and 2D
test cases, with Cartesian meshes, and their robustness is shown, even when some moment vectors
are at the boundary of the moment space.

Keywords: population balance equation, moment method, advection, realizable scheme, finite
volume, kinetic scheme

1. Introduction

Populations of non-inertial particles in a carrier fluid are encountered in several kinds of appli-
cations (see [3] and references therein): soot in combustion applications, nanoparticles synthesis,
microbubbles in biology processes, aerosol technology, ... Its evolution can be described by a pop-
ulation balance equation (PBE) [3, 4, 5, 6], which is a transport equation for the number density
function (NDF) of the particles. This NDF depends on time, spatial location and one or several
internal coordinates, which can for example describe the size of the particles. The PBE includes
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usually the spatial transport terms, describing for example advection and diffusion, and some local-
ized source terms describing, at each spatial location, phenomena such as nucleation, aggregation,
coagulation, breakup, growth or oxidation/dissolution. It is coupled with the equations, usually
Navier-Stokes equations, describing the carrier fluid [7].

In this work, only one internal variable is considered, describing the size of the particles, assuming
for example that they are spherical. In order to be able to describe the size polydispersion of the
particles at a reasonable cost, the use of moment methods seems to be an interesting strategy
(see for example [8, 9, 4]): only a finite set of moments of the NDF are then transported. It
can also be hybridized with a discretization along the internal coordinate [10, 11, 12, 13, 14].
However, two major issues arise for moment methods. The first one is the closure of the moment
equations essentially due to the source terms in the PBE. Several strategies were used: some of
them provide a functional dependence of the unknown moments using the transported moment set,
such as the interpolative closure (MOMIC) [15]. For the other ones, a NDF, or its corresponding
measure, is reconstructed from the moment set, allowing evaluation of all the unclosed terms. This
reconstruction can be for example the entropy maximization [16, 17, 18], a sum of Dirac delta
function (quadrature method of moment, QMOM) [8] or a superposition of kernel density functions
(kernel density element method, KDEM [19] or extended quadrature method of moment EQMOM
[20, 21, 22]). The second major issue of moment methods is the realizability. Indeed, since the set
of variables are the moments of a non-negative NDF (or, more rigorously, a positive measure) on
R+ or a sub-interval of R+, it belongs to a space strictly included in RN+ , where N is the number of
moments [23, 24, 25]. This space is called the moment space. The numerical methods have to ensure
that the variables stay in this moment space, i.e. that the moments stay realizable. This issue is not
always considered, thus leading to unphysical results (e.g. invalid moment sets). Indeed, the classical
schemes for high-order transport in physical space can lead to invalid moment sets [26, 2, 27], as well
as for the source terms [13, 12], even if the closure itself ensures the realizability at the continuous
level. This happens all the more easily when some moment sets are at the boundary of the moment
space, thus corresponding to a sum of a few weighted Dirac delta functions, as obtained through
nucleation. To circumvent this issue, some authors resort to moment correction algorithms [28, 26]
based on a necessary but eventually not sufficient condition for realizability in order to obtain a
valid moment set. The cost of the method then increases and the correction spoils the overall
accuracy.

It is then very important to develop realizable schemes, i.e. schemes directly preserving the
realizability of the moment set. Moreover, an operator splitting strategy, solving separately the
spatial transport of both phases and the source terms was shown to be efficient and well adapted to
industrial-oriented codes [29]. This allows us to deal separately with the spatial transport and the
source terms. Concerning the source terms, realizable schemes were already developed for moment
methods where the closure is based on a reconstruction of the NDF [13, 4, 12]. A realizable
scheme was also provided for the diffusion operator in the case of QMOM [27, 4]. In this work, only
advection then is considered. In practice, this operator, at least when using first order explicit finite
volume methods, is usually much less costly than the potentially complex source term operator,
composed of one ODEs system for each considered moment vector. So, it will be very interesting
to minimize the number of degree of freedom by using a high order scheme for advection, as soon
as its cost is not prohibitive.

A Lagrangian type of scheme has been developed [30]. The advection of the moments is then
obtained through the advection of some numerical particles for which a moment vector is affected.
The resulting scheme is then naturally realizable. However, it suffers from the same drawbacks
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as usual Lagrangian methods: the need of interpolation of the carrier phase properties, the non
easy coupling with this phase and the complexity in term of parallelization for high performance
computing. Moreover, it could need a large number of numerical particles to converge, for which
the eventually costly source terms operator has to be solved. That is why only Eulerian schemes
are studied here. On the one hand, a second-order realizable kinetic finite volume method has been
developed in a structured mesh context [1], when the support of the NDF is compact. It was recently
applied in a context of a mesh refinement [31]. It is based on a kinetic evaluation of the fluxes thanks
to the use of the analytical solution at the kinetic level and on a MUSCL type of reconstruction
on the canonical moments, which define a one to one relation between the interior of the moment
space and the interior of an hypercube. However, it was only applied for inertial particles and
for a four moments method, the algebra being otherwise difficult. On the other hand, a pseudo–
second-order realizable finite volume method [2] has been developed in structured and unstructured
mesh contexts. Fluxes computation is then based on a reconstruction of the moments at the cell
interfaces; it is obtained thank to the Gauss quadrature of the moments, just reconstructing the
weights. However, it was reduced to an even number of moments and suffers from some accuracy
reduction when the quadrature points evolve strongly. In this work, the last two schemes are
completely revisited, generalizing them to any number of moments and allowing them to deal with
the boundary of the moment space without loosing the realizability, which is an hard task. They
are also analyzed, especially looking for conditions to obtain the second order of accuracy, and
they are compared. This is done for NDF of support included in [0,+∞), the case of a compact
support being discussed in the appendix. Kinetic schemes are thus derived in a structured mesh
context, first with a reconstruction on variables defining a one to one relation between the interior
of the moment space and (0,+∞)N , where N is the number of moments in the set. Algorithms
are then adapted to the case of the support included in [0,+∞) and generalized to any number of
moments. The weight reconstruction is also considered, for an even or an odd number of moments,
in a different way compared to [2], thus not being dependent of abscissas differences between the
cells. Simplified schemes are then derived with the two kinds of reconstructions, the first one being
modified for this case. It will be generalizable to unstructured meshes in a cell-centered context.

The paper is then organized as follows. In Section 2, the moment equations for the pure
advection case are given, as well as the realizability constraints. Then, in Section 3, realizable
finite volume kinetic schemes are provided and their orders of accuracy discussed. Some simplified
version of these schemes are also given in Section 4, as well as the new constraint on the CFL
to guarantee the realizability. Finally some verifications are given, considering systems with high
numbers of moments, first for 1D configurations with steady or unsteady and compressible carrier
phase velocity fields in Section 5 and for the 2D configuration of the Taylor-Green vortices in
Section 6.

2. Moment transport equation and realizability

In this section, moment equations for the pure advection case are first recalled. Then, the space
in which the moment vector lives is described, as well as the realizability conditions. This can
be done directly, using the Hankel determinants. But some interesting tools are also introduced,
defining a bijection between the interior of the moment space MN and (0,+∞)N .

2.1. Moment equations
Let us consider the NDF, denoted f(t, x, ξ), of some cloud of small particles transported by a

carrier fluid. The parameter ξ, which is the size of the particles, lives in the interval [0,+∞). The
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case of a compact support is discussed in Appendix A. In the case of pure advection, the population
balance equation (PBE) then reduces to:

∂tf + ∂x (u f) = 0. (1)

Since the considered particles are non-inertial, u is the velocity of the carrier phase, which is a priori
compressible. It is assumed to be a regular function of (t, x) in what follows.

Instead of resolving directly this PBE, one considers a finite set of moments (mk)k∈{0,1,...,N} of

the NDF, the kth order moment mk being defined by:

mk(t, x) =

∫ +∞

0

ξkf(t, x, ξ)dξ. (2)

These moments are the solution of the following system of equations, denoting mN = (m0, . . . ,mN )t:

∂tmN + ∂x (umN ) = 0. (3)

Let us remark that this system is closed, contrary to the often encountered systems in moment
methods. However, it is usually only a part of a more complex problem for which some closure
is needed and can be provided through the reconstruction of a NDF from the moments (see for
example [8, 1, 21]). Moreover, the moment equations seem here independent from one another. In
fact, they are coupled by the fact that the vector mN = (m0,m1, . . . ,mN )t has to be a moment
vector of a positive measure, i.e. has to stay in the moment space. This is the realizability condition,
which is detailed in the next section.

2.2. Moment space: definition and first characterization

Let us denote P the space of finite positive Borel measures on (0,+∞). And for µ ∈ P, let us
denote mN (µ) the vector of moments of µ of order 0 to N , assuming that they are finite:

mN (µ) = (m0(µ), . . . ,mN (µ))
t
, mk(µ) =

∫ +∞

0

xkdµ. (4)

The moment vectors mN = (m0,m1, . . . ,mN )t lives in the Nth-moment space.

Definition 2.1. The Nth-moment space MN on the interval (0,∞) is given by

MN = {mN (µ) | µ ∈ P}.

If a moment vector mN belongs to this space, it is said to be realizable and one then defines

P(mN ) =

{
µ ∈ P | mN =

∫ +∞

0

(1, x, . . . , xN )tdµ

}
.

If mN belongs to the interior of this space, it is said to be strictly realizable.

This Nth-moment space is convex. To characterize it, one can introduce the Hankel determi-
nants, defined by:

H2n+d =

∣∣∣∣∣∣∣
md . . . mn+d

...
...

mn+d . . . m2n+d

∣∣∣∣∣∣∣ , (5)

with d = 0, 1; n ≥ 0. Indeed, one has the following theorem, for which a proof can be found in
[23, 24, 25]:
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Theorem 2.1. The vector mN = (m0,m1, . . . ,mN )t is strictly realizable if and only if

Hk > 0, k ∈ {0, 1, . . . , N} (6)

and if it belongs to the boundary of the moment space, then there exists k ≤ N such that

H0 > 0, . . . ,Hk−1 > 0, Hk = 0, . . . ,HN = 0. (7)

In the latter case, k is denoted N (mN ) and P(mN ) is a singleton: a sum of
⌊
k+1

2

⌋
weighted Dirac

delta functions1.

Let us remark that if N (mN ) is odd, then one of the Dirac delta functions is centered at 0.
Moreover, (7) is not a sufficient condition for a moment to be on the boundary (and not outside)
of the moment space: an additional condition is then needed [32, 33].

The moment space has a rather complex geometry, as explained in the next section. Moreover,
the Hankel determinants provide algebraic relations to determine if a vector belongs to the moment
space but this tool is not easy to use, since we do not want to compute all these determinants. But
other quantities can be derived, linked with a one-to-one mapping of the interior of the moment
space, thanks to the theory of orthogonal polynomials.

2.3. Orthogonal polynomials theory and new characterization of the moment space

Let P be the space of real polynomials. For a positive finite Borel measure µ such that its
moments are well defined and for p, q in P, let us define the scalar product:

〈p, q〉 =

∫
R
p(x)q(x)dµ. (8)

When considering a measure µ with infinite support, a sequence (πk)k≥0 of orthogonal polynomials
relative to this scalar product (〈πk, πp〉 = δk,p〈πk, πk〉), where πk is of exact degree k, satisfies the
following three term recurrence relation, with π0 = 1, π−1 = 0 and βk > 0 [34]:

πk+1(x) = (x− αk)πk(x)− βkπk−1(x). (9)

Conversely, if the sequence of polynomials satisfies (9) with βk > 0 for all k ∈ N, then there exists
a measure µ on the real line for which the polynomials are orthogonal. Moreover, this measure is
supported on [0,+∞) if and only if there exists a sequence (ζk)k≥1 of positive numbers such that
the coefficients in the recurrence relation (9) satisfy α0 = ζ1 and for all k ≥ 1 [35]:

βk = ζ2k−1ζ2k, αk = ζ2k + ζ2k+1. (10)

And this measure is supported on [0, 1] if and only if the coefficients ζk form a chain sequence, i.e.
they can be decomposed as ζk = pk(1− pk−1), with p0 = 0 and pk ∈ (0, 1) for k ≥ 1 [36].

When considering a measure with finite support, the sequence of such orthogonal polynomials is
finite and only a finite number of the ζk (or of the pk) can be defined. These coefficients then allow to
characterize the interior of the moment space in the case where the support is included in [0,+∞).

1brc denotes here the largest integer less than or equal to the real number r
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Indeed, for a moment vector mN at the boundary of the moment space MN , corresponding to a
measure with a finite support, one has ζN (mN ) = 0 and the ζk for k > N (mN ) are not defined.

A more geometrical point of view can also be considered [24]. For a vector mk−1 in the interior
of the moment space Mk−1, let us then first define

m−k (mk−1) = min
µ∈P(mk−1)

mk(µ), m+
k (mk−1) = max

µ∈P(mk−1)
mk(µ), (11)

as the lower and upper boundary of the admissible interval for the moment mk of order k, the
lower order moments mk−1 being known. In what follows, only measures supported on [0,+∞) are

considered. In this case, m+
k = +∞ and m−k is finite, with mk −m−k = m0

∏k
i=1 ζi. Moreover, m−k

strongly depends on mk−1, meaning that the interval where the kth order moment lives strongly
depends on the value of the lower order moments. Some examples are given in Appendix B.

Then, the strict realizability is characterized either by the positivity of the Hankel determinants
or by the positivity of the ζk and induces a link between the moments. Several algorithms allow
to compute efficiently the recursion coefficient αk and βk and then the ζk from the moments:
Rutishauser’s QD algorithm [37, 38], Gordon’s PD algorithm [39, 40] and variation of an algorithm
attributed to Chebyshev and given by Wheeler in [41]. Since this last one is said to be slightly
more stable in practice [41], let us detail it, as well as the reverse algorithm, giving the moments
from the ζk and m0.

2.4. Chebyshev algorithm for the computation of the ζk and reverse algorithm

Consider the matrix Z with elements Zk,p =< πkx
p >, which must be zero if k > p and which

satisfy Z−1,p = 0, Z0,p = mp and, thanks to the orthogonal polynomials recursion formula:

Zk+1,p = Zk,p+1 − αkZk,p − βkZk−1,p. (12)

Coefficients αk, βk are determined by:

β0 = m0, α0 =
m1

m0
, ∀k > 0 βk =

Zk,k
Zk−1,k−1

, αk =
Zk,k+1

Zk,k
− Zk−1,k

Zk−1,k−1
, (13)

which results from Zk+1,k−1 = 0 = Zk+1,k. Thus, if the Zk,p are known for each k ≤ n and p ≤ k,
then one can compute the αn, βn from (13) and then the Zn+1,p for p = 0, . . . , n+ 1 from (12).

In what follows, it will be also interesting to compute the moments (mk)k∈{1,...,N} from the
(ζk)k∈{1,...,N} and from m0. It could be done by reversing the previous algorithm, but Skibinsky
[42] showed the following theorem, also proved in [24] by another method.

Theorem 2.2. Let Si,j be given by Si,j = 0, 0 ≤ j < i, S0,j = 1, j ≥ 0 and

Si,j = Si,j−1 + ζj−i+1Si−1,j , 1 ≤ i ≤ j.

If mn−1 is in the interior of the moment space, then

mn = m0

bn/2c∑
i=0

S2
i,n−i

n−2i∏
j=1

ζj . (14)
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Let us remark that this theorem was proved for measures on [0, 1]. It is easy to see that it is
still available for measures on a compact support [0, ξmax], thanks to relations given in Appendix
A. Moreover, a truncated moment vector on [0,+∞) can always be seen as a moment vector
of a measure with a compact support [0, ξmax] (it can be seen by considering the corresponding
quadrature), in such a way that this theorem is still valid in our case. This allows us to prove an
important new property of the relation between the ζk and the moments.

Corollary 2.3. The moment mn can be written

mn = m0

[
n∏
k=1

ζk + Pn(ζ1, . . . , ζn−1)

]
, (15)

where Pn(ζ1, . . . , ζn−1) is a polynomial function of degree n.

Proof. It is easy to prove, by recursion, that Si,j , for i ≤ j is a polynomial function of degree i of
(ζk)k=1,...,j−i+1, in such a way that S2

i,n−i is a polynomial function of degree 2i of (ζk)k=1,...,n−2i+1.
Then the property (15) follows immediately from (14).

Let us remark that the termm0Pn(ζ1, . . . , ζn−1) corresponds tom−k (mk−1), sincemn−m−n (mn−1) =
m0

∏n
i=1 ζi, as shown in [24]. The polynomials Pn are given in Appendix C for n = 1, . . . , 7.

3. Realizable finite volume kinetic schemes

The major issue of the numerical scheme developed here is to ensure the realizability of the
vector mN . Indeed, Wright [26] showed that independent transport of moments with algorithms of
order greater than one in space can result in the generation of invalid moment sets.

Let us develop a realizable numerical scheme for the 1D configuration. A generalization on 2D
or 3D problems is straightforward for Cartesian meshes thanks to the method of lines.

3.1. General form of the finite volume kinetic scheme

Let us introduce a discretization of the spatial domain into cells [xj− 1
2
, xj+ 1

2
] of center xj =

x
j− 1

2
+x

j+1
2

2 and of width ∆x = xj+ 1
2
− xj− 1

2
. A time discretization t0 = 0 < t1 < · · · < tn < . . .

is also used, with the time steps ∆tn = tn+1 − tn. The properties of the averaged value of the
moments on a cell is used here to define a numerical scheme.

3.1.1. Equations on the averaged value of the moments over a cell

One defines the characteristics X(t; s, y) as the solution of{
dtX(t; s, y) = u(t,X(t; s, y)),
X(s; s, y) = y.

One also defines J(t; s, y) the derivative of y 7→ X(t; s, y), for fixed values of t and s.

Proposition 3.1. For mN = (m0, . . . ,mN )t a moment vector solution of (3), the mean value of

each moment of order k at time tn, denoted mn
k,j =

1

∆x

∫ x
j+1

2
x
j− 1

2

mk(tn, x)dx, satisfies

mn+1
k,j = mn

k,j −
∆tn

∆x

[
F
n

k,j+ 1
2
− Fnk,j− 1

2

]
, (16)

7



with

F
n

k,j+ 1
2

=
1

∆tn

∫ x
j+1

2

X(tn;tn+1,x
j+1

2
)

mk(tn, x)dx. (17)

Proof. Let us first remark that ∂tJ(t; tn+1, x) = J(t; tn+1, x)∂xu(t,X(t; tn+1, x)). Then, the func-
tion t 7→ mk(t,X(t; tn+1, x))J(t; tn+1, x) is constant, since its derivative is:

[∂tmk + u∂xmk +mk∂xu] (t,X(t; tn+1, x))J(t; tn+1, x) = 0.

Using the values of this function at time tn and tn+1, we obtain the kth component of the solution
of (3) between tn and tn+1:

mk(tn+1, x) = mk(tn, X(tn; tn+1, x))J(tn; tn+1, x).

Then, its averaged value at time tn+1 can be written, using the change of variables ξ = X(tn; tn+1, x):

mn+1
k,j =

1

∆x

∫ x
j+1

2

x
j− 1

2

mk(tn, X(tn; tn+1, x))J(tn; tn+1, x)dx =
1

∆x

∫ X(tn;tn+1,x
j+1

2
)

X(tn;tn+1,x
j− 1

2
)

mk(tn, ξ)dξ.

This concludes the proof.

This results allows us to develop a kinetic scheme.

3.1.2. Kinetic scheme

Let us denote mn
j = (mn

0,j , . . . ,m
n
N,j)

t an approximation at time tn of the averaged value of the

moment vector over the cell j and Xj+ 1
2

an approximation of X(tn; tn+1, xj+ 1
2
). In what follows,

the CFL like number defined by:

CFL = max
n,j

(
unj,max

∆tn

∆x

)
, unj,max = max

{
u(t, x), x ∈ [xj− 1

2
, xj+ 1

2
], t ∈ [tn, tn+1]

}
(18)

is assumed to be smaller than one in such a way that X(tn; tn+1, xj+ 1
2
) is in the cell j or j + 1.

Moreover, the same property is assumed for Xj+ 1
2
.

First, let us define the approximation of X(tn; tn+1, xj+ 1
2
) that will be used here. For a constant

and uniform fluid velocity, the exact value is used

Xj+ 1
2

= xj+ 1
2
− u∆tn. (19)

Otherwise, one need a good approximation of the velocity and a resolution of the ODE defining
the characteristics with an at least second order of accuracy to obtain third order approximation
of X(tn; tn+1, xj+ 1

2
). For a stationary fluid velocity, a linear reconstruction of this velocity is done

inside the cell. In what follows, we will assume that the fluid velocity is known at the interfaces
and its value inside the cell is given by a linear interpolation. This leads to:

Xj+ 1
2

= xj+ 1
2
−
u(xj+ 1

2
)

δ

(
1− e−δ∆t

n
)
, (20)

where, denoting δj =
u

(
x
j+1

2

)
−u

(
x
j− 1

2

)
∆x : δ = δj if u(xj+ 1

2
) ≥ 0 and δ = δj+1 if u(xj+ 1

2
) < 0.

Let us remark that Xj+ 1
2
< xj+ 1

2
in the first case and Xj+ 1

2
> xj+ 1

2
in the second one. For an
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unstationary fluid velocity, a linear temporal and spatial interpolation of the fluid velocity can be
used. Using an explicit second order Runge et Kutta method for the resolution of the ODEs defining
the characteristics, one obtains:

Xj+ 1
2

= xj+ 1
2
− ∆tn

2

[
(1− δ∆tn)u

(
tn+1, xj+ 1

2

)
+ u

(
tn, xj+ 1

2

)]
, (21)

where, denoting δj =
u

(
tn,x

j+1
2

)
−u

(
tn,x

j− 1
2

)
∆x : δ = δj if u(tn+1, xj+ 1

2
) ≥ 0 and δ = δj+1 if

u(tn+1, xj+ 1
2
) < 0. It leads to a third order approximation of X(tn; tn+1, xj+ 1

2
):

Lemma 3.2. Let us assume that the CFL number is smaller than one and that the parameter Xj+ 1
2

is defined by (19), (20) or (21), depending of the effective dependence of u(t, x) in t and x. Then
Xj+ 1

2
is a third order approximation of X(tn; tn+1, xj+ 1

2
):

Xj+ 1
2
−X(tn; tn+1, xj+ 1

2
) = O(∆x3).

Moreover, Xj+ 1
2
− X(tn; tn+1, xj+ 1

2
) − Xj− 1

2
+ X(tn; tn+1, xj− 1

2
) = O(∆x4) and xj+ 1

2
− Xj+ 1

2
−

xj− 1
2

+Xj− 1
2

= O(∆x2).

Proof. A Taylor expansion for X(tn; tn+1, xj+ 1
2
) leads to:

X(tn; tn+1, xj+ 1
2
) = xj+ 1

2
+

∫ tn

tn+1

u(t,X(t; tn+1, xj+ 1
2
))dt (22)

=xj+ 1
2
−u(tn+1, xj+ 1

2
)∆tn+

(∆tn)2

2

[
∂tu(tn+1, xj+ 1

2
)+u(tn+1, xj+ 1

2
)∂xu(tn+1, xj+ 1

2
)
]
+O((∆tn)3).

Formula (19) is exact for a constant fluid velocity and, since δ is a first order approximation of
∂xu(tn, xj+ 1

2
), the Taylor expansion of (20) in the case of a stationary fluid velocity and of (21) in

the general case leads to the same zeroth, first and second order terms as in (22). Finally, both last
results are shown from the same kind of developments, eventually adding the third order term.

Following the property of the exact solution given in Proposition 3.1, the scheme that we consider
here is given by the recursion formula:

mn+1
j = mn

j −
∆tn

∆x

[
Fnj+ 1

2
− Fnj− 1

2

]
, (23)

with

Fnj+ 1
2

=
1

∆tn

∫ x
j+1

2

X
j+1

2

mn(x)dx, (24)

the function mn(x) = (mn
0 (x), . . . ,mn

N (x))t being defined from the moments mn
j , in a way described

in Section 3.2.

3.1.3. Scheme properties

The properties of the scheme will depends on this reconstruction of the moments over the cells.
We impose here the two following properties, assuming that mn

j is in the moment space MN :

9



• [P1] The averaged value of the reconstructed moment vector mn(x) over each cell j is mn
j :

1

∆x

∫ x
j+1

2

x
j− 1

2

mn(x)dx = mn
j .

• [P2] For each x, the vector mn(x) is in the moment space MN .

For the accuracy, a third property is introduced:

• [P3] From an averaged moment vector mj = 1
∆x

∫ x
j+1

2
x
j− 1

2

m(x)dx, the reconstruction m(x) is

second order accurate: there exists a bounded function ϕm such that

m(x) = m(x) + ∆x2ϕm(x), (25)

with, for all j:

∀δ ∈]−∆x,∆x[ Dj(ϕm)
def
=

∫ x
j+1

2
+δ

x
j+1

2

ϕm(x)dx−
∫ x

j− 1
2

+δ

x
j− 1

2

ϕm(x)dx = O(∆x2).

This leads to the following theorem:

Theorem 3.3. Let us assume that the CFL number is smaller than one. The finite volume scheme
defined by (23,24) with the properties [P1] and [P2] of the moment reconstruction is realizable.
With the additional property [P3] and using the value of Xj+ 1

2
defined by (19), (20) or (21), then

a second order is obtained for the consistency error.

Proof. The first property [P1], with the definition (24) of the fluxes implies:

mn+1
j =

1

∆x

∫ X
j+1

2

X
j− 1

2

mn(x)dx. (26)

Since the characteristics cannot cross themselves, one have Xj− 1
2
< Xj+ 1

2
. Then [P2] ensures that

mn+1
j is in the moment space.

Moreover, from the exact solution m = (mk)k∈{0,1,...,N} of (3), the consistency error is defined by

εnj =
mn+1
j −mn

j

∆tn
+

F̃n
j+ 1

2

− F̃n
j− 1

2

∆x
,

where mn+1
j = (mn

k,j)k∈{0,1,...,N} is the exact averaged moment vector, mn
k,j = 1

∆x

∫ x
j+1

2
x
j− 1

2

mk(tn, x)dx,

and the flux vector F̃n
j+ 1

2

= 1
∆tn

∫ xj+1
2

X
j+1

2

mn(x)dx is defined with the reconstruction mn(x) obtained

from the mn
j . Thanks to Proposition 3.1, this can be written:

εnj =
1

∆tn∆x
[I1 + I2] ,

with

I1 =

∫ x
j+1

2

X
j+1

2

(mn(x)−m(tn, x))dx−
∫ x

j− 1
2

X
j− 1

2

(mn(x)−m(tn, x))dx

10



and

I2 =

∫ X

(
tn;tn+1,x

j+1
2

)
X
j+1

2

m(tn, x)dx−
∫ X

(
tn;tn+1,x

j− 1
2

)
X
j− 1

2

m(tn, x)dx.

Thanks to [P3], the first term I1 can be written:

I1 = ∆x2

∫ x
j+1

2

X
j+1

2

ϕm(tn,.)(x)dx−
∫ x

j− 1
2

X
j− 1

2

ϕm(tn,.)(x)dx


= −∆x2

∫ x
j+1

2
+δ

x
j+1

2

ϕm(tn,.)(x)dx−
∫ x

j− 1
2

+δ

x
j− 1

2

ϕm(tn,.)(x)dx−
∫ x

j+1
2

+X
j− 1

2
−x

j− 1
2

X
j+1

2

ϕm(tn,.)(x)dx

 ,
with δ = Xj− 1

2
−xj− 1

2
, which is in ]−∆x,∆x[. Then, thanks to the property [P3] and Lemma 3.2,

I1 = O(∆x4). The second term I2 can be written:

I2 = m(tn, Xj+ 1
2
)
[
X
(
tn; tn+1, xj+ 1

2

)
−Xj+ 1

2

]
−m(tn, Xj− 1

2
)
[
X
(
tn; tn+1, xj− 1

2

)
−Xj− 1

2

]
+O(∆x6)

= m(tn, Xj+ 1
2
)
[
X
(
tn; tn+1, xj+ 1

2

)
−Xj+ 1

2
−X

(
tn; tn+1, xj− 1

2

)
+Xj− 1

2

]
+O(∆x4).

The result of Lemma 3.2 allows to conclude the proof.

Let us remark that a classical MUSCL type reconstruction for each moment separately satisfies
the properties [P1] and [P3] except around extrema of the considered moments (see Appendix D),
but this would inevitably lead to unrealizable moments mn(x), due to the complex shape of the
moment space [1], in which case the property [P2] would not be satisfied.

3.2. Reconstruction of the moments in the cell and flux computation

To complete the scheme (23,24) a spatial reconstruction of the moments from their mean value
is provided, verifying at least properties [P1] and [P2]. Different kinds of such reconstructions can
be found in the literature. The constant reconstruction is the simplest, but leads to low order
schemes. It is given in Section 3.2.1.

Another one is based on a direct reconstruction at the level of the NDF. This was done in the
completely different context of linear kinetic equations in slab geometry [43, 44]. In this context,
the internal variable had a compact support and the advection velocity depended on the internal
variable ξ in such a way that the moment equations had to be closed; this was done through the
reconstruction of the NDF from the moments by entropy maximization [45]. Then, for each value of
the internal variable, a spatial MUSCL type reconstruction of this NDF was used. And a quadrature
was used to compute the fluxes, in such a way that the spatial reconstruction had to be done for a
finite number of values of the internal variable. This is applied in our context in a quite different
way presented in Appendix F, using EQMOM [21, 12] instead of the entropy maximization, which
is not really adapted to NDF defined on [0,+∞). However, it does not allow to deal with the
boundary of the moment space, since the NDF has to be a real function, and it induces a high
supplementary cost related to the reconstruction (the computation time is then multiplied by at
least 65 when using 5 moments, compared to the schemes described in this section). Moreover, it
is also shown in Appendix F that the maximum principle on the moments can be lost.
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Still in the case of compact support, the moments can be spatially reconstructed through a
MUSCL type reconstruction of the canonical moments (see Appendix A for their definition and
their link with the ζk). This was done in the context of population of inertial particles [1], their
velocity belonging to the internal variables and being then treated differently compare to our ap-
plication. Moreover, this reconstruction was limited to a model considering only four moments. In
Section 3.2.2, since we are interested in moments on [0,+∞), instead of the canonical moments,
the variables (ζk)k∈{1,...,N} are reconstructed. Moreover, as in [1], the property [P1] is not directly
verified, since the reconstructed moments are no more affine in the cell and the same kind of strat-
egy is used to recover it, with eventually additional corrections here to ensure robustness, even for
moment vectors close to the boundary of the moment space. And here, the reconstruction is done
for any number of moments, eventually at the boundary of the moment space.

The last type of spatial reconstruction of the moments was done in [2]. It used a spatial
reconstruction of the only weights of the quadratures associated with the moment vectors, and was
used in another context, the internal variable being the velocity and evolving in R. However, it
was limited to an even number of moments, in the interior of the moment space and led to only a
pseudo–second-order of accuracy, due to the fact that the variation of the abscissas was not taken
into account in the reconstruction. In Section 3.2.3, a variant of this reconstruction is introduced,
adapted to any number of moments, eventually at the boundary of the moment space and allowing
a real second-order of accuracy for half the lowest order moments.

3.2.1. The constant reconstruction based kinetic scheme

From the mean value mn
k,j of the moment in the cell, the first idea is to consider a constant

value of the moments into the cell: mn(x) = mn
j for x ∈]xj− 1

2
, xj+ 1

2
[. The flux can then be written:

Fnj+ 1
2

=
mn
j

∆tn

(
xj+ 1

2
−Xj+ 1

2

)+

−
mn
j+1

∆tn

(
Xj+ 1

2
− xj+ 1

2

)+

.

where u+ = max{0, u}. Its convergence with a first order of accuracy is easily shown with the value
of Xj+ 1

2
defined by (19), (20) or (21).

3.2.2. The ζ reconstruction based kinetic scheme (ζ kinetic scheme)

Let us denote (ζnk,j)k∈{1,N} the ζk corresponding to the moment vector mn
j . For a fixed value of

n, instead of reconstructing directly mn(x), the corresponding (ζk(x))k∈{1,...,N} as well as mn
0 (x)

are reconstructed. For mn
0 , a classical MUSCL type of reconstruction is used:

mn
0 (x) = mn

0,j +Dn
0,j(x− xj) for x ∈]xj− 1

2
, xj+ 1

2
[.

For each k, a piecewise affine reconstruction ζnk (x) is defined by:

ζnk (x) = ζ̄nk,j +Dn
k,j(x− xj) for x ∈]xj− 1

2
, xj+ 1

2
[.

Each ζ̄nk,j is computed to ensure [P1]. Thanks to Corollary 2.3, this leads to:

∆xmn
k,j =ζ̄nk,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)

k−1∏
i=1

ζni (x)dx+Dn
k,j

∫ x
j+1

2

x
j− 1

2

(x− xj)mn
0 (x)

k−1∏
i=1

ζni (x)dx

+

∫ x
j+1

2

x
j− 1

2

mn
0 (x)Pk(ζn1 (x), . . . , ζnk−1(x))dx.

12



Let us write ζ̄nk,j = ak,j + bk,jD
n
k,j , where ak,j and bk,j are defined by:

ak,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)

k−1∏
i=1

ζni (x)dx = ∆xmn
k,j −

∫ x
j+1

2

x
j− 1

2

mn
0 (x)Pk(ζn1 (x), . . . , ζnk−1(x))dx, (27)

bk,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)

k−1∏
i=1

ζni (x)dx = −
∫ x

j+1
2

x
j− 1

2

(x− xj)mn
0 (x)

k−1∏
i=1

ζni (x)dx. (28)

Let us remark that |bk,j | is smaller than ∆x
2 . Numerically, the term Pk(ζn1 (x), . . . , ζnk−1(x)) is

computed by using the reverse algorithm (see Section 2.4), setting ζk = 0. Moreover, the integrals,
which are integrals of polynomial functions, are computed using a Gauss-Legendre quadrature with⌈
N
2

⌉
+ 1 points, which is enough to obtain their exact value.

For m0, a minmod limiter is used:

Dn
0,j = minmod

(
mn

0,j+1 −mn
0,j

∆x
,
mn

0,j −mn
0,j−1

∆x

)
. (29)

Moreover, as in [46, 1], the slopes Dn
k,j are such that ζnk (x) stays between min{ζnk,j−1, ζ

n
k,j , ζ

n
k,j+1}

and max{ζnk,j−1, ζ
n
k,j , ζ

n
k,j+1} in each cell j, as soon as it is the case for ak,j . One can use [1]:

Dn
k,j=


min

( |ζnk,j+1 − ak,j |
∆x+ 2bk,j

,
|ak,j − ζnk,j−1|

∆x− 2bk,j
,

2ak,j
∆x− 2bk,j

)
if ζnk,j−1<ζ

n
k,j<ζ

n
k,j+1,

−min

( |ζnk,j+1 − ak,j |
∆x+ 2bk,j

,
|ak,j − ζnk,j−1|

∆x− 2bk,j
,

2ak,j
∆x+ 2bk,j

)
if ζnk,j−1>ζ

n
k,j>ζ

n
k,j+1.

(30)

The last condition (in the min) ensures the non-negativity of the reconstruction, as soon as ak,j is
non-negative. Unfortunately, ak,j can eventually be negative, meaning that, even with a constant
reconstruction for ζnk (x), one can obtain unrealizable moments. In this case, a correction has to be
done on the slopes Dn

i,j , with i < k: they are reduced successively for i = k0, ..., k − 1 where k0 is
the maximal value such that ak,j is positive if the Dn

i,j were equal to zero for i ∈ [k0, k − 1]. For
that, starting with i = k0 till i = k−1, each Dn

i,j is multiplied by 0.9 once or several times (at most
5 times here) and if it is not sufficient, it is set to zero. In the worst case, all slopes Dn

i,j are then
set to zero, for i ≥ 1. But when needed, only one limitation is often sufficient. Let us remark that
the consequence of such kind of a posteriori corrections, if one or several slopes is set to zero, is the
reduction of the polynomial degree of mk(x), as done in other kind of method such as MOOD [47],
in a quite different way. The algorithm detailing the reconstruction procedure and especially the
corrections ensuring the positivity of ak,j is given in Appendix E.

The verification of property [P3] for this reconstruction is complex. Thanks to the polynomial
form of the functions, it can be shown for regular initial conditions that, except near the boundary
of the moment space (where one of several ζni,j is small), ak,j = ζnk,j +O(∆x2) and bk,j = O(∆x2),

in such a way that ζ̄nk,j = ζnk,j +O(∆x2). This means that, for a small enough value of ∆x and for
moments far enough from the boundary of the moment space, the parameter ak,j should be positive
in such a way that no correction has to be done. That is why this case was not encountered in [1]
where the boundary of the moment space were not dealt with. In this context, i.e. far from the
boundary of the moment space, one can then show that, except near any extrema of the function
ζk(x), m(x) = m(x) + ∆x2ϕm(x), where ϕm is bounded. However, the additional condition on
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ϕm is hard to show, even if we guess that it is valid, except near extrema of any ζk or near the
boundary of the moment space. The order of accuracy of the scheme will be checked numerically
on some examples.

The fluxes can then be written, thanks to Corollary 2.3:

Fnk,j+ 1
2

=
1

∆tn

∫ x
j+1

2

X
j+1

2

mn
0 (x)

 k∏
j=1

ζnj (x) + Pk(ζn1 (x), . . . , ζnk−1(x))

 dx, (31)

They are computed using a Gauss-Legendre quadrature with
⌈
N
2

⌉
+ 1 points, which gives their

exact value since one has to integrate polynomial of degree at most N + 1. The corresponding
scheme is called “ζ reconstruction based kinetic scheme”, abbreviated to “ζ kinetic scheme”. Let
us remark that the resolution of the equation on m0 does not depend on the other moments, even
if some corrections are needed for the positivity of the ak,j . Moreover, the corresponding scheme is
TVD for the constant velocity case. It is also easy to see that a maximum principle is obtained for
ζ1 = m1/m0 in this case.

3.2.3. The quadrature weights reconstruction based kinetic scheme (QW kinetic scheme)

Similarly to what was done in [2], the reconstruction is based here on the quadrature of the
moment sets, but in a different way. Let us then define the quadratures weights (wα,j)α∈{1,...,p}
and abscissas (ξα,j)α∈{1,...,p} of the moment set (mn

k,j)k∈{0,...,N}, such that:

mn
k,j =

p∑
α=1

wα,jξ
k
α,j , k ∈ {0, . . . , N},

with p =
⌊
N
2

⌋
+ 1. If the number of moments is even, it is the classical Gauss quadrature with

N = 2p− 1. Then, abscissas and weights are deduced from the eigenvalues and eigenvectors of the
Jacobi matrix with coefficients αk and

√
βk [48], where αk and βk are the coefficient of the three

term recurrence relation (9). Otherwise, N = 2(p − 1) and a Gauss-Radau quadrature is used,
meaning that an abscissa is set to zero: ξj,1 = 0. They are computed in the same way as for the

classical Gauss quadrature, except that αp−1 is set to −βp−1
Πp−1(0)
Πp(0) [48].

Like in [2], the reconstruction of the moments inside the cell j is done through a reconstruction
of the weights:

mn
k (x) =

p∑
α=1

wα(x)ξkα,j , wα(x) = wα,j +Dn
α,j(x− xj), x ∈ [xj− 1

2
, xj+ 1

2
].

The averaged value of mn
k (x) on the jth cell is then automatically mn

k,j . But to define the slopes,
unlike in [2], one uses here a quadrature of the neighbor cells with the same abscissas:

mn
k,j−1 =

p∑
α=1

w−α,jξ
k
α,j , mn

k,j+1 =

p∑
α=1

w+
α,jξ

k
α,j , k ∈ {0, . . . , p− 1}. (32)

This allows also to consider moments at the boundary of the moment space, where p is then reduced,
which was not possible with the method used in [2], where the case of the neighboring cells with
a representation by a quadrature with a different number of abscissas could not be taken into
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account easily. Here, the weights (w−α,j)α∈{1,...,p} and (w+
α,j)α∈{1,...,p} are well defined since they are

the solution of a linear system with a Vandermonde matrix of coefficients ξα,j , which are distinct.
If a regular initial condition is considered for (3) and if (mn

k,j)k∈{0,...,N} is far from the boundary of

the moment space, then these weights (w−α,j)α∈{1,...,p} and (w+
α,j)α∈{1,...,p} are usually non-negative

since the moment sets for j−1, j and j+1 are close to each other and the weights wα,j are far from
zero. But if it is not the case, the most negative w+

α,j or w−α,j is set to zero and the corresponding
linear system in (32) is solved for k ∈ {0, . . . , p − 2}, thus eliminating the corresponding abscissa
ξα,j . This operation is reproduced till all the w±α,j are non-negative. The corresponding algorithm
is detailed in Appendix E. At worst, only one abscissa will stay in (32). But for the distributions
used in this paper, when needed, only one or two abscissas has to be eliminated when using 10
moments. One then defines the slopes by using a minmod limiter:

Dn
α,j =

1

2

(
sgn(w+

α,j − wα,j) + sgn(wα,j − w−α,j)
)

min

(
|w+
α,j − wα,j |

∆x
,
|wα,j − w−α,j |

∆x

)
.

In order to verify the property [P3] let us rewrite this slope in the following way, in the same
way as in Appendix D:

Dn
α,j =

w+
α,j − wα,j

∆x
Φ(θαj ), θα,j =

wα,j − w−α,j
w+
α,j − wα,j

.

The function Φ then corresponds to the classical minmod flux limiter [49]: Φ(θ) = minmod(1, θ).
For the kth order moment, this corresponds to the following reconstruction, for x ∈ (xj− 1

2
, xj+ 1

2
):

mn
k (x) = mn

k,j + (x− xj)Dn
k,j , Dn

k,j =

p∑
α=1

Dn
α,jξ

k
α,j =

p∑
α=1

w+
α,j − wα,j

∆x
ξkα,jΦ(θα,j).

Thanks to the definition of the weights, the corresponding slope can be rewritten, if k ≤ p− 1:

Dn
k,j =

mn
k,j+1 −mn

k,j

∆x
+

p∑
α=1

w+
α,j − wα,j

∆x
ξkα,j [Φ(θα,j)− 1] .

With only the first term of the slope, the reconstruction of the moment would correspond to a
second order approximation without any slope limiter. Moreover, let us denote w̃α,j(x) the weights
of a quadrature corresponding to the analytical solution with imposed abscissas (ξα,j)k∈{1,...,p}:

mk(x) =
∑p
α=1 w̃α,j(x)ξkα,j for k = 0, . . . , p− 1. Except near the extrema of this weights, the term

Φ(θα,j)−1 is first order accurate. Then, in this case, the reconstruction mn
k (x) from the analytical

averaged moments is of the form given in [P3], mk(x) = mk(x)+∆x2ϕmk(x). Moreover, for example
if δ ∈]0,∆x[:

Dj(ϕmk)=O(∆x2)+
δ(∆x−δ)

2∆x2

{
p∑

α=1

w+
α,j+1−wα,j+1

∆x
ξkα,j+1 [Φ(θα,j+1)−1]−

p∑
α=1

w+
α,j−wα,j

∆x
ξkα,j [Φ(θα,j)−1]

}
.

Thanks to the use of the w̃α,j(x), the previous expression can be written:

Dj(ϕmk)=O(∆x2) +
δ(∆x−δ)

2∆x2

{
p∑

α=1

[
w̃′α,j+1(xj+ 1

2
)− w̃′α,j(xj+ 1

2
)
]
ξkα,j+1 [Φ(θα,j+1)−1]

+

p∑
α=1

w̃′α,j(xj+ 1
2
)
[
ξkα,j+1 − ξkα,j

]
[Φ(θα,j+1)−1] +

p∑
α=1

w̃′α,j(xj+ 1
2
)ξkα,j+1 [Φ(θα,j+1)−Φ(θα,j)] .

}
.
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Except near the extrema of the weight w̃α,j(x), the term Φ(θα,j+1)−Φ(θα,j) is second order accurate.
Moreover, except near the boundary of the moment space, the quadrature reconstruction is stable,
in such a way that ξkα,j+1 − ξkα,j and w̃′α,j+1(xj+ 1

2
) − w̃′α,j(xj+ 1

2
) are then also first order terms.

Thus, except near the boundary of the moment space and near the extrema of the quadrature
weights, the property [P3] is checked for the moments of order 0 to p− 1.

Finally, the fluxes are written:

Fnj+ 1
2

=

∑p
α=1

(
wα,j + 1

2D
n
α,j(Xj+ 1

2
− xj− 1

2
)
)

Ξα,j

∆tn

(
xj+ 1

2
−Xj+ 1

2

)+

−

∑p
α=1

(
wα,j+1 − 1

2D
n
α,j+1(xj+ 3

2
−Xj+ 1

2
)
)

Ξα,j+1

∆tn

(
Xj+ 1

2
− xj+ 1

2

)+

.

with Ξα,j = (1, ξα,j , . . . , ξ
N
α,j)

T . This scheme is called “quadrature weights (QW) reconstruction
based kinetic scheme”, abbreviated to “QW kinetic scheme”. Let us remark that, since the limi-
tation is done separately for each weight, the global reconstruction can not guarantee a maximum
principle on any moments. One can however remark that the ξα,j are bounded by the maximal and
minimal values of the abscissas corresponding to the initial moments. Indeed, the new moments
mn+1
j correspond to a sum of weighted Dirac delta functions at ξα,j and ξj±1,α with α = 1, . . . , p.

Then, the new abscissas are necessarily inbetween these values.

3.2.4. Dealing with the boundary of the moment space

It can happen that, at some point, the moment vector is at the boundary of the moment space,
with eventually for one of the neighbor cells, a moment vector at another boundary (different value
of N (mN )) or in the interior of the moment space. In this case, the developed schemes can locally
loose their second order of accuracy. But the key point is their realizability, which can be very
difficult to preserve in this case, which was not taken into account in [1] or [2]. However, here, the
developed schemes are still realizable if some precautions are taken. For the ζ reconstruction, the ζk
for k > N (mN ) are not defined but are set to zero and eventually some corrections are done on the
slopes to guaranty the positivity of ak,j , as explained in Section 3.2.2. For the QW reconstruction,

the value of p has just to be reduced to
⌊
N (mN )+1

2

⌋
. Let us remark that for the quadrature, such

kind of adaptation of the number of weights were introduced [50], but here it is directly based on the
evaluation of N (mn

N ), through the computation of the ζk, as for the ζ reconstruction. Since they
are deduced from the coefficients of the three term recurrence relation used for the computation of
the quadrature thanks to (10), they are computed in any cases, with at worst a marginal increase
of the cost.

Numerically, an additional difficulty comes from the detection of the boundary of the moment
space, i.e. the evaluation of N (mN ), the computation of the ζk being ill-conditioned near this
boundary. Indeed, when a ζk is positive but very small, the computation of the next ζi can give
anything. Then, a small parameter ε is introduced here, and N (mN ) is replaced by Nε(mN ) defined
as the minimum value of k such that ζk < ε (set to N +1 if all the ζk are greater than ε). Moreover,
for i ≥ Nε(mN ), ζi is then set to zero and the corresponding vector is then projected: the moments
are computed from the new set of (ζk)k∈{1,...,N}. In practice, we used in this work ε = 10−7.
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4. A realizable simplified finite volume scheme

The accuracy of the kinetic schemes comes from the accuracy of the spatial reconstruction as
well as the correct evaluation of the characteristics, to characterize the part of the cell containing
the particles that will be transferred to another one during the time step. For this last point, a
generalization to multi-dimensional unstructured meshes is not evident. In this section, we then
consider semi-discretized finite volume schemes of the form:

dtmj(t) = − 1

∆x

[
Fj+ 1

2
(t)− Fj− 1

2
(t)
]
, Fj+ 1

2
(t) = u(t, xj+ 1

2
)mj+ 1

2
(t), (33)

where only the reconstructed value mj+ 1
2
(t) of the moment at the interface xj+ 1

2
is considered.

The system (33) will then be solved thanks to a strong stability preserving (SSP) explicit Runge-
Kutta method [51], a second order one here. It is a convex combination of Euler explicit time steps.
The realizability then only have to be shown for the explicit Euler method:

mn+1
j = mn

j −
∆tn

∆x

[
Fnj+ 1

2
− Fnj− 1

2

]
, (34)

with Fn
j+ 1

2

= u(tn, xj+ 1
2
)mn

j+ 1
2

. Moreover, to deal with the boundary of the moment space, a

numerical projection is also done after each of these Euler explicit time steps, as described in
Section 3.2.4.

Two types of reconstruction are done to define the moment vector mj+ 1
2

at the interface, as
for the kinetic scheme: a first one using the ζk variables and a second one using the weights of the
quadrature. The realizability of the scheme is then shown in each case.

4.1. The ζ reconstruction based simplified scheme (ζ simplified scheme)

Here, the reconstruction is quite different from the one of Section 3.2.2 in order to be able to
ensure the realizability with the explicit Euler method. Indeed, from the idea of Berthon [52], the
cell j is split in three parts of size ∆x/3 here, on which the reconstruction of the moment vector is
constant. It is denoted m−j for the left part, m∗j for the middle part and m+

j for the right part, in
such a way that:

mn
j =

1

3

(
m−j + m∗j + m+

j

)
.

The values of the ζk corresponding to the moment vectors mn
j , m−j , m∗j and m+

j are denoted

respectively ζnk,j , ζ
−
k,j , ζ

∗
k,j and ζ+

k,j . Let us remark that Berthon [52] used this kind of reconstruction
in a completely different context of the Euler equations (i.e. considering moments of order 0, 1
and 2 in velocity, on R). This has then to be adapted in our context of high order moments
in size. Moreover, here, the role of m∗j is just to guaranty the realizability of the scheme by
doing a reconstruction of realizable moments in the entire cell (property [P2]). But this kind of
reconstruction is not used in the context the kinetic scheme of Section 3, since it would necessarily
induce a loss of accuracy, the reconstruction being only accurate at the bounds of the cell.

The reconstruction is then done in the following way. For the left and right values, a classical
MUSCL type of reconstruction is used:

m±0 = mn
0,j ±Dn

0,j

∆x

2
, ζ±k,j = ζnk,j ±Dn

k,j

∆x

2
, k ∈ {1, . . . , N}, (35)
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with the minmod limiters:

Dn
0,j = minmod

(
mn

0,j+1 −mn
0,j

∆x
,
mn

0,j −mn
0,j−1

∆x

)
, (36)

Dn
k,j = minmod

(
ζnk,j+1 − ζnk,j

∆x
,
ζnk,j − ζnk,j−1

∆x

)
. (37)

Then, the values of m+
j and m−j can be computed. However, the vector m∗j , given by 3mn

j −
m+
j −m−j , is not necessarily realizable. In this case, some values of the Dn

k,j , for k > 0, have to
be reduced. To ensure the realizability of (m∗0,j ,m

∗
1,j), the following limitation on Dn

1,j has to be
added:

Dn
0,jD

n
1,j <

2

∆x2
mn

1,j . (38)

For the higher order moments, it is harder to derive analytical formulas. Instead, if m∗j is not in
the moment space, a correction has to be done on the slopes Dn

i,j , with i < k: they are reduced
successively for i = k0, ..., k−1 where k0 is the maximal value such that (m∗0,j , . . . ,m

∗
k,j) is realizable

if the Dn
i,j were equal to zero for i ∈ [k0, k − 1]. For that, starting with i = k0 till i = k − 1, each

Dn
i,j is divided by 2 or set to zero if it is not sufficient. The corresponding algorithm is detailed in

Appendix E.
Once the reconstruction is done, the value of the fluxes is obtained by

Fnj+ 1
2

= max{u(tn, xj+ 1
2
), 0}m+

j + min{u(tn, xj+ 1
2
), 0}m−j+1. (39)

The corresponding scheme is called “ζ reconstruction based simplified scheme”, abbreviated to “ζ
simplified scheme”. Under some limitation on the CFL number, it is realizable, as shown in the
following theorem.

Theorem 4.1. From realizable moment vectors (mn
j )j, the equations (34,39) define a realizable

moment vector mn+1
j if the CFL number is smaller than 1/3.

Proof. The vector mn+1
j is given by:

mn+1
j = mn

j − λjm+
j − µ̃j−1m

−
j + µjm

−
j+1 + λ̃j−1m

+
j−1,

where λj = ∆tn

∆x max{u(tn, xj+ 1
2
), 0}, µj = −∆tn

∆x min{u(tn, xj+ 1
2
), 0}, λ̃j−1 = ∆tn

∆x max{u(tn, xj− 1
2
), 0},

µ̃j−1 = −∆tn

∆x min{u(tn, xj− 1
2
), 0} are coefficients between 0 and 1/3. The last two terms define

some moment vectors and the rest can be written
(

1
3 − λj

)
m+
j +

(
1
3 − µ̃j−1

)
m−j + 1

3m∗j and is also
realizable.

4.2. The quadrature weights reconstruction based simplified scheme (QW simplified scheme)

The same reconstruction of the weights is done here as for the kinetic scheme in Section 3.2.3.
Using the same notation, the flux is then given by:

Fj+ 1
2
(t) = max{u(t, xj+ 1

2
), 0}

p∑
α=1

(
wα,j +

∆x

2
Dn
α,j

)
Ξα,j (40)

+ min{u(t, xj+ 1
2
), 0}

p∑
α=1

(
wα,j+1 −

∆x

2
Dn
α,j+1

)
Ξα,j+1.
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The corresponding scheme is called “quadrature weights (QW) reconstruction based simplified
scheme”, abbreviated to “QW simplified scheme” and is then realizable under some less restrictive
limitation on the CFL number than for the ζ-simplified scheme.

Theorem 4.2. From realizable moment vectors (mn
j )j, the equations (34,40) define a realizable

moment vector mn+1
j if the CFL number is smaller than 1/2.

Proof. The vector mn+1
j can be written:

mn+1
j =

p∑
α=1

[
wα,j − λj

(
wα,j +

∆x

2
Dn
α,j

)
− µ̃j−1

(
wα,j −

∆x

2
Dn
α,j

)]
Ξα,j

+ µj

p∑
α=1

(
wα,j+1 −

∆x

2
Dn
α,j+1

)
Ξα,j+1 + λ̃j−1

p∑
α=1

(
wα,j−1 +

∆x

2
Dn
α,j−1

)
Ξα,j−1,

with the same definition of λj , µj , λ̃j−1 and µ̃j−1 as in the proof of Theorem 4.1 but now belonging
to [0, 1/2]. The only thing to check is the non-negativity of the weights in the first summation. If
wα,j is zero, then Dn

α,j = 0 and this term is zero. Otherwise, wα,j is positive and this term can be
written:

wα,j

[
1−

(
1 +

∆x

2wα,j
Dn
α,j

)
λj −

(
1− ∆x

2wα,j
Dn
α,j

)
µ̃j−1

]
,

which is non-negative, since necessarily |Dn
α,j | ≤

2wα,j
∆x and λj and µ̃j−1 are smaller than 1/2.

5. Verification: comparisons with analytical solution in 1D configurations

Two configurations are studied here for which analytical solutions are available. For the first
one, moments are transported by a constant fluid velocity in a periodic domain, whereas for the
second one, moments are transported by an unsteady and compressible fluid velocity. In both cases,
three initial conditions can be considered, defined either from the NDF or from the ζk: a regular
one with moments in the interior of the moment space, an oscillating one where the ζk oscillate
at different frequencies to test the robustness of the methods and a multi-modal one, reaching
the boundary of the moment space and typical of what can be obtained in physical systems were
nucleation and aggregation occur. These initial conditions are first described before comparing the
results of our schemes to the analytical solution in both test cases. Then, the schemes are tested
in 1D configurations with a constant or a compressible fluid velocity, considering a high number of
moments, equal to 10 unless mentioned otherwise.

5.1. Initial moments
5.1.1. Regular initial NDF

A regular initial condition is defined through the following beta-NDF:

f0(ξ, x) = 16x2(1− x)2 ξ
λ(x)(1− ξ)µ(x)

β(λ(x), µ(x))
,

with

λ(x) =
7

2
+

3

2
sin(2πx), µ(x) =

7

2
− 3

2
cos(2πx)

and the initial moments are defined by m0
k(x) =

∫ 1

0
ξkf0(ξ, x)dξ. These moments for k ≤ 6, as well

as the corresponding ζk are plotted in Fig. 1. They are regular and periodic.
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Figure 1: Constant fluid velocity test case with the regular initial solution; Right: space evolution of the moments
of order 0 to 6 (top to bottom lines) for the exact initial solution (solid black lines) and for the simulation with the
first order kinetic scheme at time t = 2 (red dashed lines). Left: initial values of the ζk, k ∈ {1, . . . , 6}.

5.1.2. Oscillating initial ζk
An initial solution can be also defined from a choice of the ζk and of m0. Here, oscillating

functions are used for ζk, with a frequency increasing with k, whereas m0 is a polynomial function:

ζ0
k(x) =

x

2

[
1.01 + cos

(
πk

2
x

)]
, m0

0(x) = 16x2(1− x)2. (41)

This allows to recover all the initial moments, which are in the interior of the moment space, but
quite close to the boundary at some points.

5.1.3. Multi-modal initial NDF
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Figure 2: Left: ζk for k=1,2,3,4 as functions of the spatial location x. Right: initial distribution f0(ξ, x) as function
of ξ for x = 0.5, x = 0.6 and x = 0.7 (for the Dirac delta functions, the absolute value of the heights of the scaled
weights is arbitrary).

To test the ability of the methods to deal with the boundary of the moment space and the
transition with the interior of this space, another initial distribution is introduced. It is detailed in
Appendix G and the corresponding moments are regular (C2) functions of x. Then, the distribution
is only one Dirac delta function at ξ = ξ1 = 0.02 for x ∈

[
0, 1

4

]
, in such a way that only ζ1 is not

zero, as seen in Fig. 2(left). It represents a distribution obtained through nucleation. For x ∈
[

1
4 ,

1
3

]
,
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it is a sum of two Dirac delta functions at ξ = ξ1 and ξ = 2ξ1 and ζ2 and ζ3 are positive, with a
discontinuity at x = 1

3 for ζ2. The second peak represents particles obtained by aggregation of two
initial nuclei. A continuous Rosin-Rammler distribution is added for the rest of the domain, in such
a way that the moments are then in the interior of the moment space. The obtained distribution
is plotted in Fig. 2(right) for three different positions. Moreover, the corresponding moments are
plotted in Fig. 7.

5.2. Results with a constant fluid velocity

To test the different schemes, let us first consider a case with a constant velocity. With no
restriction, one assumes u = 1. Moreover, we consider the spatial domain [0, 1] with periodic
boundary conditions. The analytical solution at time t = 2 or t = 5 is then equal to the initial
condition.

5.2.1. Numerical accuracy in a regular case

When considering the regular initial NDF, with moments far from the boundary of the moment
space, simulations are done with the three kinetic schemes on uniform meshes with a CFL number
equal to 0.8 and are compared with the analytical solution at the final time t = 2. First, using a 100
points spatial discretization, the moments of order 0 to 6 obtained at the final time with the first
order scheme are plotted in Fig. 1(left), showing its numerical diffusion whereas the other kinetic
schemes lead to very precise results (not shown here).
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Figure 3: Constant fluid velocity test case with the regular initial NDF: L1 norm of the error on the moments of
order 0 to 9 (solid red lines, bottom to top) with the ζ kinetic scheme (left) and the QW kinetic scheme (right) for
a CFL equal to 0.8. The same line of slope 2 is represented by black dashed lines on the two figures.

To evaluate more precisely the accuracy of the methods, the L1 norm of the errors, divided by
the L1 norm of the corresponding moments, are plotted as a function of the cell width in Fig. 3,
using from 16 to 4096 cells. The L1 norm is used since we saw that a local loss of accuracy can
happen near extrema of the reconstructed variables or near zones where the moments are at the
boundary of the moment space. Both the methods are numerically almost second order accurate:
the order is about 1.93 for all moments with the ζ kinetic scheme and 1.91 for the moments of
order 0 to 5 with the QW kinetic scheme. Moreover, the ζ kinetic scheme does not introduce any
dependance on the number of considered moments in this case where no corrections are needed
on the slope to ensure the positivity of the ak,j . On the contrary, for the QW kinetic scheme,
the number of considered moments has an influence on the accuracy on all moments. It can be
seen in Fig. 4, where the same normalized L1 norm of the errors are plotted when using 6 and 5
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Figure 4: Constant fluid velocity test case with the regular initial solution: L1 norm of the error on the moments
of order 0 to N (solid red lines, bottom to top) with the QW kinetic scheme for a CFL equal to 0.8 and for N = 5
(left) and N = 4 (right). The same line of slope 2 is represented by black dashed lines on the two figures.

moments with this scheme. Moreover, as explained in Section 3.2.3, the second order of accuracy
is only guarantied for half the first order moments and indeed, here, one can see that for half of
the highest order moments, the order of accuracy degenerates to 1 when a fine enough mesh is
used (this degenerescence did not yet really appear for the finest mesh used in the case with 10
moments). Let us also remark that, for this case, no correction is needed to ensure the positivity of
the weights of the reconstruction (i.e. no elimination of weights for the neighbor cells), as expected
since the moments are far from the boundary of the moment space.

When considering the simplified schemes, the CFL number is set to 0.3. The behavior of the
schemes are similar (and not represented here): both the methods are also numerically almost
second order accurate: the order is about 1.93 for all moments with the ζ simplified scheme and
about 1.9 for the moments of order 0 to 6 with the QW simplified scheme. They are also compared
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Figure 5: Constant fluid velocity test case with the regular initial NDF: L1 norm of the error on the moments of
order 0 (left) and 1 (right) with the kinetic (solid lines) of the simplified (dashed lines) schemes for a CFL equal to
0.3, using the constant (black +), the ζ (red) or the QW (blue �) reconstruction.

to the kinetic schemes, using the same CFL equal to 0.3. The errors on the moments of order 0
and 1 are then plotted in Fig. 5. One can first remark that the accuracy of the kinetic schemes is
smaller than for a CFL equal to 0.8, with more than half an order of magnitude for the difference.
It can be checked in this case that the results for the simplified schemes are very little sensitive to
the CFL number. Moreover, the accuracy obtained with the non-constant reconstructions of the
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moments are much higher than with the constant reconstruction, allowing to reduce drastically the
number of cells needed for a given accuracy (about a factor 10 on the cell number for an error of
1%). This is an important point for more complex problems where a quite costly ODE system has
to be solved on each cell for the resolution of the source terms. Moreover, the ζ reconstruction gives
the best results for most of the discretizations.

5.2.2. Verification in extreme cases
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Figure 6: Constant fluid velocity test case with the oscillating initial ζk: space evolution of the moments of order 0
to 4 (left, top to bottom lines) and of order 5 to 8 (right, top to bottom lines for x < 0.7) at time t = 5 for the exact
solution (solid black lines) and for the simulation with the constant reconstruction (top), with the ζ reconstruction
(middle) and the QW reconstruction (bottom) for the kinetic scheme (red dashed line or green dots for QW with 4
moments) and the simplified scheme (blue dotted lines) with 100 points and a CFL equal to 0.3.

Let us consider more challenging test cases. The final time, t = 5, is larger here to amplify the
phenomena. The oscillating initial ζk is first considered. One can see that the ζ schemes, using
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100 points and a CFL number equal to 0.3, give accurate results on the moments of order 0 to 4
(see Fig. 6 middle). However, for the highest order moments, the maximum principle is no more
respected and the error is larger than for the first order moments but still smaller than with the
other reconstructions, at least for the kinetic scheme. With the QW schemes using 10 moments
and the same discretization (Fig. 6 bottom), the results are a little bit less good: the maximum
principle is no more respected for the first order moments with some kind of oscillations around the
analytical solution. However, these oscillations do not blow up and the accuracy is still better than
with the first order scheme, for which the numerical diffusion flatten a lot the results (Fig. 6 top).
Moreover, the accuracy of the QW schemes for the first order moments is improved by the use of
a smaller number of moments.
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Figure 7: Constant fluid velocity test case with the multi-modal initial NDF: space evolution of the moments of order
0 to 4 (left, top to bottom lines) and of order 5 to 8 (right, top to bottom lines) at time t = 5 for the exact solution
(solid black lines) and for the simulation with the ζ reconstruction (top) and the QW reconstruction (bottom) for
the kinetic scheme (red dashed line or green dots for QW with 4 moments) and the simplified scheme (blue dotted
lines) with 100 points and a CFL equal to 0.3.

Computations were done also with the multi-modal initial NDF, representing a more realistic
NDF. The analytical solution as well as the solution computed with the ζ and QW schemes with
100 points and a CFL number equal to 0.3 are represented in Fig. 7. Both schemes do not encounter
any problem simulating this test case, even if the moment vector is at the boundary of the moment
space in some part of the domain. Moreover, in this more realistic case, the maximum principles
are respected and the ζ reconstruction gives the most accurate results when using 10 moments, but
the use of only 4 moments allow to improve the accuracy for the QW schemes. As it will be shown
for the unsteady case, the difference of accuracy on the zeroth and first order moments is higher
between the ζ and QW reconstructions when a finer discretization is used for simulations with 10
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moments and a second order of accuracy is still recovered. Moreover, all methods are still always
much more accurate than the schemes using a constant reconstruction.

5.3. Results with an unsteady and compressible fluid velocity

An unsteady fluid velocity u and the corresponding characteristics are given, for x ∈ [0, 1] by:

u(t, x) =
1− x
1 + t

, X(t; s, x) = 1 +
x− 1

1 + t− s
.

The analytical solution is given by:

mN (t, x) = (1 + t)m0
N (1 + (x− 1)(1 + t)) .

For the simulations, we use N = 9 and the final time is t = 1.

5.3.1. Numerical accuracy
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Figure 8: Unsteady fluid velocity test case with the regular initial NDF: L1 norm of the error on the moments of
order 0 to 9 (solid red lines, bottom to top) with the ζ kinetic scheme (left) and the QW kinetic scheme (right) for
a CFL equal to 0.8. The same line of slope 2 is represented by black dashed lines on the two figures.

The same kind of simulations are done in the unsteady case as with the stationary one. For the
ζ and QW kinetic schemes and the regular initial NDF, the errors on the moments are shown in
Fig. 8. The numerical order of accuracy is about 1.93 when using the ζ reconstruction and about
1.91 for the moments of order 0 to 5, when using the QW reconstruction. Moreover, in this case,
the influence of the CFL is much smaller than with the constant fluid velocity, probably due to the
interpolation error of the fluid velocity in the case of the kinetic schemes. All methods then give
similar results compared to the constant fluid velocity test case, the ζ reconstruction based schemes
being still a little bit more accurate.

The difference between the two kinds of reconstructions is higher when considering the multi-
modal initial NDF (see Fig. 9 left), this difference being reduced when considering only 4 moments
with the QW reconstruction based schemes. In any cases, the accuracy stays much higher than
with the constant reconstruction. In Fig. 9(right), it can be seen that the ζ and QW kinetic
schemes well capture the mean value of the distribution (corresponding to ζ1), as well as its variance
(corresponding to ζ1ζ2) with only 100 cells. The corresponding plot for the simplified scheme is
very similar and not shown here. Moreover, one can see in Fig. 10 that the second order of accuracy
is still obtained in this case, for both the ζ and the QW kinetic schemes.
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Figure 9: Unsteady fluid velocity test case with the multi-modal initial NDF. Left: L1 norm of the error on the
moments of order 0 with the kinetic (solid lines) of the simplified (dashed lines) schemes for a CFL equal to 0.3, using
the constant (black +), the ζ (red) or the QW (blue � when N = 9 and green ◦ when N = 3) reconstruction. Right:
space evolution of the mean value ζ1 (top curves) and the variance ζ1ζ2 (bottom curves) of the NDF at time t = 1
for the exact solution (solid black lines) and for the simulation with the kinetic scheme and a CFL equal to 0.8, using
the constant reconstruction (dashed red lines), the ζ reconstruction (blue dashed line) and the QW reconstruction
(dotted green line), with 100 points.

-5

-4

-3

-2

-1

 0

-4 -3.5 -3 -2.5 -2 -1.5 -1

lo
ga

rit
hm

 o
f t

he
 e

rr
or

logarithm of the cell width

-5

-4

-3

-2

-1

 0

-4 -3.5 -3 -2.5 -2 -1.5 -1

lo
ga

rit
hm

 o
f t

he
 e

rr
or

logarithm of the cell width

Figure 10: Unsteady fluid velocity test case with the multi-modal initial NDF: L1 norm of the error on the moments
of order 0 to 9 (solid red lines, bottom to top) with the ζ kinetic scheme (left) and the QW kinetic scheme (right)
and with the first order scheme (both figures, dotted green lines) for a CFL equal to 0.8. The same lines of slope 1
and 2 are represented by black dashed lines on the two figures.

5.3.2. Computational time

In the case of the multi-modal initial NDF, the computational time of the different schemes
with the use of several numbers of moments are given in Table 1, when using a CFL number equal
to 0.3 for all methods. This case is chosen since it is representative of physical cases and induces
a fair comparison of the methods: some corrections of the slopes are needed for the ζ schemes as
well as some abscissa eliminations for a few points for the QW schemes.

It shows that the computational time for the high order schemes is about 2.5 to 3 times higher
than for the corresponding first order scheme, for the same discretization, except for the simplified
QW scheme and for the ζ kinetic scheme with N ≥ 8 where it is about 4 to 5 times higher. Indeed,
when considering the ζ kinetic scheme, Gauss-Legendre quadrature with

⌈
N
2

⌉
+ 1 points are used

to compute all the integrals, thus still increasing the cost when the number of moments increase.
Moreover, for the simplified schemes, the computational times are larger due to the use of the
second order SSP Runge-Kutta method, thus needing two reconstructions per time step. However,
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N 3 4 5 6 7 8 9
1st order kinetic scheme 1.0 1.1 1.1 1.2 1.3 1.3 1.3

ζ kinetic scheme 2.5 2.9 3.3 3.8 4.0 5.1 6.2
QW kinetic scheme 2.4 2.9 2.8 3.3 3.4 3.9 4.0

1st order simplified scheme 1.4 1.5 1.5 1.6 1.7 1.7 1.8
ζ simplified scheme 3.3 3.4 3.5 3.8 3.9 4.2 4.4

QW simplified scheme 4.4 5.1 5.0 6.0 6.2 7.4 7.5

Table 1: Unsteady fluid velocity test case with the multi-modal initial NDF: normalized computational time for a
CFL number equal to 0.3.

the ζ simplified scheme is still competitive, at least for the same CFL, due to the very simple
reconstruction. But the CFL cannot be increased beyond 1/3, whereas the global computational
time of the other methods can be decreased by an increasing of the CFL number. When considering
a global problem, including source terms, the time step can however have to be limited by the
coupling characteristic time between the operators [53, 29].

Finally, due to the possible reduction of the number of cells, the cost of the schemes developed
here is lower than the one of the first order scheme for the same accuracy. Moreover, the number
of degrees of freedom being then reduced, it implies a reduction of the global cost of the complete
problem with source terms.

6. Results with 2D, steady and incompressible fluid velocity

Let us consider a 2D configuration of particles in a vortex. The unsteady fluid velocity is then
defined for x ∈ [0, 1/2] and y ∈ [0, 1/2] by:

ux(t, x, y) = sin(2πx) cos(2πy), uy(t, x, y) = − cos(2πx) sin(2πy).

Let us introduce the distance r to the point (1/8, 1/8). A population of particles is initially present
in the vortex, in a disk defined by r < 1/8. Its distribution is given by f0(ξ, 1 − 8r), where f0

corresponds to the multi-modal NDF defined by (G.1), with a weight w3(x) now being equal to 1
for x ∈ [2/3, 1]. This population is then transported by the fluid till the time t = 0.8. Due to the
incompressibility of the fluid phase, the value of the moments are conserved along the characteristics.
A reference solution is then computed by solving reverse characteristics from each position, using a
high order ODE solver with time step adaptation. For example, the zeroth order moments obtained
with this method is given in Fig. 11(top left).

Simulations are done for moments of order 0 to 9, using a 200× 200 uniform discretization and
a CFL number equal to 0.3. To solve the 2D problem, a dimensional splitting is used: a 1D scheme
is used alternatively on one-dimensional problems in the x and y directions. To obtain a second
order of accuracy with this splitting method but using the same CFL number for each operator,
steps of length ∆t are used on each problem, but alternating the order of these steps in alternate
time steps [49].

Since the kinetic and the simplified schemes give very similar results, only the results with the
kinetic scheme are presented here. The zeroth order moment is plotted in Fig. 11. One can see
the good level of accuracy of the ζ and QW kinetic schemes, especially compared to the first order
scheme.
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Figure 11: 2D test case: moment m0 for the reference solution (top left), for the simulations on a 200× 200 uniform
mesh with a CFL number equal to 0.3, using the first order kinetic scheme (top right), the ζ kinetic scheme (bottom
left) and the QW kinetic scheme (bottom right).

For going further in the comparisons, the mean value of the distribution, i.e. m1/m0 and its
variance, i.e. ζ1ζ2 are plotted in Fig. 12 as functions of x at y = 0.4. The high numerical diffusion
of the first order scheme is still remarkable, whereas the ζ and QW kinetic schemes allow to capture
accurately these quantities.

Finally, for the kinetic schemes, the L1 norm of the errors, divided by the L1 norm of the
corresponding moments, are plotted as a function of the cell width in Fig. 13, using from 100
to 1600 cells per direction. This shows the convergence of the methods and their high accuracy
compared to the first order scheme, even if the second order of accuracy is not attained for the
considered meshes, the solution having high gradients.
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Figure 12: 2D test case: mean value (left) and variance (right) of the distribution as a function of x at y = 0.4 for
the reference solution (black solid line), for the simulations on a 200 × 200 uniform mesh and a CFL number equal
to 0.3, with the first order kinetic scheme (green dots), with the ζ kinetic scheme (red dashed line) and with the QW
kinetic scheme (blue dotted line)
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Figure 13: 2D test case: L1 norm of the error on the moments of order 0 to 9 (solid red lines, bottom to top) with
the ζ kinetic scheme (left) and the QW kinetic scheme (right) and with the first order scheme (both figures, dashed
green lines) for a CFL equal to 0.8.

7. Conclusion

In this paper, we have provided four realizable accurate finite volume schemes for the transport
of moments by a given velocity field, in Cartesian mesh context: for the ones, the flux computation is
based on a follow-up of the characteristics (kinetic schemes) and for the other, it is based on the value
of the moments at the interface (simplified schemes). In any case, a spatial reconstruction of the
moments is needed and done by reconstructing variables that only have to be non-negative: either
the corresponding ζk variables or the weights of the corresponding quadrature. Unlike previous
developed realizable Eulerian schemes, they are able to deal with moment vectors of all sizes, at
least till 10 moments, possibly at the boundary of the moment space, which can occur in practical
applications. The verifications have been done on various test cases, 1D and 2D, with steady or
unsteady and compressible or incompressible fluid velocities. The developed schemes then showed
their high accuracy, compared to the first order scheme, and their second order of accuracy for
all moments in the case of the ζ reconstruction and for half the lowest order ones for the QW
reconstruction. The kinetic schemes are more accurate than the simplified schemes, especially due
to the fact that a higher CFL number can be used. But their generalization to unstructured meshes
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seems less easy than for the simplified schemes. Moreover, the ζ reconstruction leads to slightly
better accuracy than the QW one in most cases. And the accuracy on the QW schemes is much
more sensitive to the number of considered moments and can eventually decrease when this number
increases. Finally, for a given accuracy, the cost of all the developed schemes is usually lower than
the one of the first order scheme. And since they all allow a high reduction of the number of degrees
of freedom, the global cost of the complete problem with source terms can be drastically reduced by
using these schemes, compared to the first order ones, thus showing the great interest of such kind
of schemes. Moreover, we are studying an implementation of a simplified scheme in the open-source
computational fluid dynamics toolbox OpenFOAM as part of the Open-QBMM project [54, 55].
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Appendix A. Case of a compact support

Let us consider here the case where the support of the NDF is included in a known compact
interval of the form [0, ξmax]. The moments are then denoted mk and and the corresponding

“dimensionless” moments are m̃k =
mk

ξk+1
max

. They correspond to moments on the support [0, 1] and

are obtained through the change of variables ξ 7→ ξ

ξmax
. Then, a second kind of Hankel determinant

has to be defined:

H2n+d =

∣∣∣∣∣∣∣
m̃1−d − m̃2−d . . . m̃n − m̃n+1

...
...

...
m̃n − m̃n+1 . . . m̃2n−1+d − m̃2n+d

∣∣∣∣∣∣∣ ,
with d = 0, 1; n ≥ 0. Similarly to the case with support in [0,+∞), one has the following character-
ization of the moment space [24]: the vector mN = (m1, . . . ,mN )

t
is realizable (i.e. in the moment

space) if and only if
Hk ≥ 0 and Hk ≥ 0, k ∈ {0, 1, . . . , N}.

Moreover, it is strictly realizable (i.e. in the interior of the moment space) if and only if these
Hankel determinants are positive.

From the ζk corresponding to the moments mk (then the ζk/ξmax correspond to the m̃k), one
can defined the canonical moments pk by ζk = ξmaxpk(1− pk−1). Their geometrical interpretation
can be given from the m−k and m+

k , which are now in [0,m0ξ
k
max] [24]:

pk =
mk −m−k (mk−1)

m+
k (mk−1)−m−k (mk−1)

. (A.1)

If mk(µ) is equal to m+
k (mk−1) or m−k (mk−1) for µ ∈ P(mk−1), (i.e. pk is 0 or 1), the measure µ

is a sum of weighted Dirac distributions and mk belongs to the boundary of the moment space.
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In this case of compact support, the QW schemes can be applied without any change. However,
the ζ-schemes have to be adapted: the reconstruction has then to be done on the canonical moments
to ensure the realizability for the corresponding support. In the case of the reconstruction for
the kinetic scheme, the reconstructed ζk used for the flux computation in (31) are then ζnk (x) =
ξmaxp

n
k (x)(1− pnk−1(x)) where pnk (x) = p̄nk,j +Dn

k,j(x−xj) on the jth cell and p̄nk,j = ak,j + bk,jD
n
k,j .

The coefficients ak,j and bk,j are now given by:

ak,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)ξkmax

k−1∏
i=1

pni (x)(1−pni (x))dx = ∆xmn
k,j −

∫ x
j+1

2

x
j− 1

2

mn
0 (x)Pk(ζn1 (x), . . . , ζnk−1(x))dx,

bk,j

∫ x
j+1

2

x
j− 1

2

mn
0 (x)ξkmax

k−1∏
i=1

pni (x)(1−pni (x))dx = −
∫ x

j+1
2

x
j− 1

2

(x−xj)mn
0 (x)ξkmax

k−1∏
i=1

pni (x)(1−pni (x))dx.

The same kind of slope limiters and corrections are used as fo the ζ kinetic scheme. For the

simplified scheme, the reconstructed ζk are ζ±k,j = ξmaxp
±
k,j(1− p

±
k−1,j) with p±k,j = pnk,j ±

Dnk,j
2 , the

slope Dn
k,j being obtained through a minmod limitation from the pnk,i. The values of the fluxes

are then given by (39). Let us remark that the corresponding schemes can be used in the more
general case of a support in [0,+∞) by using for ξmax the largest value of the abscissas obtained
by a quadrature on each moment set at time tn. Moreover, this value can only decrease with the
transport schemes and the moments are then always bounded.
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Figure A.14: Constant fluid velocity test case with the multi-modal initial NDF: space evolution of the moments of
order 0 to 4 (left, top to bottom lines) and of order 5 to 8 (right, top to bottom lines) at time t = 5 for the exact
solution (solid black lines) and for the simulation with the canonical moments reconstruction for the kinetic scheme
(red dashed lines) and the simplified scheme (blue dotted lines) with 100 points and a CFL equal to 0.3.

These schemes are used in the constant fluid velocity test case with the multi-modal initial NDF.
The 10 moments obtained by the simulation with 100 cells are plotted in Fig. A.14. It shows a
similar accuracy compared to the ζ schemes.

Appendix B. Examples of realizability constraints for moments on [0,+∞)

The first constraints (6) for the strict realizability of a moment vector (m0,m1, . . . )
t can be

written, making appear the values of m−k (mk−1): m0 > 0, m1 > 0,

m2 >
m2

1

m0
, m3 >

m2
2

m1
, m4 >

m0m
2
3 − 2m1m2m3 +m3

2

m2m0 −m2
1

, . . .
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Appendix C. Moments as functions of the ζk

The moments can be written from the ζk: mk = m0

[
Pk(ζ1, . . . , ζk−1) +

∏k
j=1 ζj

]
, as shown in

Corollary 2.3. The first polynomial functions Pk are given by:

P1 =0,

P2(ζ1) =ζ2
1 ,

Pk(ζ1, . . . , ζk−1) =ζ1
[
(ζ1 + ζ2)k−1 + ζ2ζ3Qk(ζ1, . . . , ζk−1)

]
, k ≥ 3,

with

Q3(ζ1, ζ2) =0,

Q4(ζ1, ζ2, ζ3) =2(ζ1 + ζ2) + ζ3,

Q5(ζ1, . . . , ζ4) =3(ζ1 + ζ2)2 + 2(ζ1 + ζ2)(ζ3 + ζ4) + (ζ3 + ζ4)2 + ζ2ζ3,

Q6(ζ1, . . . , ζ5) =4(ζ1 + ζ2)3 + 2(ζ1 + ζ2)(ζ3 + ζ4)2 + (ζ3 + ζ4)3 + 2ζ2ζ3(ζ3 + ζ4)

+ 2ζ4ζ5(ζ1 + ζ2 + ζ3 + ζ4) + ζ4ζ
2
5 + 3ζ3(ζ1 + ζ2)(ζ1 + 2ζ2)

+ 3ζ4(ζ1 + ζ2)2,

Q7(ζ1, . . . , ζ6) =5(ζ1 + ζ2)4 + 2(ζ1 + ζ2)(ζ3 + ζ4)3 + (ζ3 + ζ4)4

+ 3ζ2ζ3(ζ3 + ζ4)2 + 2ζ4ζ5ζ6(ζ1 + ζ2 + ζ3 + ζ4 + ζ5) + ζ4ζ5ζ
2
6

+ 6ζ3ζ4(ζ1 + ζ2)(ζ1 + 2ζ2) + 3ζ4ζ5(ζ1 + ζ2)2 + 4(ζ1 + ζ2)3ζ4

+ 2(ζ1 + ζ2)2(2ζ1 + 5ζ2)ζ3 + 3ζ4ζ5(ζ3 + ζ4)2

+ 4(ζ1 + ζ2)(ζ3 + ζ4)ζ4ζ5 + ζ2
3 (10ζ2

2 + 12ζ1ζ2 + 3ζ2
1 )

+ 3(ζ1 + ζ2)2ζ2
4 + 2ζ4ζ

2
5 (ζ1 + ζ2 + ζ3) + ζ4ζ

3
5 + 3ζ2

4ζ
2
5 + 2ζ2ζ3ζ4ζ5.

Appendix D. Property [P3] for classical MUSCL reconstruction

Let us consider just one moment, denoted m, without any indice here. Let us denote m(x) the
exact solution of the transport equation at a given time and mj = 1

∆x

∫ x
j+1

2
x
j− 1

2

m(x)dx its averaged

value in the cell j, for any j. Let us then consider the affine reconstruction m(x) from the mj ,
corresponding to a MUSCL scheme:

m(x) = mj + (x− xj)Dj ; x ∈ (xj− 1
2
, xj+ 1

2
).

The slope Dj is then an approximation of the derivative of m, using a limiter [56]:

Dj =
mj+1 −mj

∆x
Φ(θj), θj =

mj −mj−1

mj+1 −mj
,

where the function Φ defines the flux limiter, such that Φ(1) = 1 and Φ is bounded and Lipschitz
continuous at θ = 1 . Using Taylor expansions of m around xj , for example

mj = mj +
∆x2

24
m′′j +O(∆x3),
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with mj = m(xj) and m′′j = m′′(xj), it is easy to see that except near extreme points of m:
θj = 1 +O(∆x) and θj+1 − θj = O(∆x2) and

m(x)−m(x) = O(∆x2) for x ∈ (xj− 1
2
, xj+ 1

2
).

Without loss of generality, let us assume that 0 ≤ δ < ∆x and let us denote

Ij− 1
2

=
1

∆x2

∫ x
j− 1

2
+δ

x
j− 1

2

(m(x)−m(x))dx =
1

∆x2

δmj +Dj
δ

2
(δ −∆x)−

∫ x
j− 1

2
+δ

x
j− 1

2

m(x)dx

 .
We then have to see if Ij− 1

2
− Ij− 1

2
= O(∆x2). First, using Taylor expansion:

Ij− 1
2

=
δ(∆x− δ)

2∆x2

{
m′j [Φ(θj)− 1] +

∆x

2
m′′jΦ(θj)

}
+m′′j

[
δ

24
−
(
−∆x

2 + δ
)3

+
(

∆x
2

)3
6∆x2

]
+O(∆x2),

in such a way that

Ij+ 1
2
−Ij− 1

2
=
δ(∆x− δ)

2∆x2

{
m′j [Φ(θj+1)− Φ(θj)] +

∆x

2
m′′j [Φ(θj+1)− 1 + Φ(θj+1)− Φ(θj)]

}
+O(∆x2).

Then, except near extreme points of m, the property [P3] is verified with this kind of reconstruction.
Moreover, let us remark that the use of the minmod limiter allows the reconstruction to have a
smaller total variation than m.

Appendix E. Algorithms

The reconstruction used for the ζ kinetic scheme is detailed in Algorithm 1, especially the
corrections done in the case ak,j < 0. More precisely, this algorithm computes the parameters of
the reconstruction in the cell j (ζ̄nk,j for k ∈ {1, . . . , N} and the slopes Dn

k,j for k ∈ {0, . . . , N}),
providing the zeroth order moments and the values of the ζk corresponding to mn

j , mn
j−1 and mn

j+1.
For that, the formula (27) leading to the computation of ak,j from the reconstruction of m0 and
the ζi for i < k is denoted:

ak,j = Ψ(mn
0,j , D

n
0,j , a1,j , b1,j , D

n
1,j , . . . , ak−1,j , bk−1,j , D

n
k−1,j).
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Algorithm 1: Reconstruction in the cell j for the ζ kinetic scheme

Data: mn
0,j ,m

n
0,j−1,m

n
0,j+1,

(
ζnk,j , ζ

n
k,j−1, ζ

n
k,j+1

)
k∈{1,...,N}

Result: Reconstruction parameters:
(
ζ̄nk,j

)
k∈{1,...,N}

and
(
Dn
k,j

)
k∈{0,...,N}

Compute D0,j from (29);
for k ← 1 to N do

Compute ak,j , bk,j from (27,28);
Compute Dk,j from (30) ;
if ak,j < 0 then

k0←max
{
i,Ψ

(
mn

0,j , D
n
0,j , . . . , ai−1,j , bi−1,j , D

n
i−1,j , ai,j , bi,j , 0, . . . , ak−1,j , bk−1,j , 0

)
> 0
}

;

nc ← 0;
while ak,j < 0 do

if nc < 5 then
nc ← nc + 1;
Dn
k0,j
← 0.9Dn

k0,j
;

ζ̄nk0,j ← ak0,j + bk0,jD
n
k0,j

;

Compute ap,j , bp,j and Dn
p,j from (27,28) and (30) for p = k0 + 1, . . . , k;

else
nc ← 0;
Dn
k0,j
← 0;

ζ̄nk0,j ← ak0,j ;

k0 ← k0 + 1;

ζ̄nk,j ← ak,j + bk,jD
n
k,j ;

The reconstruction used for the ζ simplified scheme is detailed in Algorithm 2, especially the
corrections done in the case where m∗j is not in the interior of the same moment space as mn

j , i.e.
where Nε(m∗j ) < Nε(mn

j ).
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Algorithm 2: Reconstruction in the cell j for the ζ simplified scheme

Data: mn
0,j ,m

n
0,j−1,m

n
0,j+1,

(
ζnk,j , ζ

n
k,j−1, ζ

n
k,j+1

)
k∈{1,...,N}

and Nε(mn
j )

Result: m−j and m+
j

Compute the slopes
(
Dn
k,j

)
k∈{0,...,Nε(mn

j )−1}
from (36,37), adding the limitation (38) if k = 1;

Compute m±0,j and
(
ζ±k,j

)
k∈{1,...,Nε(mn

j )−1}
from (35);

Set
(
Dn
k,j

)
k∈{Nε(mn

j ),...,N}
and

(
ζ±k,j

)
k∈{Nε(mn

j ),...,N}
to zero;

Compute the moments m±j from m±0,j and (ζ±k,j)k∈{1,...,N} (reverse algorithm);

m∗j ← 3mn
j −m+

j −m−j ;

Compute Nε(m∗j );
if Nε(m∗j ) < Nε(mn

j ) then
for p← 2 to Nε(mn

j ) do

Compute the moments m±j from m±0,j , (ζ±k,j)k∈{1,...,p} and(ζnk,j)k∈{p+1,...,N};

m∗j ← 3mn
j −m+

j −m−j ;

Compute Nε(m∗j );
if Nε(m∗j ) < Nε(mn

j ) then
Dn
p,j ← 0.5Dn

p,j ;

Compute ζ±p,j from (35);

Compute the moments m±j from m±0,j , (ζ±k,j)k∈{1,...,p} and(ζnk,j)k∈{p+1,...,N};

m∗j ← 3mn
j −m+

j −m−j ;

Compute Nε(m∗j );
if Nε(m∗j ) < Nε(mn

j ) then
Dn
p,j ← 0;

ζ±p,j ← ζnp,j ;

The reconstruction used for the QW schemes is detailed in Algorithm 3. For that, let us denote
V
(
(ξα)α∈{1,...,n}

)
the Vandermonde matrix corresponding to the coefficients (ξ1, . . . , ξn), i.e. the

matrix of coefficients ξi−1
j on the row i ∈ {1, . . . , n} and column j ∈ {1, . . . , n}.
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Algorithm 3: Reconstruction in the cell j for the QW schemes

Data: mn
j , mn

j−1, mn
j−1

Result:
(
wα,j , ξα,j , D

n
α,j

)
α∈{1,...,bN2 c+1}

p←
⌊
Nε(mn

j )

2

⌋
+ 1;

Compute (wα,j , ξα,j)α∈{1,...,p} from (mn
k,j)k∈{0,...,Nε(mn

j )−1} (Chebychev algorithm);

C = {1, . . . , p};(
w±α,j

)t
α∈C ← V ((ξα)α∈C)

−1 (
mn

0,j±1, . . . ,m
n
p−1,j±1

)t
;

while any
(
w±α,j

)
α∈C < 0 do

p← p− 1;

Determine α0 such that w±α0,j
= min{w±α,j , α ∈ C};

w±α0,j
← 0;

C = C − {α0};(
w±α,j

)t
α∈C ← V ((ξα)α∈C)

−1 (
mn

0,j±1, . . . ,m
n
p−1,j±1

)t
;

Appendix F. Reconstruction at the level of the NDF

Another way to reconstruct the moments mn(x) is to consider a spatial reconstruction at the
NDF level [43, 44]. Let us then reconstruct a NDF fnj from the moment set (mn

k,j)k∈{0,...,N}, using
EQMOM or entropy maximization and let us define

fn(x, ξ) = fnj (ξ) +Dn
j (ξ)(x− xj), x ∈ [xj− 1

2
, xj+ 1

2
].

The slope is defined thanks to a minmod limiter:

Dn
j (ξ) =

1

2

(
sgn(fnj+1(ξ)− fnj (ξ)) + sgn(fnj (ξ)− fnj−1(ξ)

)
min

( |fnj+1(ξ)− fnj (ξ)|
∆x

,
|fnj (ξ)− fnj−1(ξ)|

∆x

)
and the reconstructed moments for the kinetic scheme are then mn

k (x) =
∫ +∞

0
ξkfn(x, ξ)dξ . Prac-

tically, a quadrature on the ξ variable is used to compute the fluxes. But here, to ensure the [P1]
property, this quadrature has to correspond to the measure fj(ξ)dξ, i.e.

mn
k,j =

∫ +∞

0

ξkfj(ξ)dξ =

Nq∑
α=1

w̄α,jξ
k
α,j =

Nq∑
α=1

wα,jξ
k
α,jf

n
j (ξα,j), k ∈ {0, . . . , N},

where we define wα,j = w̄α,j/f
n
j (ξα,j), since fnj (ξα,j) cannot be zero. In the case of EQMOM

reconstruction, the weights w̄α,j and abscissas ξα,j can correspond to the secondary quadrature
[21, 12]. This then leads to:

mn
k (x) =

∫ +∞

0

ξk
[
fnj (ξ) +Dn

j (ξ)(x− xj)
]

dξ =

Nq∑
α=1

wα,jξ
k
α,j

(
fnj (ξα,j) +Dn

j (ξα,j)(x− xj)
)
.
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The corresponding kinetic scheme is then realizable and the flux are written:

Fnj+ 1
2

=
1

∆tn

Nq∑
α=1

(
wα,jf

n
j (ξα,j) +

Dn
α,j

2
(Xj+ 1

2
− xj− 1

2
)

)
Ξα,j

(
xj+ 1

2
−Xj+ 1

2

)+

(F.1)

− 1

∆tn

Nq∑
α=1

(
wα,j+1f

n
j (ξα,j+1)−

Dn
α,j+1

2
(xj+ 3

2
−Xj+ 1

2
)

)
Ξα,j+1

(
Xj+ 1

2
− xj+ 1

2

)+

.
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Figure F.15: Constant fluid velocity test case with a multi-modal initial NDF: space evolution of the moments of
order 0 to 6 (top to bottom) at time t = 1 for the exact solution (solid black lines) and for the simulation with
the kinetic scheme using a reconstruction of the NDF with the gamma-EQMOM (left, red dashed lines) and the
log-normal-EQMOM (right, red dashed lines) with 100 cells and a CFL equal to 0.8.

However, there are three drawbacks for this kind of scheme. First, it depends on the choice
of the NDF reconstruction, since several reconstructions are possible, and it also adds the cost of
the reconstruction itself, which is not negligible. However, such kind of reconstruction is usually
needed for the other operators present in the complete physical problem. The second and more
problematic drawback comes from the impossibility to deal with the boundary of the moment space
with this kind of method. Finally, the maximum principle on the moments may not be preserved.
Indeed, for example, fn(x, ξ) is smaller than max{fnj (ξ), fnj−1(ξ), fnj+1(ξ)} for any value of ξ. But
the moments of the distribution ξ 7→ max{fnj (ξ), fnj−1(ξ), fnj+1(ξ)} has no reason to be limited by
max{mn

k,j ,m
n
k,j+1,m

n
k,j−1}. This can be illustrated on a multi-modal but regular initial NDF:

f0(ξ, x) = 9x2(2− 3x)21[0,2/3](x)R(ξ, λ1, k1) + 9(3x− 1)2(1− x)21[1/3,1](x)R(ξ, λ(x), k(x)),

where R is the Rosin-Rammler pdf and with λ1 = 0.03, k1 = 2. The parameters λ(x) and k(x) are
plotted in Fig. G.16(right). Here, both the gamma and the log-normal EQMOM reconstructions
[21, 22, 12] are used to computed fluxes defined by (F.1). The result of the simulations for 5
moments with the corresponding kinetic scheme with 100 cells and a CFL number equal to 0.8
are plotted in Fig. F.15. The maximal principle is not respected for the zeroth order moment
and the results depend on the reconstruction, with a slightly better behavior here when using the
gamma-EQMOM.

Appendix G. Multi-modal initial NDF

The multi-modal NDF is defined by:

f0(ξ, x) = w1(x)δξ1(ξ) + w2(x)δ2ξ1(ξ) + w3(x)R(x, λ(x), k(x)), (G.1)

37



with ξ1 = 0.02 and where R is the Rosin-Rammler pdf:

R(ξ, λ, k) =
k

λ

(x
λ

)k−1

exp

(
−
(x
λ

)k)
.

The weights w1, w2 and w3 are regular (C2) and fourth order polynomial by part functions. They
are plotted in Fig. G.16(left). The parameters λ and k of the Rosin-Rammler pdf are regular (C2)
and third order polynomials by parts functions plotted in Fig. G.16(right).
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Figure G.16: Left: weights w1, w2 and w3 as functions of the spatial location x. Right: functions λ(x) (black solid
line) and k(x) (red dashed line).
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Basel, 1992.

41


