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A compressible two-layer model for transient gas-liquid flows in pipes.

Charles Demay · Jean-Marc Hérard

Abstract This work is dedicated to the modeling of gas-liquid flows in pipes. As a first step, a new two-layer model is
proposed to deal with the stratified regime. The starting point is the isentropic Euler set of equations for each phase where
the classical hydrostatic assumption is made for the liquid. The main difference with the models issued from the classical
literature is that the liquid as well as the gas is assumed compressible. In that framework, an averaging process results in a
five-equation system where the hydrostatic constraint has been used to define the interfacial pressure. Closure laws for the
interfacial velocity and source terms such as mass and momentum transfer are provided following an entropy inequality. The
resulting model is hyperbolic with non-conservative terms. Therefore, regarding the homogeneous part of the system, the
definition and uniqueness of jump conditions is studied carefully and acquired. The nature of characteristic fields and the
corresponding Riemann invariants are also detailed. Thus, one may build analytical solutions for the Riemann problem. In
addition, positivity is obtained for heights and densities. The overall derivation deals with gas-liquid flows through rectangular
channels, circular pipes with variable cross section and includes vapor-liquid flows.

Keywords Two-phase flow · Two-layer model · Pipe flow · Variable cross section · Hyperbolic system · Entropy

1 Introduction

The present work focuses on the modeling of transient gas-liquid flows in pipes, especially air-water flows. This type of flow
occurs in piping systems of several industrial areas such as nuclear power plants, petroleum industries or sewage pipelines. The
presence of air in such facilities is usually unwanted as it may induce for instance pressure surges and traveling air pockets,
leading to reduced efficiency and damages for pumping systems, see [33,35] ; an accurate modeling is thus necessary to
improve performances and reliability. Although being studied since many years, the macroscopic description of those flows is
still complex to assess as they may display different regimes such as dispersed flow, stratified flow, pressurized flow (pipe full
of water), slug flow and transitions between them, see [29] for details. On the one hand, experimental studies have provided
many interesting data on key points such as transition from stratified to pressurized regime [13] and air entrainment [16,21,34,
36]. On the other hand, mathematical and numerical modeling still raise many challenges as pointed out in the recent literature
review [12]. In particular, the free-surface regime is usually described by an incompressible flow with surface waves, while
the pressurized regime is described by a compressible flow with acoustic waves. Thus, most of existing 1D models focus
on this transition without computing the air phase which increases the modeling difficulties, see [11]. However, air-water
interactions may greatly affect the flow behavior regarding hydraulic jumps or traveling air pockets. Thus, the purpose of the
model presented herein is to account for air-water interactions in addition to regime transitions occurring in air-water pipe
flows.

As a first step, we consider in this paper the 1D modeling of stratified air-water flows in pipes. Seeing this regime as a free-
surface flow, a common way to deal with it is to use the Saint-Venant system [38], also called shallow water equations, which
results from a depth averaging process on the Euler set of equations and assumes a thin layer of incompressible fluid (liquid
phase) with hydrostatic pressure law. It may also include friction and viscosity, see [27]. Following this classical approach,
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the model proposed in [11] computes the water layer, and strict hyperbolicity is acquired with mathematical entropy. In
addition, the transition to the pressurized regime is handled including a switching from an incompressible to a compressible
description for water and a discontinuity of the pressure gradient. With the aim of computing the air phase, one may rather
consider the extension of the Saint-Venant system to a multilayer system, one layer being associated with one height, one
velocity and constant density, see [3]. The air layer is thus added in [10] with variable density and perfect gas pressure law,
the compressibility of air playing a key role in our framework. This process results in a two-layer model with incompressible
liquid and compressible gas, referred hereafter as the incompressible/compressible two-layer model. Nonetheless, the latter
is hyperbolic only for small or large relative speed between both phases. In fact, this system inherits the difficulties from the
common incompressible/incompressible two-layer systems, such as non-conservative terms, non-explicit eigenstructure and
conditional hyperbolicity, see [1,7]. Note that a multilayer Saint-Venant system which accounts for mass exchanges between
the layers is proposed in [4] and is strictly hyperbolic in its two-layer version when the total water height is strictly positive.
Dealing with two-fluid flows, the homogeneous model [15] or the drift-flux model [22] may also be proposed as candidates.
However, the first one considers one velocity field for the two phases, while the second one imposes velocity profiles for
the relative motion. Thus, those models are unable to restore the complexities of the flow such as entrapped air pockets with
unpredictable velocity. Another approach may be the two-velocity two-pressure models where compressibility is assumed for
both phases with an associated barotropic pressure law. In that context, interesting mathematical properties are obtained such
as hyperbolicity as well as entropy inequality. It was first introduced for separated flows with depth averaging in [37] and
mainly used afterward in a statistical framework for bubbly or granular flows, see [5,24,28,30]. This class of models can also
been obtained from a variational approach as in [26] and may be extended to multi-component fluids, see [32]. Nonetheless,
the statistical framework is not relevant for stratified flows as the height and the relative position of each phase are not given
by the model.

Combining the interesting properties of the two-layer and the two-velocity two-pressure frameworks, the model proposed
herein is a compressible/compressible two-layer model as in [37]. Thus, water is considered compressible and does not follow
the classical hydrostatic pressure law but a barotropic pressure law, such as stiffened gas law. The starting point is the isentropic
Euler set of equations for both phases where the classical hydrostatic assumption is made for water (vertical acceleration is
neglected). Adding a kinetic boundary condition at the interface between the liquid and gas layers, an averaging process results
in a five-equation model in which the hydrostatic constraint is used to define the interfacial pressure. Following an entropy
inequality, closure laws are provided for the interfacial velocity and source terms such as mass and momentum transfer.
Contrary to the incompressible/incompressible or incompressible/compressible two-layer frameworks, the eigenstructure can
be easily detailed and the hyperbolicity is acquired except for resonance conditions which may not occur for realistic air-water
flows. Regarding the Riemann problem associated with the homogeneous problem (i.e., without any source terms), the nature
of characteristic fields and the associated Riemann invariants can also be detailed. Furthermore, since non-conservative terms
exist, the uniqueness of jump conditions is an important feature that is studied and acquired. Thus, one may build analytical
solutions for the Riemann problem. In addition, positivity is guaranteed for heights and densities. Finally, note that when
dealing with regime transitions, this framework includes a uniform description of water as a compressible flow without any
switching on the pressure law.

The document is organized as follows. For the sake of clarity, the model is presented first in the 2D framework with a 1D
averaging process where a vertical depth averaging process is used in the classical way of shallow water two-layer equations.
Thus, plane channels with constant width are implicitly considered in Sect. 2 neglecting the spanwise variations of the flow.
Closure laws for the interfacial velocity and source terms are provided in Sect. 3 and the resulting closed system is commented
in Sect. 4 regarding its consistency with other well-known models. Its ability to deal with more complex pipes configurations
such as sloping pipes or pressurized flows is also studied. section 5 details significant mathematical properties of the model. In
a second step, the 3D framework with a 2D averaging process is handled in Sect. 6 with the aim of considering circular pipes
with variable cross section in time and space. The derivation is done following the same approach as in Sect. 2. Air-water flows
are considered throughout the paper but the model can applied in the general framework of gas-liquid flows and vapor-liquid
flows.

2 Model development

2.1 Local governing equations

Throughout this section, a two-layer air-water flow through an horizontal pipe of height H is considered. Index k is attributed
to each phase, 1 for water, 2 for air. Thus, as hk refers to the height of phase k, one has h1 + h2 = H. A 2D description of
the flow is used such that all local variables depend on (x,z, t) excepting hk(x, t). In this framework, we implicitly deal with
rectangular channels homogeneous in the spanwise direction. The extension to circular pipes with variable cross section will
be investigated in Sect. 6. The geometric description is given in cartesian coordinates (0,x,z) in Fig. 2.1.
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Fig. 2.1 Geometric description for horizontal channels

The set of local governing equations is given by the 2D isentropic Euler set of equations for both phases. In that context,
both phases are assumed compressible and the pressure Pk of phase k depends on density ρk. Denoting uk = (uk,wk) the
velocity vector of phase k, mass and momentum conservation equations write:

∂ρk

∂ t
+div(ρkuk) = Mk, k = 1,2, (2.1)

∂ρkuk

∂ t
+div(ρkuk⊗uk +PkId) = Dk +ρkg, k = 1,2, (2.2)

where Mk and Dk = Dkex stand, respectively, for mass and momentum transfer between phases, g = −gez denotes the grav-
ity field and Id is the identity matrix. Note that mass transfer terms are introduced here for generality, considering single-
component vapor-liquid flows for instance, but may be neglected for most of air-water flows. In addition, mass and momentum
conservation of the mixture yields M1 +M2 = 0 and D1 +D2 = 0.

Dealing with stratified flows in pipes, the classical hydrostatic assumption is made for water (i.e., vertical acceleration is
neglected), so that (2.2) along z for k = 1 yields:

∂P1(ρ1)

∂ z
=−ρ1g, (2.3)

which will be referred to as the hydrostatic constraint. Note that in the framework of barotropic pressure laws, this constraint
implies that the density ρ1(x,z, t) is not homogeneous along the vertical coordinate z.

As the phases are compressible, state equations are required for pressures. For instance, perfect gas law may be used for
air and isentropic stiffened gas law for water:

P1(ρ1) = (P1,ref +Π1)
(

ρ1

ρ1,ref

)γ1
−Π1,

P2(ρ2) = P2,ref

(
ρ2

ρ2,ref

)γ2
,

with some reference density ρk,ref and pressure Pk,ref. Classical thermodynamic considerations impose γk > 1, Π1 ≥ 0 and

P
′
k(ρk)> 0 so that ck =

√
P′k(ρk) defines the celerity of acoustic waves. For air, γ2 is set to 7/5 (diatomic gas) while γ1 and Π1

are fitted according to a reference state. Note that the development herein is independent of the chosen pressure laws.
An additional interfacial kinetic boundary condition may be added on the interface separating air and water writing:

ϕ(x,z, t) = z−h1(x, t) = 0,

so that:
dϕ

dt
= 0,

and thus:
∂ϕ

∂ t
+uI .∇x,zϕ = 0,

where uI =

(
UI
WI

)
denotes the interfacial velocity. Using the expression of ϕ , it finally writes:

∂h1

∂ t
+UI

∂h1

∂x
=WI . (2.4)

Boundary conditions may be applied to both phases. On the walls, impermeability imposes:

w1(x,z = 0, t) = w2(x,z = H, t) = 0. (2.5)
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On the interface, the continuity of the normal velocity is assumed:

(u1(x,z = h−1 , t)−u2(x,z = h+1 , t)).nI = 0, (2.6)

with nI =
(− ∂h1

∂x 1)T√
1+(

∂h1
∂x )2

, the unit normal vector at the interface. As a dynamic boundary condition, a pressure equilibrium is

imposed on the interface neglecting surface tension effects:

P1(x,z = h−1 , t) = P2(x,z = h+1 , t) = PI(x, t), (2.7)

where PI denotes the interfacial pressure.
Finally, we assume that the interfacial velocity satisfies:

uI(x, t) = βu1(x,z = h−1 , t)+(1−β )u2(x,z = h+1 , t), β ∈ [0,1]. (2.8)

2.2 Averaging process

Following the shallow water modeling approach, a vertical average across the layer depth is performed using the operator:

fk(x, t) =
1
hk

∫ hk+zk

zk

fk(x,z, t)dz with
{

z1 = 0,
z2 = h1,

(2.9)

where fk is a function depending on the state variables. The density weighted averaging operator is also introduced:

f̂k(x, t) =
ρk fk

ρk
. (2.10)

In addition, the interface value of each variable is denoted f ∗k such that:{
f ∗1 (x, t) = f1(x,z = h−1 , t),
f ∗2 (x, t) = f2(x,z = h+1 , t).

(2.11)

Mass conservation

Vertical integration of (2.1) gives:

∫ hk+zk

zk

∂ρk

∂ t
dz+

∫ hk+zk

zk

∂ρkuk

∂x
dz+

∫ hk+zk

zk

∂ρkwk

∂ z
dz =

∫ hk+zk

zk

Mkdz.

Using Leibniz’s integral rule for non-constant bounds in the first two terms of the left-hand side and kinetic boundary condition
(2.5) for the third one, one gets:

∂hkρk
∂ t

+
∂hkρkuk

∂x
−Bk = hkMk,

with:

Bk = ρ∗k (
∂h1
∂ t +u∗k

∂h1
∂x −w∗k)

= ρ∗k ((u
∗
k−UI)

∂h1
∂x +(WI−w∗k)) according to (2.4)

= ρ∗k (uI−u∗k).(−
∂h1
∂x 1)T

= 0,

(2.12)

using (2.6) and the colinearity between uI−u∗k and u∗1−u∗2 given by (2.8).
Finally, using the definition ρkuk = ρkûk, the averaged mass conservation equations write:

∂hkρk
∂ t

+
∂hkρkûk

∂x
= hkMk. (2.13)
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Momentum conservation

Dealing with the streamwise component of (2.2), vertical integration writes:∫ hk+zk

zk

∂ρkuk

∂ t
dz+

∫ hk+zk

zk

∂ρku2
k

∂x
dz+

∫ hk+zk

zk

∂ρkukwk

∂ z
dz+

∫ hk+zk

zk

∂Pk

∂x
dz =

∫ hk+zk

zk

Dkdz.

Using Leibniz’s integral rule and kinetic boundary condition (2.5), the first three terms of the left-hand side write:

∂hkρkuk

∂ t
+

∂hkρku2
k

∂x
−u∗kBk,

where Bk = 0 according to (2.12). Concerning the pressure gradient term, it comes:∫ hk+zk

zk

∂Pk

∂x
dz =

∂hkPk

∂x
−PI

∂hk

∂x
.

At first order, the turbulence of the flow is neglected, such that the closure law ρku2
k = ρkû 2

k is chosen. Thus, the averaged
momentum equations considered are:

∂hkρkûk

∂ t
+

∂hk(ρkû 2
k +Pk)

∂x
−PI

∂hk

∂x
= hkDk. (2.14)

Hydrostatic constraint

In [37], the averaged system for 1D stratified flows gathers the averaged mass conservation equations (2.13), the averaged
momentum equations (2.14) and the kinetic boundary condition (2.4). However, as gravitational effects have a leading role in
the dynamics of stratified flows, it is proposed here to account for the so-called hydrostatic constraint (2.3) in the averaged
system. Some approaches have already been studied in the literature, see [20,31], but an original one is proposed below.

The starting point is to integrate the hydrostatic constraint (2.3) between z and h1:

P1(ρ1(x,z, t)) = PI(x, t)+
∫ h1

z
ρ1(x,s, t)gds. (2.15)

Performing a second integration between 0 and h1 it yields:∫ h1

0
P1(ρ1(x,z, t))dz = h1PI(x, t)+g

∫ h1

0

(∫ h1

z
ρ1(x,s, t)ds

)
dz. (2.16)

Then, using an integration by parts of the double integral it comes:∫ h1

0
P1(ρ1(x,z, t))dz = h1PI(x, t)+g

[
z
∫ h1

z
ρ1(x,s, t)ds

]h1

0
+g

∫ h1

0
ρ1(x,z, t)zdz,

= h1PI(x, t)+ρ1zgh1.

At this point, it is proposed to neglect the correlation between ρ1 and z, such that the closure law for ρ1z writes:

ρ1z = ρ1z = ρ1
h1

2
. (2.17)

Remark 2.1 As detailed in Appendix A, the validity of (2.17) can be clarified when choosing a linear pressure law for phase
1. Indeed, assuming that ε = gh1

c2
1
� 1, one obtains the following estimate:∣∣∣ρ1z−ρ1z

ρ1z

∣∣∣= ε

6
+O(ε2),

which justifies (2.17) as in practice, c1 ∼ 1500 m.s−1, H ∼ 1 m and |ε| ≤ 10−5.

Thus, (2.16) yields:

PI = P1−ρ1g
h1

2
. (2.18)

In the isentropic framework, the above expression provides the closure law for PI regarding P1 as a function of ρ1.
Moreover, (2.18) may be read as an averaged hydrostatic pressure law for P1 used with the averaged density ρ1. Therefore,
the averaged momentum equations under hydrostatic constraint write:

∂hkρkûk

∂ t
+

∂hk(ρkû 2
k +Pk)

∂x
− (P1−ρ1g

h1

2
)

∂hk

∂x
= hkDk. (2.19)
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2.3 Resulting averaged system

Adding the interfacial kinetic boundary condition (2.4), a five-equation system corresponding to the five unknowns
(h1,ρ1,ρ2, û1, û2) is obtained:

∂h1

∂ t
+UI

∂h1

∂x
=WI , (2.20a)

∂hkρk
∂ t

+
∂hkρkûk

∂x
= hkMk, (2.20b)

∂hkρkûk

∂ t
+

∂hk(ρkû 2
k +Pk)

∂x
− (P1−ρ1g

h1

2
)

∂hk

∂x
= hkDk, (2.20c)

where k = 1,2 and h1 +h2 = H. This system is relevant for two-layer gas-liquid or vapor-liquid flows in horizontal channels
and relies on a vertical average across the layer depth. Compressibility is considered for both layers with barotropic pressure
laws. Dealing with the averaged source terms, conservation of mass and momentum of the mixture impose:

h1D1 +h2D2 = 0, (2.21a)

h1M1 +h2M2 = 0. (2.21b)

In practice, the averaged pressure laws Pk(ρk) are classically expressed in terms of ρk so that the closure Pk(ρk) = Pk(ρk)
is chosen. Consequently, the celerity of acoustic waves in the averaged framework is defined by:

ck =
√

P′k(ρk). (2.22)

The interfacial pressure PI is defined by the averaged hydrostatic constraint (2.18) whereas the interfacial velocity UI and
source terms still need closure laws. In the following section, an entropy inequality is used to close the system.

3 Entropy inequality and closure laws

System (2.20) may develop discontinuous solutions even with continuous initial conditions. Therefore, an entropy inequality
which allows to select the physically relevant solution is obtained in this section; closure laws will be proposed following with
this inequality.

From now on, the operator notations are omitted until Sect. 6. Let us define:

mk = hkρk, Ec,k =
1
2

mku2
k , Et,k = mkΨk(ρk), (3.1)

with Ψk some function of ρk. Notice that Ec,k and Et,k respectively stand for the integrated kinetic energy and thermodynamic
energy of phase k over the layer of height hk.

Considering smooth solutions of (2.20) and combining (2.20a) with (2.20b), the equation for ρk writes:

∂ρk

∂ t
+uk

∂ρk

∂x
+ρk

∂uk

∂x
+

ρk

hk
(uk−UI)

∂hk

∂x
= (−1)k ρk

hk
WI +Mk.

Multiplying the last equation by mkΨ
′

k , we get for Et,k:

∂Et,k

∂ t
+

∂ukEt,k

∂x
+mkρkΨ

′
k

∂uk

∂x
+ρ

2
k (uk−UI)Ψ

′
k

∂hk

∂x
= (−1)k

ρ
2
kΨ

′
kWI +(ρkΨ

′
k +Ψk)hkMk. (3.2)

Multiplying (2.20c) by uk and combining with (2.20b) we get for Ec,k:

∂Ec,k

∂ t
+

∂

∂x
(ukEc,k +ukhkPk)−hkPk

∂uk

∂x
−ukP1

∂hk

∂x
+ukρ1g

h1

2
∂hk

∂x
= ukhkDk−

u2
k

2
hkMk. (3.3)

For phase 1, the term u1ρ1g h1
2

∂h1
∂x in (3.3) may be used to introduce the gravitational potential energy:

Ep,1 = ρ1g
h2

1
2
. (3.4)

After calculations, one obtains:

u1ρ1g
h1

2
∂h1

∂x
=

∂Ep,1

∂ t
+

∂u1Ep,1

∂x
+UIρ1g

h1

2
∂h1

∂x
−ρ1g

h1

2
WI−g

h2
1

2
Mk. (3.5)
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The energy equation for the whole system is then obtained adding (3.2) with (3.3) for k = 1,2. Using (3.5) and the
following consistency relations:

∂h1

∂x
+

∂h2

∂x
= 0, h1D1 +h2D2 = 0, h1M1 +h2M2 = 0,

it yields:

∂

∂ t

(
Ec,1 +Et,1 +Ep,1 +Ec,2 +Et,2

)
+

∂

∂x

(
u1(Ec,1 +Ep,1 +Et,1)+u2(Ec,2 +Et,2)+u1h1P1 +u2h2P2

)
+κu1

∂u1

∂x
+κu2

∂u2

∂x
+κh1

∂h1

∂x
= κwIWI +κD1 h1D1 +κM1 h1M1, (3.6)

where:

κuk = hkρ
2
kΨ

′
k −hkPk,

κh1 = (u1−UI)ρ
2
1Ψ

′
1 − (u2−UI)(ρ

2
2Ψ

′
2 −ρ1g

h1

2
)+(u2−u1)P1,

κwI = ρ
2
2Ψ

′
2 −ρ

2
1Ψ

′
1 +ρ1g

h1

2
,

κD1 = u1−u2,

κM1 = (ρ1Ψ
′

1 +Ψ1 +g
h1

2
)− (ρ2Ψ

′
2 +Ψ2)+

1
2
(u2

2−u2
1).

In order to obtain a conservative equation, the contribution of non-conservative terms is canceled out. Thus, we define
Ψk(ρk) such that:

Ψ
′

k (ρk) =
Pk(ρk)

ρ2
k

. (3.8)

This closure yields κuk = 0 and one obtains the consistency with the definition of thermodynamic energy when dealing with
single-phase flows and the Euler system. Setting κh1 = 0 and using (3.8), one obtains:

(u2−UI)(P1−P2 +ρ1g
h1

2
) = 0, ∀(h1,ρ1,ρ2),

which gives the closure for UI :
UI = u2. (3.9)

To conclude, one can state the following proposition:

Proposition 3.1 Smooth solutions of system (2.20) comply with the entropy inequality:

∂E

∂ t
+

∂G

∂x
≤ 0, (3.10)

where the entropy E and the entropy flux G are defined by:

E = Ec,1 +Ep,1 +Et,1 +Ec,2 +Et,2, (3.11a)

G = u1(Ec,1 +Ep,1 +Et,1)+u2(Ec,2 +Et,2)+u1h1P1 +u2h2P2, (3.11b)

with:

Ec,k =
1
2

hkρku2
k , Et,k = hkρkΨk(ρk), Ep,1 = ρ1g

h2
1

2
,

and:

Ψ
′

k (ρk) =
Pk(ρk)

ρ2
k

,

as soon as the following closure laws are used for the interfacial variables:

UI = u2, (3.12a)

PI = P1−ρ1g
h1

2
, (3.12b)
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and for the source terms:

WI = λp(PI−P2) = λp(P1−ρ1g
h1

2
−P2), (3.13a)

hkDk = (−1)k
λu(u1−u2)+

(u1 +u2

2

)
hkMk, (3.13b)

hkMk = (−1)k
λm

(
(

P1 +ρ1g h1
2

ρ1
+Ψ1)− (

P2

ρ2
+Ψ2)

)
, (3.13c)

where λp, λu and λm are positive bounded functions which depend on the state variable (h1,ρ1,ρ2,u1,u2).

Proof (3.10) is obtained from (3.6) where the source terms are chosen to ensure that the inequality is verified. Indeed, the
right-hand side of (3.6) writes:

S = h1D1(u1−u2)+h1M1

(
(

P1 +ρ1g h1
2

ρ1
+Ψ1)− (

P2

ρ2
+Ψ2)+

u2
2−u2

1
2

)
+WI(P2−P1 +ρ1g

h1

2
),

so that choosing hkDk = hkD
′
k +( u1+u2

2 )hkMk, one obtains:

S = hkD
′
k(u1−u2)+h1M1

(
(

P1 +ρ1g h1
2

ρ1
+Ψ1)− (

P2

ρ2
+Ψ2)

)
+WI(P2−P1 +ρ1g

h1

2
),

and the corresponding expressions for WI , hkD
′
k and hkMk are chosen such that S≤ 0. ut

Therefore, the closed system writes:

∂W
∂ t

+
∂F(W )

∂x
+B(W )

∂W
∂x

=C(W ), (3.14)

where:
W = (h1,h1ρ1,h2ρ2,h1ρ1u1,h2ρ2u2)

T ,

F(W ) =


0

h1ρ1u1
h2ρ2u2

h1(ρ1u2
1 +P1)

h2(ρ2u2
2 +P2)

 , B(W )
∂W
∂x

=


u2

∂h1
∂x

0
0

−(P1−ρ1g h1
2 ) ∂h1

∂x
−(P1−ρ1g h1

2 ) ∂h2
∂x

 ,

and:

C(W ) =



λp(P1−ρ1g h1
2 −P2)

−λm

(
(

P1+ρ1g h1
2

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)
λm

(
(

P1+ρ1g h1
2

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)
−λu(u1−u2)− ( u1+u2

2 )λm

(
(

P1+ρ1g h1
2

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)
λu(u1−u2)+( u1+u2

2 )λm

(
(

P1+ρ1g h1
2

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)


,

where λp, λu and λm are positive bounded functions which depend on the state variable (h1,ρ1,ρ2,u1,u2).

4 Comments on the closed system

4.1 Consistency with the shallow water equations

When it comes to free-surface flows, the well-known (incompressible) shallow water equations are usually considered in the
literature. It is thus interesting to check the consistency of the present model with that classical description.

Regarding the closed system (3.14) without mass nor momentum transfers between the layers, averaged mass and mo-
mentum conservation equations for the water phase write:

∂h1ρ1

∂ t
+

∂h1ρ1u1

∂x
= 0,

∂h1ρ1u1

∂ t
+

∂h1ρ1u2
1

∂x
+

∂h1P1

∂x
−PI

∂h1

∂x
= 0,
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where P1 = PI +ρ1g h1
2 (averaged hydrostatic constraint). Focusing on the pressure gradient and smooth solutions, it comes:

∂h1P1

∂x
=

∂ρ1g h2
1

2
∂x

+h1
∂PI

∂x
+PI

∂h1

∂x
,

and the water layer system reads:

∂h1ρ1

∂ t
+

∂h1ρ1u1

∂x
= 0, (4.1a)

∂h1ρ1u1

∂ t
+

∂h1ρ1u2
1

∂x
+

∂ρ1g h2
1

2
∂x

+h1
∂PI

∂x
= 0. (4.1b)

Thus, if ρ1 is considered as a constant in (4.1), one obtains formally the classical (incompressible) shallow water model with
varying atmospheric pressure PI(x, t), see [2] for instance.

Furthermore, regarding the surface dynamic equation (3.14a), its interpretation is given in terms of pressure relaxation.
Indeed, considering static fluids without mass transfer, one can write:

∂h1

∂ t
= λp(PI−P2) = λpΠ(x, t),

∂hkρk

∂ t
= 0,

where Π(x, t) = PI−P2 = P1−ρ1g h1
2 −P2. The second equation gives hk

∂ρk
∂ t = (−1)kρk

∂h1
∂ t and Π(x, t) verifies:

∂Π

∂ t
=−∂h1

∂ t
(

c2
1ρ1

h1
+

c2
2ρ2

h2
),

=−λp(
c2

1ρ1

h1
+

c2
2ρ2

h2
)Π(x, t),

which yields:

Π(x, t) = Π(x,0)exp(−
∫ t

0
λp(

c2
1ρ1

h1
+

c2
2ρ2

h2
)dt).

As λp is a positive bounded function, one obtains the following asymptotic behavior:

PI −→
t→+∞

P2. (4.2)

In practice, dealing with water for phase 1 and pipe radii of about 1 m, c2
1ρ1
h1
∼ 109 Pa.m−1 and the relaxation is very fast.

Consequently, the atmospheric pressure in (4.1b) quickly converges toward the pressure of the air phase, which makes sense
regarding the layered configuration. Note that an explicit form for the pressure relaxation term λp is proposed in [25] for
bubbly flows and might be extended to our model.

The consistency of the proposed model with the incompressible shallow water model deserves also a deep investigation
considering an asymptotic low Mach number development in the liquid, but this study lies beyond the scope of the work
exposed herein.

4.2 Consistency with pressurized flows

The case where the pipe is full of phase 1 is referred to as pressurized flow. In practice, transitions from stratified to pressurized
regime often occur in industrial facilities so that one may wonder if this configuration will be correctly handled by our model.
Formally, considering h1 = H, one obtains:

∂ρ1

∂ t
+

∂ρ1u1

∂x
= 0,

∂ρ1u1

∂ t
+

∂ (ρ1u2
1 +P1)

∂x
= 0,

as soon as the source terms vanish when h1 = H. This system gives the expected averaged equations to describe a rectangular
channel full of phase 1 where compressibility effects provide the correct velocity of acoustic waves.

Therefore, the model presented herein for stratified air-water flows degenerates correctly to the pressurized regime without
any switching on the pressure law, contrary to the model presented in [11].



10 Charles Demay, Jean-Marc Hérard

4.3 Comparison with the two-fluid two-pressure models

By construction, the model presented herein may be seen as a two-fluid two-pressure model. Indeed, looking at the system
(3.14), one may recognize a two-velocity two-pressure model as developed in [5,17,24,28,30] without the energy equations.
The first difference relies on the averaging process; in the literature, one may find time averages, space averages or statistical
averages, resulting in the same system structure. Another difference is given by the closure laws (3.12). In the overall frame-
work, see [17], several closure laws are possible for (UI ,PI) to get both a linearly degenerated field for the 1-wave and an
entropy inequality, whereas in our case, there is only one possibility satisfying the additional hydrostatic constraint (2.3). That
being said, most of the good properties such as hyperbolicity (see next section) or entropy inequality have been inherited di-
rectly from the overall framework. One may also find similarities with the model developed in [23] where granular flows have
been described in the statistical framework. Particularly, reading hk as the statistical fraction, similarities are found regarding
the source terms: WI includes the granular stress contribution, hkDk the classical friction effects and hkMk the disequilibrium
of Gibbs enthalpy.

4.4 Sloping pipes

Sloping pipes are frequently encountered in industrial configurations. Considering a constant slope of angle θ , a description
of the geometry is presented in Fig. 4.1.

θ
b(x)

H

h1

h2

water

air

y x

z

Fig. 4.1 Geometric description for sloped pipes

In the (O,x,y,z) frame of reference, the hydrostatic constraint writes:

∂P1

∂ z
=−ρ1gcosθ , (4.3)

and one may easily demonstrate that the closing relations for the interfacial variables are exactly the same as those presented
in the previous section, replacing g by gcosθ :

UI = u2,

PI = P1−ρ1g
h1

2
cosθ ,

and for the source terms:

WI = λp(P1−ρ1g
h1

2
cosθ −P2),

hkDk = (−1)k
λu(u1−u2)+

(u1 +u2

2

)
hkMk,

hkMk = (−1)k
λm

(
(

P1 +ρ1g( h1
2 cosθ +b)
ρ1

+Ψ1)− (
P2

ρ2
+Ψ2)

)
.

The entropy inequality being equivalent to (3.10) where Ep,1 now writes:

Ep,1 = ρ1g
h2

1
2

cosθ +ρ1gh1b,
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with db
dx = sinθ . Note that there is no approximation required on θ to get these relations. The only implicit assumption is that

phases stay layered with phase 1 below. The validity of this system is thus questionable when θ gets close to π

2 .
To conclude, one may easily deal with sloped pipes where θ is constant. The case with variable slopes is not considered

here although it can a priori be handled considering the curvilinear formulation of Euler equations as in [6,8,9,31].

5 Mathematical properties

Dealing with the closed system (3.14), the homogeneous problem is studied through the eigenstructure and hyperbolicity
analysis, the nature of characteristic fields and the associated Riemann invariants. Furthermore, as non-conservative terms
exist, uniqueness of jump conditions is then studied carefully. Finally, positivity is obtained for the physical variables hk and
ρk, k = 1,2.

5.1 Eigenstructure and hyperbolicity

Regarding the convective part of (3.14):

∂h1

∂ t
+u2

∂h1

∂x
= 0, (5.1a)

∂hkρk

∂ t
+

∂hkρkuk

∂x
= 0, (5.1b)

∂hkρkuk

∂ t
+

∂hk(ρku2
k +Pk)

∂x
− (P1−ρ1g

h1

2
)

∂hk

∂x
= 0, (5.1c)

where h1 +h2 = H, and recalling that ck =
√

P′k(ρk) denotes the celerity of acoustic waves, the following proposition holds:

Proposition 5.1 The homogeneous problem (5.1) is hyperbolic under the condition:

|u1−u2| 6= c1. (5.2)

Its eigenvalues are unconditionally real and given by:

λ1 = u2, λ2 = u1− c1, λ3 = u1 + c1, λ4 = u2− c2, λ5 = u2 + c2. (5.3)

Defining the vector:
Y = (h1,ρ1,u1,ρ2,u2)

T , (5.4)

the corresponding right eigenvectors write in column:

R(Y ) =


1 0 0 0 0

η1 ρ1 ρ1 0 0
η2 −c1 c1 0 0
η3 0 0 ρ2 ρ2
0 0 0 −c2 c2

 ,

where:

η1 =
ρ1

c2
1− (u1−u2)2

( (u1−u2)
2

h1
− g

2

)
, η2 =

u1−u2

c2
1− (u1−u2)2 (−

c2
1

h1
+

g
2
),

η3 =
P2−P1 +ρ1g h1

2

h2c2
2

.

Proof (5.1) may be written with respect to Y , which gives, for regular solutions:

∂Y
∂ t

+C(Y )
∂Y
∂x

= 0, (5.5)

where

C(Y ) =



u2 0 0 0 0
ρ1
h1
(u1−u2) u1 ρ1 0 0

g
2

c2
1

ρ1
u1 0 0

0 0 0 u2 ρ2
P1−ρ1g h1

2 −P2
ρ2h2

0 0 c2
2

ρ2
u2

 .
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The eigenvalues and the eigenvectors are then easily computed using the block structure of C(Y ). As ck 6= 0, the eigenvectors
are linearly independent and span R5 as soon as λ1 = u2 is different from the other eigenvalues, which may be rewritten under
the condition (5.2). ut

Note that the hyperbolicity is not strictly verified everywhere since some eigenvalues may coincide if (5.2) is violated,
leading to the so-called resonant behavior. However, in the context of air-water flows, c1 ≈ 1500 m.s−1, and the resonant
situation is clearly out of the scope of interest and the model is not devoted to this unrealistic flow regime. Finally, looking at
C(Y ) and R(Y ), phases 1 and 2 are only coupled by the first column which means that they evolve independently on each side
of the 1-wave λ1 = u2. Moreover, the system may be symmetrized using the Y variable, see [18] for some counterpart.

5.2 Study of the Riemann problem

In this section, we focus on the Riemann problem associated with (5.1) in order to verify that the parametrization of waves
λk, k = 1, ..,5, is well defined. Using the conservative variable:

W = (h1,h1ρ1,h2ρ2,h1ρ1u1,h2ρ2u2)
T ,

the Riemann problem writes:

W (t = 0,x) =

{
WL, if x < 0,
WR, if x > 0,

where WL and WR are some constant states. After studying the nature of characteristic fields, one turns to Riemann invariants
and jump conditions which need careful consideration regarding non-conservative terms.

Nature of characteristic fields and Riemann invariants

Considering the eigenstructure of (5.1) detailed in Proposition 5.1, the following proposition can be stated:

Proposition 5.2 The field associated with the 1-wave λ1 is linearly degenerate while the fields associated with the waves
λk, k = 2, ..,5, are genuinely nonlinear. Moreover, denoting Ik(W ) the vector of k-Riemann invariants associated with the
k-wave, one obtains:

I1(W ) =
(

u2,m1(u1−u2),m1u1(u1−u2)+h1P1 +h2P2,
P1 +ρ1g h1

2
ρ1

+Ψ1 +
(u1−u2)

2

2

)T
,

I2(W ) =
(

h1,ρ2,u2,u1 +
∫ c1(ρ1)

ρ1
dρ1

)T
,

I3(W ) =
(

h1,ρ2,u2,u1−
∫ c1(ρ1)

ρ1
dρ1

)T
,

I4(W ) =
(

h1,ρ1,u1,u2 +
∫ c2(ρ2)

ρ2
dρ2

)T
,

I5(W ) =
(

h1,ρ1,u1,u2−
∫ c2(ρ2)

ρ2
dρ2

)T
.

Proof One may readily see that:
∇Y λ1(Y ).r1(Y ) = 0,

where rk(Y ) denotes the kth column of R(Y ). Thus, the 1-wave field is linearly degenerate. Moreover, a classical result derived
from the Euler system with perfect gas law or stiffened gas law gives:

∇Y λk(Y ).rk(Y ) 6= 0, k = 2, ...,5.

Thus, the associated fields are genuinely nonlinear.
Regarding the matrix R(Y ) in Proposition 5.1, the definition of the k-Riemann invariants, k = 2, ..,5, is also a classical

result derived from the Euler system. Concerning the linearly degenerate field, λ1 = u2 is a 1-Riemann invariant by definition.
The three remaining 1-Riemann invariants may be obtained using three conservation laws on which Rankine-Hugoniot jump
conditions are applied with σ = λ1 as speed of discontinuity. Mass conservation and momentum conservation summed on
both phases provide the first two, while the last one is the entropy equality without source terms (see Proposition 3.1). Then,
denoting I1

k the kth component of I1, checking that ∇Y I1
k (Y ).r1(Y ) = 0 is straightforward though tedious. ut

This result emphasizes the fact that the phases evolve independently on each side of the 1-wave. In those regions, h1 is
constant and one may notice that the system (5.1) reduces locally to two conservative Euler systems.
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Jump conditions

System (5.1) contains two non-conservative products, u2∂xh1 and (P1−ρ1g h1
2 )∂xh1. Regarding discontinuous solutions, one

has to make sure that those products are well defined across genuinely nonlinear and linearly degenerate fields.
As h1 is constant through the genuinely nonlinear fields, the system (5.1) can be considered locally conservative. Thus,

one may state the following proposition:

Proposition 5.3 For all genuine nonlinear fields corresponding to the k-waves, k = 2, ...,5, the Rankine-Hugoniot jump con-
ditions across a single discontinuity of speed σ write:

[hk] = 0,

[mk(uk−σ)] = 0,

[mkuk(uk−σ)+hkPk] = 0,

where brackets [.] denote the difference between the states on both sides of the discontinuity.

Furthermore, as the field associated with the jump of h1 is linearly degenerate, the non-conservative products u2∂xh1 and
(P1−ρ1g h1

2 )∂xh1 are well defined. Indeed, one may use the available 1-Riemann invariants detailed in Proposition 5.2 to write
explicitly the 1-wave parametrization.

Finally, no ambiguity holds in the definition of jump relations and non-conservative products. In addition, one can build
analytical solutions for system (5.1) which may be used to validate numerical schemes, see [19] for details. Nonetheless, the
great complexity of (5.1) seems to prohibit the exact resolution of Riemann problems.

5.3 Positivity

Considering variables with physical meaning such as hk or ρk, ensuring their positivity is a major requirement. Focusing on
smooth solutions, the result is classical regarding the system (3.14) if one assumes that λp and λm may be written under
the form λp = m1m2λ̃p and λm = m1m2λ̃m, where λ̃p and λ̃m are positive bounded functions depending on the state variable
(see Proposition B.1 in Appendix B). In addition, one can demonstrate that the positivity requirements hold for discontinuous
solutions of the Riemann problem associated with the homogeneous system (5.1). It relies on an explicit writing of elementary
waves parametrizations.

6 Extension to circular pipes with variable cross section

As mentioned earlier, the 1D averaging operator proposed in (2.9) implicitly deals with the case of homogeneous channels. As
most of pipes are actually circular in industrial facilities, the case of horizontal circular pipes is now considered. The analysis
is also extended to variable cross section in space and in time corresponding to geometric constraint and pipe elasticity. To this
end, a 2D averaging operator is applied on 3D Euler system following the same approach as in Sect. 2. Note that the variable
cross section case is developed in [14] considering open channels and two incompressible layers.

6.1 Local governing equations and geometric description

The framework is the set of 3D isentropic Euler equations with the same hypothesis as in Sect. 2, that is the classical hydrostatic
assumption for water. Denoting uk = (uk,vk,wk) the velocity vector of phase k and vk = (0,vk,wk), the system along the
longitudinal direction writes:

∂ρk

∂ t
+

∂ρkuk

∂x
+divy,z(ρkvk) = Mk, (6.1a)

∂ρkuk

∂ t
+

∂ρku2
k

∂x
+divy,z(ρkukvk)+

∂Pk(ρk)

∂x
= Dk, (6.1b)

with the hydrostatic constraint for phase 1:
∂P1(ρ1)

∂ z
=−ρ1g. (6.2)

It is assumed that the flow is homogeneous in the spanwise direction y, so that (ρk,uk) are functions of (x,z, t) and the
interface level η1(x, t) is constant along the y direction, see Fig. 6.1 for a sketch of the problem. The pipe is assumed to have
a symmetry axis C which coincides with the x axis. In the cross section planes (Oyz), ez and er denote, respectively, the
unit normal vector to the interface and the outward unit normal vector to the wall, σ(x,z, t) is the width of the cross section
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σ(x,z, t) h1

h2

η1

ez

ey

θ1

•

R(x, t)

er water

air

•

ez

ex nI

C

Fig. 6.1 Geometric description for circular pipes with variable cross section

and R(x, t) the radius of the pipe. Ak(x, t) refers to the area filled by phase k such that A1(x, t)+A2(x, t) = S(x, t), the area of
the cross section. The normal vector to the interface is given by nI, which differs from ez except when the height profile is
horizontal.

In that framework, the position of the interface is determined from the symmetry axis C and given by η1(x, t) which
verifies the following kinetic boundary condition:

∂η1

∂ t
+UI

∂η1

∂x
=WI , (6.3)

where uI = (UI ,VI ,WI)
T is the interfacial velocity.

On the interface, the following boundary conditions still apply:

(u1(x,z = η
−
1 , t)−u2(x,z = η

+
1 , t)).nI = 0, (6.4a)

P1(x,z = η
−
1 , t) = P2(x,z = η

+
1 , t) = PI(x, t), (6.4b)

and we will assume that the interfacial velocity still satisfies:

uI(x, t) = βu1(x,z = η
−
1 , t)+(1−β )u2(x,z = η

+
1 , t), β ∈ [0,1]. (6.5)

On the walls, we will consider a contact boundary condition between phase k and the wall, which may be written as:

dOMb

dt

∣∣∣
wall

= uk,wall , (6.6)

where Mb(x,y,z) is a material point belonging to the contour of the area filled by phase k in the cross section and defined as:

OMb = xex +Rer, on the wall, (6.7a)

= xex + yey +η1(x, t)ez, on the interface. (6.7b)

Note that the impermeability condition (2.5) used in Sect. 2 is consistent with (6.6).

6.2 Averaging process

Let us define Ωk(x, t) the integration domain for phase k,

Ωk(x, t) = {(y,z) ∈ R2;−σ(x,z, t)
2

≤ y≤ σ(x,z, t)
2

, −R(x, t)+ zk ≤ z≤−R(x, t)+ zk +hk(x, t)},

with z1 = 0, z2 = h1(x, t), so that the averaging operator writes:

fk(x, t) =
1

Ak(x, t)

∫
Ωk(x,t)

fk(x,z, t)dΩ (6.8)

where Ak(x, t) is the area filled by phase k in the cross section at abscissa x and time t:

Ak(x, t) =
∫

Ωk(x,t)
dΩ . (6.9)
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Applying the operator (6.8) to (6.1), one will use the Reynolds transport theorem in time and space given below:∫
Ωk(x,t)

∂ fk

∂ t
dΩ =

∂Ak fk

∂ t
−
∫

∂Ωk

fk
∂OMb

∂ t
.nkdl, (6.10a)

∫
Ωk(x,t)

∂ fk

∂x
dΩ =

∂Ak fk

∂x
−
∫

∂Ωk

fk
∂OMb

∂x
.nkdl, (6.10b)

and the divergence theorem: ∫
Ωk(x,t)

divy,z( fkvk)dΩ =
∫

∂Ωk

fkvk.nkdl, (6.11)

where OMb is defined in (6.7) and nk denotes the outward unit normal vector to ∂Ωk.
∂Ωk includes two different parts, a first part ΓI on the interface and a second part Γw,k on the wall such that:

∂Ωk = ΓI +Γw,k. (6.12)

Thus, regarding the contour integral in (6.10b) and using the definition (6.7) of OMb, one writes for the wall part:∫
Γw,k

fk
∂OMb

∂x
.nkdl =

∫
Γw,k

fk
∂R
∂x

Rdθ = f̃k
θk

2π

∂S
∂x

, (6.13)

where:
f̃k =

1
θk

∫
Γw,k

fkdθ , θk =
∫

Γw,k

dθ , (6.14)

and S(x, t) = πR(x, t)2 is the area of the cross section. Note that f̃k corresponds to the linear average of fk along the wet (k = 1)
or dry circular contour (k = 2).

In addition, note that the kinematic boundary condition (6.3) may be written with A1. Indeed, using (6.10b) and (6.13)
with fk = 1, one obtains:

∂Ak

∂x
= σI(−1)k+1 ∂η1

∂x
+

θk

2π

∂S
∂x

, (6.15)

where σI is the width of the cross section at the interface. The same calculations with (6.10a) yield:

∂Ak

∂ t
= σI(−1)k+1 ∂η1

∂ t
+

θk

2π

∂S
∂ t

,

and it follows:
∂A1

∂ t
+UI

∂A1

∂x
= σIWI +

θ1

2π
(

∂S
∂ t

+UI
∂S
∂x

). (6.16)

Mass conservation

The 2D averaging of (6.1a) using (6.10) and (6.11) yields:

∂Akρk
∂ t

+
∂Akρkuk

∂x
−
∫

∂Ωk

ρk

(
∂OMb

∂ t
+uk

∂OMb

∂x
−vk

)
.nkdl = AkMk.

On the interface, nk = (−1)k+1ez and the definition (6.7) of OMb gives for the ΓI part:∫
ΓI

ρk(−1)k+1(
∂η1

∂ t
+uk

∂η1

∂x
−wk)dl =

∫
ΓI

Bkdl = 0,

the nullity of Bk being provided by the kinetic boundary condition (6.3) combined with the continuity of the normal velocity
on the interface (6.4a), see (2.12) for details. On the wall, nk = er and the definition (6.7) of OMb gives for the Γw,k part:∫

Γw,k

ρk

(
∂OMb

∂ t
+uk

∂OMb

∂x
−vk

)
.erdl =

∫
Γw,k

ρk

(dOMb

dt

∣∣∣
wall
−uk,wall

)
.erdl = 0,

noticing that vk.er = uk.er,
(

vk
∂OMb

∂y +wk
∂OMb

∂ z

)
.er = 0 on the wall, and using the contact boundary condition (6.6).

Finally, the contour integral on ∂Ωk is zero and using the notation ρkuk = ρkûk, the averaged mass conservation equations
write:

∂Akρk
∂ t

+
∂Akρkûk

∂x
= AkMk. (6.17)

Note that this equation is correct for all geometries of pipes, even for non-circular ones, as the nullity of the contour integral
does not require a circular section.
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Momentum conservation

The 2D averaging of (6.1b) yields:

∂Akρkuk

∂ t
+

∂Ak(ρku2
k +Pk)

∂x
−
∫

∂Ωk

ρkuk

(
∂OMb

∂ t
+uk

∂OMb

∂x
−vk

)
.nkdl−

∫
∂Ωk

Pk
∂OMb

∂x
.nkdl = AkDk.

The first contour integral is zero using the same decomposition as for the mass conservation. The contour integral on Pk
provides: ∫

∂Ωk

Pk
∂OMb

∂x
.nkdl =

∫
ΓI

(−1)k+1Pk
∂OMb

∂x
.ezdl +

∫
Γw,k

Pk
∂OMb

∂x
.erdl,

= PIσI(−1)k+1 ∂η1

∂x
+ P̃k

θk

2π

∂S
∂x

,

= PI
∂Ak

∂x
+(P̃k−PI)

θk

2π

∂S
∂x

,

using (6.15). Recall that P̃k corresponds to the linear average of Pk along the wet (k = 1) or dry circular contour (k = 2).
Neglecting the turbulence of the flow at first order, the closure law ρku2

k = ρkû 2
k is chosen and one obtains:

∂Akρkûk

∂ t
+

∂Ak(ρkû 2
k +Pk)

∂x
−PI

∂Ak

∂x
= AkDk +(P̃k−PI)

θk

2π

∂S
∂x

. (6.18)

Hydrostatic constraint

As in Sect. 2, one has to account for gravitational effects for phase 1 coupling (6.18) with the hydrostatic constraint (6.2). An
original approach is proposed below.

An integration of (6.2) between z and η1 writes:

P1(ρ1(x,z, t)) = PI(x, t)+
∫

η1

z
ρ1(x,z, t)gds,

which gives:

A1P1 =
∫

Ω1

PIdΩ +
∫

Ω1

(∫ η1

z
ρ1gds

)
dΩ , (6.19a)

= A1PI +
∫

η1

−R

(∫ η1

z
ρ1gds

)
σdz, (6.19b)

as ρ1(x,z, t) and PI(x, t) do not depend on y.
Let us define A (x,z, t) the primitive function of σ(x,z, t) along z which cancels out in −R:

A (x,z, t) =
∫ z

−R
σ(x,z, t)dz.

An integration by parts provides:

∫
η1

−R

(∫ η1

z
ρ1gds

)
σdz =

[(∫ η1

z
ρ1gds

)
A

]η1

−R
+
∫

η1

−R
ρ1gA dz,

=
∫

η1

−R
ρ1gA dz,

= gρ1
A

σ
.

As in the depth-averaged case, it is proposed to neglect the correlation between ρ1 and A
σ

(see Appendix A for details),

such that the closure law for ρ1
A
σ

writes:

ρ1
A

σ
= ρ1

(A

σ

)
,
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with: (A

σ

)
=

1
A1

∫
η1

−R
A dz,

=
1

A1

(
[(z−η1)A ]η1

−R +
∫

η1

−R
(η1− z)σdz

)
,

=
1

A1

∫
η1

−R
(η1− z)σdz,

= η1− z.

Thus, (6.19b) yields:
PI = P1−ρ1g`1, (6.20)

where:
`1(x, t) = η1(x, t)− z (6.21)

represents the distance between the interface and the center of mass of the wet section.
(6.20) provides the closure law for PI regarding P1 as a function of ρ1. Moreover, the latter may be read as a section-

averaged hydrostatic pressure law for P1 used with the averaged density ρ1. Therefore, the averaged momentum equations
under hydrostatic constraint write:

∂Akρkûk

∂ t
+

∂Ak(ρkû 2
k +Pk)

∂x
− (P1−ρ1g`1)

∂Ak

∂x
= AkDk +

(
P̃k− (P1−ρ1g`1)

)
θk

2π

∂S
∂x

. (6.22)

6.3 Resulting averaged system

Adding the interfacial kinetic boundary condition (6.16), one obtains a five-equation system corresponding to the five un-
knowns (A1,ρ1,ρ2, û1, û2):

∂A1

∂ t
+UI

∂A1

∂x
= σIWI +

θ1

2π
(

∂S
∂ t

+UI
∂S
∂x

), (6.23a)

∂Akρk
∂ t

+
∂Akρkûk

∂x
= AkMk, (6.23b)

∂Akρkûk

∂ t
+

∂Ak(ρkû 2
k +Pk)

∂x
− (P1−ρ1g`1)

∂Ak

∂x
= AkDk +

(
P̃k− (P1−ρ1g`1)

)
θk

2π

∂S
∂x

, (6.23c)

where k = 1,2 and A1 +A2 = S, θ1 + θ2 = 2π . Dealing with the source terms, conservation of mass and momentum of the
mixture impose:

A1D1 +A2D2 = 0, (6.24a)

A1M1 +A2M2 = 0. (6.24b)

As in subsect. 2.3, the closure Pk(ρk) = Pk(ρk) is chosen and the celerity of acoustic waves in the averaged framework is
defined by:

ck =
√

P′k(ρk). (6.25)

Note that the structure of (6.23) is the same as (2.20) obtained with 1D averaging, replacing Ak by hk. Moreover, consid-
ering rectangular pipes of constant width L, one has Ak = Lhk, `1 =

h1
2 , and both systems are equivalent. Dealing with circular

pipes, `1 is given by the formula (6.21) which may be detailed as:

`1 =
R3

A1

(2
3

sin3 θ1

2
− 1

2
cos

θ1

2
(θ1− sinθ1)

)
, (6.26)

where θ1 = 2arccos(1− h1
R ).

S(x, t) is a given function which accounts for cross section variations and as in Sect. 2, PI is closed by the averaged
hydrostatic constraint (6.20). The interfacial velocity UI and the source terms, including P̃k, still need closure laws. To this
end, an entropy characterization is detailed in the following section.
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6.4 Closure laws and system properties

From now on, the operator notations are omitted. As (6.23) and (2.20) are structurally identical, the calculations will not be
detailed in this section.

Proposition 6.1 System (6.23) admits the entropy inequality:

∂E

∂ t
+

∂G

∂x
+St

∂S
∂ t
≤ 0, (6.27)

where the entropy E , the entropy flux G and St are defined by:

E = Ec,1 +Ep,1 +Et,1 +Ec,2 +Et,2, (6.28a)

G = u1(Ec,1 +Ep,1 +Et,1)+u2(Ec,2 +Et,2)+u1A1P1 +u2A2P2, (6.28b)

St =
θ1

2π
(P1 +ρ1g(η̃1-z− `1))+

θ2

2π
P2, (6.28c)

with:

Ec,k =
1
2

Akρku2
k , Et,k = AkρkΨk(ρk), Ep,1 = A1ρ1g(η1− `1),

and:

Ψ
′

k (ρk) =
Pk(ρk)

ρ2
k

,

as soon as the following closure laws are used for the interfacial variables:

UI = u2, (6.29a)

PI = P1−ρ1g`1, (6.29b)

and for the source terms:

P̃1 = P1 +ρ1g(η̃1-z− `1), (6.30a)

P̃2 = P2, (6.30b)

σIWI = λp(PI−P2) = λp(P1−ρ1g`1−P2), (6.30c)

AkDk = (−1)k
λu(u1−u2)+

(u1 +u2

2

)
AkMk, (6.30d)

AkMk = (−1)k
λm

(
(

P1 +ρ1g(η1− `1)

ρ1
+Ψ1)− (

P2

ρ2
+Ψ2)

)
, (6.30e)

where λp, λu and λm are positive bounded functions which may depend on the state variable (A1,ρ1,ρ2,u1,u2).

Proof Developing similar calculations as in Sect. 3 and using the closure laws (6.30c), (6.30d), (6.30e), one ends up with the
following entropy inequality:

∂E

∂ t
+

∂G

∂x
+St

∂S
∂ t

+Sx
∂S
∂x
≤ 0,

where E , G , St are defined in (6.28) and:

Sx = u1
θ1

2π
(P1 +ρ1g(η̃1-z− `1)− P̃1)+u2

θ2

2π
(P2− P̃2).

Thus, the suggested closure laws (6.30a) and (6.30b) for P̃1 and P̃2 cancel out the Sx contribution and yield a decreasing
entropy when dealing with section area constant in time. In addition, the latter are also consistent with the single-phase steady
state at rest, see Remark 6.2. ut

Remark 6.1 In order to clarify (6.28c) and (6.30a), η̃1− z may be detailed as follows:

η̃1− z =
1
θ1

∫
Γw,1

(η1− z)dθ = η1−
2R
θ1

sin(
θ1

2
).

Thus, when η1 = R and A1 = S, R̃− z = `1 = R and P̃1 = P1. Moreover, note that Ak = S yields St
∂S
∂ t = Pk

∂S
∂ t in (6.27), which

is consistent with the single-phase case.
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Remark 6.2 The suggested closure laws (6.30a) and (6.30b) are consistent with the single-phase steady state at rest. Indeed,
regarding the averaged momentum equation (6.23c) with uk = 0, one obtains:

∂AkPk

∂x
− (P1−ρ1g`1)

∂Ak

∂x
= AkDk +

(
P̃k− (P1−ρ1g`1)

)
θk

2π

∂S
∂x

.

Considering uniform pressure and single-phase flow, that is ∂Pk
∂x = 0, Ak = S, θk = 2π and Dk = 0, the above equation reads:

(Pk− P̃k)
∣∣
Ak=S

∂S
∂x

= 0,

and the single-phase steady state at rest yields:
P̃k
∣∣
Ak=S = Pk

∣∣
Ak=S,

which is verified by (6.30b) and (6.30a), see Remark 6.1.

The closed system describing compressible two-layer flows in circular pipes with variable cross section writes:

∂W
∂ t

+
∂F(W )

∂x
+B(W )

∂W
∂x

=C(W )+D(W ), (6.31)

where:
W = (A1,A1ρ1,A2ρ2,A1ρ1u1,A2ρ2u2)

T ,

F(W ) =


0

A1ρ1u1
A2ρ2u2

A1(ρ1u2
1 +P1)

A2(ρ2u2
2 +P2)

 , B(W )
∂W
∂x

=


u2

∂A1
∂x

0
0

−(P1−ρ1g`1)
∂A1
∂x

−(P1−ρ1g`1)
∂A2
∂x

 ,

C(W ) =



λp(P1−ρ1g`1−P2)

−λm

(
(P1+ρ1g(η1−`1)

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)
λm

(
(P1+ρ1g(η1−`1)

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)
−λu(u1−u2)− ( u1+u2

2 )λm

(
(P1+ρ1g(η1−`1)

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)
λu(u1−u2)+( u1+u2

2 )λm

(
(P1+ρ1g(η1−`1)

ρ1
+Ψ1)− ( P2

ρ2
+Ψ2)

)


,

and:

D(W ) =


θ1
2π
( ∂S

∂ t +u2
∂S
∂x )

0
0

ρ1gη̃1− z θ1
2π

∂S
∂x

(P2− (P1−ρ1g`1))
θ2
2π

∂S
∂x

 ,

where λp, λu and λm are positive bounded functions which depend on the state variable (A1,ρ1,ρ2,u1,u2).
The hyperbolicity of the homogeneous problem associated with (6.31) is readily obtained following the same approach as

in Sect. 5, the eigenvalues being unchanged.

Proposition 6.2 The homogeneous problem associated with (6.31) is hyperbolic under the condition:

|u1−u2| 6= c1. (6.32)

Its eigenvalues are unconditionally real, given by:

λ1 = u2, λ2 = u1− c1, λ3 = u1 + c1, λ4 = u2− c2, λ5 = u2 + c2. (6.33)

Dealing with the Riemann problem, the same analysis as in Sect. 5 leads to same results for (6.31). Thus, the nature of
characteristic fields associated with the k-waves, k = 1, ..,5, and Riemann invariants can be detailed, as well as positivity
properties and definition of jump conditions.
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Remark 6.3 The comments of Sect. 4 apply to the system (6.31). Particularly, taking A1(x, t) = S(x, t) in (6.31), one obtains
the following system:

∂Sρ1

∂ t
+

∂Sρ1u1

∂x
= 0, (6.34)

∂Sρ1u1

∂ t
+

∂S(ρ1u2
1 +P1)

∂x
= P1

∂S
∂x

, (6.35)

as soon as the source terms vanish when A1 = S. This resulting system correctly models a pressurized flow in a circular pipe
with variable cross section where the pipe elasticity, taken into account here with the function S(x, t), has a great influence on
the speed of acoustic waves.

7 Conclusion

A new model is proposed herein to deal with stratified gas-liquid or vapor-liquid flows in pipes with variable cross section.
It is a compressible two-layer model which results from an averaging process of the isentropic Euler set of equations with
hydrostatic constraint on the liquid phase. The main difference with the two-layer models issued from the classical literature
is that both phases are assumed compressible. Consequently, it more or less enters in the class of two-fluid two-pressure
models and significant mathematical properties are obtained. The latter include hyperbolicity, entropy inequality and positivity.
Regarding closure laws, the isentropic framework with hydrostatic constraint implies that the interfacial pressure is defined
to satisfy this constraint although the interfacial velocity and source terms are provided by the entropy inequality. It is then
observed that this closed system may correctly deal with pressurized flows without any switching on the pressure law. Indeed,
this feature results from the compressible description of the stratified regime and opens the door, at least formally, to the
modeling of transitions from stratified to pressurized flows and entrapped air pockets. In practice, note that industrial flows
include low Mach velocities for both phases verifying |uk| � ck. Thus, with the aim of performing numerical simulations
with the model presented herein, the current work involves the development of a numerical scheme regarding the asymptotic
low Mach number behavior of the system. This approach will be validated building analytical solutions thanks to the detailed
Riemann invariants and jump conditions of the homogeneous part. The overall mathematical/numerical model will be then
assessed using experimental data. Secondly, the robustness of the scheme will be studied regarding pressurized flows and
vanishing phases, see [19] for details.
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Appendix A Error estimate for the closure ρ1z = ρ1z

One considers the following linear pressure law for phase 1:

P1(ρ1) = P1,ref + c2
1,ref(ρ1−ρ1,ref), (A.1)

where P1,ref, ρ1,ref and c1,ref are constant values fitted according to a reference state. In practice, one has P1,ref ∼ 1 bar,
ρ1,ref ∼ 1000 kg.m−3 and c1,ref ∼ 1500 m.s−1. Note that (A.1) is as relevant as the isentropic stiffened gas law proposed in
Sect. 2 for water pipe flows and simplifies the analysis below. Thus, the hydrostatic constraint (2.3) reads:

∂P1(ρ1)

∂ z
= c2

1,ref
∂ρ1

∂ z
=−ρ1g, (A.2)

and yields:

ρ1(x,z, t) = r1(x, t)exp(− gz
c2

1,ref
), (A.3)

where r1(x, t) = ρ1(x,0, t). Using (A.3) and denoting ε = gh1
c2

1,ref
, one obtains:

ρ1z =
1
h1

∫ h1

0
r1(x, t)exp(− gz

c2
1,ref

)zdz =
r1h1

ε2

(
1− (1+ ε)exp(−ε)

)
, (A.4)

ρ1z =
1
h1

∫ h1

0
r1(x, t)exp(− gz

c2
1,ref

)dz
h1

2
=

r1h1

2ε

(
1− exp(−ε)

)
. (A.5)
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Regarding realistic configurations where H ∼ 1 m, one has ε � 1 so that asymptotic expansions of (A.4) and (A.5) write:

ρ1z = r1
h1

2

(
1− 2

3
ε +O(ε2)

)
, (A.6)

ρ1z = r1
h1

2

(
1− 1

2
ε +O(ε2)

)
. (A.7)

Therefore, one ends up with the following estimate:∣∣∣ρ1z−ρ1z
ρ1z

∣∣∣= ε

6
+O(ε2), (A.8)

which justifies the closure ρ1z = ρ1z. Note that this development is extended to the section-averaged case presented in Sect.
6.

Appendix B Positivity for heights and densities

Proposition B.1 Let L and T be two positive and real constants. Assume that uk, ∂xuk and the first two right-hand sides of
(3.14) belong to L∞([0,L]× [0,T ]) for k = 1,2. Then, the latter equations associated with admissible inlet boundary conditions
lead to:

hk(x, t) ∈ [0,H], ∀(x, t) ∈ [0,L]× [0,T ], (B.1)

ρk(x, t)≥ 0, ∀(x, t) ∈ [0,L]× [0,T ], (B.2)

when restricting ourselves to regular solutions.

Proof We place ourselves in the general case and we consider a function Φ from [0,L]× [0,T ] to R which verifies an equation
of the form:

∂Φ

∂ t
+a

∂Φ

∂x
+Φ

∂b
∂x

= Φm, (B.3)

where a,b,m are smooth functions from [0,L]× [0,T ] to R and a, ∂xa, b, ∂xb, m belong to L∞([0,L]× [0,T ]). Assume that Φ

verifies positive inlet boundary conditions, that is Φ(x = 0, t) and Φ(x = L, t) positive for all t in [0,T].
Let introduce the decomposition Φ = Φ+−Φ−, with Φ+ ≥ 0, Φ− ≥ 0 and Φ+Φ− = 0. Multiplying (B.3) by −Φ−

yields:

−Φ
− ∂

∂ t
(Φ+−Φ

−)−aΦ
− ∂

∂x
(Φ+−Φ

−)−Φ
−(Φ+−Φ

−)
∂b
∂x

=−Φ
−(Φ+−Φ

−)m.

Defining the norm ‖ . ‖= (
∫ L

0 | . |2 dx)1/2, one may obtain by integration over [0,L]:

∂

∂ t
(‖Φ

− ‖2)+
∫ L

0
a

∂

∂x
(Φ−)2dx+2

∫ L

0
(Φ−)2 ∂b

∂x
dx = 2

∫ L

0
(Φ−)2mdx.

Integrating by parts the second term of the left-hand side gives:

∂

∂ t
(‖Φ

− ‖2)+ [a(Φ−)2]L0 =
∫ L

0
(Φ−)2(2m−2

∂b
∂x

+
∂a
∂x

)dx.

The positive inlet boundary conditions give Φ−(x = 0, t) = Φ−(x = L, t) = 0, and thus, one can write:

∂

∂ t
(‖Φ

− ‖2)≤
∫ L

0
(Φ−)2|2m−2

∂b
∂x

+
∂a
∂x
|dx≤ ‖Φ

− ‖2 sup
x∈[0,L]

|2m−2
∂b
∂x

+
∂a
∂x
|.

Since the initial data on Φ is positive, the Gronwall’s lemma gives for any time t in [0,T ]:

‖Φ
− ‖ (t) = 0.

Therefore, Φ− is null and Φ remains positive on the whole domain [0,L]× [0,T ]. Finally, consider Φ = hk and Φ = H−hk
to get (B.1), while Φ = mk provides (B.2). ut
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