
HAL Id: hal-01345656
https://hal.science/hal-01345656

Submitted on 15 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain Specific Languages for Managing Feature
Models: Advances and Challenges

Philippe Collet

To cite this version:
Philippe Collet. Domain Specific Languages for Managing Feature Models: Advances and Challenges.
6th International Symposium, ISoLA 2014, Oct 2014, Corfu, Greece. �10.1007/978-3-662-45234-9_20�.
�hal-01345656�

https://hal.science/hal-01345656
https://hal.archives-ouvertes.fr

Domain Specific Languages for Managing Feature
Models: Advances and Challenges

Philippe Collet

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France
Philippe.Collet@unice.fr

Abstract. Managing multiple and complex feature models is a tedious
and error-prone activity in software product line engineering. Despite
many advances in formal methods and analysis techniques, the support-
ing tools and APIs are not easily usable together, nor unified. In this
paper, we report on the development and evolution of the Familiar
Domain-Specific Language (DSL). Its toolset is dedicated to the large
scale management of feature models through a good support for separat-
ing concerns, composing feature models and scripting manipulations. We
overview various applications of Familiar and discuss both advantages
and identified drawbacks. We then devise salient challenges to improve
such DSL support in the near future.

1 Introduction

Following a Software Product Line SPL paradigm offers benefits such as short-
ened time-to-market, economies of scale and increased quality by reducing defect
rates [1,2]. This paradigm basically relies on a factoring process, identifying com-
mon artifacts and managing what varies among them. These artifacts typically
range from product descriptions (documentations, tabular data), requirements
to models, programs and even tests. Modeling variability and managing the re-
sulting models is a critical activity within the SPL paradigm. To deal with it,
a widely used approach is to organize variability around features, which are
domain abstractions relevant to stakeholders, typically being increments in pro-
gram functionality [3]. Inside a SPL, a Feature Model (FM) is used to describe,
through a compact AND-OR graph with propositional constraints, all identified
features and their valid combinations [4–6]. Developments around formal seman-
tics, analysis and reasoning techniques, as well as tool support [3–5,7] currently
make FM a de facto standard for managing variability.

All these advances also led to a wider usage of variability models. As one
can use FM to model variability of very different kinds of concerns [3], the
inherent complexity of the relations between these concerns has to be handled.
With FM of hundreds to thousands of features, understanding the organization
of variabilities and their complex relation rules is getting harder and harder.
Reports also showed that the maintenance of a single large FM is not really
feasible as some analysis techniques reach their limits, and is also not advisable
as the resulting FM would be too complex to be understandable [8–13].

Tackling these issues, our research team initiated in previous work [14–18]
the foundations for applying the principle of Separation of Concerns (SoC) to
feature modeling on a large scale. Composition operators for FMs were first
developed [15,16]. They notably preserve semantic properties expressed in terms
of configuration sets of the composed FMs. They are complemented by a slicing
operator, which produces a projection of an FM [14], and a differencing operator
between FMs [18].

At that time, these operators could have been implemented using or extend-
ing one of the several Java APIs that were available (FaMa [19], FeatureIDE [20],
SPLAR [21], etc.), as they provide some operations using different kinds of
solvers (BDD, CSP, SAT). But with the aim to provide a better support when
dealing with several feature models at the same time, we decided to build a
Domain-Specific Language (DSL) that would provide both reasoning operations
and new compositions, while focusing only on the domain concepts, i.e., feature
models, features and configurations. This DSL, named Familiar (for FeAture
Model scrIpt Language for manIpulation and Automatic Reasoning) [22], also
provides support for importing and exporting FMs, as well as for writing pa-
rameterized scripts. The language has been used in various case studies [23–25],
ranging from forward to reverse engineering, with different domains and varied
stakeholders. It has also evolved with extended merging techniques [26], better
reverse engineering mechanisms [27], but also an additional Java API and a new
implementation as an internal DSL in Scala.

In this paper, we take a step back from the development of the Familiar
ecosystem. After summarizing its main features, of which details can be found
in references mentioned above, our contributions consist in:

– Discussing observed benefits in different case studies, while determining sev-
eral recurring drawbacks. They mainly concern the fine-grained bridging
with analysis and reasoning tools, the connection to other artifacts and the
maintenance of the DSL itself.

– Identifying several challenges that this DSL centric approach is currently
facing, from mechanisms and scope issues to the facilitation of different us-
ages.

2 Background

2.1 Feature Modeling

The FODA method [8] first introduced the notions of feature models (FMs)
together with a graphical representation through feature diagrams. An FM is
structured around a hierarchy of features, getting into increasing detail with
sub-levels, and different variability mechanisms related to feature decomposition
and inter-feature constraints. In the hierarchy, the subfeatures of a feature can be
optional or mandatory or can form Xor or Or -groups. Propositional constraints,
typically implies or excludes rules, can be specified to express more complex
dependencies between features wherever in the hierarchy.

The expressiveness of feature modeling also comes from the fact that an
FM defines a set of valid feature configurations. During the configuration phase,
features are selected and some rules ensure the validity of a configuration (e.g.
automatic parent selection, satisfied constraints) [8]. A configuration of an FM g
is defined as a set of selected features. JgK denotes the set of valid configurations
of the FM g, being a set of sets of features.

FMs and propositional logic have been semantically related [5]. The set of
configurations of an FM can be described by a propositional formula defined
over a set of Boolean variables, in which each variable corresponds to a feature.
Translating FMs into logic representations typically enables automated analy-
sis [7].

2.2 Domain-Specific Languages

A DSL is a computer language of limited expressiveness focused on a particular
domain [28]. Contrary to general purpose languages, which are aimed at handling
most problems in software development, a DSL can only handle one specific
aspect of a system. It is usually a small, simple and focused language [29].

In different technical domains (Unix, databases with SQL, etc.), DSLs have
been used for a very long time. With their strong relation with model-driven en-
gineering techniques, they are now getting more attention with usages in different
areas related to software, being business-oriented or still technical. DSLs bring
value as they can facilitate both communication with domain experts [30, 31]
and programming activities in comparison with a basic Application Program-
ming Interface (API).

But designing a DSL is not an easy task and many design trade-offs, from
the scope of the language to its implementation and future maintenance, are to
be made [28,30]. These languages can take the form of plain external DSLs, with
their own custom syntax, parser and processing engine, which make a domain-
specific tooling, or the form of better crafted APIs, known as fluent APIs, or
even moving towards embedded or internal DSLs built on top of a host lan-
guage. Numerous advances towards language workbenches [32] have been made
to support the development of external DSLs. Conversely, recent advances in
language design allow for easier embedding with host languages being extensible
in very flexible ways [33].

3 The FAMILIAR Ecosystem

As discussed in the introduction, the Familiar language was created to provide
an appropriate support for the FM composition operators (see Section 3.4) that
enable the large scale management of FMs following separation of concerns prin-
ciples. When studying numerous examples and different case studies in which
these composition operators were going to be applied [15], we observed that
manipulating several FMs requires to describe and replay sequences of opera-
tions on them. We thus focused the development towards a textual language,
Familiar, which can define such operations in executable scripts. The DSL

functionalities comprise FM authoring and accessing operations, main reasoning
operations, and the (de-)composition mechanisms. As the developed FM merg-
ing operations are restricted to propositional FMs (no feature attributes or other
extensions), we also aligned the DSL on operations at the same level. Finally we
decided to build an external DSL to restrict the possible manipulations to the
envisioned set, and to facilitate learning and usage for different kinds of users.

Familiar is available at http://familiar-project.github.io, with asso-
ciated documentation. The reader can also refer to [22] for a presentation of
Familiar and to [14] for a summary of operators, more illustrations of their
usage. For the sake of brevity, we do not here discuss all related work. Basically,
FAMILIAR composition operators for FMs such as merging were original as they
handle each operation at the semantic level (reasoning on configuration sets, see
Section 3.4). The FAMILIAR language itself differs from other textual languages
for feature modeling, such as Clafer [34] or TVL [35], by its capabilities to write
scripts that handle several FMs at the same time.

We now overview the main constructs and data types of the Familiar ex-
ternal DSL. Tool support and variants of Familiar through a Java API or as a
Scala based internal DSL are discussed at the end of this section.

3.1 Language Basics

Familiar is a typed language that supports primitive and complex types. New
types cannot be created, as the various provided types aim at supporting manip-
ulation of FMs through a reduced but expressive set of elements. Complex types
are domain-specific (Feature Model , Configuration, Feature, Constraint , etc.) or
generic Set . Primitive types are quite common, with String (feature names are
strings), Boolean, Enum, Integer and Real .

Operators are defined for each type, and runtime type checking is performed
by the Familiar interpreter. For example, the operator counting acts on a
Feature Model and returns an Integer value. Basic arithmetic, logical, set and
string operators are also provided. User-defined variables are also provided. In
the listing below, line 1 defines a variable of type Feature Model. Accessors are
provided for observing the content of a variable. A classical if then else and a
loop control structure (i.e., foreach) complement the constructs.

1 mi1 = FM (MI: Mod [Anon]; Mod: (PET | CT) ;)
2 n = counting mi1 // n is an integer
3 f1 = parent PET // f1 refers feature ’Mod’ in mi1
4 f2 = root mi1 // f2 refers feature ’MI’ in mi1
5 fs = children f1 // feature set {’PET’,’CT’} in mi1

3.2 Modularization

Identifiers in Familiar refer to a variable identifier or to a feature in an FM.
Inside one FM, feature names are supposed to be unique. The language relies
on namespaces to allow disambiguation of variables having the same name. A

http://familiar-project.github.io

namespace is associated to each FM variable so that the name of such a variable
followed by "." can be used to refer to a feature name, if needed.

Furthermore Familiar provides modularization mechanisms that allow for
the creation and use of multiple scripts in a single SPL project, supporting
reusability of scripts. Namespaces are also used to logically group related vari-
ables of a script, making the development more modular. The listing below illus-
trates the reuse of existing scripts. Line 1 shows how to run a script contained in
the file fooScript1 from the current script. The namespace script−declaration
is an abstract container providing context for all the variables of the script foo-
Script1. Then, in line 2, we access to the set of all variables of script−declaration
using a classical wildcard pattern.

1 run "fooScript1" into script_declaration
2 varset = script_declaration.*
3 export varset

Also, a script can be parameterized using a list of parameters, a parameter
recording a variable and, optionally, the type expected. Parameterized scripts
are typically used to develop reusable analysis procedures for FMs and configu-
rations. Apart from this reuse, we also found that Familiar can also be used as
a target language, by generating scripts handling specific tasks in SPL toolchain
(checking compatibility through merging, building catalogs of descriptions). All
applications discussed in Section 4 have used a combination of generated scripts
and developer written ones.

3.3 Operators

For importing and exporting FMs, different FM formats are supported, including
FeatureIDE, S2T2, SPLOT, subsets of TVL and FaMa. A concise notation,
largely inspired from FeatureIDE [20] and the feature-model-synthesis project,
is also provided. The listing below covers the main syntactic elements. In line 1,
the variable fm0 represents a FM in which MI is the root feature. Mod and Anon
are child-features of MI: Mod is mandatory and Anon is optional. PET and CT
are child-features of Mod and form a Xor-group. Sx and Sy are child-features of
PET and form an Or-group. A cross-tree constraint is shown in line 4, as PET
excludes Anon.

1 fm0 = FM (MI: Mod [Anon];
2 Mod: (PET | CT) ;) // Xor-group
3 PET : (Sx|Sy)+ ; // Or-group
4 PET excludes Anon ; // constraint)

Familiar also allows to create FM configurations, and then select, dese-
lect, or unselect a feature. Each of these configuration manipulation operations
returns true if the feature does exist and if the choices conform to the FM con-
straints. Based on well-known applications of solvers (BDD and SAT), several
operators support reasoning about FMs and their configurations. isValid checks
whether a configuration is consistent according to its FM. Applied to a FM,

isValid determines its satisfiability. Besides the isComplete operation checks
whether all features of a configuration have been chosen, i.e., selected or dese-
lected.

The integration objective of Familiar is also shown by functionalities to
compare FMs. Based on the algorithm and terminology used in [6], the com-
pare operation determines whether an FM is a refactoring, a generalization, a
specialization or an arbitrary edit of another FM. Results from the differentiation
computation between two FMs [18] are also provided through a diff operation.

3.4 Decomposition and Composition

The main objective of Familiar is to support large-scale combinations of FMs,
through decomposition and composition operations. The key feature of the main
composition operations (merge, slice, diff) is that they rely on a clear semantics
based on the represented configuration sets. Moreover, defining the operations
through the propositional logic counterpart of the FMs allows to automatically
take into account cross-tree constraints, which cannot be easily handled by syn-
tactic techniques.

Regarding decomposition, a first basic mechanism is to extract a sub-tree of
an FM, including cross-tree constraints involving features of the subtree. This
operator is purely syntactical as it ignores cross-tree constraints that involve
features not present in the sub-tree. The semantic counterpart of extract is the
slice operator that returns a partial view of an FM according to a criterion
of interest (a set of features). The semantics of the operation is based on the
projected set of configurations of the selected features. This set is represented as
its propositional logic formula and automatically takes into account cross-tree
constraints. The projection is done through some logic reasoning and the result
of the slice is a FM reconstructed from the projected set. The reader can refer
to [14,17] for formal definition and implementation details.

Two forms of composition, aggregate and merge, are supported by the Fa-
miliar language. The aggregate operator is intended to be used when separated
FMs do not have features in common, i.e., features with the same name. The
operator supports cross-tree constraints, written in propositional logic, over the
set of features so that the different FMs can be inter-related. The input FMs are
simply put under a synthetic root as mandatory children and the propositional
constraints are added to the resulting FM.

On the other hand, merge operators are dedicated to the composition of
FMs with similar features. In this case, the operators can be used to merge the
overlapping parts of the input FMs in a new FM. Variants of the merge opera-
tors defer on the production mode, e.g., merging in intersection mode computes
a FM corresponding to the set of common configurations of the input FMs.
Consequently the semantics of the merge operator variants mainly relies on the
configuration sets of the input FMs (cf. Table 1). Different applications of these
merge variants are mentioned in Section 4.

The default implementation of this operator computes the resulting proposi-
tional formula [16] and restores as much as possible the parent-child relationships

Mode Semantic properties Mathematical notation Familiar notation
Intersection JFM1K ∩ JFM2K ∩ . . . FM1 ⊕∩ FM2 ⊕∩ . . . fmr = merge intersection

∩JFMnK = JFMrK ⊕∩FMn = FMr { fm1 fm2 ... fmn}
Union JFM1K ∪ JFM2K ∪ . . . FM1 ⊕∪s

FM2 ⊕∪s
. . . fmr = merge union { fm1

∪JFMnK = JFMrK ⊕∪sFMn = FMr fm2 ... fmn}
Diff {x ∈ JFM1K | x /∈ JFM2K} FM1 \ FM2 = FMr fmr = merge diff { fm1

= JFMrK fm2 }

Table 1. Main merge variants in Familiar

of the input FMs in the merged FM. To do so, it relies on the synthesis algorithm
from [36] to build back a hierarchy. Recently, new forms of composition have been
explored with differences in the expressed configurations and the ontological se-
mantics [26]. Two new implementations have been devised and implemented, one
relying on the slice operator, the other one using a local synthesis approach. This
provides a range of merging variants that have different impacts on the resulting
quality of the FM, the capacity to reason on it or to compose it.

3.5 Tool Support

The first version of Familiar was developed in Java using Xtext1, a framework
for the development of external DSLs. Xtext facilities were used to provide a
Familiar script parser, an Eclipse text editor and a stand-alone console. They
are all connected to the Familiar kernel that deals with the main manipu-
lated concepts (feature model, configuration, etc.), but also with transformations
from feature models to the different internal and external representations (cf.
Figure 1). To foster interoperability, different languages and framework format
are supported through import/export methods (FeatureIDE, S2T2, SPLOT).
Some of them (TVL, FaMa) are going beyond propositional FMs with feature
attributes or non-boolean constructs. They are then only partially supported.
This support enables Familiar outputs to be processed by third party tools.
For example, a connection with the graphical editor and configurator of the Fea-
tureIDE framework [20] allows us to synchronize graphical edits and interactive
Familiar commands.

One of the goals was to make some existing analysis techniques available in
Familiar, focusing on the most important ones when several FMs have to be
manipulated or composed. Consequently some Familiar internal code is directly
reusing or adapting several implementations, notably feature model synthesis [36]
for hierarchy reconstruction of FMs, FeatureIDE [20] code for FM comparison,
SPLAR for different analysis operations [21]. To perform over propositional for-
mulas, the kernel follows a lazy strategy to compute the formulas only when
needed. It relies on SAT4J for SAT solving and JavaBDD for BDDs. As they ex-
pose different advantages and drawbacks, these techniques can be switched with
an annotation in Familiar in many operators (except merge, which is imple-
mented only with BDDs). A default implementation is also set for each operator.
More details can be found in [22].
1 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

Interoperating
with FM format

API

Using

Fig. 1. Current stable Familiar ecosystem

While Familiar was more and more used in different applications and case
studies (see next section), the source code was made open and available on
github, so that the toolset can be jointly managed by three research teams,
namely the Triskell team (INRIA - IRISA - University of Rennes 1), the MODALIS
team (I3S laboratory - Université Nice Sophia Antipolis - CNRS) and at Col-
orado State University. Different extensions were then developed. The console
has been extended with an interactive graphical editor, so that feature models
can be directly edited or configured in sync with a text console. As Familiar
was also integrated in many applicative toolchains, we finally develop a Java API
from the kernel to facilitate these integration tasks. Finally, we recently explored
the internal DSL way to provide integration capabilities with a syntax closer to
the original Familiar language. We thus developed an internal DSL on top of
the Scala2 language, which provides a flexible syntax and supports mechanisms
such as implicit type conversions, call-by-name parameters and mixin classes.
Ongoing work notably comprise development for bridging with a CSP library
and providing a web console.

4 Applications

We now report on our experience in applying Familiar in various case studies,
classifying them in forward and reverse engineering scenarios. They all deal with
large and multiple FMs, as well as complex relationships between FMs and assets
at different levels (various concerns on the same artifact, different abstraction
levels, representation of different SPLs).

4.1 Forward Engineering

Scientific workflow: multiple compositions. Familiar was first used to
support a tooled process for assisting medical imaging experts in the error-prone
activity of constructing scientific workflows [24]. These workflows are built from

2 http://www.scala-lang.org

http://www.scala-lang.org

many highly customizable software services (e.g., intensity correction, segmenta-
tion), which encapsulate code from different suppliers. Separated FMs are then
used to describe the variability of the different artifacts, i.e., services and work-
flow, with several functional and non-functional concerns, (e.g., input/ouput
port, image type, used algorithm).

From a built catalog (using the merge union operator on separate descrip-
tions of services), the workflow design process is facilitated at each step, with
the capability to choose from different competing services, connect the select
one in the workflow. Through automated reasoning, configuration choices and
constraints on and between services are checked (using the merge intersection op-
erator) and propagated among the workflow (using generated scripts), ensuring
an overall consistent composition.

Video-surveillance: end-to-end multi-level variability. Familiar has also
been used on a different kind of workflow, with a more stable architecture but
with more variability concerns at different levels [23]. The aim was to tame the
complexity of the configuration process of a video-surveillance software pipeline.
Each step was also considered as an SPL so that the variability (components,
algorithms, parameters, tasks) of the underlying software platform was repre-
sented together with the variability of the hardware parts (e.g., camera capabil-
ities). The application requirement variability was then separately captured in
a domain FM, aggregating information on many context elements (e.g., lighting
conditions) and expected tasks (e.g., intrusion detection). The two resulting FMs
are finally related by constraints (using the aggregate operator).

Salient properties can then be checked (using parameterized scripts), such as
reachability, i.e., for each high-level configuration of the domain, there exists at
least one valid configuration in the software platform. The organization of the
variability also allows for step-wise specialization at both levels and automatic
propagation in all FMs, drastically reducing the configuration process. The re-
maining variability is kept at runtime to make the application self-adaptive,
handling for example day/night switches.

Digital signage: multiple product lines. More recently, Familiar has started
to be used in the heart of an industrial-strength digital signage system devel-
oped by a start-up company and organized as a Multiple Software Product Line
(MSPL) [37]. The information broadcast relies on an innovative web architecture
allowing for easy aggregation of information sources and highly customizable ren-
dering on multiple displays. Each element in the information flow is handled by
a subsystem SPL represented by an FM, and a domain metamodel relates all
SPLs and keeps a set of constraints between the FMs.

In this context, Familiar is used for the variability definition (using merge
union on all descriptions of the product instances), but also to compute the
relationships between the FMs (generating appropriate scripts). As the model
instance of the MSPL varies at configuration time (e.g., when a new source is
added), the number of configurations also evolves. In this context, appropriate

Familiar scrips allow for automatic propagation and consistency checking so
that at any time, the final user is ensured to manipulate a consistent product
under configuration.

Benefits. These applications illustrate different benefits of using Familiar. In
all of them, repositories of FMs are built and organized as reusable Familiar
scripts merging FMs that document some artifacts. Querying the repository is
also supported by Familiar with merge and slice operators. In the scientific
workflow case, another DSL was designed to map services with their variability
definition, and Familiar was then used as an embedded language.

Generally, a Model-Driven Engineering (MDE) approach is used together
with Familiar and scripts are generated by the SPL toolchain to automatize
some checking or propagation (e.g. at service connection, at configuration time,
when the model evolves, etc.). Depending on the complexity of this coupling, the
Familiar Java API is more or less used in conjunction with the external DSL.
Another benefit is the capability to implement more efficiently interesting prop-
erties such as realisability or usefulness when several FMs are inter-related [9,14].

Drawbacks. In the first two applications, the variability reasoning relies on ad
hoc bridges or model-to-text transformations. The complete semantics of the
solution is thus scattered through the SPL tool chain. Moreover, as there is no
simple mechanism to compose external DSLs, embedding Familiar in another
DSL is implemented through some hacks in the Xtext back-end. Consequently
very few code parts can be reused if one needs to embed Familiar in another
context. This is partly solved in the MSPL approach as a model drives the
variability part, but still the connection semantics between the metamodel and
the variability models could have been better captured.

As for the usage of Familiar during execution, the adaptive part of the
video-surveillance system calling the interpreter led to performance issues at
runtime. Integrating the variability-based adaptation logic in the application
engine was also very hard and it seems that a internal DSL approach would
have largely simplified this task. Furthermore even at configuration time, the
only means to change the implementation of the most complex operators is
through a simple parameter. An average Familiar user will have not enough
knowledge to make the appropriate choices, especially if a script involves several
operations.

Another lack of flexibility also appeared when we had to compute some
metrics on FMs that were not present in the original DSL definition. Some of
them were available in the Java API while they were needed in the DSL itself.
On the other hand, implementing them in the Scala-based flavor of Familiar
was very fast and they were directly available in the extended language.

4.2 Reverse Engineering

Plugin-based systems: software architecture. Familiar was also used to
reverse engineer a variability model representing a software architecture with

plugins [25]. This was applied on several successive versions of the implemented
systems.

Each time, the architectural FM was obtained by extracting variability infor-
mation from both the architecture and the plugin dependencies. This creates an
over-approximation of the variability, which is fixed by a slice operation made
on the pure architectural part of the FM [25]. Moreover, this extracted FM was
compared with another FM representing the intention of the software architect.
Using several steps, scripted in Familiar, the two views were reconciled to form
a stable FM, which was then used to follow the evolution of the different versions.

Product descriptions: tabular data. We also explored the semiautomatic
extraction of variability models from one of the most used descriptions of prod-
ucts, that is tabular data defining product features. A front-end enables one
to give some directives on how to interpret variability and how to build the
hierarchy of the resulting FM.

From the extraction tool, several Familiar scripts are generated, leading to
one FM per product, and all FMs are then merged in union mode to obtain
an exact representation of the variability. From the first application on several
public product matrices [38], this technique was applied and adapted in different
contexts, such as web configurators [39] or competing visualization APIs for
dashboards [40]. It is also used in the digital signage MSPL evoked in the previous
section, so to populate it from different input SPLs.

Benefits. These extraction applications show again some benefits in coupling
reusable parts with generated scripts in Familiar. As parts of the extraction
procedures have to be ad hoc to be adapted to the input data, the simple syntax
of the external DSL was a clear advantage so to easily generate FMs. As more
cases were studied, the need for a more finely parameterized operation to build
a FM hierarchy arose and it was integrated in the DSL [27]. The experiment on
software architecture was also the opportunity to make a software architect use
the DSL to discover hidden features.

Drawbacks. In the extraction scenarios ad hoc bridges are again present.
As Familiar was designed to move away from a general purpose programming
language, it offers only basic control structures and nothing to handle the input
data. Again, the absence of a clear interface of what could or should be produced
from the analyzed input to produce the resulting FM is hampering reuse between
extraction chains.

Similarly the previously identified lack of flexibility is also characterized by
the required evolution on the ksynthesis operator, which drives the FM hierarchy
building. A first change was thus made on the whole external DSL chain, but
as many different techniques are currently experimented on this hot topic of
variability extraction, a more flexible evolution process is clearly needed.

5 Challenges Ahead

The development of the Familiar DSL started with composition of several FMs
as the main requirement. The experience built-up through its usage in different
domains, life-cycle stages and with different stakeholders clearly show that the
DSL is meeting this requirement. On the other hand, we identify here the main
challenges that must be tackled to provide a better support to a larger variability
engineering community.

Managing more explicit mechanisms. Several mechanisms inside Familiar
should be made more explicit and more configurable. A first obvious location in
the DSL architecture is the management of reasoning back-ends. Handling the
variability of back-ends is already done in some variability tool sets [19,41]. For
example FaMa [19] manages the different analyses and reasoners with a feature
model capturing functional capabilities and a few non-functional properties. The
challenge for Familiar is to go beyond such organization, so that new solvers
can be easily integrated (CSP and SMT solvers are the primary targets) and
that both functional and non-functional properties can be captured and inter-
related into feature models. This would also better organize the heuristics of
used algorithms, like in the SPLAR Java API [21]. In addition, results from
performance comparison between solvers for feature modeling operations [42]
may serve as starting point.

The description of the other challenges will also show that a systematic and
uniform approach should be followed to master all configurable properties in
Familiar, that is, not only for reasoning back-ends. The recent implementation
of some variants of the merge operation is an example [26], but this is actually
the case in the kernel of the DSL and in all its interaction points (extraction of
variability, internal representation, relations to other models).

Extending the scope of the DSL. The second challenge is related to the
advances that were made thanks to FM composition. In all the applications,
Familiar was an appropriate engine to deal with variability in conjunction with
many different software artifacts, but the connection with these artifacts was
quite often cumbersome in terms of software engineering. The move towards
an internal DSL in Scala should partially solve this issue, but exploring how to
facilitate the management of relationships between feature models and the whole
model-driven engineering steps seems an interesting track to follow.

First this should allow to make advances in the relation between the semantics
of artifact composition and the semantics of FM composition. In our recent
experience on the MSPL of digital signage systems, we used a combination of
metamodels and feature models that seems to be related of what is available
in Clafer [34]. Still Clafer is focused on understanding domain models, whereas
we completely define and implement the MSPL toolchain down to the code
generation level. Different extensions of feature models should be introduced in
the DSL, but this should be especially organized in terms of operations and inter-
relations between the extensions. This point is related to the previous challenge,

as each extension of feature models is likely to need a fine-tuned usage of the
available reasoning back-ends.

Extending the Familiar scope is also needed to facilitate variability manip-
ulation on a larger scale, especially in (semi-)automatically extraction scenarios.
Currently, there is some lazy strategy implemented to reduce the transforma-
tion to propositional logic, but the available internal representations should be
extended so to handle cases where only a feature set is desirable or feasible, for
example when very large feature models are split and their hierarchy partially
flattened [43]. The ideal functionality would handle a continuum of represen-
tations, from feature sets to feature models and the different representations
needed by different reasoning approaches.

Facilitating different usages. The last challenge consists in providing the
appropriate customised variants of the DSL for the different users and tasks
that would be then facilitated. With an extended scope and more explicit mech-
anisms, different scenarios must be envisaged. Extraction processes should be
supported with recurring patterns being provided in the DSL. The highly func-
tional flavor of programming provided in Scala should enable to design a small
but powerful toolkit for this purpose. Conversely the different mappings between
feature models and other models, the associated realization techniques, as well
as the transformation processes to different back-ends should be abstracted and
organized in the same way.

Besides, one usage not to be neglected is the visualization and comprehension
of these large and inter-related feature models. The current Familiar implemen-
tation relies on interoperability formats, so that other visualization tools, such
as S2T2 can be used. If different usages are supported, appropriate visualiza-
tions has to be envisaged and relationships between the DSL and third-parties
toolkits should be supported as well.

Finally, these different specific parts should cleverly rely on the different
internal representations discussed in the previous challenge. This, together with
an efficient runtime interpreter in Scala, would be also very useful to provide a
scalable variability support when the DSL is heavily exploited at runtime.

6 Conclusion

The Familiar language was first developed to manipulate and compose feature
models in the large, relying on formal underpinnings and bridging some existing
APIs. Separation of concerns and reasoning facilities are made available through
an external DSL, which has been evolved with an additional Java API and
recently, an Scala based internal implementation.

We have reported several applications of the Familiar toolset, ranging from
semi-automatic extraction of feature models from product descriptions or soft-
ware architectures, to more forward engineering cases, with scientific workflow,
video-surveillance software, and digital signage systems organized in multiple

software product lines. Based on these varied experiences, we summarized ob-
tained benefits, but especially focused on identified drawbacks: ad hoc integra-
tion in toolchains or applications, lack of flexibility, or performance issues during
heavily runtime usage. We then devised three inter-related challenges to improve
such DSL support, i.e. i) managing more explicit mechanisms, both internally
in the used algorithms and externally when dealing with reasoning back-ends,
ii) extending the scope of the DSL to better support extraction procedures and
downstream engineering stages, and iii) facilitating different usages through ap-
propriate DSL extensions.

Ongoing work aims at tackling these challenges. First steps consist in explor-
ing how Scala facilities can help in easily integrating variability in the Familiar
architecture, so that other needed functionalities can be nicely and efficiently
provided. We notably plan to bridge an extended version of Familiar with the
SIGMA family of DSLs for manipulating EMF models [44], which is also imple-
mented in Scala. We expect to partly cover some functionalities provided by im-
plementations of the CVL variability standard [45], but with a more lightweight
and decoupled approach. Being able to easily integrate a small service provided
by the Familiar DSL in any toolchain is kept as a prime requirement.

Acknowledgments. The author would like to thank all the people that have
worked on developing Familiar (http://familiar-project.github.io), and
especially Mathieu Acher, Philippe Lahire and Robert B. France, who were at
the roots of it.

References

1. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

2. Clements, P., Northrop, L.M.: Software Product Lines : Practices and Patterns.
Addison-Wesley Professional (2001)

3. Apel, S., Kästner, C.: An overview of feature-oriented software development. Jour-
nal of Object Technology (JOT) 8(5) (July/August 2009) 49–84

4. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Comput. Netw. 51(2) (2007) 456–479

5. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: SPLC’07, IEEE (2007) 23–34

6. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In:
ICSE’09, ACM (2009) 254–264

7. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated analysis of feature models
20 years later: a literature review. Information Systems 35(6) (2010)

8. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software
Engineering 5(1) (1998) 143–168

9. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.Y., Saval, G.: Disambiguating
the documentation of variability in software product lines: A separation of concerns,
formalization and automated analysis. In: RE’07. (2007) 243–253

http://familiar-project.github.io

10. Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T.: Structuring the mod-
eling space and supporting evolution in software product line engineering. Journal
of Systems and Software 83(7) (2010) 1108–1122

11. Zaid, L.A., Kleinermann, F., Troyer, O.D.: Feature assembly: A new feature mod-
eling technique. In Parsons, J., Saeki, M., Shoval, P., Woo, C.C., Wand, Y., eds.:
ER. Volume 6412 of Lecture Notes in Computer Science., Springer (2010) 233–246

12. Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Gruenbacher, P., Bena-
vides, D., Galindo, J.A.: Configuration of multi product lines by bridging hetero-
geneous variability modeling approaches. In: SPLC’11, IEEE (2011)

13. Hubaux, A., Tun, T.T., Heymans, P.: Separation of concerns in feature diagram
languages: A systematic survey. ACM Computing Surveys (2012)

14. Acher, M., Collet, P., Lahire, P., France, R.: Separation of Concerns in Feature
Modeling: Support and Applications. In: AOSD’12, ACM (2012)

15. Acher, M., Collet, P., Lahire, P., France, R.: Composing Feature Models. In:
Software Language Engineering (SLE’09). Volume 5969 of LNCS. (2009) 62–81

16. Acher, M., Collet, P., Lahire, P., France, R.: Comparing approaches to implement
feature model composition. In: ECMFA’10. Volume 6138 of LNCS. (2010) 3–19

17. Acher, M., Collet, P., Lahire, P., France, R.: Slicing Feature Models. In: Proc. of
ASE’11 (short paper), ACM (2011)

18. Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P., Merle, P.: Feature
Model Differences. In: 24th International Conference on Advanced Information
Systems Engineering (CAiSE’12). LNCS, Springer (2012)

19. Trinidad, P., Benavides, D., Ruiz-Cortes, A., Segura, S., Jimenez, A.: FAMA
framework. In: Int’l Software Product Line Conference (SPLC ’08), Limerick,
Ireland (2008) 359–359

20. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: An extensible framework for feature-oriented software development. Sci-
ence of Computer Programming (SCP) (2012)

21. Mendonca, M., Branco, M., Cowan, D.: S.p.l.o.t.: software product lines online
tools. In: OOPSLA’09 (companion), ACM (2009)

22. Acher, M., Collet, P., Lahire, P., France, R.: Familiar: A domain-specific language
for large scale management of feature models. Science of Computer Programming
(SCP) Special issue on programming languages 78(6) (2013) 657–681

23. Acher, M., Collet, P., Lahire, P., Moisan, S., Rigault, J.P.: Modeling variability
from requirements to runtime. In: ICECCS’11, IEEE (2011) 77–86

24. Acher, M., Collet, P., Lahire, P., Gaignard, A., France, R., Montagnat, J.: Compos-
ing multiple variability artifacts to assemble coherent workflows. Software Quality
Journal (Special issue on Quality Engineering for SPLs) (2011)

25. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Extraction and
Evolution of Architectural Variability Models in Plugin-based Systems. Software
& Systems Modeling (SoSyM) (July 2013) 27 p.

26. Acher, M., Combemale, B., Collet, P., Barais, O., Lahire, P., France, R.: Compos-
ing your Compositions of Variability Models. In: ACM/IEEE 16th International
Conference on Model Driven Engineering Languages & Systems (MODELS’2013).
Volume 8107 of LNCS., Miami (USA), Springer (September 2013) 352–369

27. Acher, M., Heymans, P., Cleve, A., Hainaut, J.L., Baudry, B.: Support for reverse
engineering and maintaining feature models. In: VaMoS’13, ACM (2013)

28. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional (2010)
29. Hermans, F., Pinzger, M., van Deursen, A.: Domain-Specific languages in practice:

A user study on the success factors. In: 12th International Conference, MODELS.
Springer (2009) 423–437

30. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (2005) 316–344

31. Kosar, T., Mernik, M., Carver, J.: Program comprehension of domain-specific and
general-purpose languages: comparison using a family of experiments. Empirical
Software Engineering 17(3) (2012) 276–304

32. Erdweg, S. et al.: The state of the art in language workbenches. In: Software Lan-
guage Engineering. Volume 8225 of Lecture Notes in Computer Science. Springer
International Publishing (2013) 197–217

33. Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanrahan, P., Odersky,
M., Olukotun, K.: Language virtualization for heterogeneous parallel computing.
In: Proceedings of the ACM international conference on Object oriented program-
ming systems languages and applications. OOPSLA ’10, ACM (October 2010)

34. Bak, K., Czarnecki, K., Wasowski, A.: Feature and meta-models in clafer: mixed,
specialized, and coupled. In: SLE’10. LNCS, Springer (2011) 102–122

35. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
Syntax and semantics of TVL. Science of Computer Programming, Special Issue
on Software Evolution, Adaptability and Variability 76(12) (2011) 1130–1143

36. Andersen, N., Czarnecki, K., She, S., Wasowski, A.: Efficient synthesis of feature
models. In: Proceedings of SPLC’12, ACM Press (2012) 97–106

37. Urli, S., Mosser, S., Blay-Fornarino, M., Collet, P.: How to Exploit Domain Knowl-
edge in Multiple Software Product Lines? In: Fourth International Workshop on
Product LinE Approaches in Software Engineering at ICSE 2013 (PLEASE 2013).
PLEASE, San Francisco, USA, ACM (May 2013) 4

38. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire,
P.: On extracting feature models from product descriptions. In: VaMoS’12, ACM
(2012) 45–54

39. Abbasi, E.K., Acher, M., Heymans, P., Cleve, A.: Reverse Engineering Web Config-
urators. In: 17th European Conference on Software Maintenance and Reengineering
(CSMR), Antwerp, Belgique, IEEE (February 2014)

40. Logre, I., Mosser, S., Collet, P., Riveill, M.: Sensor Data Visualisation: a
Composition-based Approach to Support Domain Variability. In: ECMFA’2014. ,
York, Springer (September 2014) 16

41. Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Provelines: A
product line of verifiers for software product lines. In: Proceedings of the 17th
International Software Product Line Conference Co-located Workshops. SPLC ’13
Workshops, New York, NY, USA, ACM (2013) 141–146

42. Pohl, R., Lauenroth, K., Pohl, K.: A performance comparison of contemporary
algorithmic approaches for automated analysis operations on feature models. In:
Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. ASE ’11, Washington, DC, USA, IEEE Computer Society
(2011) 313–322

43. Dintzner, N., Van Deursen, A., Pinzger, M.: Extracting feature model changes from
the linux kernel using fmdiff. In: Proceedings of the Eighth International Workshop
on Variability Modelling of Software-Intensive Systems. VaMoS ’14, New York, NY,
USA, ACM (2014) 22:1–22:8

44. Křikava, F., Collet, P., France, R.: Manipulating Models Using Internal Domain-
Specific Languages. In: Symposium on Applied Computing (SAC), Programming
Languages Track(SAC), short paper. , Gyeongju (Korea), ACM (March 2014)

45. Haugen, O., Wąsowski, A., Czarnecki, K.: Cvl: Common variability language. In:
Proceedings of the 17th International Software Product Line Conference. SPLC
’13, New York, NY, USA, ACM (2013) 277–277

	 Domain Specific Languages for Managing Feature Models: Advances and Challenges

