
HAL Id: hal-01345646
https://hal.science/hal-01345646

Submitted on 7 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and characterization of microsatellite
markers for the oomyceta [i]Aphanomyces euteiches[/i].

Lucie Mieuzet, Anne Quillevere Hamard, Marie-Laure Pilet-Nayel, Christophe
Le May

To cite this version:
Lucie Mieuzet, Anne Quillevere Hamard, Marie-Laure Pilet-Nayel, Christophe Le May. Development
and characterization of microsatellite markers for the oomyceta [i]Aphanomyces euteiches[/i].. Fungal
Genetics and Biology, 2016, 91, pp.1-5. �10.1016/j.fgb.2016.03.001�. �hal-01345646�

https://hal.science/hal-01345646
https://hal.archives-ouvertes.fr


Accepted Manuscript

Development and characterization of microsatellite markers for the oomyceta

Aphanomyces euteiches

Mieuzet Lucie, A. Quillévéré, M.L. Pilet, C. Le May

PII: S1087-1845(16)30020-2

DOI: http://dx.doi.org/10.1016/j.fgb.2016.03.001

Reference: YFGBI 2951

To appear in: Fungal Genetics and Biology

Received Date: 2 October 2015

Revised Date: 2 March 2016

Accepted Date: 5 March 2016

Please cite this article as: Lucie, M., Quillévéré, A., Pilet, M.L., Le May, C., Development and characterization of

microsatellite markers for the oomyceta Aphanomyces euteiches, Fungal Genetics and Biology (2016), doi: http://

dx.doi.org/10.1016/j.fgb.2016.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.fgb.2016.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.fgb.2016.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.fgb.2016.03.001


  

Development and characterization of microsatellite markers for the oomyceta 

Aphanomyces euteiches 

Lucie Mieuzet 
1, 2

, Quillévéré A. 
1,2

, Pilet M.L. 
1, 2,

, and Le May C. 
1, 2, 3

 

 

1 INRA, UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la 

Motte, 35653 Le Rheu, France 

2 Agrocampus Ouest, Laboratoire Ecologie et Santé des Plantes (ESP), 65 rue de Saint Brieuc, 35042 Rennes, 

France 

3 Université de Rennes I, 9 rue Jean Macé, 35700 Rennes, France 

 

Correspondent author: C. Le May (lemay@agrocampus-ouest.fr) 

Words in the abstract: 108 

Words in the text: 2308 

Number of tables: 2 

Number of figures: 1 

Number of references: 38 

 

 

 

 

 

mailto:lemay@agrocampus-ouest.fr


  

Abstract 

Aphanomyces euteiches Drechsler is a serious pathogen of leguminous crops that causes devastating 

root rot of pea worldwide. Given that A. euteiches is a diploid organism, robust, codominant markers 

are needed for population genetics studies. We have developed and screened a microsatellite-enriched 

small-insert genomic library for identification of A. euteiches SSR containing sequences. Fourteen out 

of the 48 primer pairs designed to amplify SSR, produced unambiguous polymorphic products in our 

test population of 94 isolates. The number of alleles at each locus ranged from one to four. The 

identification of new markers would enhance the ability to evaluate the genetic structure of A. 

euteiches populations, and pathogen evolution. 
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1. Introduction  

Aphanomyces euteiches Drechsler is an oomycete pathogen of legumes, which causes a 

devastating root rot of pea (Pisum sativum L.) worldwide (Kraft and Pfleger, 2001). Initially 

considered as a pea root pathogen (Scott, 1961), A.euteiches was later reported to attack other legume 

species such as common bean, broad bean, faba bean, clover, and alfalfa (Pfender and Hagedorn, 

1982; Greenhalgh and Merriman, 1985; Lamari and Bernier, 1985; Tofte et al., 1992; Burnett et al., 

1994; Tivoli et al., 2006; Moussart et al., 2008). The only two efficient ways to control the disease are 

diverse crop rotations with non-host or suppressive crops and breeding for resistance. Both require 

knowledge of the genetic diversity and structure of A.euteiches populations. Thus, several molecular 

markers were developed, mainly dominant markers such as random amplified polymorphic DNA 

(RAPD) or amplified length polymorphism (AFLP). These techniques indicated the existence of 

different genetic subpopulations in North America, which differ by host of origin and host preference 

(Malvick et al., 1998; Grünwald and Hoheisel, 2006). All pea-infecting populations showed significant 

linkage disequilibrium between markers, supporting the hypothesis that selfing plays a major role in 

shaping their genetic structure (Grunwald and Hoheisel, 2006). The degree and spatial distribution of 

genotypic diversity within A. euteiches populations has also been studied in the USA, but reports have 

been contradictory. Indeed, using RAPD markers, Malvick and Percich (1998) found high genotypic 

diversity within fields, but no genotypic differentiation between populations from different locations 

(Wisconsin, Minnesota, Oregon). In a study of an alfalfa-infecting population in central USA (Illinois) 

using AFLP markers, Malvick et al. (2009) reported high levels of genotypic diversity at all scales but 

no geographical structure. Using AFLP markers, Grunwald and Hoheisel (2006) also found high 

genotypic diversity within field samples in Oregon and Washington states, but observed even higher 

genetic diversity at the regional scale and a significant genotypic differentiation between fields.  

These differences in genetic structure of A. euteiches populations, and the fact that population 

genetic studies were carried out with dominant markers whereas A. euteiches is a diploid organism 

justify further investigation. The differ conclusions could be partly due to differences in the type and 

resolutive power of the genetic markers employed, and in particular to the ability to detect 



  

heterozygotes; therefore, it is useful to explore new techniques to target variability in A. euteiches 

populations. Microsatellite (SSR) is a PCR-based molecular marker, which has many advantages, and 

has proved to be invaluable in many fields of biology, from genome mapping to forensics, and in 

population genetics (Dutech et al., 2007). SSR markers have been extensively used in genetic diversity 

studies (Struss and Plieske, 1998; Tenzer et al, 1999) because of their ubiquity, ease of scoring, co-

dominance, reproducibility, assumed neutrality and high level of polymorphism (Maroof et al., 1994; 

Jarne and Lagoda, 1996). The work reported here had two main aims: first, to develop and screen a 

microsatellite-enriched small-insert genomic library for identification of A. euteiches SSR containing 

sequences, and second to identify the polymorphic SSR markers in a collection of 94 isolates.  

 

2. Materials and methods 

2.1 Microsatellite library development 

Microsatellite markers were developed according to the procedure of Malausa et al. (2011) 

using next-generation sequencing and library enrichment. Eight isolates of A. euteiches from different 

locations (two from France and two from the US) and pathotype groups (pathotype I or pathotype III) 

were used to identify putative microsatellites sequences. Genomic DNA was extracted by using the 

CTAB method (Abdelnoor et al., 1995). Construction, emulsion PCR and 454 GS-FLX titanium 

pyrosequencing of the microsatellite-enriched DNA libraries were carried out by Genoscreen (Lille, 

France). Enriched libraries were constructed using eight microsatellite probes ((AG)10, (AC)10, 

(AAC)8, (AGG)8, (ACG)8, (AAG)8, (ACAT)6, (ATCT)6). 

2.2 DNA isolation and SSR amplification 

A total of 94 different A. euteiches isolates, which included 66 French isolates (Fr1 to Fr66. 

All isolates belong to pathotype I) sampled from six different locations, 24 American isolates (13 

isolates belong to pathotype I (Us01 to Us10, Us20, Us21, Us24), and 11 isolates belongs to pathotype 

III (Us11 to Us19, Us22, Us23)) sampled from three different locations, and four referent isolates 

(Rb84 (sampled from a pea field), Ae109, MF1 and NF1 (sampled from alfalfa fields)) were used 



  

(Table 1). Total genomic DNA was extracted from these 94 isolates using the CTAB method 

(Abdelnoor et al., 1995). Each PCR reaction in simplex consisted of 10 µL reaction volumes 

containing 20 ng template DNA, 2µL of 5x PCR buffer [20 mM Tris-HCl ph 8.8, 10 mM KCl, 10 mM 

(Nh4)2SO4, 2 mM MgSO4, 0.1% Triton X-100], 0.2 mM each dNTP, 1 µM of each forward and 

reverse primer, 0.25 µL of 10 µM fluorescent-labeled M13 primer (VIC; Applied biosystem), and 1 

unit of Taq polymerase. Volumes were adjusted to 10 µL with sterile distilled water and amplification 

reactions were conducted on a S1000 Thermal Cycler (Bio-Rad). Cycling conditions included an 

initial denaturation at 95 °C for 5 min, followed by 20 cycles of denaturation at 95 °C for 60 s, 

annealing at 58 °C for 60 s and extension at 72 °C for 90 s, followed by 20 cycles of denaturation at 95 

°C for 60 s, annealing at 53 °C for 60 s and extension at 72 °C for 90 s and a final extension at 72 °C 

for 10 min. PCR products were then diluted 1:40 in sterile water and 3 µL of this dilution was mixed 

with 0.05 µL of GeneScan 500 LIZ Size Standard (Applied Biosystem) and 5 µL of formamide 

(Applied Biosystem). Analyses of PCR products were conducted on an ABI Prism_ 3130xl sequencer 

(Applied Biosystem). Allele size determinations were achieved using the GeneMapper software v3.7 

(Applied Biosystem) by manual identification of the peaks and validation of absence or non-valid 

chromatogram. Allele sizes were determined by the automatic calling and binning module of 

GeneMapper with manual examination of irregular results. 

2.3 Statistical analysis an evaluation of polymorphism 

The allelic diversity or polymorphism information content (PIC) was measured for each 

selected polymorphic SSR as described by Botstein et al. (1980). Aphanomyces euteiches isolates were 

clustered on the basis of their genetic relatedness using multivariate analyses. A factorial 

correspondence analysis (FCA) was performed for the overall data set using GENETIX 4.05.2 

(Belkhir et al., 2004). 

 

 

 



  

3. Results 

3.1 SSR polymorphism 

A total of 48 primer pairs were designed and tested. Fourteen markers showed polymorphisms 

and therefore could be used as SSR markers (Table 2). Thirty percent of the SSRs were polymorphic, 

and the number of alleles per locus was 2-4 (average 2.5). The number of genotypes detected per locus 

ranged from 2-4 (average 2.9), and the percentage of heterozygous genotypes ranged from 0-24.5%. 

The PIC value of each marker varied between 0.101-0.511 (average 0.389) (Table 2). According to 

the criteria proposed by Botstein et al. (1980), only one (7.2%) of the SSR markers was highly 

informative (PIC > 0.5), 11 (78.6%) were reasonably informative (0.25 < PIC < 0.5), and 14.3% 

slightly informative (PIC < 0.25). 

3.2 Diversity and cluster analysis 

The genetic structure of the American and French A.euteiches populations was investigated 

using the 14 polymorphic SSRs markers. Pea-infecting isolates were collected from four major pea 

cropping areas in the US where pea and/or alfalfa were grown and from seven fields (differing in crop 

rotation) from seven major pea cropping areas in France. Based on the polymorphic SSR markers, 

results indicated low genetic diversity among the different locations in France and the US, with only 

eight multilocus genotypes observed within the 94 A. euteiches isolates tested (Fig. 1). The greatest 

variation occurred within countries, with a total estimated genetic diversity (FST) of 0.436 for A. 

euteiches between American and French populations. Factorial correspondence analysis (FCA) 

analyses showed that the genetic structure of A. euteiches populations was dependant on the country of 

origin but not on the pathotype. The first axis explained 57% of the structure, whereas the second axis 

explained only 13%. Based on pathotype groups, these results suggest that A. euteiches pea 

populations in France are a unique, unstructured population. However, among French populations, two 

different clusters were observed: one corresponding to isolates sampled from fields where other 

legume species (vetch, alfalfa, or faba bean) were cultivated during previous growing seasons, and 

another corresponding to isolates sampled from fields where pea was the only legume crop species. 



  

4. Discussion 

The development and screening of a microsatellite-enriched small-insert genomic library 

identified fourteen highly polymorphic SSR markers from a total of 48 SSR sequences. These markers 

produced unambiguous polymorphic products in our test population of 94 isolates. The PIC value of 

each marker varied between 0.101-0.511, and 85.7% of the primers were reasonably informative 

(Botstein et al., 1980).  

The number of polymorphic SSR observed (30%) is quite low, but not surprising. By 

comparison, Akamatsu et al. (2007), by generating and screening a plasmid library of A. euteiches 

genomic DNA identified only eleven SSRs markers on the sixty-nine primers pairs screened for allelic 

variation (10% if considering all the markers tested). Moreover, their study showed that 50% of these 

SSRs markers indicated two polymorphic bands whereas in our study polymorphic SSRs indicated 2-5 

different loci. A limited number of polymorphic microsatellite loci isolated from genomic libraries are 

reported for peculiar biological and genomic traits of fungi (Dutech et al., 2007). First, plant 

pathogens, which are the most extensively studied of fungal species, have demographic and 

reproductive traits promoting low genetic diversity. Crop or human pathogen have often experienced 

bottlenecks through geographic introduction (Milgroom et al., 1992; Engelbrecht et al., 2004; Rivas et 

al., 2004) or host shifts (Mackenzie et al., 2001; Paraskevis et al., 2003; Tobler et al., 2003), which can 

drastically reduce intraspecific genetic diversity. Furthermore, some specific life history traits of 

fungal pathogens, such as frequent asexual reproduction and recurrent bottlenecks in epidemic cycles, 

associated with low winter survival and/or selective sweeps following new virulence attributes, are 

also likely to result in a low level of genetic diversity (Goodwin et al., 1994; Hovmoller et al., 2002; 

Guérin and Le Cam, 2004). Second, several papers have examined the nature and abundance of 

microsatellites in published partial or complete fungal genomes, and these have appeared less 

abundant in these fungal genomes than in other organisms (Lim et al., 2004; Dutech et al., 2007; 

Stewart et al., 2011).  

The use of SSR markers in our study indicated that A. euteiches populations seemed to be less 

diverse that was indicated in past studies (Malvick et al., 1998; Grünwald and Hoheisel, 2006; 



  

Malvick et al., 2009). Indeed, genetic diversity was low among locations in France and among 

locations in the US, with only eight multilocus genotypes observed within the 94 A. euteiches isolates 

tested. Factorial correspondence analysis indicated that the genetic structure of A. euteiches 

populations was dependant on the country of origin but not on the pathotype (Fst = 0.856). Within 

French populations, two different clusters were observed, one corresponding to isolates sampled from 

fields where other legume species (vetch, alfalfa, or faba bean) were cultivated previously, and another 

corresponding to isolates sampled from fields where pea crops were grown as the only legume species. 

Thus, for the American A. euteiches populations and some French isolates, these results suggest that 

cultural practices and more particularly the frequency of different legumes species play an important 

role in the population structure. Indeed, this homothallic pathogen is polyphagous and was also 

reported to attack other legume species (common bean, broad bean, faba bean, clover, and alfalfa) 

(Moussart et al., 2008). As sexual recombination and gene flow remained low in population 

evolutionary processes, there may be a possible role for these host plants in the population structure.  

To conclude, these SSR markers prove useful in characterizing genetic variation within and 

among A. euteiches populations. These markers will be helpful to the community to better understand 

how this soil-borne disease could evolve in their population diversity and how cultural practices could 

or not modify this diversity (Hernandez-Delgado, 2009). More particularly, information gathered from 

population genetics studies may improve models of disease epidemics and forecasting, enhance the 

evaluation of risks to established plant cultivars, or assist in targeting control measures. Aphanomyces 

euteiches was reported to attack other legume species (Levenfors, 2004; Moussart et al., 2008). 

However, infection of several host plants is a prevalent process in agrosystems, leading to change in 

epidemic process and pathogenicity (Woolhouse et al., 2001). Adaptation event of A. euteiches to host 

plant resistance has already been observed in alfalfa, as isolates overcoming genetic resistance to race 

1 of A. euteiches have been identified (Grau et al., 1991). Consequently, the impact of alternative host 

on plant pathogen adaptation processes must be taken into account for the durable management and of 

resistance cultivars. For instance, incorporating knowledge of a pathogen’s population structure into 

breeding for disease resistance may provide insight into the potential long-term and global 

effectiveness of resistant breeding lines. The importance of sexual reproduction for the maintenance of 



  

polymorphism or for the adaptive dynamic of the species Links between wild and agricultural 

pathosystems exist, but in many cases an insufficient knowledge regarding the diversity and biology of 

the pathogens have led to wrong conclusions (Duan et al., 2003). By using SSRs markers with highest 

allelic diversity, we could well address questions of paternity or clonal structure. We can determine if 

populations deviated from Hardy-Weinberg equilibrium, if there is more or less heterozygote within 

populations, and if there is outcrossing within populations (McDonald & Linde, 2002; Montarry et al., 

2010). Finally, as with many soil borne pathogens A. euteiches has limited means of dispersal, thus 

gene flow is thought to be limited (McDonald & Linde 2002). The use of these SSRs markers will be 

helpful to study the role of anthropic activities on dispersal processes and on A. euteiches migration 

between neighboring fields.  
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Figure caption 

Fig. 1: Factorial correspondence analysis (FCA) performed on 94 A. euteiches isolates from France and US. 

Each point represents one or several isolates. Three genetically distinct clusters were highlighted: the first groups 

together all individuals from most of the different locations, the referent isolate Rb84 and four American 

isolates, the second groups together all individuals from two fields where other legume species than pea were 

cultivated, and the third groups together individuals from the different American locations, and the three referent 

isolates Ae109, NC1, MF1 (isolates sampled on alfalfa).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 1: Aphanomyces euteiches isolates used in this study  

Code Effective Country Plant Origin Pathotype 

Fr1to Fr66 66 France Pea Pathotype I 

Us1to Us10, Us20, Us21, Us24 13 US Pea Pathotype I  

Us11to Us19, Us22, Us23 11 US Pea Pathotype III 

Rb84 1 France Pea Pathotype I 

Ae109 1 US Alfalfa Pathotype III 

NF1 1 US Alfalfa Pathotype III 

MF1 1 US Alfalfa Pathotype III 

 

 

Table2: Details of locus, primer sequence, Tm, Motif, no. of alleles, allele size, % of heterozygotes, and PIC 

value of different SSR markers used to evaluate genetic diversity within Aphanomyces euteiches isolates 

Locus Forward primer Reverse primer 

Tm 

(°C) 

Motif 

No. of 

alleles 

Allele 

size 

% 

heterozygotes 

PIC 

Ae04 TATTGTCTTGCTGGATTGGAA ACGATCTCCTGAATGCCG 58 (ACG)5 2 90 5.3 0.101 

Ae12 CATCTTTCGTCTTCGGATCG GCCTCTGACGTCCAAATTGA 58 (TCG)8 3 90 0.0 0.496 

Ae13 CGATAGTCCTAGCGTCTTCCTT GATATCAAATGCATTCAACCG 58 (TCG)5 2 91 0.0 0.382 

Ae17 TCTTGATGCCGTTCATGTTC CATTTTGCGCCGTTCTATTT 58 (TCG)5 2 127 5.3 0.444 

Ae23 GCGAAGGCCAGGTACTAAAG TGAATTCAAGAATAATCGGAAAG 58 (AC)6 2 197 5.3 0.444 

Ae26 TTTCAAGGCCAGGAGAAAGA TTCATCAACGGCAAACACAT 58 (AGA)5 2 229 25.7 0.382 

Ae32 GACGTGTTTGAAACCAACGA ATTTGCTCCCAACAAACGAC 58 (TCG)5 2 113 0.0 0.173 

Ae34 TGAAAATGATCCTCGAATCCA AAATCTTCCATCAACGCCAC 58 (GAC)6 2 121 5.3 0.444 

Ae36 CCATGGATGCAGTCATCAAC CTTGCACCCATGCTCTACAA 58 (CCAG)5 3 164 24.5 0.375 

Ae37 GTACTGGCACCTTCTCCTCG CGAAATAGGGGCTTTGTCTG 58 (CTC)6 4 138 5.3 0.511 

Ae44 TCAACTCTGGGTAGGACATTCG TGATCTTGTAGAGATGTCGTATTTCG 58 (TC)7 4 140 0.0 0.406 

Ae45 AACGGCAAACAACAGAACG AAGTGCCGAGGTAGACAACG 58 (GA)6 2 146 5.3 0.444 

Ae54 GTAGCAAAGTGACCGTCGTG CGATGGTCTAGGTGCTAACG 58 (AG)8 3 145 17.0 0.474 

Ae63 GCCGAAGCAGTTGAAGAAGT CCTCGGCTGTTTCAGCAT 58 (AAG)6 2 97 24.5 0.370 

 

 

 



  

 

Fig. 1: Factorial correspondence analysis (FCA) performed on 90 A. euteiches isolates from France (grey circle) 

and US (Black Square) populations, and four referent isolates (white diamond). Each point represents one or 

several isolates. Three genetically distinct clusters were highlighted: the first groups together all individuals from 

most of the different locations, the referent isolate Rb84 and four American isolates, the second groups together 

all individuals from two fields where other legume species than pea were cultivated, and the third groups 

together individuals from the different American locations, and the three referent isolates Ae109, NC1, MF1 

(isolates sampled on alfalfa).  
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