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Abstract

In this note, we study the long time behavior of Lotka-Volterra systems whose coeffi-
cients vary randomly. Benäım and Lobry established that randomly switching between two
environments that are both favorable to the same species may lead to four different regimes:
almost sure extinction of one of the two species, random extinction of one species or the
other and persistence of both species. Our purpose here is to provide a complete description
of the model. In particular, we show that any couple of environments may lead to the four
different behaviours of the stochastic process depending on the jump rates.

1 Introduction

For a given set of positive parameters ε = (a, b, c, d, α, β), consider the Lotka-Volterra differential
system in R2

+, is given by 
x′ = αx(1− ax− by)
y′ = βy(1− cx− dy)
(x0, y0) ∈ R2

+

We denote by Fε the associated vector field: (x′, y′) = Fε(x, y). Let us note already that when
a < c and b < d, the point (1/a, 0) attracts any path starting in (0,+∞)2. We say that the
environment is favorable to species x. Similarly, when a > c and b > d, the point (0, 1/d)
attracts any path starting in (0,+∞)2. We say that the environment is favorable to species y.
See [?] for a detailed presentation of the four generic configurations. The environment is said to
be of

• Type 1: if a < c, b < d (favorable to species x)

• Type 2: if a > c, b > d (favorable to species y)

• Type 3: if a > c, b < d (persistence)

• Type 4: if a < c, b > d (extinction of species x or y depending on the starting point)

Consider two such systems ε0 = (a0, b0, c0, d0, α0, β0) and ε1 = (a1, b1, c1, d1, α1, β1) and intro-
duce the random process {(Xt, Yt, It)} on R × R × {0, 1} obtained by switching between these
two deterministic dynamics, at rates λ0, λ1. More precisely, we consider the Markov process
driven by the following generator

Lf(z, i) = Fi(z) · ∇zf(z, i) + λi(f(z, 1− i)− f(z, i)), (z, i) ∈ R2 × {0, 1}.
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Equivalently, (It)t≥0 is a Markov process on {0, 1} with jump rate λ0 and λ1, that is

P(It+s = 1− i|It = i,Ft) = λis+ o(s),

where Ft is the sigma field generated by {Iu, u ≤ t}. Finally, (Xt, Yt) is solution of

(X ′t, Y
′
t ) = FεIt

(Xt, Yt).

This process on R2 × {0, 1} has already been studied in [?, ?]. It belongs to the class of
the piecewise deterministic Markov processes introduced by Davis [?]. See also [?] for a recent
review of the application areas of such processes. Let us introduce the invasion rates of species
x and y defined in [?] as

Λy =

∫
β0(1− c0x)µ(dx, 0) +

∫
β1(1− c1x)µ(dx, 1),

Λx =

∫
α0(1− b0y)µ̂(dy, 0) +

∫
α1(1− b1x)µ̂(dy, 1),

where µ is the invariant probability measure of (Xt, It) associated to equation:

X ′t = αItXt(1− aItXt),

and µ̂ is the invariant probability measure of (Yt, It) associated to equation:

Y ′t = βItYt(1− dItYt).

The meaning of Λy is the following: when species y is close to extinction, species x behaves
approximately as (X ′t, 0) = FεIt

(Xt, 0) and Λy is the growth rate of species y with respect to
invariant measure µ of (X, I). Note that the invasion rates depend on the jump rates (λ0, λ1) ∈
(0,+∞)2. For every (λ0, λ1) ∈ (0,+∞)2, we have two parametrizations of these jump rates:

(s, t) ∈ [0, 1]× (0,+∞) : st = λ0, (1− s)t = λ1.

(u, v) ∈ [0, 1]× (0,+∞) : uv = λ0/α0, (1− u)v = λ1/α1.

The change of parameters (u, v) = ξ(s, t) is triangular in the sense that u only depends on s

(u, v) = ξ(s, t) =
( sα1

(1− s)α0 + sα1
,

t

α0α1
((1− s)α0 + sα1)

)
.

Let us denote the invasion rates in the (u, v) coordinates by

Λ̃x(u, v) = Λx(ξ−1(u, v)) and Λ̃y(u, v) = Λy(ξ−1(u, v)).

It is established in [?] that signs of Λ̃x and Λ̃y determine the long time behavior of (Xt, Yt).

Λ̃y > 0 Λ̃y < 0

Λ̃x > 0 persistence of the two species extinction of species y

Λ̃x < 0 extinction of species x extinction of species x or y

Moreover, in [?] it is shown that two environments of Type 1 may lead to four regimes for the
stochastic process. This surprising result is reminiscent of switched stable linear ODE studied
in [?, ?].
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A fundamental property of the model is that, for all 0 ≤ s ≤ 1, the vector field (1−s)Fε0+sFε1

is the Lotka-Volterra system associated to the environment εs = (as, bs, cs, ds, αs, βs) with

αs = sα1 + (1− s)α0, as =
sα1a1 + (1− s)α0a0

αs
, bs =

sα1b1 + (1− s)α0b0
αs

, (1.1)

βs = sβ1 + (1− s)β0, cs =
sβ1c1 + (1− s)β0c0

βs
, ds =

sβ1d1 + (1− s)β0d0
βs

. (1.2)

Set
I = {0 ≤ s ≤ 1 : as > cs} and J = {0 ≤ s ≤ 1 : bs > ds}.

We denote by Ĩ the image of I for the other parametrization.

Remark 1.1. As noticed in [?], if ε0 and ε1 are of Type 1 then I or J may generically be empty
or an open interval which closure is contained in (0, 1).

Let us recall below the key result in [?] about the expression of the invasion rates.

Lemma 1.2. [?, Lemma 1.2] Assume that ε0 and ε1 are of Type 1 and, w.l.g., a0 < a1. The
quantity Λ̃y can be rewritten as:

Λ̃y(u, v) =
1

(a1 − a0)(
1

α0
(1− u) +

1

α1
u)

E[φ(Uu,v)]

where φ : [0, 1]→ R is defined by

φ(y) = (a0 + (a1 − a0)y)P (
1

a0 + (a1 − a0)y
),

where

P (x) =
(β1
α1

(1− c1x)(1− a0x)− β0
α0

(1− c0x)(1− a1x)
) a1 − a0
|a1 − a0|

, (1.3)

and Uu,v is a Beta distributed Beta(uv, (1−u)v) random variable. Moreover, φ has the following
properties:

• If I is empty then φ is nonpositive.

• If I is nonempty (I = (u1, u2)) then φ is concave, negative on (0, u1)∪ (u2, 1) and positive
on Ĩ = (u1, u2).

Our first result is the precise study of the properties of Λ̃x and Λ̃y with two environments
ε0, ε1 that are respectively of Type 1 and Type 2. In particular, we describe the regions where
Λ̃x and Λ̃y are positive.

Theorem 1.3. (Shape of the regions). Assume that ε0 and ε1 are respectively of Type 1 and
Type 2. Then, there exists a function u 7→ vy(u) from (0, 1) → [0,∞], such that Λ̃y(u, v) < 0
when v < vy(u) and Λ̃y(u, v) > 0 when v > vy(u). Let a be the coefficient of second degree of
polynomial P given by (??).

If a < 0, there exists 0 < α < α < 1 such that vy is infinite on [0, α], is decreasing and
continuous on (α, α), tends to +∞ at α, tends to 0 at α and is equal to 0 on [α, 1].

If a > 0, there exists 0 < α < α < 1 such that vy is equal to 0 on [0, α], is increasing and
continuous on (α, α), tends to 0 at α, tends to +∞ at α, and is infinite on [α, 1].

Moreover, α and α are explicit.

3



The second result is the following theorem.

Theorem 1.4. For any (i, j) in {1, 2, 3, 4}2, there exist two environments ε0 of Type i and ε1
of Type j such that the associated stochastic process has four possible regimes depending on the
jump rates.

The paper is organized as follows. In Section 2 we prove the properties of Λ̃x and Λ̃y. In
Section 3 we prove Theorem ??. In Section 4 we present illustrations obtained by numerical
simulation. In Section 5 we study the case when the two environments are of Type 3. Finally,
in Section 6, we prove Theorem ?? providing, in each case, a good couple of environments.

2 Expression of invasion rates

Lemma 2.1. If ε0 and ε1 are respectively of Type 1 and Type 2, then Ĩ is always nonempty and
there exists 0 < α < 1 (depends on αi, βi, ai, ci) such that Ĩ = (α, 1].

Proof. Set

R =
β0α1

α0β1
, u =

sα1

αs
, A = (a1−a0)(R−1), B = (2a0−c0−a1)R+(c1−a0), C = (c0−a0)R.

For any s ∈ (0, 1), we get that

cs − as =
Au2 +Bu+ C

R(1− u) + u

where as and cs are given by (??) and (??). Set

T (u) = Au2 +Bu+ C ∀u ∈ [0, 1].

We easily get

T (0) = C = (c0 − a0)R > 0, T (1) = A+B + C = c1 − a1 < 0.

Because T is a second degree polynomial with T (0) > 0 and T (1) < 0, we conclude that

T (u) < 0⇔ u > α =
−B −

√
B2 − 4AC

2A
.

Therefore u ∈ Ĩ ⇔ T (u) < 0⇔ u > α⇔ u ∈ (α, 1]. As a consequence, Ĩ = (α, 1].

Proposition 2.2. The map Λ̃y(u, v) satisfies the following properties:

For all u ∈ [0, 1]

lim
v→∞

Λ̃y(u, v) = βu(1− cu
au

)


> 0 if u ∈ Ĩ = (α, 1],

= 0 if u ∈ ∂Ĩ = {α},
< 0 if u ∈ (0, 1) \ Ĩ = [0, α),

and

lim
v→0

Λ̃y(u, v) =
1

1

α0
(1− u) +

1

α1
u

((β1
α1

(1− c1
a1

)− β0
α0

(1− c0
a0

)
)
u+

β0
α0

(1− c0
a0

)

)
. (2.1)
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Proof. The proposition is obtained by changing variables (s, t)←→ (u, v) from [?, Prop. 2.3].

Proposition 2.3. There exists 0 < α < 1 such that lim
v→0

Λ̃y(u, v) > 0 if u > α and lim
v→0

Λ̃y(u, v) <

0 if u < α.

Proof. The limit in (??) has the same sign than

g(u) =
(β1
α1

(1− c1
a1

)− β0
α0

(1− c0
a0

)
)
u+

β0
α0

(1− c0
a0

), ∀u ∈ [0, 1].

We get

g(0) =
β0
α0

(1− c0
a0

) < 0 and g(1) =
β1
α1

(1− c1
a1

) > 0.

Since g is a linear function, α is the unique zero of g and the result is clear.

Proposition 2.4. Let a be the coefficient of degree 2 of polynomial P given by (??)

a =
(β1
α1
c1a0 −

β0
α0
c0a1

) a1 − a0
|a1 − a0|

.

If a < 0 (resp. a > 0 or a = 0) then α < α (resp. α > α or α = α).

Proof. By symmetry we only consider the case a < 0. Without loss of generality, we assume
that a1 > a0 and a becomes:

a =
β1
α1
c1a0 −

β0
α0
c0a1.

To prove that α < α, it is sufficient to prove Aα2 +Bα+ C < 0. Since, by definition of α,(
β1
α1

(
1− c1

a1

)
− β0
α0

(
1− c0

a0

))
α+

β0
α0

(
1− c0

a0

)
= 0,

we get, multiplying by a0a1α1/β1, that

(a0a1 − c1a0 −Ra1a0 +Ra1c0)α+Ra1(a0 − c0) = 0. (2.2)

Replacing α by its expression in (??), we get:

Aα2 +Bα+ C =
R(a1 − c1)(a0 − a1)(a0 − c0)(a0c1 −Ra1c0)

(a0a1 − a0c1 −Ra0a1 +Ra1c0)2
.

Since c0 > a0, a1 > c1, a1 > a0 and a0c1−Ra1c0 =
α1

β1
a < 0, we conclude Aα2+Bα+C < 0.

3 Shape of the positivity region

Recall a =
(β1
α1
a0c1 −

β0
α0
a1c0

) a1 − a0
|a1 − a0|

is the coefficient of degree 2 of polynomial P given

by (??).

Lemma 3.1. [?, Lemma 4.1] Assume ε0 and ε1 are of Type 1. If Ĩ is nonempty, then the map
(u, v)→ E[φ(Uu,v)] is increasing in v and concave in u.
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Remark 3.2. In Benäım and Lobry’s case, if I is nonempty, φ is concave and the parameter a
is always negative. In the present case, a may be negative, positive or zero. Therefore, we have
the following lemma.

Lemma 3.3. Assume ε0 and ε1 are respectively of Type 1 and Type 2, then the shape of φ
depends on the sign of a:

• If a is negative, then φ is strongly concave and (u, v)→ E[φ(Uu,v)] is increasing in v and
concave in u.

• If a is positive, then φ is strongly convex and (u, v) → E[φ(Uu,v)] is decreasing in v and
convex in u.

• If a is zero, then φ is linear and (u, v)→ E[φ(Uu,v)] is constant in v and linear in u.

Proof. This is a straightforward adaptation of [?, Lem 4.1].

Let us conclude this section with the proof of Theorem ??.

Proof of Theorem ??. We consider only the case a < 0. Set K = (α, α). We know clearly that
v → Λ̃y(u, v) admits:

• negative limits at 0 and ∞ if u ∈ [0, α),

• positive limits at 0 and ∞ if u ∈ (α, 1],

• a negative limit at 0 and a positive limit at ∞ if u ∈ (α, α).

The fact that v 7→ Λ̃y(u, v) is increasing justifies the existence of vy, and we have

Λ̃y(u, v) = 0⇔ u ∈ K, v = vy(u).

Let us prove that vy is decreasing in K. Let δ1 < δ2 be two points in K. Choose any δ3 ∈ (α, 1),
we get Λ̃y(δ1, vy(δ1)) = 0 and Λ̃y(δ3, vy(δ1)) > 0. Since Λ̃x(·, vy(δ1)) is concave and δ1 < δ2 < δ3
we get Λ̃y(δ2, vy(δ1)) > 0. Since Λ̃y(δ2, ·) is increasing, we obtain vy(δ2) < vy(δ1).

The continuity of vy on K is a straightforward consequence of the continuity of the function
Λ̃y, which is obvious from the expression (??).

Let us show vy tends to ∞ on α. Let {un} ⊂ K : un ↓ α. Since vy is decreasing in K, we
get vy(un) ↑ v ∈ [0,∞]. If v is finite, since the zero set of Λ̃y is closed, by continuity, α ∈ K
(impossible). So vy(un) ↑ ∞.

Let us prove vy tends to 0 on α. Let {un} ⊂ K : un ↑ α. Since vy is decreasing in K,
we get vy(un) ↓ ε ∈ [0,∞). If ε > 0, since un < α, we obtain Λ̃y(un, ε/2) < 0 ∀n. Therefore
0 < Λ̃y(α, ε/2) = lim

n→∞
Λ̃y(un, ε/2) ≤ 0 (impossible). As a consequence, ε = 0 and vy(un) ↓ 0.

4 Numerical illustrations

Recall that for all u ∈ [0, 1], vy(u) and vx(u) are the unique respective solutions of

Λ̃y(u, v) = 0 and Λ̃x(u, v) = 0.

We now consider, for a varying parameter ρ, the environments

ε0 = (1, 5, 2, 8, 3, 3) and ε1 = (2, 11, 1, ρ, 2, 1.8). (4.1)
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Figure 1: The blue curve is the graph of vy (it does not depend on ρ); the green and red curves
are vx for the environments given in (??) with ρ = 10 and ρ = 9 respectively.

Figure ?? represents the ”critical” functions vy and vx for different choices of the environments.
Thanks to [?], these plots give us information about how many regimes we can observe when the
jump rates are modified. For example, the plot for ρ = 10 has three regimes: extinction of x (on
the right of the green curve), persistence (between the green and blue curves) and extinction of
y (on the left of the blue curve). For ρ = 9, there is an additional zone (above the red curve and
below the blue curve) that corresponds to jump rates leading to random extinction of a species.

5 Switching between two persistent Lotka-Volterra systems

Let us assume that ε0 and ε1 are of Type 3. In this case, one can easily get that extinction of
species y is not possible if u is to close of 0 or 1; in other words, [0, 1] \ Ĩ is either empty or is
an open interval which closure is contained in [0, 1]. Recall

R =
β0α1

α0β1
, A = (a1 − a0)(R− 1), B = (2a0 − c0 − a1)R+ (c1 − a0), C = (c0 − a0)R.

Then, we get that

[0, 1] \ Ĩ 6= ∅ ⇔


A < 0

∆ = B2 − 4AC > 0

0 <
−B −

√
∆

2A
< 1.

Moreover, if [0, 1] \ Ĩ is nonempty, then the map (u, v)→ E[φ(Uu,v)] is (strictly) decreasing in v
and convex in u. This is a straightforward adaptation of Lemma 4.1 in [?].

Figure ?? provides the shape of vx and vy for the environments ε0 = (6, 1, 4, 2, 1, 5) and
ε1 = (3, 3, 2, 5.5, 5, 1). Once again, the switched process has four regimes depending on the jump
rates.
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Remark 5.1. We see a surprising result : although both vector fields are persistent, the stochas-
tic process may lead to the extinction of one of the two species.
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Figure 2: Graph of vy (blue curve) and vx (red curve) for the environments ε0 = (6, 1, 4, 2, 1, 5)
and ε1 = (3, 3, 2, 5.5, 5, 1).

6 General case: proof of Theorem ??

The following array presents, for any couple of types, an example of two environments that are
associated to a stochastic process with four regimes depending on the jump rates. The first line
has been obtained in [?]. The second line is studied in Section 2. The fifth line is studied in
Section 5. The reader can easily check that the other cases correspond to Figure ??.

(F0, F1) a0 b0 c0 d0 α0 β0 a1 b1 c1 d1 α1 β1

Type 1-1 1 1 2 2 1 5 3 3 4 3.5 5 1

Type 1-2 1 5 2 8 3 3 2 11 1 9 2 1.8

Type 1-3 1 1 3.5 2 1 5 5 3 4 5.5 5 1

Type 1-4 1 1 2 3.5 1 5 3 4 4 3 5 1

Type 3-3 6 1 4 2 1 5 3 3 2 5.5 5 1

Type 3-4 6 1 4 8 1 5 3 10 4 7 5 1

Type 4-4 2 2 1 1 5 1 7 3.5 4 3 1 5

Acknowledgements. This work has been written during the stay of Tran Hoa Phu in Tours
for his intership of the French-Vietnam Master in Mathematics. We acknowledge financial
support from the French ANR project ANR-12-JS01-0006-PIECE.
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Figure 3: Graph of vy (blue curve) and vx (red curve) for the four last cases.
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