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Abstract

We investigate Lp(γ)–Lq(γ) off-diagonal estimates for the Ornstein–
Uhlenbeck semigroup (etL)t>0. For sufficiently large t (quantified in terms
of p and q) these estimates hold in an unrestricted sense, while for suffi-
ciently small t they fail when restricted to maximal admissible balls and
sufficiently small annuli. Our counterexample uses Mehler kernel esti-
mates.

1 Introduction

Consider the Gaussian measure

dγ(x) := π−n/2e−|x|2 dx (1)

on the Euclidean space Rn, where n ≥ 1. Naturally associated with this measure
space is the Ornstein–Uhlenbeck operator

L :=
1

2
∆− 〈x,∇〉 = −

1

2
∇∗∇,

where ∇∗ is the adjoint of the gradient operator ∇ with respect to the Gaussian
measure. This operator generates a heat semigroup (etL)t>0 on L2(γ), called the
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Ornstein–Uhlenbeck semigroup, with an explicit kernel: for all u ∈ L2(Rn, γ)
and all x ∈ R

n we have

etLu(x) =

∫

Rn

Mt(x, y)u(y) dγ(y),

where

Mt(x, y) =
1

(1− e−2t)n/2
exp

(

−e−t |x− y|2

1− e−2t

)

exp

(

2e−t 〈x, y〉

1 + e−t

)

(2)

is the Mehler kernel. If we equip R
n with the Euclidean distance and the

Gaussian measure, and if we consider operators associated with the Ornstein–
Uhlenbeck operator, we find ourselves within the realm of Gaussian harmonic

analysis : here, the Ornstein–Uhlenbeck operator takes the place of the Laplace
operator ∆.1 For a deeper introduction to Gaussian harmonic analysis see the
review of Sjögren [10] and the introduction of [11].

In this article we investigate whether the Ornstein–Uhlenbeck semigroup
satisfies Lp(γ)–Lq(γ) off-diagonal estimates : that is, estimates of (or similar to)
the form

(
∫

F

|etL1Ef |
q dγ

)1/q

. t−θ exp
(

−c
dist(E,F )2

t

)

(
∫

E

|f |p dγ

)1/p

, (3)

for some parameters c > 0 and θ ≥ 0, where 1 ≤ p < q ≤ ∞, f ∈ Lp(γ), and
for some class of testing sets E,F ⊂ X . Often such estimates hold whenever E
and F are Borel, but in applications we generally only need E to be a ball and
F to be an annulus associated with E. Such estimates serve as a replacement
for pointwise kernel estimates in the harmonic analysis of operators whose heat
semigroups have rough kernels, or no kernels at all, most notably in the solution
to the Kato square root problem [2] (see also [4]). Even though the Ornstein–
Uhlenbeck semigroup has a smooth kernel, it would be useful to show that
it satisfies some form of off-diagonal estimates, as this would suggest potential
generalisation to perturbations of the Ornstein–Uhlenbeck operator, whose heat
semigroups need not have nice kernels.

Various notions of off-diagonal estimates, including (3), have been consid-
ered by Auscher and Martell [3]. However, they only consider doubling metric
measure spaces, ruling out the non-doubling Gaussian measure. Mauceri and
Meda [7] observed that γ is doubling when restricted to admissible balls, in the
sense that γ(B(x, 2r)) . γ(B(x, r)) when r ≤ min(1, |x|−1). Therefore it is
reasonable to expect that the Ornstein–Uhlenbeck semigroup may satisfy some
form of Lp(γ)–Lq(γ) off-diagonal estimates if we restrict the testing sets E,F
to admissible balls and sufficiently small annuli.

Here we demonstrate both the success and failure of off-diagonal estimates
of the form (3), as a first step in the search for the ‘right’ off-diagonal estimates.

1The multiplicative factor 1/2, which is not present in the usual definition of the Laplacian,
arises naturally from the probabilistic interpretation of the Ornstein–Uhlenbeck operator.
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First we give a simple positive result (Theorem 2.3): for p ∈ (1, 2), and for t
sufficiently large (depending on p), (3) is satisfied for all Borel E,F ⊂ R

n. This
is proven by interpolating between L2–L2 Davies–Gaffney-type estimates and
Nelson’s Lp–L2 hypercontractivity. We follow with a negative result (Theorem
3.1): for 1 ≤ p < q < ∞ and for t sufficiently small (again depending on p and
q), (3) fails when E is a ‘maximal’ admissible ball B(cB , |cB|

−1) and when F
is a sufficiently small annulus Ck(B), in the sense that the implicit constant in
(3) must blow up exponentially in |cB|. This is shown by direct estimates of the
Mehler kernel.

Notation

Throughout the article we will work in finite dimension n ≥ 2.2 We will write
Lp(γ) = Lp(Rn, γ). Every ball B ⊂ R

n is of the form

B = B(cB , rB) = {x ∈ R
n : |x− cB| < rB}

for some unique centre cB ∈ R
n and radius rB > 0. For each ball B and each

scalar λ > 0 we define the expansion λB = λB(cB , rB) := B(cB , λrB), and we
define annuli (Ck(B))k∈N by

Ck(B) :=

{

2B k = 0,

2k+1B \ 2kB k ≥ 1.

For two sets E,F ⊂ R
n we write

dist(E,F ) := sup{|x− y| : x ∈ E, y ∈ F}.

For two non-negative numbers A and B, we write A .a1,a2,... B to mean that
A ≤ CB, where C is a positive constant depending on the quantities a1, a2, . . ..
This constant will generally change from line to line.
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2 A positive result

The Ornstein–Uhlenbeck semigroup satisfies the following ‘Davies–Gaffney-type’
L2(γ)–L2(γ) off-diagonal estimates. These appear in [13, Example 6.1], where
they are attributed to Alan McIntosh.

Theorem 2.1 (McIntosh). There exists a constant C > 0 such that for all
Borel subsets E,F of Rn and all u ∈ L2(γ),

‖1F e
tL(1Eu)‖L2(γ) ≤ C

t

dist(E,F )
exp
(

−
dist(E,F )2

2t

)

‖1Eu‖L2(γ).

Furthermore, Nelson [8] established the following hypercontractive behaviour
of the semigroup.3

Theorem 2.2 (Nelson). Let t > 0 and p ∈ (1 + e−2t, 2]. Then etL is a contrac-
tion from Lp(γ) to L2(γ).

Note that p > 1+e−2t if and only if t > 1
2 log

1
p−1 . Thus the hypercontractive

behaviour of the Ornstein–Uhlenbeck semigroup is much more delicate than that
of the usual heat semigroup et∆ on R

n, which is a contraction from Lp(Rn) into
Lq(Rn) for all 1 ≤ p ≤ q ≤ ∞ and all t > 0.

As indicated in the proof of [1, Proposition 3.2], one can interpolate between
Theorems 2.1 and 2.2 to deduce certain Lp(γ)-L2(γ) off-diagonal estimates for
the Ornstein–Uhlenbeck semigroup.

Theorem 2.3. Suppose that E,F are Borel subsets of R
n. Let t > 0 and

p ∈ (1 + e−2t, 2). Then for all u ∈ Lp(γ),

‖1F e
tL(1Eu)‖L2(γ) ≤

(

Ct

dist(E,F )
exp
(

−
dist(E,F )2

2t

)

)1−δ(p,t)

‖1Eu‖Lp(γ),

where C is the constant from Theorem 2.1 and where

δ(p, t) :=

1
2 − 1

p
1
2 − 1

1+e−2t

∈ (0, 1).

Proof. Write

CM :=
Ct

dist(E,F )
exp
(dist(E,F )2

2t

)

.

Theorem 2.1 says that

‖etL‖L2(γ,E)→L2(γ,F ) ≤ CM .

For all p0 ∈ (1 + e−2t, p) we have

‖etL‖Lp0(γ,E)→L2(γ,F ) ≤ ‖etL‖Lp0(γ)→L2(γ) ≤ 1

3This is done only for n = 1 in this reference, and a full proof for general n is given in
Nelson’s seminal 1973 paper [9]. These papers won him the 1995 Steele prize.
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by Theorem 2.2. Therefore by the Riesz–Thorin theorem we get

‖etL‖Lp(γ,E)→Lp(γ,F ) ≤ C
θ(p0)
M ,

where p−1 = (1 − θ(p0))/p0 + θ(p0)/2, or equivalently

θ(p0) =

1
p − 1

p0

1
2 − 1

p0

= 1−

1
2 − 1

p
1
2 − 1

p0

.

Taking the limit as p0 → 1 + e−2t gives

‖etL‖Lp(γ,E)→Lp(γ,F ) ≤ C
1−δ(p,t)
M

and completes the proof.

Remark 2.4. For 1 < p < q < ∞, a Lp(γ)–Lq(γ) version of Theorem 2.3 could
be proven by first establishing Lq(γ)–Lq(γ) off-diagonal estimates (which may
be obtained by interpolating between boundedness on Lq(γ) and the Davies–
Gaffney type estimates) and then arguing by the Lp(γ)–Lq(γ) version of Nelson’s
theorem.

This positive result does not rule out the possibility of some restricted Lp(γ)–
L2(γ) off-diagonal estimates for p ≤ 1 + e−2t. In the next section we show one
way in which these can fail.

3 Lower bounds and negative results

In this section we show that the Lp(γ)–Lq(γ) off-diagonal estimates of (3) are
not satisfied for admissible balls and small annuli when t is sufficiently small
(depending on p and q). More precisely, we show that (3) fails when E is a
maximal admissible ball B (i.e. a ball for which rB = min(1, |cB|

−1)), and F
is an annulus Ck(B) with k sufficiently small. These sets typically appear in
applications of off-diagonal estimates.

Theorem 3.1. Suppose that 1 ≤ p < q < ∞, and that

2

et + 1
> 1−

(

1

p
−

1

q

)

, (4)

or equivalently that

t < log

(

1 + ( 1p − 1
q )

1− ( 1p − 1
q )

)

.

Then the estimate (3) does not hold for the class of testing sets

{(E,F ) : E = B(cB, |cB|
−1), F = Ck(B), 1 ≤ k < ⌊log2 |cB |⌋ − 2}.
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Note that 1
p − 1

q ∈ (0, 1), so we always obtain some range of t for which the

off-diagonal estimates (3) fail.
Let us compare Theorems 3.1 and 2.3. Having fixed p ∈ (1, 2), we get

failure of Lp(γ)–L2(γ) off-diagonal estimates for maximal admissible balls and

small annuli for etL when t < log
(

1+( 1
p
− 1

2
)

1−( 1
p
− 1

2
)

)

, and when t > 1
2 log

1
p−1 the off-

diagonal estimates hold for all Borel sets. We do not know what happens for
the remaining values of t.

Some notation will make our lives easier. Write P (X)a1,a2,... to denote an
arbitrary polynomial in the variable X with coefficients that depend on the
quantities a1, a2, . . ., and which may change from line to line. We will need to
deal with various expressions of the form

b2|cB|
2 + b0 + b−1|cB|

−1 + · · ·+ b−m|cB|
−m,

but the only information that we will actually need is the coefficient b2 of |cB |
2.

Thus our notation allows us to write

b2|cB|
2 + b0 + b−1|cB|

−1 + · · ·+ b−m|cB|
−m = b2|cB|

2 + P (|cB|
−1),

keeping track only of the important coefficient.
To prove Theorem 3.1 we rely on the following lower bound.

Lemma 3.2. Suppose k ≥ 1 is a natural number, 1 < q < ∞, and let B be a

maximal admissible ball with |cB| > 2k+2. Then

(
∫

Ck(B)

|(etL1B)(y)|
q dγ(y)

)1/q

&k,n,t |cB|
−n(1+ 1

q
) exp

(

|cB|
2

(

2

et + 1
− 1−

1

q

)

+ P (|cB |
−1)k,q,t

)

.

Proof of Lemma 3.2. Suppose x ∈ B and y ∈ Cj(B). We argue by computing
a lower bound for the Mehler kernel Mt(x, y) as given in (2).

First we focus on the factor which involves

〈x, y〉 = |x||y| cos θx,y,

where θx,y is the angle between x and y. For 0 ≤ θx,y < π
2 , cos θx,y is positive

and order-reversing in θx,y. For x ∈ B and y ∈ Ck(B) we have θx,y ≤ θx0,y0
< π

2 ,
where x0 and y0 are depicted in Figure 1; the second inequality follows from
|cB| > 2k+2.4 Thus we have

min
x∈B

y∈Ck(B)

cos θx,y ≥ cos θx0,y0
.

Using the cosine rule and the definitions of Cj(B) and (x0, y0), we can compute

4We could compute a sharper upper bound, but the estimate here is sufficient for our
applications.
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cB

B

θx0,y0

x0

Ck(B)

y0

Figure 1: The angle θx0,y0
. Not to scale.

cos θx0,y0
=

2(|cB|
2 − 2k+2|cB|rB + 2 · 4k+1r2B)− 4k+2r2B
2(|cB|2 − 2k+2|cB|rB + 2 · 4k+1r2B)

=
|cB|

2 − 2k+2

|cB|2 − 2k+2 + 2 · 4k+1|cB|−2
,

using rB = |cB|
−1. Since

|x| ≥ |cB| − r−1
B and |y| ≥ |cB | − 2k+1r−1

B ,

we get

〈x, y〉 = |x||y| cos θx,y

≥ (|cB| − rB)(|cB | − 2k+1rB)
|cB |

2 − 2k+2

|cB|2 − 2k+2 + 2 · 4k+1|cB|−2

= (|cB|
2 − 2k+1 − 1 + 2k|cB|

−2)
|cB |

2 − 2k+2

|cB|2 − 2k+2 + 2 · 4k+1|cB|−2

= |cB|
2 + P (|cB |

−1)k,

again using rB = |cB|
−1, and using the polynomial notation introduced earlier.

Therefore, using the Mehler kernel representation of etL, for all y ∈ Ck(B) we
have

etL1B(y) &n,t

∫

B

exp

(

−e−t |x− y|2

1− e−2t

)

exp

(

2|cB|
2

et + 1
+ P (|cB|

−1)k,t

)

dγ(x).
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Since |x− y| < 2k+1rB < 2 (using rB = |cB|
−1 < 2−k), this gives

etL1B(y) &n,t exp

(

2|cB|
2

et + 1
+ P (|cB|

−1)k,t

)

γ(B)

&n |cB|
−n exp

(

2|cB|
2

et + 1
+ P (|cB |

−1)k,t − (|cB |+ |cB|
−1)2

)

= |cB|
−n exp

(

|cB|
2

(

2

et + 1
− 1

)

+ P (|cB|
−1)k,t

)

(5)

using a straightforward estimate on γ(B). Next, we estimate

γ(Ck(B)) &n |Ck(B)|e−(|cB |+2k+1rB)2

≃n 2knrnB exp

(

−(|cB|
2 + 2k+2|cB |rB + 2k+2r2B)

)

≃k,n |cB|
−n exp

(

−|cB|
2 + P (|cB |

−1)k
)

.

Combining this with (5) gives

(

∫

Ck(B)

|(etL1B(y))|
q dγ(y)

)1/q

&n,t |cB|
−n exp

(

|cB|
2

(

2

et + 1
− 1

)

+ P (|cB|
−1)k,t

)

γ(Ck(B))1/q

&k,n |cB|
−n(1+ 1

q
) exp

(

|cB |
2

(

2

et + 1
− 1−

1

q

)

+ P (|cB |
−1)k,q,t

)

,

as claimed.

Remark 3.3. When n = 1 the proof is simpler: we automatically have cos θx,y =
1, and the necessary restriction on |cB| is |cB| > 2(k+1)/2 (or equivalently, 0 /∈
2k+1B).

Proof of Theorem 3.1. We argue by contradiction. Suppose that etL satifies
the Lp(γ)–Lq(γ) off-diagonal estimates (3) for some θ ≥ 0, and for (E,F ) as
stated. Fix a natural number k ≥ 1 and let B be a maximal admissible ball with
|cB| > 2k. Lemma 3.2 and the off-diagonal estimates for E = B, F = Ck(B),
and f = 1B then imply

|cB|
−n(1+ 1

q
) exp

(

|cB |
2

(

2

et + 1
− 1−

1

q

)

+ P (|cB |
−1)k,q,t

)

.k,n,t,θ exp

(

−c
(2k+1 − 1)2r2B

t

)

γ(B)1/p

= exp

(

P (|cB |
−1)k,t

)

γ(B)1/p
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for some c > 0. Since

γ(B)1/p .n |B|1/pe−
1
p
(|cB |−rB)2 ≃n |cB|

−n/p exp

(

−
|cB|

2

p
+ P (|cB|

−1)p

)

,

this implies

exp

(

|cB|
2

(

2

et + 1
− 1 +

1

p
−

1

q

)

+ P (|cB|
−1)k,p,q,t

)

.k,n,t,θ |cB|
n(1−( 1

p
− 1

q
)).

The left hand side grows exponentially in |cB| when (4) is satisfied. However, the
right hand side only grows polynomially in |cB|. Thus we have a contradiction.

Remark 3.4. By the same argument we can prove failure of Lp(γ)–Lq(γ) off-
diagonal estimates for the derivatives (LmetL)m∈N of the Ornstein–Uhlenbeck
semigroup, with the same conditions on (p, q, t) and the same class of testing
sets (E,F ). This relies on an identification of the kernel of LmetL, which has
been done by the second author [12].

Remark 3.5. In this article we only considered off-diagonal estimates with re-
spect to the Gaussian measure γ. In future work it would be very interesting
to consider appropriate weighted measures, following in particular [5] and [6],
in which (among many other things) it is shown that estimates of the form
‖etLf‖L2(γ) . ‖fVt‖L1(γ) hold, where Vt is a certain weight depending on t.
Thus the Ornstein–Uhlenbeck semigroup does satisfy a form of ‘ultracontrac-
tivity’, but with the caveat that one must keep track of t-dependent weights. It
seems that this has not yet been explored in the context of Gaussian harmonic
analysis.
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