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Abstract

We present a numerical framework for the simulation of three-dimensional multi-fluid flows based
on a finite element/level-set approach. The method allows a full Eulerian “tracking” of the interfaces
between the fluids, and the properties of the interfaces can be directly taken into account as surface
forces. The resolution of the fluid equations and the advection of the interface can be easily decoupled,
which enables the use of efficient solving strategies. We also present a 3D benchmark of the rise of a
drop in a viscous fluid. We use two different setups and compare our results to previous results obtained
with other approaches to validate our method.

Keywords: Navier-Stokes, finite element method, level-set method, fast-marching, Hamilton-Jacobi
redistanciation method, two-fluid flows, high-order level-set

Introduction
1. Level set description

1.1. Description

Let © C R? (p = 2, 3) be a bounded domain decomposed into two distinct fluid subdomains §2; and
. Denote I" the interface between the two subdomains. In order to track the interface I'(¢), which is
moving at some velocity u, we use the level set method, which provides a way to implicitly follow the
interface position over time while naturally handling possible topological changes. The level set method,
described in [1-3], features a continuous scalar function ¢ (the level set function) defined on the whole
domain. This function is chosen to be positive in €21, negative in €5 and zero on I". The motion of the
interface is described by the advection of the level set function by the divergence-free velocity field wu:

0
—¢+U~V¢:O, V-u=0. (1)
ot
The signed distance to the interface function turns out to be a convenient choice for ¢, as the intrinsic
property |[V¢| = 1 eases the numerical resolution of the advection equation and the regularity of the

distance function allows us to use ¢ as a support for delta and Heaviside functions (c.f. section 1.2).
Nevertheless, it is known that the advection equation (1) does not preserve the property |Vo| = 1

and it is necessary to reset ¢(t) to a distance function without moving the interface, [4-6]. To reinitialize

¢(t) and enforce |V¢(t)| = 1, we can either solve a Hamilton-Jacobi equation, which “transports” the
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isolines of ¢ to their proper positions, or use the fast marching method, which resets the values of ¢ to
the distance to the interface from one degree of freedom to the next, starting from the interface (see [7]
for further details).

1.2. Interface related quantities

In two-fluid flow simulations, we need to define interface-related quantities such as the density, the
viscosity, or interfacial forces. To this end, we introduce the smoothed Heaviside and delta functions :

0, . ¢S_€7 O, ¢§_57
H@)=] L 8GN el h) = e (Z2)]. o
2 15 T 2¢e €
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with ¢ the distance to the interface function, and € a parameter controlling the “numerical thickness” of
the interface. Typically, we choose € ~ 1.5 h, with h the mesh size of the elements crossed by the 0
iso-value of the level set function.

The Heaviside function is used to define physical quantities which have different values on each
subdomain. For example, we define the density of two-fluid flow as p = pa + (p1 — p2) Ho($) (we use a
similar expression for the viscosity y). The delta function allows to define quantities on the interface, in
particular in the variational formulations, where we replace integrals over the interface I" with integrals
over the entire domain €2 using the smoothed delta function: if ¢ is a signed distance function (i.e.
|V¢| = 1), we have [ 1~ [, d-(¢).

However, as mentioned above, the advection equation does not preserve the property |V¢| = 1, and
the level set function ¢ is therefore not exactly a distance function. The support of J. can then have a
different size on each side of the interface, as it is narrowed in the regions where |V¢| > 1 and enlarged
in those where |V¢| < 1.

Fortunately, as suggested in [8], ﬁ is kept close to a distance function near the interface, and it

has the same 0 iso-value as ¢. We can thus use % as a support for interface-related functions to ensure
one recovers the correct limit as € — 0. The interfacial integral then reads

Jr=foo (wa)

and the density and viscosity in the domain are defined as

)
py = p2 + (p1 — p2) He <>
Ve @

fo = po + (p1 — p2) He <|$¢|> :

2. Numerical implementation

2.1. Discretization framework

The numerical implementation is performed using the Feel++ — finite element C++ library — [9—
11]. Feel++ allows to use a very wide range of Galerkin methods and advanced numerical methods such
as domain decomposition methods including mortar and three fields methods, fictitious domain methods
or certified reduced basis. The ingredients include a very expressive embedded language, seamless
interpolation, mesh adaption and seamless parallelization. It has been used in various contexts including
the development and/or numerical verification of (new) mathematical methods or the development of
large multi-physics applications [12—14]. The range of users span from mechanical engineers in industry,
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physicists in complex fluids, computer scientists in biomedical applications to applied mathematicians
thanks to the shared common mathematical embedded language hiding linear algebra and computer
science complexities.

Feel++ provides a mathematical kernel for solving partial differential equation using arbitrary or-
der Galerkin methods (FEM, SEM, CG, DG, HDG, CRB) in 1D, 2D, 3D and manifolds using simplices
and hypercubes meshes [9-11] : (i) a polynomial library allowing for a wide range polynomial expan-
sions including Hg;y and Hy, elements, (ii) a lightweight interface to BOOST.UBLAS, EIGEN3 and
PETSC/SLEPC as well as a scalable in-house solution strategy (iii) a language for Galerkin methods
starting with fundamental concepts such as function spaces, (bi)linear forms, operators, functionals and
integrals, (iv) a framework that allows user codes to scale seamlessly from single core computation to
thousands of cores and enables hybrid computing.

We work within the continuous Galerkin variational formulation framework, and use Lagrange finite
elements to spatially discretize and solve the equations governing the evolutions of the fluid and the level
set. Temporal discretization is performed using a Backward Differentiation Formula of order two for
the time derivatives when applicable, falling back to an order one Euler formula when the two previous
steps are not available. We discuss later in section 3.2 the solution strategy used within our framework.

2.2. Levelset advection

Due to its hyperbolic nature, the level set advection equation is subjected to spurious oscillatory
instabilities when solved within a standard finite element framework. To circumvent this well-known
problem and stabilize the resolution of the discrete advection equation, we use the Galerkin Least Square
(GLS) approach, introduced in [15] and studied in [16] for the case of advection-diffusion equations.

It consists in introducing a stabilization term in the discrete Galerkin variational formulation, which
then reads:

Find ¢, € P} such that V13, € P,

[/Q <a;)th + (u- Vébh)) ¢h] + S(on,¢hn) =0 3)
where S(¢p, ) is the GLS stabilization bilinear, which vanishes as h — 0, and PF is the chosen
Galerkin function space, here defined as the discrete (h-dependent) finite element space spanned by
Lagrange polynomials of order k.

As already mentioned, the advection of the level set does not preserve the “distance” (i.e. |V¢| = 1)
property. This can lead to numerical instabilities due to the accumulation or rarefaction of the level
set iso-lines which implicitly provide the smoothed interface-related functions. To overcome this issue,
we periodically reset ¢ to a distance function, either solving a discretized Hamilton-Jacobi equation as
proposed in [4, 5], or directly reinitializing ¢ with the fast-marching method [6]. In practice, we reset
the level set to a signed distance function at fixed rate every ten time steps.

2.3. Fluid equations

The inner and outer fluids are governed by the incompressible Navier-Stokes equations for Newto-
nian fluids:

po (?Z +u-w) — V- (g [Vu+ (Vu)']) + Vp = f, “)

V-ou=0, )

where w is the fluid velocity, p the pressure, f the external forces exerted on the fluid, and py and 1
are the level-set-dependant density and viscosity defined in eq. (2). In practice, the right-hand-side force
term in eq. (4) accounts for both volumic forces, such as gravitation, and surface forces, such as the
surface tension.



The problem definition eqgs. (4) and (5) is completed with Dirichlet- or Neumann-type boundary
conditions.

2.4. Coupling of the fluid and level set equations

The fluid equations are then coupled with the level set advection equation explicitely following a
non-monolithic approach. At each time step, the fluid equations are first solved with the interface-
related quantities and surface forces computed using the last-step level set function. We then use the
obtained fluid velocity to advect the level set and get the new interface position.

Note that the successive resolution of the fluid and level set equations can also be iterated within one
time step, until a fix point of the system of equations is reached. In practice however, for reasonably
small time steps, the fix-point solution is already obtained after the first iteration.

3. 3D simulation setup

We now present a 3D benchmark of our numerical approach, using the Navier-Stokes solver devel-
oped with the Feel++ library described in [17]. This benchmark is a three-dimensional extension of
the 2D benchmark introduced in [18] and realised using Feel++ in [19]. The setup for this benchmark
was also used in [20] to compare several flow solvers.

3.1. Benchmark problem

The benchmark consists in simulating the rise of a 3D bubble in a Newtonian fluid. The equa-
tions solved are the aforementioned incompressible Navier Stokes equations for the fluid and advection
equation for the level set, namely

0
ps (5: +u- V“) =V (g [Vu+ (Vu)']) + Vp = fo + fa, ©)
V-u=0, (7
¢ _
E—l—u-ng)—O, (®)

where pg and j14 are the interface-dependent fluid parameters defined above, and f,; and f; are respec-
tively the gravitational and surface tension forces, defined as:

fo=rs9 €
fst = okn - ~ okn 0z () (10)
with g = —0.98 e, the gravity acceleration, ¢ the surface tension, n = % the normal to the interface

and kK = V - mn its curvature. Equations (6) to (8) are solved after discretization of their variational
formulation as presented in section 2.

We consider (2 a cylinder with radius R = 0.5 and height H = 2, filled with a fluid and containing
a droplet of another imiscible fluid. We denote ; = {x|¢(x) > 0} the domain outside the droplet,
Qg = {z|é(x) < 0} the domain inside the bubble and I' = {x|¢(x) = 0} the interface. We impose
no-slip boundary conditions u‘ s = 0on Q walls. The simulation is run from ¢ = 0 to 3.

Initially, the bubble is spherical with radius 79 = 0.25 and is centered on the point (0.5,0.5,0.5)
assuming that the bottom disk of the €2 cylinder is centered at the origin. Figure 1 shows this initial
setup.

We denote with indices 1 and 2 the quantities relative to the fluid in respectively €27 and €25. The
parameters of the benchmark are then p1, p2, p1, 12 and o. We also define two dimensionless numbers
to characterize the flow: the Reynolds number is the ratio between inertial and viscous terms and is

defined as
Re — P1V191(270)°

141

4

9



Figure 1: Initial setup for the benchmark.

and the E6tvos number represents the ratio between the gravity force and the surface tension

_ A4pilglrs
i

Eo

Table 1 reports the values of the parameters used for two different test cases proposed in [20]. At
t = 3, the first one leads to an ellipsoidal-shaped drop while the second one gives a skirted shape due to
the larger density and viscosity contrasts between the inner and outer fluids.

Tests 01 p2 | v | . o Re | Eg
Case 1 (ellipsoidal drop) | 1000 | 100 | 10 | 1 | 245 | 35 | 10
Case 2 (skirted drop) 1000 | 1 10 | 0.1 | 1.96 | 35 | 125

Table 1: Numerical parameters taken for the benchmarks.

To quantify our simulation results, we use three quantities characterizing the shape of the drop at
each time-step: the center-of-mass

1
YT 10l Jo,
the rising velocity — focusing on the vertical component
1
T il Jo,

and the sphericity — defined as the ratio between the area of a sphere with same volume and the area of

the drop —
2
3
. <43|92|)
v \m )

Tl
of the drop. Note that in the previous formulae, we have used the usual “mass” and area of the drop,
respectively defined as Qo = fQ2 land |T| = [ 1.
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3.2. Simulation setup

The simulations have been performed on the supercomputer of the Grenoble CIMENT HPC center
up to 192 processors. To control the convergence of our numerical schemes, the simulations have been
run with several unstructured meshes, which characteristics are summarized in table 2.

We run the simulations looking for solutions in finite element spaces spanned by Lagrange polyno-
mials of order (2,1, 1) for respectively the velocity, the pressure and the level set. The corresponding
numbers of degrees of freedom for each mesh size are also reported in table 2.

Mesh properties Finite-element DOF
h Tetrahedra Points Order 1 DOF  Order 2 DOF #DOF
0.025 380125 62 546 62 546 490 300 1595992
0.02 842 865 136 932 136 932 1092644 3551796
0.0175 1148581 186 136 186 136 1489729 4841459
0.015 1858603 299595 299595 2415170 7844700
0.0125 2983291 479167 479 167 3881639 12603251

Table 2: Mesh properties and degrees of freedom: mesh characteristic size, number of tetrahedra, number of points, number of
order 1 degrees of freedom, number of order 2 degrees of freedom and total number of degrees of freedom of the simulation.

Numerical parameters Total time (h)

h #proc At Case 1 Case?2
0.025 64 1x1072 3.5 3.6
0.02 128 9 x 1073 4.8 5.1
0.0175 128 8x 1073 8.9 9.5
0.015 192 7x1073 | 12.3 13.5
0.0125 192 6x1073 || 33.8 39.6

Table 3: Numerical parameters used for simulations and resulting simulation times for each test case.

The Navier-Stokes equations are linearized using Newton’s method and the resulting linear sys-
tem is solved with a preconditioned flexible Krylov GMRES method using the SIMPLE preconditioner
introduced in [21]. The “inversions” of the velocity and pressure block matrices required by the pre-
conditioning are performed using a block Jacobi and an algebraic multigrid (GAMG) preconditioner
respectively.

The linear advection equation is solved with a Krylov GMRES method, preconditioned with an
Additive Schwarz Method (GASM) using a direct LU method as sub-preconditionner. Most of the
results shown below are obtained using the Fast-Marching method to reinitialize the level set function
every 10 time-steps. We however also present a comparison between the Fast-Marching and Hamilton-
Jacobi reinitialization methods for the finest mesh in each case to ensure consistency of the results.

4. Results

4.1. Case I: the ellipsoidal drop

Figure 2a shows the shape of the drop in the x — z plane at the final ¢ = 3 time step for the
different aforementioned mesh sizes. The shapes are similar and seem to converge when the mesh size
is decreasing. The drop reaches a stationary circularity as shown in fig. 2d, and its topology does not
change. The velocity increases until it attains a constant value. Figure 2c shows the results obtained
for the different mesh sizes. The evolution of the mass of the drop versus time is shown in fig. 2e. It
highlights the rather good mass conservation property of our simulation setup, as about 3% of the mass
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is at most lost for the coarsest mesh, while the finest one succeeds in keeping the loss in mass below

0.7%.

We also note that our simulation perfectly respects the symmetry of the problem and results in a
axially symmetric final shape of the drop, as shown in fig. 3.
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Figure 2: Results for the ellipsoidal test case (case 1).



1.6 |- B
5| |
o 14| e ]
13| |
1.2; ;

| L | L | L | L | L | L |
02 03 04 05 06 0.7 0.8
Z,y

Figure 3: Shape at final time in the x — z and y — z planes for test case 1 (h = 0.0125).

4.1.1. Comparison between Hamilton-Jacobi and fast-marching reinitialization

As mentioned in section 2.2, two reinitialization procedures can be used to overcome the “deforma-
tion” of the level set which becomes more and more different from the distance to the interface function
as it is advected with the fluid velocity. The fast-marching method resets the values of ¢ on the degrees
of freedom away from the interface to match the corresponding distance. The Hamilton-Jacobi method
consists in solving a advection equation which steady solution is the wanted distance function.

We have run the A = 0.0175 simulation with both reinitialization methods to evaluate the properties
of each one, and compare them using the monitored quantities. Figure 5 gives the obtained results.

The first observation is that the mass loss (see fig. Se) is considerably reduced when using the FM
method. It goes from about 18% mass lost between ¢ = 0 and ¢ = 3 for the Hamilton-Jacobi method to
less than 2% for the fast-marching method. This resulting difference of size can be noticed in fig. 4. The
other main difference is the sphericity of the drop. Figure 5d shows that when using the fast-marching
method, the sphericity decreases really quickly and stabilises to a much lower value than the one obtained
the Hamilton-Jacobi method. This difference can be explained by the fact that the fast-marching method
does not smooth the interface. The shape can then contain some small irregularities leading to a bad
sphericity. Evenso, with both methods the sphericity stays quite constant after the first second of the
simulation. The rising velocity and the vertical position do not show any significant difference between
the two reinitialization methods.

ay X aY X

(a) Fast Marching method (b) Hamilton-Jacobi method

Figure 4: 3D shape at final time (f = 3) in the z — y plane for test case 1 (b = 0.0175).
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Figure 5: Comparison between the Fast Marching method (FM) and the Hamilton-Jacobi (HJ) method for test case 1 (ellip-
soidal drop). The characteristic mesh size is h = 0.0175.



4.1.2. Comparison with previous results

Figure 6 shows a plot of our results compared to the ones presented in [20]. In this paper, the
authors perform simulations on the same setup and with the same test cases as considered here. To
ensure consistency of their results, they use three different flow solvers (hence three different space
discretization methods) coupled with two different interface capturing methods: the DROPS and NaSt3D
solvers coupled to a level set approach, and the OpenFOAM solver which uses a volume-of-fluid method.

To evaluate the effect of the characteristic mesh size, we plot the results we obtained for the simula-
tions run with both & = 0.025 and » = 0.0125 along with the results from [20].
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Figure 6: Comparison between our results (denoted FEEL) and the ones from [20] for the test case 2 (the ellipsoidal drop).

We can observe an overall good agreement between our results and the benchmark performed in
[20].

4.2. Case 2: the skirted drop

In the second test case, the drop gets more deformed because of the lower surface tension and the
higher viscosity and density contrasts. Figure 7 displays the monitored quantities for this test case.
We observe that the shape of the “skirt” of the drop at ¢ = 3 is quite strongly mesh dependent, but
converges as the mesh is refined. The other characteristics of the drop are not so dependent on the mesh
refinement, even for the geometrically related ones, such as the drop mass, which shows a really small
estimation error (only 2% difference between the coarsest and finest meshes), and displays the really
good conservation properties of our simulations. We again also note in fig. 8 the symmetry of the final
shape of the drop, which highlights the really good symmetry conservation properties of our approach.
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Figure 7: Results for the skirted test case (case 2).

11



16F a
1.5} 2
14 | x — z plane B
N - y—zzlane B
1.3 2
1.2+ a

| L | L | L | L | L | L |
02 03 04 05 06 0.7 08
T,y

Figure 8: Shape at final time in the  — z and y — z planes for test case 2 (h = 0.0125).

4.2.1. Comparison between Hamilton-Jacobi and fast-marching reinitialization

As for the test case 1, we provide a comparison of the results for the test case 2 obtained using either
the fast-marching or the Hamilton-Jacobi reinitialization method. These results, obtained for an average
mesh size (h = 0.0175) are shown in fig. 10. As before, they highlight noticeable differences between
the two methods for geometrically related quantities such as mass loss, sphericity and final shape. We
can even observe a non-negligible difference for the latter in the region of the “skirt”. This difference,
mainly related to the diffusive properties of the Hamilton-Jacobi method, can also be observed on the
3D shapes in fig. 9. The good agreement of the results obtained using the fast-marching method tend
to suggest that the Hamilton-Jacobi method is not accurate enough for this kind of three-dimensional
simulation.

aY X aY X

(a) Fast Marching method (b) Hamilton-Jacobi method

Figure 9: 3D shape at final time (¢ = 3) in the x — y plane for test case 2 (h = 0.0175).

4.2.2. Comparison with previous results

As in section 4.1.2, we compare our results to the benchmark [20], and show the relevant quantities
in fig. 11.

We also observe a good agreement between our simulations and the ones from the benchmark. We
however note that the final shape of the skirted drop is very sensitive to the mesh and none of the groups
agree on the exact shape which can explain the differences that we see on the parameters in fig. 11 at
time ¢ > 2.

12



1.6

1.5

1.4

1.3

1.2

0.3

0.2

Ue,z

0.1

] 14f ]
| 1.3 — |
N 1.2 jlsr / |
) 1.1 j” .
| © 1 j]zzs 26 27 28 20 3 t
| 2 0.9 r m
1 0.8} .
a 0.7 N |
1 0.6 - —FM |
| 0.5] W
| L | L | L | L | L | L | L | L | L | L | L I I I |
02 03 04 05 06 0.7 08 0 05 1 15 25 3
x t
(a) Shape at final time (¢ = 3) in the vertical © — z plane. (b) 2. center-of-mass vertical component.
u T T T T — m T T T T 1 LI S ——
e SSUUUSSUUSESS v 1F M |
[ ’/ | L H |
/ 0.95 - -
| / i i |
- | 0.9 .
-/ | 7 o8t |
B | 0.8 F -
—m||  0.75¢ .
| HI || + ]
L | L | L | L | L | L I I I 0'7 e 1 1 1 1 1 1 1 1 1 1 -
o 05 1 15 2 25 3 0O 05 1 15 25 3
t t
(c) Vertical velocity. (d) Sphericity.
1072
68 T —
6.4 | .
6 ]
L 5.6 B B
S 521 ]
48] |
44} |
4 H ——rMm —
36 L T \HJ T | | | | | | | | N
0O 05 1 15 2 25 3
t
(e) Mass.

Figure 10: Comparison between the Fast Marching method (FM) and the Hamilton-Jacobi (HJ) method for test case 2 (skirted
drop). The characteristic mesh size is h = 0.0175.
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4.3. High-order simulations

As already mentioned, our framework naturally allows the use of high-order Galerkin discretization
spaces. As an illustration, we present here benchmark simulation results performed using finite element
spaces spanned by Lagrange polynomials of order (2, 1, 2) for each test case. The mesh size considered
here is h = 0.02, and the results are shown in fig. 12 and fig. 13 for test cases 1 and 2 respectively. We
expect the increase in order of the level-set field to improve the overall accuracy.

We can indeed observe that the final shapes of high-order simulations look smoother in both cases,
as confirmed by the sphericity plots. The effect is highly noticeable on the “skirt” which appears for the
second test-case, which looks even smoother than the one obtained with the finest (h = 0.0125) (2,1, 1)
simulation.

We can also notice that more “physically” controlled quantities, such as the position of the center-
of-mass and the vertical velocity are less impacted by the polynomial order of the level-set component,
which is not so surprising, as these quantities are mainly determined by the (level-set-dependent) fluid
equations, which discretization orders where kept constant for this analysis.

Conclusion

We have presented a new numerical framework for the simulation of 3D drops under flow. This
framework is based on level-set methods solved by a (possibly high order) finite element method. The
explicit coupling between the level-set and the fluid has proven to be efficient and has allowed us to
take advantage of reliable and efficient preconditioning strategies to solve the fluid equations. The
level-set framework for three-dimensional two-fluid flows has been verified using a standard numerical
benchmark and the results are in agreement with the simulations performed with other methods. We have
also compared two different level-set reinitialization procedures (the fast-marching and the Hamilton-
Jacobi methods) and observed significantlty different behaviors, in particular the former is much better
at mass conservation than the latter.

Further improving the accuracy of the level-set and related quantities (such as V¢ or physical quan-
tities defined with ¢) using higher order and/or hybrid methods is still ongoing.

The framework presented and validated here provides the building blocks for the simulation of com-
plex fluids in complex geometries, and shall be used in a near future to better understand the flow of red
blood cells in realistic vascular systems.
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