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Explicit Computations and Further Extensive
Simulations for Rigid- or Elastic-joint Arm

Technical Attachment to:

”Aerial Robots with Rigid/Elastic-joint Arms:
Single-joint Controllability Study and Preliminary Experiment”

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Daejeon, South Korea, October 2016

Burak Yüksel1, Nicolas Staub2 and Antonio Franchi2

Abstract—This document is a technical attachment to [1]
that provides the explicit computations on the proofs and some
numerical simulations. We also provide an informal recall of
exact feedback linearization and differential flatness of the system
at hand. In addition, Fig. 7 is given to support the experiment’s
section of [1].

I. ON EXACT INPUT-OUTPUT FEEDBACK LINEARIZATION
VIA DYNAMIC FEEDBACK AND DIFFERENTIAL FLATNESS

In this section we informally recall some facts on exact
feedback linearization and differential flatness, see [2], [3] for
a thorough explanation. With reference to the system given
in (1) of [1], let us consider a candidate output vector y whose
dimension is 3, as the input. We say that y is differentially flat
if the state q, q̇ of the system and the input u can be written as
an algebraic function of y and a finite number of its derivatives.
Flatness is a useful property for motion planning since one can
plan in the lower-dimensional output space instead of planning
for the full state.

On the other side, a system is exactly input-output lin-
earizable with a dynamic feedback, if there exists a change
of coordinates, possibly including a feedback input transfor-
mation, that brings the system in an equivalent linear and
controllable form. A sufficient condition to obtain so is that
if one derivates w.r.t. time the components of y until at least
one input appears, the total relative degree matches with the
dimension of the system state (taking into account possible
additional integrators inserted in the input channels), hence
no uncontrolled internal dynamics appears. This property is
very useful for control purposes, in fact, if one rewrites the
vector of derivatives of y as ȳ, one obtains

ȳ = f̄(x̄)+ Ḡ(x̄)ū, (1)
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where x̄ ∈ Rn̄ is the augmented state of dimension of n̄, and
Ḡ is an invertible decoupling matrix. Then the control law

ū = Ḡ−1(v− f̄), (2)

where v is a virtual input, brings the system in the form

ȳ = v, (3)

which is linear and controllable, as long as Ḡ is invertible1.
Once the system is transformed in form (3), any outer control
loop for stabilizing linear systems can be used to design v.
Although both concepts sound different, differential flatness
is equivalent to exact input-state linearizability via dynamic
feedback in an open and dense set of the state space and
an output is flat if and only if it is exactly linearizing [3]–
[5]. Hence it is convenient to say that the exact linearizing
outputs are flat outputs as well. Therefore in Sec. III and
Sec. IV of [1] we used the feedback linearization method for
controlling the system and also to find the differentially flat
outputs. Moreover, in the following, we derive by inspection
the algebraic map that relates the output to the state and the
input.

We will now present sketches of the flatness proof for the
case-R and case-E presented in [1].

A. Sketch of flatness part of the Proof of Proposition 1, Case-R

We recall the Proposition 1 (Case-R) of Sec. III of [1]:

Proposition 1. The vector [pT
c1

θ12]
T is an exactly linearizing

output via dynamic feedback for the model in Case-R, as long
as ut 6= 0. As a consequence, it is also a flat output.

In order to possibly use the differential flatness for planning
purposes, we sketch the procedure to explicitly write down the
algebraic map that relates y, ẏ, ÿ,y(3),y(4) with θ1, θ̇1, and u.
In fact, pc1 and θ12 are already part of y. This procedure has
been partially shown in [6] only in the special case that rG = 0

1Notice that the equations equations (1–3) are identical to (2a), (2b) and
(2c) of [1].
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(i.e., PC1 and PG are coincident). The position of the CoM of
overall system in FW is given by

pc =
(m1 +mm)pc1 +m2pc2

ms
, (4)

where pc2 = pc1 +R12d2. This means that pc is a function only
of y. Now, since from the dynamical model we have

msẍc =−sinθ1ut

msz̈c =−cosθ1ut +msḡ,

we can write ut = ms||w|| and θ1 = atan2(−wz,−wx), where
w = p̈c − [0 ḡ]T = [wx wz]

T ∈ R2, which is a function of
p̈c(p̈c1 θ12, θ̇12, θ̈12). Hence ut = ut(p̈c1 θ12, θ̇12, θ̈12) and θ1 =
θ1(p̈c1 θ12, θ̇12, θ̈12). Furthermore, from the last row of the
system dynamics, we can write

τ = τ(θ12, p̈c1 , θ̈12) = β
T (θ12)p̈c1 +mBθ̈12 +g4(θ12).

Finally, using the third row of the system dynamics we have
ur = J1θ̈1+τ−dGx ut , where after straightforward algebra θ̈1 is
function of (wx,wz, ẇx, ẇz, ẅx, ẅz). This concludes the sketch
of the proof.

B. Sketch of flatness part of the Proof for Proposition 2,
Case E

We recall the proposition 2 (Case-E) of Sec. IV of [1]:

Proposition 2. The vector [pT
c1

θ12]
T is an exactly linearizing

output via dynamic feedback for the model with elastic-joint
arm (Case-E), as long as ut 6= 0 and ke 6= 0. As a consequence,
they are also flat outputs.

In order to possibly use the differential flatness property
for planning purposes, we sketch the procedure to explicitly
write down the algebraic map that relates y, ẏ, ÿ,y(3),y(4) with
θ1, θ̇1,θ1m, θ̇1m, and u. The position in FW of the CoM of the
overall system can be written as in (4), which leads to ut =
ms||w|| = ut(p̈c1 θ12, θ̇12, θ̈12) and θ1 = atan2(−wz,−wx) =
θ1(p̈c1 θ12, θ̇12, θ̈12) as in Sec. I-A. From the fourth row of
the system dynamics we can write

θ1m = θ1m(θ12, p̈c1 , θ̈12)

=
β T p̈c1 +(mB− Jm)θ̈12 +g4(θ12)+ keθ12

ke
. (5)

The motor torque can be retrieved from the last row of the
system dynamics using

τ = τ(θ12,θ1m, θ̈1m) = Jmθ̈1m + keθ1m− keθ12,

where can θ̈1m be derived differentiating twice (5). The
PVTOL torque can be retrieved from third row of the
system dynamics as ur = J1θ̈1 + τ − dGx ut ,, where θ̈1 =
θ̈1(wx,wz, ẇx, ẇz, ẅx, ẅz). This concludes the sketch of the
derivation of the map for Case-E.

C. Block Diagram of the Nonlinear controller

A block diagram of both the exact (dynamic feedback)
linearizing and the outer loop controllers (presented in [1])
together with a smooth trajectory planner is provided in Fig. 1.

ūy(4)

x = [qT , q̇T ]T

u

x

utu̇t
ÿ,y(3)

y, ẏ

x

HOD

TG LC DFL
y
(3)
d

ÿd

ẏd

yd

u̇tut

u̇t

ut

y
(4)
d

Fig. 1: Scheme of the exact linearizing controller. HOD stands for
”High Order Dynamics”, which analytically (i.e., exactly) computes
the high order derivatives of the flat outputs y, i.e. ÿ and y(3) from the
current state x. TG, the ”Trajectory Generator”, generates the desired
trajectory in C3, based on a 4-th linear order filter. An outer loop
”Linear Controller”, LC, as in (14) of [1] controls the system brought
in the linear form by the inner loop and tracks the desired outputs
and their derivatives. DFL is the short form of ”Dynamic Feedback
Linearization” block, i.e., the inner loop which brings the system to
the linear controllable form as in (2). Notice that everything inside
the controller is framed with dashed line, and requires only the state
of the system, x, as input. The output of this overall control scheme,
u = [ut ut τ]T ∈ R3, is the control input entering to the system.

II. EXTENSIVE AND REALISTIC SIMULATIONS

In the simulations, the nominal parameters of the system,
their deviations, and the noise of the measured state are
chosen close to the real values. A summary of the nominal
values can be found in Table I. Deviation from the nominal
values for mass, inertia and spring parameters are defined as
percentages, while for distances are defined as offsets in proper
units. Moreover, Gaussian noises with constant variances and
zero biases in bandwidth between 10dB and 20dB are added
to both position and velocity measurements. A summary of
all deviation and noises are available in Table II. In all the
simulation cases, the controller actions are computed using the
nominal (i.e., wrong) values of the parameters and the noisy
measurements. The system dynamics is instead integrated
using the real values (i.e., nominal + deviations).

The noise variances for the velocity and angular speed mea-
surement are chosen larger than for positions and orientation,
respectively. For the measurements of the motor state we
have chosen a smaller standard deviation than for the state
of the PVTOL since servo motors generally provide good
position/velocity estimation with high resolution encoders.

The system dynamics is simulated with Simulink at 1 KHz.
The positions and velocities are provided at a rate of 30 Hz,
to the controller, similarly to what a commercial camera+IMU
setup would provide. All orientations and angular velocities
are given at 500 Hz, which is a realistic value both for IMU
attitude estimation and motor encoder readings.

In the dynamic models, the link attached to PVTOL is
considered as a rod, whose inertia is computed using J2 =
m2L2/12, where L= ||d2+de||. The motor inertia is computed
as Jm = g2

r Jms where gr is its gear reduction ratio, where
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Jms = mrr2
r /2 is calculated by considering motor as a rotating

solid cylinder.
The stiffness range of the elastic actuator is chosen similar

to the one from [7]. Physical limits to all actuators are
considered as hard thresholds, as given in Table I.

In the plots of the simulations (see Figs. 3-6), for nominal
values we mean the system behavior in the ideal case, i.e.,
as if the controllers were fully aware of the real parameters
(nominal + deviation) of the system dynamics and there was
neiter noise nor under-samplings in the measurements. The
actual values represent instead the system behavior when the
controllers use the nominal (thus wrong) parameters and the
measurements are under-sampled and noisy.

For numerical validation, two important scenarios are con-
sidered; i) aerial grasping, and ii) link velocity amplification.
It is observed that the rigid-joint design is more suitable for the
first scenario, while using an elastic-joint arm is much more
advantageous for the second one.

Furthermore, we tested our controller in a simulation con-
sidering the full dynamical 3D model of the system, using
the CAD model of the experimental setup in Sim-Mechanics,
which is known to be a realistic physical simulation toolbox
provided by Matlab. Our 3D system consist of a quadrotor
equipped with a Qbmove VSA [7], which is also connected to
a rigid arm (see Fig. 3 of [1]). We split the 3D model into two
planes, Plane-A and Plane-B as shown in Fig. 3a of [1]. All the
motion on Plane-A (including that of the absolute link angle)
is controlled using the exact linearizing controller presented in
Sec. III of [1] (via thrust, torque around x1 and torque for the
Qbmove VSA, see Fig. 1). The rest of the quadrotor motion
(motion in Plane-B – except the translation along z1 – and
rotation around the vertical axis z1) is controlled using a near-
hovering controller, which is explained in [8]. This allows us
to test the performance of the controller presented in [1] in a
real experimental scenario. The controllers are tested together
with the CAD model of the real setup in SimMechanics, and
the results are given in the video attachment of [1].

A. Aerial Grasping

The first set of simulations is aimed at testing the grasping
of a stationary object using the arm both for Case-R and Case-
E. The grasped object mass is denoted with mo > 0. At time
tg (grasping time instant) mass mo is attached to point PE. The
effect of grasped mass to the system is accurately dynamically
modeled as following
• The mass of arm is updated to m2t≥tg

= m2 +mo,
• The distances d2 and de are updated using the formulas

d2t≥tg
= d2 +dε

det≥tg
= de−dε

where dε =
mo

m2t≥tg
de,

• Using parallel axis theorem, the link inertia is updated to

J2t≥tg
=

m2t≥tg

12
L2 +m2t≥tg

||dε ||2.

where L = ||d2 +de|| as before.

Fig. 2: (a) Picture of the experimental setup tested in [1], together
with a 3D printed gripper at the end of its arm. A Qbmove VSA is
attached to the quadrotor.
(b) Close up on the Qbmove VSA more details can be found at
http://www.naturalmachinemotioninitiative.com.

Moreover, due to differences between the end-effector and
the stationary mass velocities, an impact will occur at the
moment of grasping. The external force to the system will
be then

fext = JT fimp

where
fimp =−mo

ṗe− ṗo

Ti

with end-effector velocity ṗe is computed as time derivative
of

pe = pc1 +R12(d2 +de)

and stationary object velocity is ṗo = 0. The interval Ti
represents the impact duration and its value is given in Table I.
The jacobian matrix J is different for the rigid-joint arm and
the elastic-joint arm cases. For the former it is

J =

[
1 0 0 cos(θ12)(d2z +dez)− sin(θ12)(d2x +dex)
0 1 0 −cos(θ12)(d2x +dex)− sin(θ12)(d2z +dez)

]
and for the latter it is

J =

[
1 0 0 cos(θ12)(d2z +dez)− sin(θ12)(d2x +dex) 0
0 1 0 −cos(θ12)(d2x +dex)− sin(θ12)(d2z +dez) 0

]
.

A composite trajectory is chosen in which an object with
mo = 0.5kg is grasped by the end-effector at time instant
tg = 2.67s. At this instant the joint arm is at its maximum
orientation from an initial condition, the PVTOL is at a high
velocity in +xW direction and at the beginning of its raising
up along the −zW axis (remember that +zW is facing down).
In all cases the desired trajectories have different initial values
from the actual starting configuration of the system, so that we
can test also the convergence capabilities of the controller in
the transient phase in addition to the tracking ability.

1) Grasping with Rigid-joint Arm: The results are given in
Fig. 3. Two cases are compared: known grasped mass (k.m.)
vs. unknown grasped mass (u.m.). After the grasping moment
tg, the deviations from desired trajectories can be clearly seen
for both cases. If the grasped mass is unknown, such deviation
is higher for all flat outputs. In the nominal case (see yellow
solid curve in Fig. 3) controller is fully aware of its velocity

http://www.naturalmachinemotioninitiative.com/#!qbmovev01/cfqh
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Quantities Notation Nominal Value Unit
or Range

PVTOL mass m1 1.00 kg
motor mass mm 0.20 kg
link mass m2 0.30 kg
rotating motor mass mr 0.05 kg
object mass mo 0.5 kg
PVTOL inertia J1 0.028 kgm2

motor solid inertia Jms 0.0562e-06 kgm2

motor inertia Jm 0.4101 kgm2

link inertia J2 0.004 kgm2

dis. vec. betw. PC2 & PM d2 [0 0.2]T m
dis. vec. betw. PC2 & PE de [0 0.2]T m
dis. vec. betw. PC1 & PG dG [0.01 0.05]T m
motor shaft radius rr 0.015 m
linear spring stiffness ke 8↔ 30 Nm/rad
motor gear ratio gr 270:1 -
PVTOL thrust range Tt 0.1↔ 28 N
PVTOL torque range Tr −3↔ 3 Nm
Motor torque range Tm −5↔ 5 Nm
grasping time tg 2.67 s
impact duration Ti 0.01 s

TABLE I: Summary of the nominal parameters of the simulations.

Non-idealities Notation Value Unit
deviation in masses δm 2 %
deviation in inertias δi 10 %
deviation in d2 δ2 [0 0.01]T m
deviation in dG δG [0 0.01]T m
deviation in spring constant ke δs 5 %
3-sigma Gauss. noise in pos. 3σp 0.01 m
3-sigma Gauss. noise in vel. 3σv 0.02 m/s
3-sigma Gauss. noise in θ1 3σ1 0.01 rad
3-sigma Gauss. noise in θ̇1 3σd1 0.02 rad/s
3-sigma Gauss. noise in θ2,θm,θe 3σ2 0.001 rad
3-sigma Gauss. noise in θ̇2, θ̇m, θ̇e 3σd2 0.002 rad/s

TABLE II: Summary of the deviations from nominal parameters and
noise levels used in the simulations. Deviations in masses, inertias and
spring parameters are considered as a percentage, while for distances
they are offsets. The controllers in each simulation are not aware of
these deviations. Moreover, noises are added to each measurement,
whose standard deviations are reported in the table.

and the object mass, hence it generates high peaks in torques
to counterbalance the impact. For the actual cases (see red
and pink solid curves in Fig. 3) the controller is aware of the
model with some deviations, hence it produces less reaction to
impacts compared to nominal case, which results in a worse
tracking performance.

2) Grasping with Elastic-joint Arm: Two cases are com-
pared: grasping with low stiffness spring, ke = 8 Nm and
with high stiffness spring, ke = 30 Nm. Results are given
in Fig. 4, this time together with the actual absolute motor
orientation θ1m depicted with purple dashed curves. In both
the low and high stiffness cases, the tracking performance
of the flat outputs are very close to each other, moreover it
is very similar to the results given in Fig. 3, with a clear
difference in the absolute link orientation θ12. However, the
cost of it is the control effort, that is much more for Case-E
than for Case-R. Using high stiffness joint mitigates this effect
and results beneficial for the aerial grasping task. In fact in
our simulations we found that for ke = 50 Nm/rad a stable
grasping has been performed within the physical limits of the
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Fig. 3: Aerial grasping with PVTOL+rigid-joint arm. The desired
trajectory is depicted with a black dashed curve. The grasping
moment is tg = 2.67s (shown with a vertical dashed line). The
nominal signals are plotted with yellow solid curves. In the case
of known grasped mass (k.m.), the actual values and the noisy
measurements (entering to the controller) are presented with red and
purple solid curves, respectively. The pink solid curve is used for the
case of unknown grasped mass (u.m.). Notice that gravity is along
the +z direction. The small figures are the magnified plots of the
individual subfigures at around the grasping moment.

actuators (no overshoots in torques). In this case is however
possible to see a less performant tracking of θ12. We did
not put these supplementary results in this report for brevity.
Finally, one can conclude this simulation set saying that for
aerial grasping task and for tracking a generic trajectory Case-
R is more advantageous than Case-E.

B. High-speed Oscillations: Link Velocity Amplification

In this section we present a second simulation set in which
the elastic-joint arm is more beneficial than a rigid-joint
arm configuration. We consider a scenario, where the link
is asked to oscillate at high velocities, which could be used
for tasks such as hammering on a surface or throwing an
object far away. Such case was studied before by the authors,
where a light-weight elastic-joint arm was developed and
its link velocity was amplified w.r.t. the motor velocity, and
experimental results have been provided in [9]. However, the
controller for flying robot presented in that work was a near
hovering approximate linearization controller and it did not
exploit the exact feedback linearization and flatness properties
of the system.

Here we perform a similar link velocity amplification task,
using the controller presented in Section IV of [1]. We choose
ke = 8Nm/rad for the simulation. The natural frequency of
the system is identified by setting the gravity to zero and
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Fig. 4: Aerial grasping with PVTOL+elastic-joint arm. The desired
trajectory is depicted with black dashed curve. The grasping moment
tg = 2.67s is shown with a vertical dashed line. The nominal values
for high stiffness case are given with yellow solid curves. The red
solid curve stands for the actual signals for the high stiffness joint
simulation, and pink solid curve depicts the actual values of the low
stiffness joint simulation. The pink dashed curve shows the absolute
motor orientation only in the plot on the second row and second
column. Physical limits on torques are shown with blue dashed
horizontal lines.

letting the arm evolve freely from an initial condition of 60deg
and observing its behavior. We found that for nominal values,
arm swings with period of T = 0.255s. We used this value to
generate the frequency of the desired trajectory for θ12 with a
constantly increasing amplitude until a certain constant value.
We also set the desired trajectory of the position constantly at
zero.

Results of Case-E are reported in Fig. 6 shows a good po-
sition tracking performance, with less than 1 cm of maximum
error. Link and motor velocities are given in third subfigure of
the first column, where link velocity is amplified of more than
five times w.r.t. the motor velocity. Notice that the PVTOL and
motor torques are saturated in order to simulate the physical
limits, which is the reason of the small tracking errors.

Results for Case-R are reported in Fig. 5. Here the tracking
performance is even better than Case-E. However this is
achieved only due to the violation of the PVTOL and motor
torque limits, and they reach very high values. In fact, in our
simulations, saturating the torques to their physical limits for
Case-R has always ended up with an unstable behavior for
tracking such high-speed trajectory.

Despite the hard physical limits applied for the Case-E,
requested link velocity is achieved and much less control effort
has been used when compared to Case-R. The reason for this
is the ability of storing energy in the elastic components. This
implies that Case-E has more advantages than Case-R for the
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Fig. 5: Oscillating at high link speed in the case Case-R. The desired
trajectory profile is depicted with a black-dashed curve. The yellow
solid curves stand for the nominal signals, the red solid curves for the
actual signals, and the purple solid curve for the noisy measurements
of the actual values (entering to the controller). The blue dashed
horizontal lines present the physical limits of the PVTOL and motor
torques which, if enabled, would cause instability of the system.

tasks that require high link speed, such as, e.g., throwing or
hammering.

III. TOWARDS AERIAL PHYSICAL EXPERIMENTS

A deep study on control of an aerial vehicle equipped with
an elastic-joint arm is presented in [1]. There we also present
the preliminary results of the controller using the experimental
setup, which consist of a quadrotor VTOL and Qbmove
VSA (Variable Stiffness Actuator) [7]. Here we provide a
description of the overall system provided with a gripper at
the end of the arm (see Fig. 2).

Let us now describe in detail the preparation of the Qbmove
VSA in for our experimental setup. Recall that Qbmove VSA,
is an agonistic/antagonistic servo-VSA. Shortly, it consists of
two PD controlled servo motors, which allow to regulate inde-
pendently desired stiffness and output-shaft equilibrium, i.e.,
in our notations ke and θm, respectively. This VSA (see Fig. 2)
provides state measurements (θm,θe) at 500Hz. In order for
our controller to work with Qbmove VSA, several extra steps
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Fig. 6: Link velocity amplification is obtained in the Case-E. The
desired trajectory profile is depicted with black-dashed curve. The
yellow solid curves stand for the nominal signals, the red solid
curves for the actual signals, and the purple solid curve for the
noisy measurements of the actual values (entering to the controller).
The blue solid curve presents the motor values (θ1m, θ̇1m) and are
shown together with link values (θ12, θ̇12) in the same subplots. The
blue dashed horizontal lines present the physical limits of PVTOL
and motor torques, which in this case, contrarily to Case-R, can be
enabled without mining the stability of the system.

need to be conducted. First of all, a parametric identification
of the Qbmove VSA + rigid arm system has been performed,
in order to retrieve the parameters of the equivalent motor
studied in [1]. The stiffness (and the damping) parameters of
the Qbmove+arm system are identified by first assuming it
as a simple mass-damper system, and then letting the arm
swing from an initial condition, without any control action
(see [9] for similar a method). Note that the Qbmove features
a nonlinear spring, we consider a linear spring for deflection
in the range of ±20 deg. Inertial parameters of the system
are found using the system geometry. Moreover, the control
framework we presented requires a torque-controlled motor,
while a Qbmove is not proposing this control modality. For this
reason we have implemented an outer loop controller around
the Qbmove device, which translates the desired torque into a
desired position through a feedback linearization scheme. This
approach requires a precise knowledge of the system param-
eters; distances, masses and inertia were computed through
CAD model, while other parameters where experimentally
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Fig. 7: Control inputs of the system for the two experiments presented
in [1]. The first row corresponds to the results given in Fig. 4, and
the second row to that of Fig. 5 of [1].

identified as described above (all these parameters are given
in Table III of [1]). For this reason we also implemented
an outer loop controller around the Qbmove device, which
translates the desired torque into a desired position using the
estimated parameters and second order system model. This
bridge between the proposed controller of [1] and the Qbmove
VSA is directly implemented as a ROS node. We avoid the
details on this part for the sake of brevity.

At last, we also display the control inputs in the case of
two experiments described in [1]. In Fig. 7, the first and
second rows show the control inputs for the first and second
experiment, respectively.
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