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CONTINUOUS INTERIOR PENALTY FINITE ELEMENT METHOD
FOR OSEEN’S EQUATIONS

ERIK BURMAN† , MIGUEL A. FERNÁNDEZ‡ , AND PETER HANSBO§

Abstract. In this paper we present an extension of the continuous interior penalty method
of Douglas and Dupont [Interior penalty procedures for elliptic and parabolic Galerkin methods,
in Computing Methods in Applied Sciences, Lecture Notes in Phys. 58, Springer-Verlag, Berlin,
1976, pp. 207–216] to Oseen’s equations. The method consists of a stabilized Galerkin formulation
using equal order interpolation for pressure and velocity. To counter instabilities due to the pres-
sure/velocity coupling, or due to a high local Reynolds number, we add a stabilization term giving
L2-control of the jump of the gradient over element faces (edges in two dimensions) to the standard
Galerkin formulation. Boundary conditions are imposed in a weak sense using a consistent penalty
formulation due to Nitsche. We prove energy-type a priori error estimates independent of the local
Reynolds number and give some numerical examples recovering the theoretical results.

Key words. finite element methods, stabilized methods, continuous interior penalty, Oseen’s
equations

1. Introduction. The construction of finite element methods for the incom-
pressible Navier–Stokes equations that are robust and accurate for a wide range of
Reynolds numbers remains a challenging problem. The standard Galerkin method
requires the fulfillment of the inf-sup or Babuska–Brezzi condition, which leads to
the need for formulations using mixed interpolations (see [7, 27]). From the compu-
tational point of view it is, however, more practical to use equal order interpolation
for the velocity and pressure spaces, which requires that stability is imposed in some
other fashion. One possibility is to construct stabilized finite element methods where
some terms are added to the standard Galerkin formulation in order to enhance the
stability properties of the method. To be useful the method must also be stable with
respect to the convective terms and give sufficient control of the incompressibility
condition.

A favored approach has been to stabilize both the velocities and the pressure
using the streamline upwind Petrov–Galerkin (SUPG) method originally proposed
by Brooks and Hughes in [9]. This method was first analyzed for the Navier–Stokes
equations in a velocity vorticity formulation by Johnson and Saranen in [32], and then
in a pressure velocity formulation by Hansbo and Szepessy in [29], by Franca and Frey
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in [24], and by Tobiska and Verfürth in [38]. The SUPG method owes its success to the
unified treatment of velocities and pressures. It allows for a priori error estimates that
are independent of the Reynolds number and has been used extensively in practice
with good results. Nevertheless, the SUPG method has some undesirable features:

• artificial boundary conditions on velocities and pressure are introduced;
• artificial nonsymmetric terms are introduced;
• the least squares term introduces nonphysical pressure/velocity couplings;
• the least squares term makes mass lumping impossible and the choice of time-

stepping methods limited; most clear-cut from a theoretical point of view is
a space-time finite element approach using discontinuous approximation in
time;

• it is not yet fully understood how to use mixed finite elements in combination
with the SUPG method (for recent advances see [26]).

To overcome these disadvantages, alternative stabilization techniques have been
developed such as the projection method proposed by Codina [17] and Codina and
Blasco [18], the subgrid viscosity method or local projection method proposed by
Guermond [28] and Becker and Braack [1], the polynomial pressure projection method
by Dohrmann and Bochev reported in [19], and the pressure-Poisson stabilization of
the Stokes equations proposed by Bochev and Gunzburger in [2].

Recently, the continuous interior penalty method of Douglas and Dupont [20]
was revived as an alternative. The idea is to add a least squares penalization on the
gradient jump between neighboring elements as a unified treatment of all the above-
mentioned instabilities. It was shown in [13, 15] that the method stabilizes both in-
stabilities due to dominating convection and instabilities due to the velocity/pressure
coupling. Moreover, it was shown in [10] how this method provides a natural link be-
tween conforming and nonconforming stabilized finite element methods. It was used
in [14] to provide a Reynolds number independent stabilized formulation for the clas-
sical nonconforming P1 Crouzeix–Raviart approximation for the velocities combined
with elementwise constant pressures.

In this paper we extend the face oriented stabilization method to Oseen’s equa-
tions, using equal order interpolation for velocities and pressure. For the case of
similar stabilization strategies for element pairs satisfying the inf-sup condition we re-
fer the reader to [11]. We follow the framework proposed in [10] using weakly imposed
boundary conditions as introduced by Nitsche (see [36, 25]). Although the constants
of our analysis inevitably depend on the parameters of the problem (since the solu-
tion depends on the physical parameters), the stabilization terms allow us to trade
the need of coercivity in the H1-norm for coercivity in the weaker L2-norm plus the
stabilization term, which vanishes at optimal rate under refinement. To exploit this
in the analysis, we add a zero order term to Oseen’s equations. With this additional
term we obtain estimates that do not explode as the viscosity goes to zero, provided
the exact solution is sufficiently regular.

With the proposed method, all the above-mentioned inconveniences of the SUPG
method are alleviated. The formulation allows for general unstructured meshes and
variable polynomial degree. The main inconveniences of the present method, however,
are as follows:

• Added couplings in the Jacobian matrix: the bandwidth of the system ma-
trix doubles in two space dimensions and triples in three space dimensions.
This may increase the computational cost of the linear system solution, for
instance, if an incomplete LU factorization is used as preconditioner.
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• The method requires stabilization terms to be evaluated on the faces of the
elements and hence a table of nearest neighbors for computation of the jumps.
Such features are present typically when using adaptivity with a posteriori
error estimation or for discontinuous Galerkin (DG) methods.

However, all stabilization terms have the same structure, allowing for one computation
of one global stabilization matrix based on the gradient jumps of one component. The
parameter values that change from time-step to time-step may then be updated using
locally averaged weights. When time-stepping the Navier–Stokes equations this means
that the stabilization matrix has to be constructed only once and for one component.
This is in stark contrast to the SUPG method, where the stabilization terms have to
be reconstructed at every time-step for consistency.

The outline of the paper is as follows: In the next section we introduce our model
problem, Oseen’s equations, and formulate the interior penalty finite element method.
In section 3 we discuss the question of stability, we prove a lemma of fundamental
importance for the stability of the method, and we show that the discrete problem
has a unique solution. We then proceed and prove (quasi-) optimal a priori error
estimates in section 4 with special focus on how to make the estimates independent
of the local Reynolds number. Finally, in section 5, we study the performance of the
numerical scheme on some linear model cases in three space dimensions. We make
some concluding remarks in section 6 and some outlooks to future developments,
with special emphasis on the relation between the present method and variational
multiscale methods (VMS) in large eddy simulations (LES).

2. A finite element method for Oseen’s equations. Let Ω be a Lipschitz-
continuous domain in R

d (d = 2 or 3) with a polyhedral boundary ∂Ω and outward
pointing normal n. We will consider the Sobolev spaces Wm,q(Ω), with norm ‖·‖m,q,Ω,
m ≥ 0, and q ≥ 1. In particular, we have Lq(Ω) = W 0,q(Ω). We use the standard

notation Hm(Ω)
def
= Wm,2(Ω). The norm of Hm(Ω) is denoted by ‖ · ‖m,Ω and its

seminorm by | · |m,Ω. The space of L2(Ω) divergence free functions is denoted by
H0(div; Ω). The scalar product in L2(Ω) is denoted by (·, ·) and its norm by ‖ · ‖0,Ω.
The closed subspaces H1

0 (Ω), consisting of functions in H1(Ω) with zero trace on ∂Ω,
and L2

0(Ω), consisting of functions in L2(Ω) with zero mean in Ω, will also be used.
Oseen’s equations take the form⎧⎪⎨

⎪⎩
σu + β · ∇u − 2∇ · (νε(u)) + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where u ∈ [H1
0 (Ω)]d ∩ H0(div; Ω), β ∈ [W 1,∞(Ω)]d ∩ H0(div; Ω), p ∈ L2

0(Ω), ε(u)
stands for the strain rate tensor

ε(u)
def
=

1

2

(
∇u + (∇u)T

)
,

f ∈ [L2(Ω)]d is a given source term, and σ, ν are positive constants.
The weak formulation of problem (2.1) reads as follows: find (u, p) ∈ [H1

0 (Ω)]d ×
L2

0(Ω) such that{
a(u,v) + b(p,v) = (f ,v),

b(q,u) = 0
∀(v, q) ∈ [H1

0 (Ω)]d × L2
0(Ω),(2.2)
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where

a(u,v)
def
= (σ u, v) + (β · ∇u, v) + 2(νε(u), ε(v)),

b(p,v)
def
= −(p,∇ · v).

(2.3)

The well-posedness of this problem follows by the Lax–Milgram lemma applied in the
space [H1

0 (Ω)]d ∩H0(div; Ω) (see, for instance, [27]).
Let {Th}0<h≤1 denote a family of triangulations of the domain Ω without hang-

ing nodes. For each triangulation Th, the subscript h ∈ (0, 1] refers to the level of
refinement of the triangulation, which is defined by

h
def
= max

K∈Th

hK ,

with hK the diameter of K. We also define the elementwise constant function h̃|K =

hK . The interior of a triangle K will be denoted by
◦
K, and N (K) will stand for

the set of elements sharing at least one node with the element K. Moreover, we will
assume that the family {Th}0<h≤1 has the following regularity properties:

1. Local shape regularity: for all K ∈ Th with h ∈ (0, 1] there holds

hK

ρK
< c0,(2.4)

where ρK stands for the diameter of the largest ball contained in K, and c0
is a fixed positive constant.

2. Local quasi-uniformity: for all K ∈ Th with h ∈ (0, 1] there holds

1

ρ
hK′ ≤ hK ≤ ρhK′ ∀K ′ ∈ N (K),(2.5)

where ρ > 1 is a given parameter depending on the local uniformity of
{Th}0<h≤1.

We will also assume that the data are sufficiently well resolved in the sense that there
exists ρβ > 1 such that

1

ρβ
‖β‖0,∞,K′ ≤ ‖β‖0,∞,K ≤ ρβ‖β‖0,∞,K′ ∀K ′ ∈ N (K).(2.6)

Note that this is a hypothesis on the mesh and not on the data. Under the assumption
that β ∈ W 1,∞(N (K)) this can be ensured by

|β|1,∞,N (K) ≤ cβh
−1
K ‖β‖0,∞,N (K)(2.7)

for some constant cβ > 0 small enough.
For the error analysis, we shall use the trace inequality

‖v‖2
0,∂K ≤ CT

(
h−1
K ‖v‖2

0,K + hK‖v‖2
1,K

)
∀v ∈ H1(K),(2.8)

where CT is a generic constant independent of hK (for a proof, see [37, p. 26]).
For a given piecewise continuous function ϕ, the jump [[ϕ]] over a face f is defined

by

[[ϕ]](x)
def
=

{
lim
t→0+

(ϕ(x − tnf ) − ϕ(x + tnf )) if f 	⊂ ∂Ω,

0 if f ⊂ ∂Ω,

where nf is a normal unit vector on f and x ∈ f .
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In this paper we let V k
h denote the standard space of continuous functions of

piecewise polynomial order k ≥ 1,

V k
h

def
=

{
v ∈ H1(Ω) : v|K ∈ Pk(K) ∀K ∈ Th

}
,

and H2(Th) the space of piecewise H2 functions

H2(Th)
def
=

{
v : Ω −→ R : v|K ∈ H2(K) ∀K ∈ Th

}
.

For the velocities we will use the space [V k
h ]d and for the pressure we will use Qk

h =
V k
h ∩ L2

0(Ω). In what follows, we let πh,k, ih,k, and Ch,k denote (respectively) the L2-
projection operator, the nodal interpolation operator, and the Clément interpolant
onto the finite element spaces, and we make no notational difference between the
projection onto the velocity and pressure spaces. We also introduce a piecewise linear
approximated velocity βh ∈ [V 1

h ]d such that

‖β − βh‖0,∞,K ≤ ChK |β|1,∞,K ∀K ∈ Th.(2.9)

Here and in the following C denotes a constant independent of the problem pa-
rameters and the local mesh size, but not necessarily of the local mesh geometry.

Denoting the product space W k
h

def
= [V k

h ]d × Qk
h our finite element method reads as

follows: find (uh, ph) ∈ W k
h such that

ah(uh,vh) + bh(ph,vh) − bh(qh,uh) + ju(uh,vh) + jp(ph, qh) = (f ,vh)(2.10)

for all (vh, qh) ∈ W k
h , and with

ah(uh,vh)
def
= a(uh,vh) − 〈2νε(uh)n,vh〉∂Ω − 〈uh, 2νε(vh)n〉∂Ω(2.11)

− 〈β · nuh,vh〉∂Ωin + 〈γ(ν/h̃)uh,vh〉∂Ω

+ 〈γ max{|β|, ν/h̃}uh · n,vh · n〉∂Ω,

bh(ph,vh)
def
= b(ph,vh) + 〈ph,vh · n〉∂Ω,(2.12)

ju(uh,vh)
def
=

∑
K∈Th

γξ(ReK)h2
K

∫
∂K

‖β · n‖0,∞,∂K [[n · ∇uh]] · [[n · ∇vh]] ds(2.13)

+
∑

K∈Th

γξ(ReK)‖β‖0,∞,Kh2
K

∫
∂K

[[∇ · uh]][[∇ · vh]] ds,

jp(ph, qh)
def
=

∑
K∈Th

γξ(ReK)
h2
K

‖β‖0,∞,K

∫
∂K

[[∇ph]] · [[∇qh]] ds,(2.14)

n the outward pointing normal to ∂Ω, and using the notation

ReK
def
=

‖β‖0,∞,KhK

ν
, ξ(λ)

def
= min{1, λ}, ∂Ωin

def
= {x ∈ ∂Ω : (β · n)(x) < 0},

〈x, y〉∂Ω
def
=

∑
K ∈ Th

K ∩ ∂Ω �= ∅

∫
∂K∩∂Ω

xy ds, h̃ ∈ H2(Th) with h̃|K
def
= hK .

To keep down notation we have used a canonical stabilization parameter γ for all
terms. In practice this term, however, can be chosen distinctly for different terms.
The gradient jump terms serve three purposes:
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1. stabilization of the convective terms (the first sum in (2.13));
2. giving additional control of the incompressibility condition (the second sum

in (2.13)); and
3. making the discretization inf-sup stable (the sum in (2.14)).

We will see in the analysis that these three objectives are all obtained in the same
fashion and that essentially the gradient jump operator can stabilize any instability
provoked by a first order term.

Assuming sufficient regularity of the exact solution the above formulation is
strongly consistent. More generally we have the following result.

Lemma 2.1 (modified Galerkin orthogonality). Assume that (u, p), the solution
of (2.1), belongs to the space [H3/2+ε(Ω)]d×L2

0(Ω), with ε > 0, and let (uh, ph) ∈ W k
h

be the solution of (2.10). Then

ah(u − uh,vh) + bh(p− ph,vh) − bh(qh,u − uh) + ju(u − uh,vh) − jp(ph, qh) = 0

for all (vh, qh) ∈ W k
h .

Proof. This is an immediate consequence of the consistency of the standard
Galerkin method and the fact that, under the regularity assumptions, ju(u,vh) = 0
since [[∇u]]f = 0 for all interior faces f .

3. Stability of the method. Stability in the face oriented stabilization method
is based on the following lemma, which was proved for piecewise linear continuous
approximation in [10] (for a similar result with applications to DG methods see [33]).
Here we extend this result to arbitrary polynomial degree. Note that we give a lower
bound as well. This is not needed for the analysis but shows that in some sense the
stabilizing terms are optimal.

Lemma 3.1. There exist an interpolation operator π∗
h,k : [H2(Th)]d −→ [V k

h ]d and
constants γ, γlow depending on the local mesh geometry and the polynomial degree,
but not on the local mesh size, such that

γlowjβ(vh,vh) ≤ ‖h 1
2

(
βh · ∇vh − π∗

h,k(βh · ∇vh)
)
‖2
0,Ω ≤ jβ(vh,vh)

for all vh ∈ [V k
h ]d, where

jβ(vh,vh) = γ
∑

K∈Th

∫
∂K

h2
K |βh · n|2|[[∇vhn]]|2 ds.

Proof. First note that, as pointed out in [10], [[βh · ∇uh]] = βh · n[[n · ∇uh]]. For
each node xi, let ni be the number of elements containing xi as a node. Then we
define a quasi-interpolant π∗

h,k of degree k by

π∗
h,kv(xi)

def
=

1

ni

∑
{K : xi∈K}

v|K(xi) ∀v ∈ [H2(Th)]d.

For each element K ∈ Th consider the function

δK
def
= h

1
2

K

(
βh · ∇vh|K − π∗

h,k(βh · ∇vh)|K
)
.
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Clearly, δK(xj) = 0 for each interior node xj ∈
◦
K, whereas on the element faces, i.e.,

for all nodes xj ∈ ∂K, we have

δK(xj) = h
1
2

K

1

nj

∑
{K′ : xj∈K′}

βh ·
(
∇vh|K(xj) −∇vh|K′(xj)

)
= h

1
2

K

1

nj

∑
{K′ : xj∈K′}

∑
f∈P (K,K′)

βh(xj) · [[∇vh]]f (xj),(3.1)

where P (K,K ′) stands for the set of faces between K and K ′ (the shortest path). We
now introduce the reference element K̂ and, for each K ∈ Th, the affine mapping

FK(x̂) = BK x̂ + bK ∀x̂ ∈ K̂,

such that FK(K̂) = K. Finally, let ϕK
j for j = 1, . . . , k be the basis functions on

K. Since δK(xj) = 0 for each interior node xj ∈
◦
K, ‖δK ◦ FK‖2

0,∂K̂
= 0 implies that

δK ◦ FK = 0 in K̂. Therefore, by equivalence of norms on discrete spaces, using a
standard scaling argument (see [27, p. 96]) and (3.1), it follows that

‖δK‖2
0,K = detBK‖δK ◦ FK‖2

0,K̂

≤ C detBK‖δK ◦ FK‖2
0,∂K̂

=

∫
∂K̂

1

|B−T
K n̂|

|δK ◦ FK |2 detBK |B−T
K n̂|dŝ︸ ︷︷ ︸

ds

≤ C|BT
K |

∫
∂K

|δK |2 ds

≤ ChK

∫
∂K

|δK |2 ds

≤ ChK

∫
∂K

k∑
j=1

|δK(xj)|2(ϕK
j )2 ds

≤ Ch2
K

∫
∂K

k∑
j=1

1

nj

∑
{K′ : xj∈K′}

∑
e∈P (K,K′)

|βh(xj) · [[∇vh]]e(xj)|2(ϕK
j )2 ds

≤ Ch2
K

∫
∂K

k∑
j=1

1

nj

∑
f∈E(K)

|βh(xj) · [[∇vh]]f (xj)|2(ϕK
j )2 ds

≤ Ch2
K

∑
f∈E(K)

∫
f

|βh · [[∇vh]]f |2 ds,

where, in the two last inequalities, E(K) denotes the set of faces containing some node
of K. On the other hand, the local quasi-regularity of Th implies that the maximum
number of occurrences of a face in all the sets E(K) is bounded by a fixed constant
independent of hK . Then, by summation on K, we get the upper bound

‖h 1
2

(
βh · ∇vh − π∗

h,k(βh · ∇vh)
)
‖2
0,Ω ≤ C

∑
K∈Th

h2
K

∑
f∈E(K)

∫
f

|βh · [[∇vh]]e|2 ds,

≤ C
∑

K∈Th

∫
∂K

h2
K |βh · [[∇vh]]|2 ds.
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The lower bound follows by considering the L2-norm of the discontinuous function
δ over the reference patch Ĝ consisting of the reference element K̂ and its nearest
neighbors. Clearly if ‖δ‖Ĝ = 0, then βh · ∇vh = π∗

h,kβh · ∇vh in Ĝ. This means that

βh · ∇vh is continuous in Ĝ and hence
∑

f∈E(K)

∫
f
hK [[βh · ∇vh]]2 ds = 0. Hence by

norm equivalence on discrete spaces we have

∑
f∈E(K)

∫
f

[[βh · ∇vh]]2 ds ≤ ‖δG‖2
0,G.

The claim then follows in the same fashion as the first part of the proof by scaling
and extension to all of Th.

Using the same technique we immediately have the following corollary where for
simplicity the lower bounds are omitted.

Corollary 3.2. Under the same assumptions as Lemma 3.1 we have, with α > 0
and φ some function that is constant per element,

‖φ 1
2

(
∇ · vh − π∗

h,k(∇ · vh)
)
‖2
0,Ω ≤ γ

∑
K∈Th

∫
∂K

φhK [[∇ · vh]]2 ds,

‖φ 1
2

(
∇qh − π∗

h,k(∇qh)
)
‖2
0,Ω ≤ γ

∑
K∈Th

∫
∂K

φhK |[[∇qh]]|2 ds(3.2)

for all (vh, qh) ∈ W k
h and with γ > 0 constants independent of h.

We now introduce the following mesh-dependent norm for the velocity:

|||vh|||2
def
= ‖σ 1

2 vh‖2
0,Ω + ‖ν 1

2∇vh‖2
0,Ω + ju(vh,vh) + ‖|β · n| 12 vh‖2

0,∂Ω

+ ‖γ 1
2 (ν/h̃)

1
2 vh‖2

0,∂Ω + ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω

(3.3)

for all vh ∈ [V k
h ]d.

The following lemma gives the coercivity of our discrete operator with respect to
this mesh-dependent norm.

Lemma 3.3 (coercivity). There exists a constant C > 0, depending only on Ω
and γ, such that

ah(vh,vh) + ju(vh,vh) ≥ C|||vh|||2

for all vh ∈ [V k
h ]d.

Proof. From (2.10) we get

ah(vh,vh) + ju(vh,vh) ≥ ‖σ 1
2 vh‖2

0,Ω + 2‖ν 1
2 ε(vh)‖2

0,Ω + ju(vh,vh)

+
1

2
‖|β · n| 12 vh‖2

0,∂Ω + ‖γ 1
2 (ν/h̃)

1
2 vh‖2

0,∂Ω

+ ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω

− 〈4νε(vh)n,vh〉∂Ω ,

(3.4)

where we used the fact that, after integration by parts and since ∇ · β = 0,

(β · ∇vh,vh) =
1

2
〈β · nvh,vh〉∂Ω .
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The last term in (3.4) can be bounded using the Cauchy–Schwarz inequality followed
by a trace inequality, to obtain

| 〈4νε(vh)n,vh〉∂Ω | ≤ 8
CT

γ
‖ν 1

2 ε(vh)‖2
0,Ω +

1

2
‖γ 1

2 (ν/h̃)
1
2 vh‖2

0,∂Ω.

In what follows we will assume that

γ > 4CT > 0,(3.5)

and therefore

λ(γ)
def
= 2 − 8

CT

γ
> 0.

From (3.4), we then get

ah(vh,vh) + ju(vh,vh) ≥ ‖σ 1
2 vh‖2

0,Ω + λ(γ)‖ν 1
2 ε(vh)‖2

0,Ω + ju(vh,vh)

+
1

2
‖|β · n| 12 vh‖2

0,∂Ω +
1

2
‖γ 1

2 (ν/h̃)
1
2 vh‖2

0,∂Ω

+ ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω,

and consequently

ah(vh,vh) + ju(vh,vh) ≥ ‖σ 1
2 vh‖2

0,Ω + ju(vh,vh)

+ min
K ∈ Th

K ∩ ∂Ω �= ∅

{
λ(γ),

γ

4hK

}(
‖ν 1

2 ε(vh)‖2
0,Ω + ‖ν 1

2 vh‖2
0,∂Ω

)

+
1

2
‖|β · n| 12 vh‖2

0,∂Ω +
1

4
‖γ 1

2 (ν/h̃)
1
2 vh‖2

0,∂Ω

+ ‖γ 1
2 max{|β|, ν/h̃} 1

2 vh · n‖2
0,∂Ω.

In particular, since 0 < h ≤ 1 and by choosing (accordingly with (3.5))

γ
def
= ε + 4CT,

with ε > 0 sufficiently small, one obtains

λ(γ) <
γ

4hK
∀K ∈ Th, K ∩ ∂Ω 	= ∅.

We then conclude the proof using Korn’s inequality (see [6]).
In what follows, we shall make use of the following discrete pressure and velocity

subspaces:

C1
h,k

def
=

{
qh ∈ Qk

h : jp(qh, qh) = 0
}
,

V div
h,k

def
=

{
vh ∈ [V k

h ]d : bh(qh,vh) = 0 ∀qh ∈ C1
h,k

}
.

In addition, Qk
h\C1

h,k will stand for the supplementary of C1
h,k in Qk

h, i.e.,

Qk
h = (Qk

h\C1
h,k) ⊕ C1

h,k.

9



The following lemma ensures, in particular, that V div
h,k is not trivial.

Lemma 3.4. There exists a constant β > 0, independent of h, such that

inf
qh∈C1

h,k

sup
vh∈[V k

h ]d

|bh(qh,vh)|
‖qh‖0,Ω‖vh‖1,Ω

≥ β.

Proof. Let qh ∈ C1
h,k. From [27, Corollary 2.4], there exists vq ∈ [H1

0 (Ω)]d such
that

∇ · vq = qh, ‖vq‖1,Ω ≤ C‖qh‖0,Ω.(3.6)

Thus, using integration by parts and (2.12), we have

‖qh‖2
0,Ω = (qh,∇ · vq)

= (qh,∇ · vq −∇ · πh,kvq) + (qh,∇ · πh,kvq)

= (∇qh,vq − πh,kvq) − 〈qh, (πh,kvq) · n〉∂Ω

+ (qh,∇ · πh,kvq)

= (∇qh,vq − πh,kvq) − bh(qh, πh,kvq).

(3.7)

Since qh ∈ C1
h,k, it follows that ∇qh ∈ [V k

h ]d. Thus, using the orthogonality of the

L2-projection, we have

(∇qh,vq − πh,kvq) = 0.

Thus, from (3.7), it follows that

|bh(qh, πh,kvq)| = ‖qh‖2
0,Ω.

In addition, using H1-stability of the L2-projection (see [5]) and (3.6), we have

‖πh,kvq‖1,Ω ≤ C‖vq‖1,Ω

≤ C‖qh‖0,Ω,

which completes the proof.
We now state the well-posedness of the discrete problem.
Theorem 3.5. The discrete problem (2.10) has a unique solution.
Proof. Problem (2.10) can be written, in operator form, as

Auh + BT ph = M f in
(
[V k

h ]d
)′
,

Buh = Jph in [Qk
h]′,

(3.8)

with A ∈ L([V k
h ]d, ([V k

h ]d)′), M ∈ L([L2(Ω)]d, ([V k
h ]d)′), B ∈ L

(
[V k

h ]d, (Qk
h)′

)
, and

J ∈ L
(
Qk

h, (Q
k
h)′

)
defined by

〈Auh,vh〉
def
= ah(uh,vh) + ju(uh,vh),

〈M f ,vh〉
def
= (f ,vh),

〈Bvh, qh〉
def
= bh(qh,vh),

〈Jph, qh〉
def
= j(ph, qh).

10



We also introduce the operator B1 ∈ L([V k
h ]d, (C1

h,k)
′) defined by

〈B1vh, qh〉
def
= bh(qn,vh) ∀(vh, qh) ∈ [V k

h ]d × C1
h,k;

in other words,

B1vh
def
= (Bvh)|C1

h,k
∀vh ∈ [V k

h ]d.

From Lemma 3.4, it follows that B1 is surjective and (B1)T is injective (see [27,

p. 58]). We then deduce that V div
h,k

def
= Ker(B1) 	= {0}.

Let us consider the following reduced formulation (derived from (2.10) with (vh, qh)
∈ V div

h,k × (Qk
h\C1

h,k)): find (uh, p̃h) ∈ V div
h,k × (Qk

h\C1
h,k) such that

Auh + BT p̃h = M f in
(
V div
h,k

)′
,

Buh = Jp̃h in
(
Qk

h\C1
h,k

)′
.

(3.9)

Since, by construction, C1
h,k = Ker(J), we conclude that J is invertible in Qk

h\C1
h,k.

Hence, from (3.9), we have

p̃h = J−1
|Qk

h\C1
h,k

Buh.(3.10)

By plugging this expression into the first equation of (3.9), we obtain that uh ∈ V div
h,k

solves (
A + BTJ−1

|Qk
h\C1

h,k

B
)
uh = M f in

(
V div
h,k

)′
.

Existence and uniqueness of uh follow by the positivity of A (Lemma 3.3) and the
nonnegativity of BTJ−1

|Qk
h\C1

h,k

B. We may then recover p̃h uniquely from (3.10). There-

fore, the reduced problem (3.9) has a unique solution. On the other hand, from the
first equation of (3.9), it follows that

Auh + BT p̃h −M f ∈
(
Ker(B1)

)0
,

with
(
Ker(B1)

)0
standing for the polar set of Ker(B1). From Lemma 3.4, it follows

that B1 is an isomorphism from C1
h,k onto

(
Ker(B1)

)0
(see [27, p. 58]). Thus, there

exists a unique p1 ∈ C1
h,k such that

Auh + BT p̃h −M f = (B1)Tp1 in
(
[V k

h ]d
)′
.(3.11)

Therefore, from (3.11) and (3.9), and by noticing that (B1)Tp1 = BTp1 and Jp1 = 0,

it follows that problem (2.10) has a unique solution, given by (uh, ph
def
= p̃h−p1).

4. Convergence of the method. The parameter for the pressure stabilization
scales as h2

K/‖β‖0,∞,K when the local Reynolds number ReK is big, and as h3
K/ν

when ReK is small. The stabilizing terms acting on the velocity scale as ‖β‖0,∞,Kh2
K

at a high local Reynolds number and as ReK‖β‖0,∞,Kh2
K for a low Reynolds number.

The factor ReK‖β‖0,∞,Kh2
K in the velocity stabilization may be omitted in the low

Reynolds regime without perturbing the convergence. We will now show that this
scaling gives optimal a priori error estimates in the high (local) Reynolds number
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regime when the solution is smooth, (u, p) ∈ [Hk+1(Ω)]d+1, and in the low (local)
Reynolds number regime under standard regularity assumptions. We then prove,
using the Aubin–Nitsche duality technique (see, e.g., [21]), that the velocities have
optimal convergence order also in the L2-norm, when the local Reynolds number is
low, without any modification of the stabilization.

First, we summarize some stability properties of the L2-projection with weighted
norms and show an approximability result for the triple norm (3.3).

Remark 4.1. In the remainder of this section, C > 0 stands for a generic
constant independent of h and the physical parameters.

To prove approximability for the L2-projection on locally quasi-uniform meshes
we need some additional stability for the L2-projection from [3] that we state here
without proof.

Lemma 4.2. For ρ, η > 0 sufficiently small and for all φ ∈ V 1
h satisfying

φ > 0, |∇φ(x)| ≤ ηh−1
K φ(x) ∀x ∈ K, ∀K ∈ Th,

there holds

‖φπh,ku‖0,Ω ≤ C‖φu‖0,Ω ∀u ∈ L2(Ω),

‖φ∇πh,ku‖0,Ω ≤ C‖φ∇u‖0,Ω ∀u ∈ H1(Ω).

A direct consequence of this result is stated in the following corollary.
Corollary 4.3. Under the assumptions of the previous lemma, we have⎛

⎝∑
|α|≤l

‖φ∂α(u− πh,ku)‖2
0,Ω

⎞
⎠

1
2

≤ C

( ∑
K∈Th

‖φ‖2
0,∞,Kh2(ru−l)‖u‖2

ru,Ω

) 1
2

for all u ∈ Hr(Ω), with r ≥ 1, ru
def
= min{r, k + 1}, 0 ≤ l ≤ ru, α ∈ N

d, and ∂α the
standard multi-index notation for high order derivatives.

In order to obtain localized estimates we now show that the weights appearing in
our stabilization allow for L2-stability.

Lemma 4.4. Let φi ∈ H2(Th), i = 1, . . . , 5, be piecewise constant functions
defined by

φ1|K
def
= ν−

1
2 min

{
Re

− 1
2

K , 1
}
, φ2|K

def
= ‖β‖

1
2

0,∞,Kh
− 1

2

K ,

φ3|K
def
= h

− 1
2

K ‖β‖
1
2

0,∞,Kξ(ReK)−
1
2 , φ4|K

def
= φ−1

3|K , φ5|K
def
= h−r

K ,

with r ≥ 1, for all K ∈ Th, and let φ∗
i

def
= π∗

h,1φi. Then, there holds

φi(ρβρ)
− 1

2 ≤ φ∗
i ≤ (ρβρ)

1
2φi

|∇φ∗
i | ≤ c0(ρβρ− 1)h−1

K φ∗
i

}
for i = 1, 2,

φiρ
− 1

2

β ρ−1 ≤ φ∗
i ≤ ρ

1
2

βρφi

|∇φ∗
i | ≤ c0(ρβρ

2 − 1)h−1
K φ∗

i

}
for i = 3, 4,

φ5ρ
−r ≤ φ∗

5 ≤ ρrφ5,

|∇φ∗
5| ≤ c0(ρ

2r − 1)h−1
K φ∗

5

in K, for all K ∈ Th, with c0 > 0 the constant in (2.4).
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Proof. We give the proof only for φ1; the argument for the rest is similar. First,
note that for all K ∈ Th,

max
x∈K

φ∗
1 ≤ max

K′∈N (K)
ν−

1
2 min{Re

− 1
2

K′ , 1}

= max
K′∈N (K)

min{‖β‖−
1
2

0,∞,K′h
− 1

2

K′ , ν
− 1

2 }.
(4.1)

We now distinguish two cases. On one hand, if ReK ≤ 1, we have φ1|K = ν−
1
2 . Thus,

from (4.1) and since ρβρ > 1, it follows that

max
x∈K

φ∗
1 ≤ ν−

1
2

≤ (ρρβ)
1
2φ1|K .

On the other hand, if ReK > 1, we get φ1|K = ‖β‖−
1
2

0,∞,Kh
− 1

2

K . Therefore, from (4.1)
and the assumptions on the mesh (2.5) and (2.6), we have

max
x∈K

φ∗
1 ≤ max

K′∈N (K)
{‖β‖−

1
2

0,∞,K′h
− 1

2

K′ }

≤ (ρρβ)
1
2 ‖β‖−

1
2

0,∞,Kh
− 1

2

K

= (ρρβ)
1
2φ1|K .

The lower bound follows in a similar fashion.
Finally, for the derivative, using the bounds on φ∗

1 and the regularity of the mesh
(2.4), and since ρβρ > 1, we obtain

|∇φ∗
1|K | ≤

max
x∈K

φ∗
1 − min

x∈K
φ∗

1

ρK

≤ (ρβρ)
1
2 − (ρβρ)

− 1
2

ρK
φ1|K

≤ c0(ρβρ− 1)h−1
K φ∗

1,

which completes the proof.
Remark 4.5. It follows from Lemma 4.4 that for the weight functions φ∗

i , 1 ≤
i ≤ 5, the stability estimate of Lemma 4.2 holds, provided ρβ and ρ are sufficiently
close to 1. From now on we assume that this is the case.

The following lemma states the approximation properties of the L2-projection in
the triple norm ||| · |||.

Lemma 4.6 (velocity approximability). Assume that ρβ and ρ are sufficiently
close to 1. Then, there holds

|||u − πh,ku|||2 ≤ C
∑

K∈Th

(
σh2ru

K + max {ν, ‖β‖0,∞,KhK}h2(ru−1)
K

)
‖u‖2

ru,K

for all u ∈ [Hr(Ω)]d, with r ≥ 2 and ru = min{k + 1, r}.
Proof. First note that

|||u − πh,ku|||2 ≤ |||ih,ku − πh,ku|||2 + |||ih,ku − u|||2.
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We give the proof for the first term only. The argument for the second term is similar.
By the stability estimate for the L2-projection Lemma 4.2 we have

‖σ 1
2 (ih,ku − πh,ku)‖2

0,Ω ≤ C‖σ 1
2 (u − ih,ku)‖2

0,Ω

≤ C
∑

K∈Th

σh2ru
K ‖u‖2

ru,K .

Using now the H1-stability of the L2-projection on locally quasi-uniform meshes (see
[5]) we get

‖ν 1
2∇(ih,ku − πh,ku)‖2

0,Ω ≤ C‖ν 1
2∇(ih,ku − u)‖2

0,Ω

≤ C
∑

K∈Th

νh2(ru−1)‖u‖ru,Ω.

We treat the boundary terms using the trace inequality (2.8) in combination with
Lemma 4.2 and approximation, which yields

(4.2) ‖max{|β|, ν/h̃} 1
2 (ih,ku − πh,ku)‖2

0,∂Ω

≤ C
∑

K ∈ Th

K ∩ ∂Ω �= ∅

‖max{‖β‖0,∞,K , νh−1
K } 1

2 (ih,ku − πh,ku)‖2
0,K∩∂Ω

≤ C
∑

K∈Th

‖h− 1
2

K max{‖β‖0,∞,K , νh−1
K } 1

2 (ih,ku − πh,ku)‖2
0,K

≤ C
∑

K∈Th

‖φ∗
3(ih,ku − πh,ku)‖2

0,K

= C
∑

K∈Th

‖φ∗
3πh,k(ih,ku − u)‖2

0,K

≤ C
∑
K

max{‖β‖0,∞,KhK , ν}h2(ru−1)
K ‖u‖2

ru,K .

The interior penalty terms are treated in the same fashion as the boundary terms.
We have

ju(u − πh,ku,u − πh,ku) ≤ ju(ih,ku − πh,ku, ih,ku − πh,ku)

+ ju(u − ih,ku,u − ih,ku).
(4.3)

The first term in this inequality can be estimated using that ξ(ReK) ≤ 1, the trace
inequality (2.8), an inverse inequality, and the H1-stability of the L2-projection (see
[5]), which yields

ju(ih,ku − πh,ku, ih,ku − πh,ku) ≤ C
∑

K∈Th

‖β‖0,∞,Kξ(ReK)h2
K‖∇(ih,ku − πh,ku)‖2

0,∂K

≤ C
∑

K∈Th

‖β‖0,∞,Kh−1
K ‖ih,ku − πh,ku‖2

0,K

≤ C‖φ∗
2(ih,ku − πh,ku)‖2

0,Ω

≤ C
∑
K

‖β‖0,∞,Kh2ru−1
K ‖u‖2

ru,K ,

(4.4)

and so the proof is finished.
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For the pressure, we have the following result.

Lemma 4.7 (pressure approximability). Under the assumptions of Lemma 4.6,
there holds

‖h̃ 1
2φ∗

1(p− πh,kp)‖2
0,∂Ω + ‖φ∗

1(p− πh,kp)‖2
0,Ω + j(πh,kp, πh,kp)

≤ C
∑

K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

for all p ∈ Hs(Ω) with s ≥ 1 and sp
def
= min{k + 1, s}.

Proof. As p may be only H1(Ω), we must replace the nodal interpolant by the
Clément interpolant in the analysis. The proof for the first term is similar to (4.2), by
replacing ih,k by Ch,k. The estimate for the second term follows from Corollary 4.3.
Finally, for the interior penalty term, since [[Ch,k∇p]] = 0 and using a trace inequality
followed by an inverse inequality, we have

j(πh,kp, πh,kp) =
∑

K∈Th

ξ(ReK)
h2
K

‖β‖0,∞,K
|[[∇πh,kp− Ch,k∇p]]|2

≤ C
∑

K∈Th

ξ(ReK)
hK

‖β‖0,∞,K
‖∇πh,kp− Ch,k∇p‖2

0,K

≤ C(‖φ∗
4∇πh,k(p− Ch,kp)‖2

0,K + ‖φ∗
4∇(p− Ch,kp)‖2

0,K

+ ‖φ∗
4(∇p− Ch,k∇p)‖2

0,K)

≤ C
∑

K∈Th

min{‖β‖−1
0,∞,KhK , h2

K/ν}h2(sp−1)
K ‖p‖2

sp,K ,

where we concluded using the stability lemma, Lemma 4.2, with weight function φ∗
4,

and the optimal approximation properties of the Clément interpolant (see [16, 21]).

4.1. Energy norm error estimate. In this section we prove convergence in the
triple norm. These results are optimal independently of the local Reynolds number
when the exact solution is sufficiently smooth.

We start by proving a technical lemma.

Lemma 4.8. For all vh ∈ [V k
h ]d, there holds

∑
K∈Th

h2
K

∫
∂K

‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds ≤ C
(
ju(vh,vh) + ‖ν 1

2∇vh‖2
0,Ω

)
,

∑
K∈Th

φ−1
1|KhK

∫
∂K

[[∇ · vh]]2 ds ≤ C
(
ju(vh,vh) + ‖ν 1

2∇vh‖2
0,Ω

)
.

Proof. Let A1 denote the set of elements K ∈ Th such that ξ(ReK) ≥ 1, and A2

the set of elements such that ξ(ReK) < 1. It then follows that |β|∞,0,KhK < ν for
K ∈ A2, and we may write
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∑
K∈Th

h2
K

∫
∂K

‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds

≤
∑

K∈A1

h2
K

∫
∂K

‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds +
∑

K∈A2

hKν

∫
∂K

|[[n · ∇vh]]|2 ds

≤
∑

K∈Th

∫
∂K

h2
Kξ(ReK)‖βh · n‖0,∞,∂K |[[n · ∇vh]]|2 ds + C‖ν 1

2∇vh‖2
0,Ω,

where the last inequality follows by a trace inequality, an inverse inequality in the
second term, and extending the sums over all Th.

The second inequality follows in a similar fashion, noting that

∑
K∈Th

φ−1
1|KhK

∫
∂K

[[∇ · vh]]2 ds ≤ C
∑

K∈Th

hK max{‖β‖0,∞,KhK , ν}
∫
∂K

[[∇ · vh]]2 ds

≤
∑

K∈A1

h2
K‖β‖0,∞,Kξ(ReK)

∫
∂K

[[∇ · vh]]2 ds + ‖ν 1
2∇vh‖2

0,A2
,

and so the proof is completed.
The main result of this paragraph is stated in the following theorem.
Theorem 4.9. Assume (u, p) ∈ [Hr(Ω)]d ×Hs(Ω), with r ≥ 2 and s ≥ 1, is

the solution of (2.1) and (uh, ph) ∈ W k
h is the solution of (2.10). Then, under the

assumptions of Lemma 4.6, there holds

|||u − uh||| ≤ C

[∑
K∈K

(
σh2ru

K + max{‖β‖0,∞,KhK , ν}h2(ru−1)
K

)
‖u‖2

ru,K

] 1
2

+C max
K∈Th

{
σ− 1

2 |β|1,∞,Khru
K

}
‖u‖ru,Ω+C

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

,

with ru = min{k + 1, r} and sp = min{k + 1, s}.
Proof. Let us decompose the error u − uh in two parts:

u − uh = u − πh,ku︸ ︷︷ ︸
eπ

+πh,ku − uh︸ ︷︷ ︸
−eh

= eπ − eh.

We also consider the discrete pressure error

yh
def
= ph − πh,kp.(4.5)

It follows then that

|||u − uh||| ≤ |||eπ||| + |||eh|||.

Lemma 4.6 gives an estimate for |||eπ|||. Hence, it suffices to estimate |||eh|||.
Using coercivity and orthogonality, namely, Lemmas 3.3 and 2.1, we get

C|||eh|||2 + jp(yh, yh) ≤ ah(eh, eh) + ju(eh, eh) + jp(yh, yh)

= ah(eπ, eh) + bh(yπ, eh) − bh(yh, e
π)

+ ju(eπ, eh) − jp(πh,kp, yh).

(4.6)
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By an application of the Cauchy–Schwarz inequality in the symmetric part of the
discrete elliptic operator and integrating by parts in the convective term, we obtain

ah(eπ, eh) ≤ |||eπ||||||eh||| + |(eπ,β · ∇eh)|
− 〈2νε(eπ)n, eh〉∂Ω − 〈eπ, 2νε(eh)n〉∂Ω ,

where, for simplicity, the boundary term from the integration by parts has been
included in the first term on the right-hand side. We note that in the same way
we have, using the Cauchy–Schwarz inequality, a trace inequality and a local inverse
inequality,

〈2νε(eh)n, eπ〉∂Ω ≤ C|||eh||||||eπ|||.(4.7)

For the second boundary term we use the Cauchy–Schwarz inequality followed by a
trace inequality and an approximation argument, similar to (4.3)–(4.4), to obtain

〈2νε(eπ)n, eh〉∂Ω ≤ C

( ∑
K∈Th

νh
2(ru−1)
K ‖u‖2

ru,K

) 1
2

|||eh|||.(4.8)

The convective term is controlled using a local inverse inequality, Lemma 4.4, Corol-
lary 4.3, and the orthogonality of the L2-projection, after having replaced the contin-
uous velocity field β by its piecewise linear interpolant βh,

|(eπ,β · ∇eh)| ≤ |(eπ, (β − βh) · ∇eh)| + |(eπ,βh · ∇eh)|

≤ C
∑

K∈Th

|β|1,∞,K‖eπ‖0,KhK‖∇eh‖0,K

+
∣∣(eπ,βh · ∇eh − π∗

h,k(βh · ∇eh)
)∣∣

≤ C
∑

K∈Th

σ− 1
2 |β|1,∞,Khru

K ‖φ∗
5e

π‖0,K‖σ 1
2 eh‖0,K

+
∣∣(eπ,βh · ∇eh − π∗

h,k(βh · ∇eh)
)∣∣

≤ C max
K∈Th

{σ− 1
2 |β|1,∞,Khru

K }‖u‖ru,Ω|||eh|||

+ ‖φ2e
π‖0,Ω

∥∥φ−1
2

(
βh · ∇eh − π∗

h,k(βh · ∇eh)
) ∥∥

0,Ω
.

Now we apply Lemma 3.1 to obtain

‖φ2e
π‖0,Ω

∥∥φ−1
2

(
βh · ∇eh − π∗

h,k(βh · ∇eh)
)∥∥

0,Ω

≤ C‖φ∗
2e

π‖0,Ω

( ∑
K∈Th

∫
∂K

h2
K‖β · n‖0,∞,∂K |[[n · ∇uh]]|2 ds

) 1
2

≤ C

( ∑
K∈Th

‖β‖0,∞,Kh2ru−1
K ‖u‖2

ru,K

) 1
2

|||eh|||,

where we used Corollary 4.3 and Lemma 4.8 in the last inequality.
Collecting terms we have

ah(eπ, eh) ≤ C|||eπ||||||eh||| + C max
K∈Th

{σ− 1
2 |β|1,∞,Khru

K }|||eh|||

+ C

( ∑
K∈Th

max{‖β‖0,∞,KhK , ν}h2(ru−1)
K ‖u‖2

ru,K

) 1
2

|||eh|||.
(4.9)
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For the second term in (4.6), using the orthogonality of the L2-projection, Lemmas
4.7 and 4.8, and replacing u with p in (4.2), we have

bh(yπ, eh) = −(yπ,∇ · eh − π∗
h,k(∇ · eh)) + 〈yπ, eh · n〉∂Ω

≤ ‖φ∗
1y

π‖0,Ω‖φ−1
1 (∇ · eh − π∗

h,k(∇ · eh))‖0,Ω + ‖φ∗
1h̃

1
2 yπ‖0,∂Ω|||eh|||

≤ C

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

|||eh|||.

(4.10)

In a similar fashion, after integration by parts in the third term, one obtains

bh(yh, e
π) = −(yh,∇ · eπ) + 〈yh, eπ · n〉∂Ω

= (∇yh, e
π)

= (∇yh − π∗
h,k(∇yh), eπ)

≤ C‖φ−1
3

(
∇yh − π∗

h,k(∇yh)
)
‖0,Ω‖φ∗

3e
π‖0,Ω

≤ Cjp(yh, yh)
1
2

( ∑
K∈Th

max{‖β‖0,∞,KhK , ν}h2(ru−1)
K ‖u‖2

ru,K

) 1
2

.

(4.11)

Finally, using Lemma 4.7, for the interior penalty terms we have

(4.12) ju(eπ, eh) + jp(πh,kp, yh) ≤ C|||eπ||||||eh||| + jp(πh,kp, πh,kp)
1
2 jp(yh, yh)

1
2

≤ C|||eπ||||||eh||| + Cjp(yh, yh)
1
2

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

.

We conclude the proof by collecting the results of (4.9)–(4.12) in (4.6) and applying
the approximation lemma, Lemma 4.6.

The following corollary follows from (4.6) in combination with (4.5) and Lemma
4.7.

Corollary 4.10. Under the assumptions of Theorem 4.9, there holds

jp(ph, ph) ≤ C max
K∈Th

{
σ− 1

2 |β|1,∞,Khru
K

}
‖u‖ru,Ω

+ C

[∑
K∈K

(
σh2ru

K + max{‖β‖0,∞,KhK , ν}h2(ru−1)
)
‖u‖2

ru,K

] 1
2

+ C

( ∑
K∈Th

min{‖β‖−1
0,∞,K , hK/ν}h2sp−1

K ‖p‖2
sp,K

) 1
2

.

Remark 4.11. In a physical situation the velocity gradient on boundaries with no-
slip conditions is known to scale as |β|1,∞,∂Ω ∼ ν−

1
2 . If in the boundary layer hK ∼ ν,

that is, a low local Reynolds number on the boundary, then the estimate is dominated
by the H1(Ω) contribution from the boundary that converges at optimal rate since

the layer is resolved. The condition (2.7) is satisfied with cβ ∼ ν
1
2 showing that the

strongest constraint on the mesh is not that of (2.7), but that of the hK

ν contribution
on the boundary. In laminar free-flow we can expect |β|1,∞,K ≤ c‖β‖0,∞,K to hold,
and hence the convergence in the L2-norm in this regime is of the quasi-optimal rate
hk+ 1

2 for a sufficiently regular solution.
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4.2. Recovering the pressure. In this section, we provide an estimate of the
L2-norm of the pressure error. This is the aim of the following theorem, which ensures
that the pressure converges at the rate of the velocity.

Theorem 4.12. Assume (u, p) ∈ [Hr(Ω)]d ×Hs(Ω), with r ≥ 2 and s ≥ 1, is
the solution of (2.1) and (uh, ph) ∈ W k

h is the solution of (2.10). Then, under the
assumptions of Lemma 4.6, there holds

‖p− ph‖0,Ω ≤ C

(
CLσ

1
2 + max

K∈Th

{‖β‖0,∞,KhK , ν}
1
2 + σ− 1

2 ‖β‖0,∞,Ω

)
Cu,

with Cu the convergence rate of |||u − uh||| given by Theorem 4.9, and CL a positive
constant depending only on Ω.

Proof. Following [27, Corollary 2.4], there exists vp ∈ [H1
0 (Ω)]d such that

∇ · vp = p− ph, ‖vp‖0,Ω ≤ CL‖p− ph‖0,Ω, |vp|1,Ω ≤ C‖p− ph‖0,Ω,(4.13)

with CL > 0 a constant, depending on Ω, which scales as a distance. Thus, using the
modified Galerkin orthogonality (Lemma 2.1), we readily obtain

‖p− ph‖2
0,Ω = (p− ph,∇ · vp)

= (p− ph,∇ · (vp − πh,kvp)) + 〈p− ph, πh,kvp · n〉∂Ω

+ ah(u − uh, πh,kvp) + ju(u − uh, πh,kvp).

Thus, after integrating by parts, we get

‖p− ph‖2
0,Ω = (∇(p− ph),vp − πh,kvp)︸ ︷︷ ︸

T1

+ ah(u − uh, πh,kvp) + ju(u − uh, πh,kvp)︸ ︷︷ ︸
T2

.

(4.14)

For the first term, using the orthogonality of the L2-projection, the Cauchy–
Schwarz inequality, Corollary 3.2, (4.13), and Corollary 4.3, we get

T1 = (∇(p− ph) − πh,k∇p + π∗
h,k∇ph,vp − πh,kvp)

≤ ‖h̃(∇p− πh,k∇p)‖0,Ω‖h̃−1(vp − πh,kvp)‖0,Ω

+ C‖φ−1
3 (∇ph − π∗

h,k∇ph)‖0,Ω‖φ∗
3(vp − πh,kvp)‖0,Ω

≤ C

[( ∑
K∈Th

h
2sp−1
K ‖p‖2

sp,K

) 1
2

+ max
K∈Th

{ν, ‖β‖0,∞,KhK} 1
2 jp(ph, ph)

1
2

]
‖p− ph‖0,Ω.

(4.15)

Using the definition (2.11) of the bilinear form ah, and after integration by parts
in the convective term, we have

T2 ≤ |||u − uh||||||πh,kvp||| + (u − uh,β · ∇πh,kvp)

− 〈2νε(u − uh)n, πh,kvp〉∂Ω − 〈u − uh, 2νε(πh,kvp)n〉∂Ω.
(4.16)

For the convective term we have, using the H1-stability of the L2-projection (see [5])
and (4.13),

(u − uh,β · ∇πh,kvp) ≤ σ− 1
2 ‖β‖0,∞,Ω‖σ

1
2 (u − uh)‖0,Ω‖∇πh,kvp‖0,Ω

≤ Cσ− 1
2 ‖β‖0,∞,Ω|||u − uh|||‖p− ph‖0,Ω.

(4.17)
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The boundary terms are controlled in the following fashion:

(4.18) 〈2νε(u − uh)n, πh,kvp〉∂Ω + 〈u − uh, 2νε(πh,kvp)n〉∂Ω

≤ C‖(νh̃)
1
2 ε(u − uh)‖0,∂Ω|||πh,kvp||| + C‖(νh̃)

1
2 ε(πh,kvp)‖0,∂Ω|||u − uh|||.

In addition, as in (4.7) and (4.8), we have

‖(νh̃)
1
2 ε(u − uh)‖0,∂Ω ≤ ‖(νh̃)

1
2 ε(eπ)‖0,∂Ω + ‖(νh̃)

1
2 ε(eh)‖0,∂Ω,

≤ C

⎡
⎣( ∑

K∈Th

νh
2(ru−1)
K ‖u‖2

ru,K

) 1
2

+ |||eh|||

⎤
⎦ .

(4.19)

In the same fashion, we obtain

‖(2νh̃)
1
2 ε(πh,kvp)‖0,∂Ω ≤ C|||πh,kvp|||.(4.20)

Finally, from (4.13), it follows that

|||πh,kvp||| ≤ C

(
CLσ

1
2 + max

K∈Th

{‖β‖0,∞,KhK , ν}
1
2

)
‖p− ph‖0,Ω.(4.21)

We conclude the proof by collecting the estimations (4.15)–(4.20) in (4.14), using
(4.21) and Theorem 4.9.

Remark 4.13. Let us notice that the three terms appearing in the error estimate
of the previous theorem scale with the right dimensions.

4.3. Low Reynolds number optimality. The following theorem gives an op-
timal L2-error estimate for velocity when the local Reynolds number is low.

Theorem 4.14. Assume that the solution (u, p) of (2.1) belongs to [H2(Ω)]d ×
H1(Ω) and let (uh, ph) ∈ W k

h be the solution of (2.10). Assume also that

‖β‖0,∞,KhK ≤ ν ∀K ∈ Th,(4.22)

and that the solution (ϕ,ψ) of the adjoint problem⎧⎪⎨
⎪⎩

σϕ− β · ∇ϕ− 2ν∇ · ε(ϕ) −∇ψ = u − uh in Ω,

∇ · ϕ = 0 in Ω,

ϕ = 0 on ∂Ω

(4.23)

belongs to [H2(Ω)]d × [H1(Ω)] and satisfies

‖ϕ‖2,Ω + ‖ψ‖1,Ω ≤ C‖u − uh‖0,Ω.(4.24)

Then, there holds

‖u − uh‖0,Ω ≤ ch2
(
‖u‖2,Ω + ‖p‖1,Ω

)
,

with constant c > 0 independent of h, but depending on the physical parameters.
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Proof. Multiplying the first equation of (4.23) by u − uh and the second by
−(p−ph), integrating by parts, and using the modified Galerkin orthogonality (Lemma
2.1), it follows that

‖u − uh‖2
0,Ω = ah(u − uh, ϕ) + bh(p− ph, ϕ) − bh(ψ,u − uh)

= ah(u − uh, ϕ− πh,kϕ) + bh(p− ph, ϕ− πh,kϕ) − bh(ψ − πh,kψ,u − uh)︸ ︷︷ ︸
T1

+ ju(u − uh, ϕ− πh,kϕ)︸ ︷︷ ︸
T2

+ jp(ph, πh,kψ)︸ ︷︷ ︸
T3

.

Following the argument of the proofs of Theorems 4.9 and 4.12, and using Lemma 4.6
and (4.22), we get

T1 ≤ |||u − uh||||||ϕ− πh,kϕ||| + |(u − uh,β · ∇(ϕ− πh,kϕ))|
− 〈2νε(u − uh)n, ϕ− πh,kϕ〉∂Ω − 〈u − uh, 2νε(ϕ− πh,kϕ)n〉∂Ω

≤ Ch (|||u − uh|||‖ϕ‖2,Ω + ‖p− ph‖0,Ω‖ϕ‖2,Ω + |||u − uh|||‖ψ‖1,Ω) .

Using Cauchy–Schwarz, Lemma 4.6, and (4.22), one obtains

T2 ≤ ju(u − uh,u − uh)
1
2 ju(ϕ− πh,kϕ,ϕ− πh,kϕ)

1
2

≤ Ch
3
2 |||u − uh|||‖ϕ‖2,Ω.

Finally, from Lemma 4.7 and (4.22), for the last term we have

T3 ≤ jp(ph, ph)
1
2 jp(πh,kψ, πh,kψ)

1
2

≤ Chjp(ph, ph)
1
2 ‖ψ‖1,Ω.

The proof concludes by combining the above estimations with Theorems 4.9 and 4.12,
Corollary 4.10, (4.22), and the assumed regularizing behavior (4.24).

Let us sum up the results provided by Theorems 4.9 and 4.12. When the local
Reynolds number is high and the solution is regular, we enjoy an optimal O(hk+ 1

2 )
convergence order of the error in the L2-norm for the velocity and the pressure. For
less regular solutions, for instance, when the pressure is in H1(Ω) and the velocity
is in [H2(Ω)]d, we get an optimal O(h) estimate in the energy norm, when the local

Reynolds number is low, but a suboptimal estimate of O(h
1
2 ) when the local Reynolds

number is high. This is due to the fact that the inconsistencies in the pressure
stabilization pollute the energy norm estimate for the velocities.

Remark 4.15. Note that by adding the L2-coercivity, we can use the stabilization
term to control the convective term without using the H1-coercivity; this leads to a
quasi-optimal estimate in the weaker L2-norm, with a ν-weighted H1 contribution
showing that the stabilization handles the numerical instability induced by treating
nonsymmetric terms using the standard Galerkin method. In case σ = 0 the H1

estimate obtained by a standard energy argument will scale as ν−
1
2 , reflecting the

physical instability of the problem.

5. Numerical results. In this section we report several numerical experiments
that show the good convergence properties of our stabilized finite element method.
In particular, we recover the convergence rates obtained in section 4.
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Fig. 5.1. Convergence history: Linear elements (k = 1) (left) and quadratic elements (k = 2)
(right).

We consider problem (2.1) in three dimensions with nonhomogeneous boundary
conditions. The right-hand side f and the boundary data are chosen in order to ensure
that the exact solution of (2.1) is given by the following expression [22]:

u1(x1, x2, x3) = bea(x1−x3)+b(x2−x3) − aea(x3−x2)+b(x1−x2),

u2(x1, x2, x3) = bea(x2−x1)+b(x3−x2) − aea(x1−x3)+b(x2−x3),

u3(x1, x2, x3) = bea(x3−x2)+b(x1−x2) − aea(x2−x1)+b(x3−x1),

p(x1, x2, x3) = (a2 + b2 + ab)

[
ea(x1−x2)+b(x1−x3) + ea(x2−x3)+b(x2−x1)

+ ea(x3−x1)+b(x3−x2)

]
(5.1)

with β = u, σ = 1, ν = 10−4, a = b = 0.75, and Ω = (0, 1)3 the unit cube.
The resulting continuous problem was solved approximately using the stabilized

discrete formulation (2.10); however, the boundary conditions were strongly enforced.
All numerical tests have been performed using conforming linear and quadratic finite
elements for velocity and pressure, namely, P1/P1 and P2/P2 (implemented in a three-
dimensional research code [23]). The stabilization parameter involved in the jumps
terms (2.13) and (2.14) were chosen as

γ =

⎧⎪⎨
⎪⎩

1

8
if k = 1,

1

32
if k = 2.

In Figure 5.1 we show, respectively, the velocity and pressure convergence histories
for k = 1 and k = 2. Note that, in both cases, the numerical solution exhibits optimal
convergence order and is hence in agreement with Theorems 4.9 and 4.12.

We show in Figure 5.2 the pressure contours in two different meshes (which are
depicted in Figure 5.3) using linear elements. No spurious pressure oscillations are
observed. We report in Figure 5.4 the contours of the second component of uh, uh2,
in the left plot with full stabilization and in the right plot setting the stabilization pa-
rameter for the term associated with the streamline derivative to zero, on the cutting
plane x = 0.5. Although the exact solution is smooth, the plot of the unstabilized
solution (right) exhibits spurious oscillations. Note that the spurious velocity oscilla-
tions (right) are completely controlled by the streamline-derivative jumps (left).
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Fig. 5.2. Pressure contours: Coarse mesh (left) and fine mesh (right).

Fig. 5.3. Coarse mesh (2929 tetrahedra) and fine mesh (196608 tetrahedra).

Fig. 5.4. Velocity (uh2) contours on a cutting plane: Stabilized (left), with γβ = 0 (right).

In what follows we will replace, in (5.1), the expression for the pressure by

p(x1, x2, x3) =

⎧⎪⎨
⎪⎩

2x2 if 0 ≤ x2 ≤ 1

2
,

2(1 − x2) if
1

2
≤ x2 ≤ 1.

Clearly, this function satisfies p ∈ H1(Ω) but does not belong to H2(Ω). Figure 5.5
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Fig. 5.5. Cutting plane pressure: Coarse mesh and fine mesh.
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Fig. 5.6. Convergence history: Linear elements, nonsmooth pressure, stabilization, parameters
chosen as in (2.13) and (2.14).
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Fig. 5.7. Convergence history: Linear elements, nonsmooth pressure, parameters chosen as in
(2.13) and (2.14). Left: High Reynolds number. Right: Low Reynolds number.

shows the pressure contours in a cut of a coarse and a fine mesh. Once more no
spurious pressure oscillations are observed. Figure 5.6 shows the velocity and pressure
convergence histories using linear elements. We get the suboptimal O(h

1
2 ) order for

the velocity in the H1-norm in the case of high local Reynolds numbers, in agreement
with Theorem 4.9. The L2-norm of the velocities, on the other hand, is still not
far from the quasi-optimal O(h

3
2 ) convergence order. As expected, when the local

Reynolds is low (for instance ν = 0.1), we recover the optimal O(h); see Figure 5.7,
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left graphic. In addition, as predicted in Theorem 4.14, we notice that the convergence
order for the velocity in the L2-norm is O(h2).

6. Conclusion and outlook. In this paper, we have extended the results re-
ported in [15, 13] to Oseen’s equations using equal order interpolation and finite
element spaces of arbitrary polynomial order. The stability properties of the method
are based on an interior penalty term giving L2-control of the jump of the gradient
over interior element faces. We have shown that such a stabilization operator may
be used to control all the nonsymmetric first order terms of Oseen’s equations and
that they give control only of the part of the operator that is not in the finite element
space. In this sense the proposed method is a minimal stabilized method (see [8]).

The convergence analysis shows that the method has (quasi-) optimal conver-
gence properties both in the L2-norm and in the energy norm when the solution is
sufficiently regular or the local Reynolds number is low. When physically realistic
regularities are considered (p ∈ H1(Ω)) and the local Reynolds number is high, the

convergence may become suboptimal O(h
1
2 ) due to the inconsistencies in the pres-

sure stabilization. In some numerical examples we illustrated the theoretical results.
The method shows very good performance in all regimes. In particular, we observe
that in the high Reynolds number regime the scheme degenerates to the theoretical
O(hk+ 1

2 ) convergence in the L2-norm predicted by the theory only in the case where

the pressure is only H1 and where the theoretical prediction is O(h
1
2 ).

The method presented here has some common features with VMS for LES as
introduced in [30]. However, unlike the VMS, where two scales Vh and VH defined by
hierarchic meshes are considered (see, e.g., [35, 31, 4]), in our case the finite element
space Vh represents the only resolved scale and the “turbulent” viscosity acts only
on the gradient component that is not resolved on Vh. Recently, John and Kaya
[31] proposed a VMS using a projection method framework which essentially takes
the form of a standard Galerkin formulation for uh supplemented with the turbulent
viscosity acting only on the fine scales in the form of an additional term

(νT (I − PH)ε(uh), (I − PH)ε(vh)),(6.1)

where PH is some map from fine scales to coarse scales. Comparing this now with
the face oriented stabilization method, we would choose H = h and thus make the
turbulent viscosity act only on the scales that are not resolved on the space Vh.
Applying Lemma 3.1 we immediately get an interior penalty interpretation of the

term (6.1), with PH
def
= π∗

h,k,

‖ν
1
2

T (I − π∗
h,k)ε(uh)‖2

Ω ≤
∑

K∈Th

∫
∂K

νThK [[ε(uh)]] : [[ε(uh)]] ds,

and we conclude that a possible subgrid modeling term would be

jT (uh,vh) =
∑

K∈Th

∫
∂K\∂Ω

νThK [[ε(uh)]] : [[ε(vh)]] ds,

where the choice of νT now is a modeling issue. It should be noted that the choice
νT = γhK gives us a term which is asymptotically equivalent to the face penalty
operator using the whole gradient. However, other choices of νT based on modeling
considerations are possible.
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For sufficiently high polynomial degree there exists a C1 subspace of Vh with ap-
proximation properties. It follows that the solution may be decomposed into one C1

part which is untouched by the stabilizing terms and another C0 part which is penal-
ized. We conclude that the method enjoys the scale separation property characteristic
for VMS as proposed in [30] by polynomial order rather than by hierarchic meshes.
Future work will focus on the extension of the present method to the Navier–Stokes
equations both from a numerical and a theoretical standpoint.

Finally, we remark that the Nitsche-type weak boundary conditions used in this
paper, while nonstandard, have the benefit of acting as slip boundary conditions in
the high Reynolds number regime and as no-slip conditions when the boundary layers
are resolved; this may be favorable in LES (see Layton [34]).
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[36] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
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