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Abstract

This work proposes to examine the variability of the bone tissue healing process in the early
period after the implantation surgery. The first part took into account the effect of variability of
individual biochemical and mechanical factors on the solid phase fraction, which is an indicator of the
quality of the primary fixation and condition of its long-term behaviour. The next issue, addressed in
this second part, is the effect of cumulative sources of uncertainties on the same problem of a canine
implant. This paper is concerned with the ability to increase the number of random parameters to
assess the coupled influence of those variabilities on the tissue healing. To avoid an excessive increase
in the complexity of the numerical modelling and further, to maintain efficiency in computational
cost, a collocation-based polynomial chaos expansion approach is implemented. A progressive set of
simulations with an increasing number of sources of uncertainty is performed. This information is
helpful for future implant design and decision process for the implantation surgical act.
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1 Introduction

The fixation of an orthopaedic implant to the surrounding bone greatly affects its clinical longevity
[7, 19]. The implant fixation quality is determined by the bone healing process in the early period after
the implantation surgery [13, 16].

Several numerical models for tissue evolution prediction are available in the literature and were dis-
cussed in the first part of this study. In the biomechanical model used herein, the bone tissue was
modelled as a multiphasic porous medium and coupled with computational cell biology [2, 1, 6]. Numer-
ical results from the coupled biochemical-mechanical model were validated by experimental results from
a canine implant [17, 21].

The healing process of a bone implant is affected by significant uncertainties from the mechanical and
biochemical environments [20, 12]. The influence of system uncertainties can be observed directly using
Monte Carlo simulations (MCS) [4], which require a large number of simulations and high computational
cost to obtain accurate results.

The first part of this study focussed on the influence of individual uncertainties on the healing process.
A biomechanical model was combined with an intrusive stochastic method, the Galerkin projection
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polynomial chaos expansion (PCE). Uncertainty propagation during this process was predicted at a low
computational cost.

For the bone-implant healing problem considered in this work, coupling in the influence of uncertain
parameters requires prediction of the effect of an increasing number of simultaneous sources of variability
on the biomechanical phenomena of healing, while keeping again the simulation cost affordable. This is
the focus of this second article.

Due to its computational efficiency, the PCE method has been widely applied in many disciplines for
uncertainty quantification problems. The computational efficiency of PCE was compared with numerical
cubature scheme, Karhunen-Loeve moment equation method and MCS for a groundwater flow with
uncertain conductivity in porous medium [15]. It was found that all these methods suffered from the curse
of dimensionality as the system size and the number of uncertainty increased and that PCE outperformed
other methods when the appropriate truncated number of base polynomials were identified to quantify
the uncertainties. For the solution of the PCE coefficients, the PCE method can be divided into intrusive
and non-intrusive techniques [8, 14]. In the intrusive PCE method, the PCE coefficients are solved by
the stochastic Galerkin projection [5], which requires access to the system equations and results in more
complex system equations. This accurate method was used in the first part of the paper to examine the
effect of individual biochemical and mechanical uncertainties on the bone-implant healing process.

In the non-intrusive PCE method, the system equations are treated as a black box and the calculation
of PCE coefficients is based on a set of deterministic simulations, which is more amenable in terms of
computational cost for large-scale models and in terms of modelling complexity for iterative methods.
To calculate the PCE coefficients, two non-intrusive approaches can be used: the spectral projection
method and the collocation-based method [3]. The spectral projection method projects the output
results into the base polynomials using an orthogonality property and multidimensional integral, which
involves random sampling, quadrature, Strouds cubature formula [18], or sparse grid approaches [22].
The collocation-based method uses a linear regression algorithm that approximates the PCE coefficients
to match the output results from the deterministic model at a set of collocation points using the least
square algorithm [8], which is more straightforward to implement than the spectral projection. The
collocation-based PCE method was combined with Karhunen-Loeve expansion to analyse the flow in
porous media with an uncertain hydraulic conductivity field [11]. This method was applied to estimate
internal and biologically effective doses of toxic chemicals for the human body and to predict the pollutant
concentrations in the atmosphere [9], and showed higher computational efficiency compared with standard
and modified MC simulations. To examine the forces and moments of intervertebral discs in the human
spine, the collocation-based PCE was shown to be more accurate than the spectral projection method
[10].

This paper investigates the combined effects of random biochemical and mechanical parameters on
the bone-implant healing process using collocation-based polynomial chaos expansion. The biomechani-
cal model considers both mechanical and biochemical equations to take into account the osteoblast cells
migration, growth factors diffusion and bone deposit. Since the collocation-based method introduces
additional approximations (least-square at the collocation points), its validation is performed with com-
parison to MCS in terms of accuracy and computational cost. Its performances are exemplified on the
case of a canine implant, and insight on the healing process with respect to the sources of uncertainty
are discussed.

2 A biomechanical model with combined random factors

2.1 Deterministic model as a black box

The healing process with tissue formation is modeled as a transient convective-diffusive-reactive problem
in porous media [2]. Its parabolic nature allows derivation of finite difference approximation schemes,
see [23] and the first part of this paper, in terms of a 4-field problem involving the bone solid fraction
φs, the concentration of osteoblast cells Cc, the concentration of growth factors CM , and the relative
fluid flow rate −qf (Darcy velocity). The formal expression of the evolution problem requires x =

f(x, div gradx, qf ) where the state vector is x =
[
φs (1− φs)Cc (1− φs)CM

]T
, closed with a fluid

conservation equation in the case of incompressibility, that reads −φs = div qf . The function f is
not detailed herein and the interested reader is suggested to refer to [2]. Despite the macroscopic
nature of the model, the coupling of the four fields in function f induces a potentially large number of
phenomenological parameters. The main uncertainties have been identified as the coefficient of osteoid
synthesis αs, the coefficient of haptotactic migration hc, the coefficient of chemotactic migration χc,
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and the drill hole radius rd [2]. The ranges of these uncertain parameters are listed in Table 1. In the
following analyses, these parameters are assumed to follow uniform distributions. Depending on the
study case, some inputs will be considered as random and some others as deterministic whose values are
chosen by the measurements given in [2].

Table 1: Parameters that may encounter variability
Parameter Range

αs / mm6.cell−1.ng−1.s−1 [1, 5]× 10−9

hc / mm5.s−1.kg−1 [0.04, 0.8]
χc / mm5.s−1.ng−1 [1, 14.5]× 10−5

rd / mm [3.8, 4.4]

Using a stochastic analysis, these uncertain parameters are considered as inputs of the model. The
output quantity of interest is the bone solid fraction field φs once the transient regime is stabilized
(after 56 days). For the current application of a canine implant, recalled in part 1 of the paper, a 1D
axisymmetric spatial discretization is used, so that the quantity of interest is φs(r).

In this first part of the paper, the input parameters and output solutions were considered as random
and represented by a polynomial chaos expansion (PCE). Using an explicit finite difference scheme and
Galerkin projection, the stochastic system equations are transformed to a set of equations to solve the
deterministic PCE coefficients for the output results, leading to an intrusive approach. This approach is
amenable for the stochastic analysis of each input separately (in each case a single input is considered
as uncertain, while the other ones take their nominal deterministic values). As such, the individual
uncertainty analysis in part 1 is equivalent to a stochastic sensitivity analysis for each parameter.

It is now of interest to quantify the effect of coupled uncertainties, to provide further insight into the
healing process and to be used as a tool during the decision process of the implantation surgical act.
The complexity of the previous intrusive approach increases with the number of uncertain parameters
taken into account. It is therefore not suited for the coupled analysis. A non-intrusive approach is now
required to address the aforementioned issues that will allow the solver to be considered as a black box,
and the same former deterministic model to be re-used as in a Monte Carlo approach.

2.2 Non-intrusive polynomial chaos expansion

The stochastic method used here is the stochastic response surface method using collocation-based PCE
[8]. The output is expanded in a polynomial chaos expansion by [5]

φs(r, ξ) ≈
Nφ∑
i=0

φsi (r)Ψi(ξ) (1)

in which the number of unknown polynomial coefficients is equal to Nφ + 1 = (n+ p)!/n!/p! with p the
PCE order and n the number of random variables of inputs ξ = (ξ1, ξ2 . . . ξn). The random inputs follow
the uniform probability law and the base polynomials Ψi defined in equation (1) are mutually orthogonal
Legendre polynomials. The collocation-based method outputs are calculated at a set of collocation points
(ξ0, ξ1 . . . ξNξ) in the parameter space from the deterministic model. The number of collocation points
should be greater than the number of unknown PCE coefficients, and they are chosen as the roots of a
higher p + 1 order polynomial to capture the points from the region of high probability. The unknown
PCE coefficients are then determined as the least square solution arising from the minimization of the
norm of the residual in equation (1):

min
φsi (r)

Nξ∑
k=0

φs(r, ξk)−
Nφ∑
i=0

φsi (r)Ψi(ξk)

2

(2)

to solve a linear system of equations.

3 Numerical results

Two typical healing patterns encountered in the animal models (herein, a canine experiment) were
selected to support the computational developments. They were classified according to the amount of
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solid fraction distribution φs and designated as good healing (GH) when the average solid fraction was in
the range of that of the host bone and poor healing (PH) for significant lower values. Ex-vivo histological
data from [2] were included and compared with the numerical results obtained from the present model.

It was shown previously in the first part of the paper that the coefficient of osteoid synthesis αs had
an impact at both the implant surface ri and drill hole rd for GH, but only at the drill hole radius rd for
PH. In comparison, the haptotactic coefficient hc showed less effect even if it influenced the homogeneity
of the solid fraction into the post-operative gap, especially for GH. The chemotactic coefficient χc played
a significant role in tissue formation with a peak at the implant radius ri for both GH and PH. For PH,
the experimental results were observed to be close to the lower limit of the PCE envelope. Variations of
the drill hole radius rd had a significant impact on the tissue formation at the drill hole and it modified
the homogeneity of neo-formed tissue in the gap ri − rd, especially for GH.

Combined uncertainties in the various relevant biochemical factors and the drill hole radius on the
implant healing process are now examined. The selected combinations were those that brought (i) a
good prediction of experimental data and (ii) relevant clues to progress in the interpretation of clinical
results. Each input follows a uniform distribution within the range shown in Table 1 [2], and are
identical to the values in part 1 of the paper. The input parameters are well represented by the 1st order
Legendre PCE. In all cases, converged stochastic numerical results are obtained using polynomial chaos
expansion of third order (p = 3), corresponding to 16 collocation points for two uncertain parameters
and 64 collocation points for three uncertain parameters in equation (2). Compared with the 50000
Monte Carlo computations of the deterministic model, the collocation-based PCE computations provide
significantly reduced computational cost with an equivalent accuracy. For each case of uncertainty,
results are presented in terms of the mean and variance of the solid fraction distribution φs. Upper and
lower envelopes of φs are constructed by taking the maximum and minimum values of 50000 Legendre
polynomial samples ξ for the solid fraction.

3.1 Combined uncertainties involving two parameters

3.1.1 Active migration: haptotactic and chemotactic coefficients hc and χc

Figure 1 showed the combined influences of active migration parameters hc and χc. Comparison with the
part 1 of the paper for individual parameters confirmed the major role played by χc even if a smoother
variance evolution provided by hc was detected into the post-operative gap (ri, rd).

3.1.2 Healing capability and surgical technique: coefficient of osteoid synthesis αs and
drill hole radius rd

Figure 2 shows average trends when using combined uncertainties αs and rd that are similar to those
that can be obtained with individual uncertainties (see Part 1 of this paper) while their variances are
more accentuated.

3.2 Combined uncertainties involving three parameters

The combinations of three parameters were then investigated. The role of active migrations (χc, hc)
when associated with uncertainties in bone tissue formation (αs) or surgical technique (rd) are examined
as follows.

3.2.1 Osteoid synthesis and active migrations: αs, χc and hc

The gap region between the implant and drill hole (r ∈ [ri, rd]) is still observed to be the location
of significant disturbances as shown in Figure 3. The coefficient of osteoid synthesis αs adds more
disturbances to the host bone (r ∈ [rd, rs], where rs is the limit of the region of influence for the healing
process) in terms of mean values and variance of solid fraction φs. Compared with previous results for
combined uncertainty in the haptotactic and chemotactic migrations (χc, hc), Figure 1 does not show
strong differences in terms of shape for the radial evolution of φs when uncertainty in the osteoid synthesis
is included.

3.2.2 Active migrations and surgical technique: rd, χ
c and hc

Compared to results shown in Figure 1, the combination of active migrations with the uncertainties on
the drill hole (Figure 4) did not induce fundamental differences in the tissue healing distribution pattern.
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(a) Good healing.

(b) Poor healing.

Figure 1: Influence of uncertain coefficients of haptotactic and chemotactic migrations
hc and χc.

(a) Good healing.

(b) Poor healing.

Figure 2: Influence of uncertain coefficients of osteoid synthesis αs and drill hole
radius rd.
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(a) Good healing.

(b) Poor healing.

Figure 3: Influence of uncertain coefficients of osteoid synthesis αs, haptotactic mi-
gration hc and chemotactic migration χc.

The obtained variance smoothing was associated with a small increase of the solid fraction envelope size.

3.2.3 Osteoid synthesis, active migration and surgical technique: αs, χc and rd

When the combination of (αs, rd) described by the responses in Figure 2 was associated with uncertainties
in χc, the mean values and envelope results are significantly modified in magnitude, and particularly in
shape for the PH case. As shown in Figure 5, maximal variances were obtained and the heterogeneity of
the solid fraction variance was intensified in the full region of interest (ri, rd). Finally, the envelope of
solutions in Figure 5(b) was able to encompass both cases GH and PH.

4 Discussion and Conclusions

Clinically, the main issue is the primary fixation and consistent healing between the surface of the implant
and the host tissue is generally a good indicator for long-term survival of the arthroplasty. The amount
of structural (or mineralized) fraction into the neo-formed tissue is the result of combined and complex
biomechanical events. The influence of the variability of the various parameters is therefore significant
and not trivial to estimate.

The numerical methodology proposed in this work can be used to examine the effects of biomechanical
factors in the periprosthetic healing. Results obtained by using collocation-based polynomial chaos
expansion (PCE) were in excellent agreement with Monte Carlo simulations (MCS) and offered a drastic
reduction of computational time. Furthermore, PCE can predict the mean value, envelopes and variance.
Small differences between the PCE and MCS results were attributed to the nonlinear uncertainty from
the drill hole radius rd, which is independent of the PCE order and corresponds to a limitation of
collocation-based PCE [9]. These small discrepancies do not appear in the use of the intrusive PCE
method described in part 1. However the intrusive method based on Galerkin projection PCE is more
computationally expensive than the collocation-based PCE method for the case of several random inputs.

Homogeneity of the healing process was conditioned by haptotaxis migration that emphasized adhe-
sion gradients at the drill hole in opposition to chemotaxis migration conditioned by the attraction of
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(a) Good healing.

(b) Poor healing.

Figure 4: Influence of uncertain coefficients of drill hole radius rd, chemotactic and
haptotactic migrations hc and χc.

(a) Good healing.

(b) Poor healing.

Figure 5: Influence of uncertain coefficients of osteoid synthesis αs, chemotactic mi-
gration χc and drill hole radius rd.
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growth factors on the implant surface. These effects were well corroborated by the combined uncertainty
analyses that highlight the leading role of chemo attractants.

When uncertainty of the drill-hole radius was combined with that of osteoid synthesis, the numerical
model confirmed that the drill-hole zone was the site of significant effects and to a lesser extent, the
implant surface was affected.

The numerical methodology allowed triple uncertainties to be evaluated simultaneously and revealed
that the combination of active migrations to osteoid synthesis or drill-hole radius did not provide more
significant information excepting the increase of variances.

The combination of chemotactic migration with osteoid synthesis and drill-hole radius was shown
to play a major role in variation in the healing process. This combination was able to encompass the
healing patterns previously defined (GH, PH) in a unified approach. In a clinical setting, the envelope
of solutions in Figure 5(b) was conditioned by the surgical technique (rd parameter) which influenced
the primary fixation and the biochemical potential of the site (blood clot, autologous growth factors,
pre-osteoblasts population), and the role of implant bioactive coating.

The approach adopted here applied to the case of canine implant provides insights on the healing
implant for several sources of uncertainty. The objective quantification of mechanobiological events and
the prediction of their variability contributed to a better understanding of the source of diversity observed
in-vivo. This information is helpful for future implant design and decision process for the implantation
surgical act.
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