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Abstract

A stochastic model is proposed to predict the intramembranous process in periprosthetic healing
in the early post-operative period. The methodology was validated by a canine experimental model.
In this first part, the effects of each individual uncertain biochemical factor on the bone-implant
healing are examined, including the coefficient of osteoid synthesis, the coefficients of haptotactic
and chemotactic migration of osteoblastic population and the radius of the drill hole. A multi-phase
reactive model solved by an explicit finite difference scheme is combined with the polynomial chaos
expansion to solve the stochastic system. In the second part, combined biochemical factors are
considered to study a real configuration of clinical acts.
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1 Introduction

The primary fixation of an orthopedic implant greatly affects its clinical longevity [2, 17]. The peripros-
theic tissue healing is influenced by a significant number of factors including the patients clinical condition
[7], the mechano-chemico-bio factors [7] and the surgical technique [20]. Low performance of implant
fixation is generally associated with a low mineralization or a heterogeneous ossification of new-formed
tissue [20, 23] but conditions favouring the healing process in the early post-operative period remain a
clinical concern. The bone structure can be represented at the mesoscopic scale by a biphasic medium
including a porous skeleton drained by the bone marrow and the vascularization. The intramembranous
healing involves the osteoblast population, which proliferates and migrates in the marrow in the presence
of growth factors. The osteoblast cells promote bone formation and mineralization by depositing new
bone tissue on the implant surface and surrounding bone [9]. The growth factors regulate cell prolif-
eration and stimulate bone matrix formation [8] in the presence of mechanical factors coming from the
implant design and joint loads [5]. Early numerical models of a bone healing process were based on pure
mechanical approaches and focused on the mechanical behaviour while simplifying the biochemical and
time effects [6, 28]. Numerical models have also been developed to examine the biological and transient
behaviours of the cells and growth factors. Biomathematical models of migration and differentiation have
been proposed in skin and fracture healing [26, 21]. Mechano-bioregulatory models that incorporated
the angiogenesis and cell migration effects have been mainly concerned with the modelling of endochon-
dral ossification processes [15]. Numerical predictions have rarely been correlated to in-vivo or ex-vivo
data, explicitly. The models initially proposed by [3, 4] combined poromechanics with computational
cell biology while considering the biological tissue as a multiphasic reactive medium in the case of in-
tramembranous healing. The methodology was supported by ex-vivo data from canine implant models
[24, 27]. Mechano-biochemical models are affected by significant uncertainties from the mechanical and
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biochemical environments and their influence becomes crucial given the high degree of non-linearities in
coupling effects between mechanical governing equations and chemico-biological reactive sources. Models
of uncertainty are generally based on either a parametric or a non-parametric description of the uncer-
tainty. For a non-parametric analysis, uncertainties in the system are described using a universal model
regardless of their detailed nature, such as using the entropy optimization principle [25] and random
matrix theory [18]. For a parametric description of uncertainty, random quantities are described using
various techniques, including the Monte Carlo simulations (MCS) [12], perturbation method [1], random
factor method [14] and polynomial chaos expansion method (PCE) [16]. The influence of uncertainties
can be observed directly using Monte Carlo simulations, which generate a large number of samples to
obtain statistics of the output. Compared with MCS, the PCE can obtain the statistical characteristics
of the results with greatly reduced computational cost. It has been successfully applied in a range of
problems with uncertainties involving acoustics [11] and fluid flow in porous media [22]. We hypothesize
that the PCE could be of great interest to identify the role of complex biochemical parameters involved
in periprosthetic healing. This paper investigates the effects of uncertain biochemical parameters on the
bone-implant healing process using the PCE methodology. The model considers coupled equations to
take into account the osteoblast cells migration, growth factors diffusion and bone deposit. Results from
the numerical model of the homogeneous healing of the bone implant are compared to canine experiments
from literature [27]. The explicit finite difference scheme is combined with the PCE to solve the stochas-
tic system equations. Results are compared with Monte Carlo simulations, showing good agreement with
significantly reduced computational cost. In the first part of the paper, the relevance of the proposed
methodology is established and the effects of the individual biochemical factors, corresponding to the
coefficients of osteoid synthesis, haptotactic and chemotactic migrations on the solid fraction distribution
in the neo-formed tissue are reported. Uncertainty in the drill hole radius on the bone-implant healing
is also examined, which depends on the surgical technique. In the second part of the paper, the effects
of these combined factors on the periprosthetic healing in the early post-operative period are examined.

2 Bone-implant healing model

2.1 Presentation of the tissue formation problem

Figure 1 shows a schematic diagram of the canine experimental implant previously examined in-vivo
[27]. The studied experimental device is a stable implant. The pistoning system is not in contact with
the tibia plateau. Therefore, no mechanical loading is applied on the implant during the healing time
course. Boundary conditions and tissue formation showed a polar symmetry with a variable level of
calcification (or mineralization) φs in the radial direction r. The peripheral domain denoted by rs was
the host trabecular bone. The intermediate domain bounded by the implant radius ri and the drill
hole radius rd corresponded to the immediate post-operative gap. The healing process is evaluated up
to 8 weeks post-operatively starting from the initial continuous distribution of the solid fraction φsin(r)
described by equation (1) involving the transition distance δd, and properties at the implant surface φsri
and at the host bone φsrs . The transition distance δd is a geometrical parameter that allowed regulating
the transition between the very low initial structural fraction into the initial gap in the vicinity of the
implant and the existing structural fraction of the host bone. Fluid flux, cell flux and growth factor flux
were nil at boundaries.
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The set of convective-diffusive-reactive equations (2)-(4) were obtained assuming incompressible
phases in isothermal behaviour with no substrate strain [4]. The model outputs were the evolving
solid fraction φs (or the effective porosity φf = 1 − φs) of neo-formed tissue, the relative fluid flow
rate qf and the species concentrations: Cc and CM for osteoblast population and growth factor phase,
respectively.
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Figure 1: Canine experimental model: (a) implant diagram; (b) implant parameteri-
zation; and histological results for reference: (c) Good healing (GH), (d) Poor healing
(PH).

with
qc = φf

(
DcgradCc − hcρsCcgradφs − χcCcgradCM

)
qM = DMφfgradCM + CMqf

where αs, hc, χc and αc are respectively the coefficients of osteoid synthesis, haptotactic migration,
chemotactic migration and cell proliferation. qc and qM are respectively the cell and the growth factors
flow rates. Dc and DM are respectively the coefficients of cell and growth factors diffusion. N cc is the
inhibition level of cell proliferation, which is the maximum concentration of cell per volume unit, and
ρs is the density of solid phase. The active migrations of osteoblast population involved chemotaxis
and haptotaxis processes, and neo-formation of tissue were taken into account by source terms. The
coefficient of osteoid synthesis αs shows that the solid matrix source is proportional to the concentration
of osteoblast cells Cc and growth factors CM [19]. Haptotactic flow is proportional to the solid fraction
gradient and chemotactic flow is proportional to the growth factors gradient [13].

Two main classes of results were distinguished by the average level of solid fraction φs. The spatial-
temporal evolution of this fraction revealed the biological activity of osteoblast population in term of
migration, proliferation, and synthesis of extra-cellular matrix that corresponded with the amount of
calcified tissue per volume element. Two typical healing patterns encountered in the canine experiment
were selected to support the computational developments. They were classified according to the amount
of the solid fraction and designated as good healing (GH) when the average solid fraction was in the range
of that of the host bone and poor healing (PH) for significantly lower values. Data associated with GH
and PH are listed in Table 1. The concentration of growth factors in the host site is negligible compare
to the one induced by a significant bleeding followed by the inflammation and therefore is fixed to 0.
Common parameters for both healing patterns are δd = 0.1 mm, N cc = 1000 cell/mm3, αc = 1.9×10−10

mm3/cell.s, Dc = 2.5× 107 mm2/s, DM = 4.8× 10−6 mm2/s, ρs = 2.57× 10−6 kg/mm3, ri = 3.25 mm,
rd = 4.1 mm, rs = 7 mm.

2.2 Stochastic modelling for the periprosthetic healing

Parameters were selected to include the most significant uncertainties. The drill hole radius rd is de-
pendent upon the surgical technique and consequently conditions the initial solid fraction φsin (see equa-
tion (1)). Three biochemical factors were examined, namely the coefficient of osteoid synthesis αs, and
the coefficients of haptotactic hc and chemotactic χc migrations.

Using polynomial chaos expansion, all biochemical factors, the initial solid fraction and the output
quantities corresponding to the solid fraction φs, the porosity φf , the fluid flow qf , the cell concentration
Cc and the growth factor concentration CM can be expanded in a set of mutually orthogonal base
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Table 1: Parameters of the numerical model for the cases of poor healing (PH) and good healing (GH)
Parameter New-formed tissue r ∈ [ri, rd] Host trabecular bone r ∈ [rd, rs]

PH GH PH GH
φsin(%) 6 6 40 50

Cc0 (cell.mm−3) 0 1064 1667 2000
CM0 (ng.mm−3) 0.2 0.2 0 0

αs (mm6.cell−1.ng−1.s−1) 3.25× 10−9 3.5× 10−9 3.25× 10−9 3.5× 10−9

hc (mm5.kg−1.s−1) 0.78 0.7 0.78 0.7
χc (mm5.ng−1.s−1) 2× 10−5 7× 10−5 2× 10−5 7× 10−5

polynomials Ψi, which are functions of an n-dimensional random variable ξ = {ξ1, ξ2, ..., ξn}, such as Y
given by [16]

Y (ξ) =

∞∑
i=0

YiΨi(ξ) (5)

where Yi are deterministic coefficients. Practically, the summation is truncated to a limited number of
base polynomials N . Hence Y can be approximated by

Y (ξ) =

N∑
i=0

YiΨi(ξ) (6)

The truncation N and the values of Yi for the input data depend on the choice of variability of the
model. The truncation for the output is obtained from the convergence of the solution. In equation (6),
the truncation N corresponds to Nα, Nh, Nχ, Nφ0 for αs, hc, χc and φsin, respectively, and Nφ, Nq, Nc,
NM for the output quantities φs, φf , qf , Cc and CM , respectively.

The intrusive PCE method is used in this first part of the paper as it is well adapted to a problem
with one random variable since it provides good accuracy and is computationally fast, especially for
non linear problems [10]. The method consists in substituting PCE of the eight parameters above into
the governing equations given by equations (2)-(4) and into the initial solid fraction of equation (1).
Then, multiplying these equations by a base polynomial and using the Galerkin projection with the
orthogonal relationship [29] results in the set of deterministic equations for the one-dimensional radial
axisymmetric bone implant. To solve the partial differential equations, the explicit finite difference
scheme with variable time steps and upwinding was utilized. In the PCE framework, each single explicit
finite difference equation was transformed to a set of equations, whose size depends on the PCE order.

3 Effect of the variability of individual factor in the solid frac-
tion

The effects of single uncertainties in four model parameters on the solid fraction φs in neo-formed tissues
were investigated. It concerned three biochemical factors: the coefficient of osteoid synthesis αs, the
coefficient of chemotactic migration χc, the coefficient of haptotactic migration hc and a parameter asso-
ciated with the surgical technique, namely the drill hole radius rd. The histomorphometry is reproduced
from [4] and is used as a reference in the following results. Good tissue healing was characterized by
the maximum value between 70% and 80% at the implant surface ri and at the drill hole rd showing
increased biological activities in these zones. Poor tissue healing maintained a significant consolidation
at the drill hole (60%) but showed a fast decay to the implant.

All random biochemical factors follow a uniform distribution within ranges given in Table 1 and are
well represented by the first order Legendre PCE (Nα = Nh = Nχ = 1). The statistical moments of the
solid fraction distribution, mean and variance, were obtained from the coefficients of PCE by E[φs] = φs0
and σ2[φs] =

∑Nφ
i=1 φ

s
i
2E[Ψ2

i ] respectively. Envelopes of the maximum and minimum values of φs were
constructed from its PCE representation using 50000 samples.

3.1 Influence of coefficient of osteoid synthesis αs

Variability in αs was within the range [1, 5] × 10−9 mm6/cell.ng.s. For a converged result, the number
of base polynomial was Nφ = 2 for φs. Figures 2(a) and 2(b) present the mean solid fraction and its
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(a) Good healing.

(b) Poor healing.

Figure 2: Statistics of solid fraction distribution φs with random osteoid synthesis αs.

variance for periprosthetic healing with GH and PH, respectively. Similar tendencies were obtained into
the host bone (r ∈ [rd, rs]) in terms of mean values and variance of φs whereas the synthesis of osteoid
tissue was more significant in the vicinity of the implant (r ∈ [ri, rd]) for the case of GH.

3.2 Influence of coefficient of haptotactic migration hc

Coefficient of haptotactic migration hc varied in the range [4, 80] × 10−2 mm5/kg.s. Solid fraction was
represented accurately by PCE order Nφ = 2. Figures 3(a) and 3(b) show the mean and variance of
φs for the GH and PH. Even if haptotaxis influenced the two groups of distribution patterns, the mean
value associated with the variance in Figure 3(b) showed that the healing process was more affected by
the uncertain hc in the case of low-level mineralization. In both cases, the drill hole zone (r = rd) was
the location of significant disturbances.

3.3 Influence of coefficient of chemotactic migration χc

Variability in χc was assumed to be within [1, 14.5]×10−5 mm5/ng.s. For converged results, the 3rd order
Legendre polynomial chaos expansion was chosen to represent the uncertain solid fraction distribution.
As previously, the GH and PH were examined and corresponding results are presented in Figures 4(a)
and 4(b), respectively. Two cases of healing patterns showed a significant sensitivity to χc in the zone
of neo-formed tissue (r ∈ [ri, rd]). Due to the local concentration of growth factors, which drove the
chemotactic flux, the mean values at the implant radius were impacted significantly. The chemotaxis
showed a significant influence on the inhomogeneity of φs especially in the case of low calcification where
the variance reached maximum values as shown in Figure 4(b).

3.4 Influence of the drill hole radius rd

The radius of the drill hole rd was 4.1 ± 0.3 mm. According to equation (1), uncertainty in rd resulted
in a random initial distribution of the solid fraction φsin. Both φsin and φs were represented by the 3rd

order Legendre PCE (Nφ0
= 3, Nφ = 3 ). The output measures are presented in Figures 5a and 5b. The
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(a) Good healing.

(b) Poor healing.

Figure 3: Statistics of solid fraction distribution φs with random haptotactic migra-
tion hc.

(a) Good healing.

(b) Poor healing.

Figure 4: Statistics of solid fraction distribution φs with random chemotactic migra-
tion χc.
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(a) Good healing.

(b) Poor healing.

Figure 5: Statistics of solid fraction distribution φs with random radius of drill hole
rd.

two cases of healing processes were affected by uncertainty of the drill hole radius. It was found that
magnitude of φs was particularly evolving for the GH (Figure 5(a)) whereas that of the fraction of PH
remained low (Figure 5(b)). This was corroborated by the variances showing significant fluctuations,
which also confirmed that the amount of calcified tissue in the drill hole environment was particularly
dependent on rd.

3.5 Discussion

As shown in Figure 2 to Figure 5 for the cases of good healing (GH) and poor healing (PH) and individual
parameters αs, χc, hs and rd, results obtained by using PCE were in excellent agreement with Monte
Carlo simulations using 5000 samples with a saving in computational cost between 45% and 85%. Ex-vivo
histological data from [4] were added and comparison with predicted results was comforting considering
the complexity of the biological mechanisms involved. Comparing Figure 2(a) and Figure 2(b) showed
that the osteoid synthesis driven by αs had an impact at ri and at the drill-hole rd for GH and only
at rd for PH. In comparison, the haptotactic coefficient hc showed less effect even if it influenced the
homogeneity of structural fraction into the post-operative gap especially for GH (Figure 3(a)). The
chemotactic coefficient χc played a significant role in tissue formation with a peak at ri for both GH and
PH as shown in Figures 4(a) and 4(b). For PH, we noted that the experimental results were close to the
lower limit of the PCE envelope PCE. Figure 5 showed that the variations of rd had a significant impact
on the tissue formation at the drill hole and it modified the homogeneity of neo-formed tissue in the gap
ri − rd especially for GH. The stochastic modelling aims to show the variability of selected parameters
of the theoretical model on the predicted response. Direct effect and coupled effects are predicted. In
that sense, it constitutes an elegant and powerful approach. It helps predicting the variety of response
and while doing this it helps to understand and interpret the complex mechanisms involved into the
perisprosthetic implant healing.
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4 Conclusions

Polynomial chaos expansion (PCE) was demonstrated to be of great interest to explore biological events
involved in the early post-operative healing of periprosthetic tissue. A stochastic formulation was ob-
tained from the combination of reactive equations with PCE, and was applied to an experimental canine
implant. The output data was the distribution of the structural (or calcified) fraction of neo-formed
tissue that reveals the quality of the primary fixation and condition of its long-term behaviour. The
intramembranous healing is complex and multifactorial. As a first step, the most significant factors were
individually examined, including three biochemical factors and one parameter related to the surgical
technique. The analysis of mean values, variances and envelopes provided new insights for the interpre-
tation. Compared with Monte Carlo simulations, the stochastic model was shown to provide accurate
results with significantly reduced computational cost.

The PCE was able to describe the significant non-linearity provoked by the coupling effects in chemico-
biological reactive sources. As observed in clinics, the osteoid synthesis is important in the vicinity of the
implant because of the initial presence of cells, growth factors in the blood clot and bioactive coating.
This also drove the chemotactic flux of cells towards the implant surface. The PCE order for the
output structural fraction for this case was increased, showing greater nonlinear effects of uncertain
chemotactic coefficient. The model also predicts a significant variance of structural fraction at the
implant surface, which highlighted the role of implant bioactive coating observed in clinical results. The
uncertain haptotactic coefficient had a lesser impact on the structural fraction even if it tended to provoke
a bone condensation at the drill hole because of the porosity gradient in this zone, after the surgery.
This healing pattern is corroborated by clinical results.

Finally, PCE allowed prediction of the role of the uncertain drill hole radius, which is a crucial issue
in-vivo. As confirmed in previous experimental work and in human arthroplasty, the surgical technique
is operator dependent and it guides the quality of implant fixation. PCE results showed that the drill
hole radius strongly influenced the homogeneity of the structural fraction and played a significant role
on the variance of neo-formed bone in the drill hole zone. The PCE in general allowed prediction of the
mean value of the structural fraction as well as its minimum and maximum values. The envelope results
highlighted asymmetrical distribution patterns of boundaries, which confirms that the numerical method
is able to depict the non-linear and biophysical events shown in experimental and clinical observations.

In conclusion, the PCE has been shown to be a powerful numerical method to predict and interpret
non-linear phenomena involved in the biological responses of biological tissue. The next step is to evaluate
its capacity to explore the role of mechanical strain on the tissue biophysical response and in particular
the influence of loading cycles and micromotions on the immediate post-operative periprosthetic healing,
as well as its effectiveness in taking into account simultaneous sources of variability. This last issue is
studied in the second part of the paper.
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