
HAL Id: hal-01345472
https://hal.science/hal-01345472

Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental assessment of timing verification
techniques for AFDX

Marc Boyer, Nicolas Navet, Marc Fumey

To cite this version:
Marc Boyer, Nicolas Navet, Marc Fumey. Experimental assessment of timing verification techniques
for AFDX. ERTS 2012 - 6th European Congress on Embedded Real Time Software and Systems, Feb
2012, Toulouse, France. �hal-01345472�

https://hal.science/hal-01345472
https://hal.archives-ouvertes.fr

Experimental assessment of timing

verification techniques for AFDX1

Marc BOYER – ONERA, The French Aerospace Lab – F31055 Toulouse

Nicolas NAVET – INRIA/RealTime-at-Work – F54600 Villers-lès-Nancy

Marc FUMEY – Thales Avionics – F31100 Toulouse

Keywords : Timing verification, certification, communication networks, AFDX, Network Calculus,

experimentations.

Abstract: Avionics systems distributed on AFDX networks are subject to stringent real-time

constraints that require the system designer to employ techniques and tools to guarantee the

worst case traversal time of the network (WCTT) and thus ensure a correct global real-time

behavior of the distributed functions. The Network Calculus (NC) is an active research area

based on the (min,+) algebra, that has been developed to compute such guaranteed bounds, and

has been for instance successfully used to certify the Airbus A380 AFDX backbone. Over the

years, a number of traffic models and verification algorithms have been developed and integrated

into the NC theory, and there are now many possibilities to choose from in the NC framework,

each offering a specific trade-off with regard to accuracy (tightness of the bounds), computation

time (e.g., linear or exponential complexity) and complexity of the code. Different techniques are

often best suited at the different phases of the development cycle: research on NC theory,

preliminary feasibility assessment, design space exploration, certification, etc. The objective of the

paper is to provide an experimental assessment of the performances of different verification

techniques on hundreds of realistic networks randomly generated, where in previous studies

comparisons were done only on few examples. The software toolset used in this study is the freely

available AFDX benchmark generator NETAIRBENCH and the RTaW-Pegase timing verification

software.

1 I n t r o d u c t i o n

1.1 The Pegase project

The French PEGASE project [1], partially funded by the Agence Nationale de la Recherche (ANR),

gathers academics (ENS, INRIA, ONERA) and industrial partners (Thales R&T, Thales Avionics,

Thales Aliena Space, RealTime-at-Work) from the aerospace field. It has been undertaken to

improve some key aspects of the Network Calculus and its implementation, in order to meet

increasing requirements in terms of accuracy of the temporal evaluation and size of the systems

that are to be studied. Ultimately, the objective is to come up with techniques and tools that

enable the OEM to dimension an on-board system in the tightest manner (i.e. no over-

dimensioning) while providing the necessary safety guarantees. To assess the gains achieved and

the practicality of the software tool in an industrial context, three case-studies have been

undertaken respectively on AFDX, SpaceWire and a NoC. This paper presents experimental

results obtained with RTaW-Pegase [2] [3], the software tool developed in the project, on realistic

AFDX case-studies.

1 This work has been partially funded by French ANR agency under project id ANR-09-SEGI-009.

1.2 Worst-Case Traversal Time (WCTT) evaluation: an industr ial requirement

With the increasing amount of critical data exchanged with real-time constraints in on-board

aerospace systems, the computation of tight upper bounds on network traversal times is

becoming a real industrial need. The reason is twofold. First, a tight and safe dimensioning of the

hardware and software architecture is necessary. Second, it is required in the certification

process to convince the certification authorities that the real-time and safety constraints are

met. Network Calculus [4] has been used for almost the last 10 years for WCTT evaluation, for

instance, to dimension and certify the AFDX network of the A380. Network Calculus (NC) is well

suited to analyze large scale systems such as avionics systems where thousands of data streams

are exchanged by hundreds of nodes, it may sometimes lead to pessimistic results. However,

advances are being made, in particular in the PEGASE project (see for instance [5]), and as it will

be shown in the avionic context tight bounds can now be derived with NC, reducing thus the over-

provisioning of resources.

1.3 Accuracy evaluation of WCTT techniques

There are different methods available to compute WCTT: Network-Calculus [4] as discussed

before, but also the trajectorial approach [7], event-stream based formalism [9] and others based

on discrete-event formalisms [10]. To the best of our knowledge, all performance evaluation

studies in the literature suffer from the same shortcoming: methods are evaluated either on

small hand-made examples, or on a single or few industrial configurations that are not fully

described.

This raises several questions: would the good performances obtained with some method on some

specific configuration also hold on configurations possessing other characteristics? Does the

method scale so that it can be considered for use in an industrial context? How do I compare the

results with what can be achieved with other approaches?

This paper intends to address some of these issues. Our contribution is twofold. First, we present

a freely available AFDX benchmark generator called NETAIRBENCH that has been developed to

allow fair comparison of methods on large sets of network configurations. Second, using the

technique described in [8] that consists in identifying a lower-bound on the WCTT, we evaluate the

pessimism of the main WCTT algorithms that are available today in the framework of Network-

Calculus. These algorithms have been implemented in the RTaW-Pegase tool and their

performance evaluation has been performed on hundreds of realistic configurations. This allows

us to get some precise insight in the accuracy what can expect from each method, and bound the

possible gain that can be achieved with any other possible methods.

2 R T a W - P e g a s e t e m p o r a l e v a l u a t i o n t o o l

2.1 Architecture and development

RTaW-Pegase has been conceived as a modular framework made of six main components

including the MinPlus interpreter2, the Network-Calculus library and the Network Editor (see

screenshot on figure 1).

2 The MinPlus interpreter is freely available for research and teaching at http://www.realtimeatwork.com/.

Figure 1: Screenshots of RTaW-Pegase. The left-hand panel shows the topology of an AFDX

network. The gray boxes are the switches while the end systems are the white boxes. The names

of the virtual links are shown as labels of the physical links. On the right-hand, the results panel

shows the computed Worst-Case Traversal Times, where red means that the time constraint

cannot be guaranteed for a given virtual link.

Java has been chosen as programming language for its lower risk of programming errors.

Besides, the code of the GUI is mainly not hand-written but generated from a high-level

specification in UML with RTaW-Generator which has been validated on several large projects.

Given the safety requirements of the application domain, a particular effort is put on the validation

of the code: numerous unit tests of the different components of the tools with the mandatory

objective of 100% of source code coverage, static analysis of the source code with the tool

SONAR and the objective to remove all identified warnings, extensive automated comparison tests

with the Network Calculus tool NC-maude [6]. A more complete description of RTaW-Pegase (e.g.,

lines of code, complexity measure) can be found in [1] and [2].

2.2 Different trade-offs between bound accuracy and computing t ime

The requirements of industrial users and researchers are sometimes conflicting. For instance,

for an academic use, the software should implement models that are as general as possible -

even if it is to the detriment of raw performance. The tool should also be extensible to enable

exploratory work with new models and algorithms, as done with RTaW-Pegase in [5]. On the other

hand, industrial users will want the tool to possess other characteristics such as contained

computation-time, domain specific support in order to help avoiding modeling errors, ease of

understanding and visualization of the analysis and optimization results, etc.

Over the years, a number of traffic models and verification algorithms have been developed and

integrated into the NC theory, and there are now many possibilities to choose from in the NC

framework, each offering a specific trade-off with regard to accuracy (tightness of the bounds),

computation time (e.g., linear or exponential complexity), complexity of the code and generality of

the underlying models. RTaW-Pegase has been conceived so as to enable the user to select the

techniques that are best suited at each phase of the development cycle: research on NC theory,

preliminary feasibility assessment, design space exploration, certification, etc.

The experiments in this paper are performed using several traffic and verification algorithms

available within the framework of Network-Calculus that are described in Section 4.

3 N E T A I R B E N C H : a b e n c h m a r k g e n e r a t o r f o r a v i o n i c

c o m m u n i c a t i o n s y s t e m s

3.1 The need for freely avai lable domain-specif ic benchmarks

One of the issues one has to deal with when working on design techniques for avionic embedded

systems is the lack of publicly available benchmarks. From an industrial point of view, the

confidentiality of design choices is of course justified but this makes the evaluation of

performance and comparison of techniques/algorithms more difficult to undertake and

necessarily less comprehensive. Indeed, in the WCTT literature, most of the experiments are

made on the basis of a single case-study whose characteristics are often not fully disclosed,

preventing anyone to reproduce the experiments.

We believe that a good solution to overcome the confidentially issue and be able to perform

experiments on more than one or a few configurations, is to develop “realistic” benchmark

generators and make them freely available. This has already been done for automotive systems

with NETCARBENCH (see http://www.netcarbench.org).

Here we introduce NETAIRBENCH that is aimed to improve the assessment, the understanding

and the comparability of techniques and tools used in the design of avionics communication

systems. NETAIRBENCH is free for all uses and available from http://www.netairbench.org.

NETAIRBENCH generates avionics message sets according to a set of user-defined parameters. If

the parameters provided to NETAIRBENCH are realistic (i.e., they accurately capture the

characteristics of the system under study), then the system description files that are generated

will be realistic too. For the time being, NETAIRBENCH is only able to generate AFDX message

sets but it will be extended to other communication protocols, as well as system level description

(e.g., task scheduling, gateways between networks, etc), in the future depending on the users’

needs.

3.2 A typical AFDX configuration

The following table summarizes the main characteristics of a typical AFDX configuration provided

by Thales Avionics.

Entities Number

End Systems 104

Routers 8

Virtual Links 974

Latency constraints 6501

As can be seen in the following table, each Virtual Link (VL) has on average 6 destination end

systems. This explains the 6501 latency constraints shown in the first table, which means also

that 6501 WCTT bounds need to be computed.

 # Virtual Link

destinations

BAG

(minimum

interarrival time)

Maximal

Packet Size

Traversed

Routers

Latency

Constraints

minimum 1.0 2 ms 100 bytes 1 1000 µs

average 6.6 60 ms 380 bytes 1.3 10040 µs

maximum 84.0 128 ms 1500 bytes 4 30000 µs

From this configuration, we are able to identify the main parameters of the communication

system that will be the inputs of NETAIRBENCH.

Figure 2: Typical topology of an AFDX network generated with NETAIRBENCH. The topology is

realistic in terms of the overall structure and size of the system, number of end-systems per

switch and the links between switches. The length of the links and exact location of the end-

systems (i.e., AFDX nodes) are arbitrary chosen in this figure.

3.3 NETAIRBENCH system description parameters and their values in the

experiments

The characteristics of the systems to be generated by NETAIRBENCH are specified in an input

configuration file (text format). A subset of parameters might be set to the same value for all

generated configurations while others will take a value within a certain range of variation that

corresponds to the expected variability of the parameter values. In the following, we list the

parameters as well as the values chosen for the experiments of Section 4.

3.3.1 System dimensioning

The parameters that dimension the system are:

o Number of end-systems (experiments: [90,110] uniform distribution),

o Number of virtual links per end-system (experiments: [1,15] uniform distribution),

o Number of end-systems receiving the same virtual link (experiments: [1,15] uniform

distribution),

o Number of end-systems connected to the same AFDX switch (experiments: [8,16] uniform

distribution).

3.3.2 Stream characteristics

The user can define distinct subsets of minimal frame interarrival times (also called BAG) and for

each subset, a specific range of variation can be enforced for the size of the frames. For instance,

this allows to model that more frequent frames tend to be smaller in size. In the experiments, 3

subsets of BAGs are defined:

o {2ms, 4ms, 8ms} with a size uniformly distributed in [100 bytes, 400 bytes],

o {16ms, 32ms} with a size uniformly distributed in [100 bytes, 800 bytes],

o {64ms, 128ms} with a size uniformly distributed in [100 bytes, 1400 bytes].

3.3.3 Topology / Routing

The topology of the network is partly implied by previous parameters of the end-systems and the

virtual links (e.g., number of virtual links per end-system). An additional user-defined parameter

completes the topology description, which is the number of switches connected to the same

switches. In the experiments, this quantity is chosen in [2,4] with an uniform distribution.

Regarding the routing of the virtual links, in the current version of NETAIRBENCH, it is done

according to the « shorted path » policy (minimum number of switches between source and

destination) knowing that unfeasible configurations are discarded (for instance, configurations

where certain links are overloaded). Future versions of NETAIRBENCH will allow to specify

alternative routing strategy that aim for instance to balance the load between routers and links.

4 E x p e r i m e n t a l a s s e s s m e n t o f t h e p e r f o r m a n c e s o f W o r s t - C a s e

T r a v e r s a l T i m e (W C T T) e v a l u a t i o n a l g o r i t h m s

4.1 WCTT evaluation techniques in Network Calculus

An evaluation technique, and the set of corresponding algorithms, is characterized by 1) how

numbers are represented internally (floating point or fraction), 2) by the class of mathematical

functions on which the computations are done and 3) by the way input streams are modeled (e.g.,

stair-case work arrival functions). Table 1 summarizes the main WCTT evaluation techniques

available today within the framework of Network-Calculus. The reader is referred to [1, 3] and [5]

for more details about the algorithms, their algorithmic complexity and implementation issues.

 Advantages Disadvantages

Number

represen

tation

Floating

point

Faster execution of min-plus

operations.

Rounding errors and incompatibility

with UPP function class.

Fraction No rounding errors and compatibility

with all function classes.

Slower execution of min-plus

operations.

Function

class

ICC

(Increasing

Convex or

Concave)

Implementation of min-plus operations

are less complex and thus their

execution is faster

Tighter stair case arrival functions

cannot be represented and thus

bounds on WCTTs are larger.

UPP

(Ultimately

Pseudo

Periodic)

Tighter stair case arrival functions can

be represented and thus bounds on

WCTTs are tighter.

Implementation of min-plus operation

much more complex and thus their

execution is slower.

ShSt

(Shaped

Staircase)

Intermediate complexity structure than

can be handled efficiently with all

function classes

Tighter arrival function which leads

to tighter bounds on WCTT.

Input

stream

Token

bucket

Simple structure which is compatible

with all function classes.

Looser arrival function which leads

to larger bounds on WCTT.

modeling Stair case Complex structure that is not

compatible with all function classes.

Can only be handled with UPP

functions.

Tighter arrival function which leads

to tighter bounds on WCTT.

Table 1: Different modeling and computing possibilities in Network Calculus.

In the rest of this section, we will assess the relative performances of 3 techniques,

corresponding to 3 meaningful trade-offs between computing time and accuracy:

1. Function class ICC / number representation: floating point / tocket bucket stream model

(called later the ICC approach),

2. Function class Shaped-Staircase /number representation: fraction / stair-case stream

model (called later the ShSt approach),

3. Function class UPP / number representation: fraction / stair-case stream model (called

later the UPP approach).

It should be stressed that all 3 techniques provide upper-bounds on the WCTT, and thus they are

safe to use. However, as it will be shown in the experiments, they are more or less conservative.

Each experiment is made on 100 AFDX networks randomly generated by NETAIRBENCH with the

parameters listed in Section 3. The case-study is performed in the non-prioritized case, which

means that the virtual links all belong to the same class of traffic. The pessimism is evaluated by

comparing the computed WCTT bound with a lower-bound (corresponding to a possible trajectory

of the system) obtained with an algorithm similar to the one first proposed in [8].

4.2 Methods comparison on a single conf iguration

Figure 3 presents WCTT upper bounds computed for a single configuration with three different

methods (ICC, ShST and UPP) and one lower bound. There are thus four values shown for each

VL. As expected, ShSt leads to more precise bound than ICC, and UPP provides the best one. The

real worst case is unknown, but one knows that it lies between the UPP upper bound and the

lower bound. It is worth pointing out that the differences (i.e., the absolute value) between the

results of the methods are becoming more important for the VLs having the largest WCTTs. For

the VLs with smaller WCTTs, all methods are quite close to the lower bound.

Figure 3: Upper bounds on the worst-case traversal times (WCTT in us) with the 3 methods

under study (ICC/ShST/UPP) shown together with a lower bound on the WCTT. Virtual Links are

sorted by increasing delay computed with UPP3.

4.3 Methods comparison on mult iple configurations

Table 2 indicates the mean computation time for each method as implemented in RTaW-Pegase.

The mean computing time per configuration with ICC is 1s, which is very fast for several

thousands of virtual-links. This approach is thus well suited for design space exploration where

numerous design choices are considered. The mean computing time per configuration with ShSt

is 1.5s, which is still very fast given the size of the systems. With UPP, the order of magnitude of

the computing time per configuration is 10s. This is still good given the better accuracy of the

approach. However, it should be noted that when virtual links may have different priorities, for

systems having the same size, the computing time become important (typically 20-30mn).

ICC ShSt UPP

1s 1.4s 10s

 Table 2: Mean computing time per configuration.

Table 3 reports the gain of the UPP method versus ICC and ShSt. Table 4 gives a bound on the

pessimism of each method. The statistics have been made on the 637362 virtual links of the 100

randomly generated configurations. As shown in Figure 3, the computing method makes a

3 The choice of UPP as the sorting parameter explains the regularity of the UPP curve and the irregular plotting of the
others, but it is just a plotting effect, not related to the techniques themselves.

significant difference for VLs with large WCTT, this is why in the rest we make a special focus on

the 20% of the VLs having the largest WCTTs.

 All VLs 20% of VLs with highest WCTT

 ICC vs UPP ShSt vs UPP ICC vs UPP ShSt vs UPP

Min +3.43% +0.25% +8.89% +1.16%

Average +18.08% +4.35% +22.37% +3.61

Max +44.34% +19.49% +38.06% +7.63%

Table 3: Method accuracy comparison.

 All Virtual Links 20% of VLs with highest WCTT

 ICC ShSt UPP ICC ShSt UPP

Min 3.74% 2.38% 0% 15.2% 12.41% 3.55%

Average 31.02% 27.86% 16.44% 42.08% 39.87% 25.37%

Max 82.4% 82.22% 76.09% 81.53% 81.6% 76.09%

Table 4: Upper bound on the pessimism of the methods.

To summarize the results, ICC approach is very fast but the less accurate, the ShSt is still fast

but more accurate while the UPP is the slower but the most accurate. As shown in Table 3, the

average accuracy difference between the methods is not hugely different for virtual links having

large WCTTs. However, as it can be seen in Table 4, their pessimism increases significantly for

the largest WCTTs. The average pessimism over all VLs of the 3 methods lies between 16% and

31% depending on the method, knowing that the real pessimism is certainly less than that

because the lower-bound on the WCTT is probably most often lower than the actual WCTT.

5 C o n c l u s i o n

For the last 10 years, Network Calculus has proven to be a powerful formalism that is well suited

to provide guarantees on the worst-case performances of large critical embedded systems, such

as airplanes. Thanks to recent theoretical and algorithmic improvements, such as the ones that

are being obtained in the Pegase project, it becomes possible to achieve significant gains in

accuracy, reducing thus the over-provisioning of resources, and provide better support for design

space exploration techniques. In this paper, we have compared on realistic case-studies the

different verification techniques available within the framework of Network Calculus in terms of

running times and accuracy of the results. This result should provide guidelines to the system

designer regarding the choice of the best technique at each stage of the design cycle.

6 R e f e r e n c e s

[1] M. Boyer, N. Navet, X. Olive, E. Thierry, “The PEGASE project: precise and scalable temporal

analysis for aerospace communication systems with Network Calculus, 4th International

Symposium on Leveraging Applications of Formal Methods – Verification and Validation (ISOLA

2010), Amirandes, Heraclion, Crete, 18-20, October 2010.

[2] M. Boyer, J. Migge, M. Fumey, “PEGASE – a robust and efficient tool for worst-case network

traversal time evaluation on AFDX”, SAE Aerotech, Toulouse, October 18-21, 2011.

[3] J. Migge, M. Boyer, M. Fumey, “Trade-Offs between Bound Accuracy and Computation Time in

Switched Ethernet Networks with RTaW-Pegase”, Open Demo Session of Real-Time Techniques

and Technologies of the 32nd IEEE Real-Time Systems Symposium (RTSS 2011), Best Demo

Award, Vienna, November 2011. More info at url

http://www.realtimeatwork.com/software/rtaw-pegase/.

[4] J.-Y. Le Boudec and P. Thiran, “Network Calculus”, ser. LNCS, vol. 2050, Springer Verlag,

2001.

[5] M. Boyer, J. Migge, and N. Navet, “A simple and efficient class of functions to model

arrival curve of packetised flows,” in 1st International Workshop on Worst-case Traversal Time, in

conj. with the 32nd IEEE Real-Time Systems Symposium (RTSS 2011), Vienna, November 2011.

[6] Marc Boyer, “NC-maude: a rewriting tool to play with network calculus”, In T. Margaria and B.

Stepen, editors, Proceedings of the 4th International Symposium On Leveraging Applications of

Formal Methods, Verication and Validation (ISoLA 2010) , LNCS. Springer, 2010.

[7] S. Martin, P. Minet, "Schedulability analysis of flows scheduled with FIFO: application to the

expedited forwarding class," 20th International Parallel and Distributed Processing Symposium

(IPDPS 2006), 25-29 April, 2006.

[8] H. Bauer, J.-L. Scharbarg, C. Fraboul, “Improving the Worst-Case Delay Analysis of an AFDX

Network Using an Optimized Trajectory Approach“, IEEE Transactions on Industrial informatics,

vol 6, No. 4, November 2010.

[9] J. Rox, R. Ernst, “Formal Timing Analysis of Full Duplex Switched Based Ethernet Network

Architectures”, Proc. of the SAE 2010 AeroTech Congress & Exhibition, 2010.

[10] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker, R. Henia, R. Racu, R. Ernst,

M. González Harbour, “Influence of different system abstractions on the performance analysis of

distributed real-time systems”. In Proc. of the 7th ACM & IEEE international conference on

Embedded software (EMSOFT'07), Salzburg, Austria, September 2007.

