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Incompressible immiscible multiphase flows in porous media: a variational approach

1. Introduction 1.1. Equations for multiphase flows in porous media. We consider a convex open bounded set Ω ⊂ R d representing a porous medium. N + 1 incompressible and immiscible phases, labeled by subscripts i ∈ {0, . . . , N } are supposed to flow within the pores. Let us present now some classical equations that describe the motion of such a mixture. The physical justification of these equations can be found for instance in [START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF]Chapter 5]. We denote by s i : Ω×(0, T ) =: Q → [0, 1] the content of the phase i, i.e., the volume ratio of the phase i compared to all the phases and the solid matrix, and by v i the filtration speed of the phase i. Then the conservation of the volume of each phase writes (1)

∂ t s i + ∇ • (s i v i ) = 0 in Q, ∀i ∈ {0, . . . , N },
where T > 0 is an arbitrary finite time horizon. The filtration speed of each phase is assumed to be given by Darcy's law

(2)

v i = - 1 µ i K (∇p i -ρ i g) in Q, ∀i ∈ {0, . . . , N }.
In the above relation, g is the gravity vector, µ i denotes the constant viscosity of the phase i, p i its pressure, and ρ i its density. The intrinsic permeability tensor K : Ω → R d×d is supposed to be smooth, symmetric K = K T , and uniformly positive definite: there exist κ ⋆ , κ ⋆ > 0 such that:

(3)

κ ⋆ |ξ| 2 ≤ K(x)ξ • ξ ≤ κ ⋆ |ξ| 2 , ∀ξ ∈ R d , ∀x ∈ Ω.
The pore volume is supposed to be saturated by the fluid mixture where the porosity ω : Ω → (0, 1) of the surrounding porous matrix is assumed to be smooth. In particular, there exists 0 < ω ⋆ ≤ ω ⋆ such that ω ⋆ ≤ ω(x) ≤ ω ⋆ for all x ∈ Ω. In what follows, we denote by s = (s 0 , . . . , s N ), by

∆(x) = s ∈ (R + ) N +1 N i=0 s i = ω(x) ,
and by

X = s ∈ L 1 (Ω; R N +1 + ) s(x) ∈ ∆(x) a.

e. in Ω .

There is an obvious one-to-one mapping between the sets ∆(x) and

∆ * (x) = s * = (s 1 , . . . , s N ) ∈ (R + ) N N i=1 s i ≤ ω(x) ,
and consequently also between X and In order to close the system, we impose N capillary pressure relations [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] p i -p 0 = π i (s * , x) a.e in Q, ∀i ∈ {1, . . . , N }, where the capillary pressure functions π i : Υ → R are assumed to be continuously differentiable and to derive from a strictly convex potential Π : Υ → R + :

X * = s * ∈ L 1 (Ω; R N + ) s * (x) ∈ ∆ * (x)
π i (s * , x) = ∂Π ∂s i (s * , x) ∀i ∈ {1, . . . , N }.
We assume that Π is uniformly convex w.r.t. its first variable. More precisely, we assume that there exist two positive constants ̟ ⋆ and ̟ ⋆ such that, for all x ∈ Ω and all s * , s * ∈ ∆ * (x), one has

(6) ̟ ⋆ 2 | s * -s * | 2 ≥ Π( s * , x) -Π(s * , x) -π(s * , x) • ( s * -s * ) ≥ ̟ ⋆ 2 | s * -s * | 2 ,
where we introduced the notation π : Υ → R N (s * , x) → π(s * , x) = (π 1 (s * , x), . . . , π N (s * , x)) .

The relation [START_REF] Ambrosio | Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices[END_REF] implies that π is monotone and injective w.r.t. its first variable.

Denoting by z → φ(z, x) = (φ 1 (z, x), . . . , φ N (z, x)) ∈ ∆ * (x) the inverse of π(•, x), it follows from ( 6) that [START_REF] Ambrosio | A gradient flow approach to an evolution problem arising in superconductivity[END_REF] 0 < 1 ̟ ⋆ ≤ J z φ(z, x) ≤ 1 ̟ ⋆ for all x ∈ Ω and all z ∈ π(∆ * (x), x),

where J z stands for the Jacobian with respect to z and the above inequality should be understood in the sense of positive definite matrices. Moreover, due to the regularity of π w.r.t. the space variable, there exists M φ > 0 such that (8) |∇ x φ(z, x)| ≤ M φ for all x ∈ Ω and all z ∈ π(∆ * (x), x),

where ∇ x denote the gradient w.r.t. to the second variable only.

The problem is complemented with no-flux boundary conditions [START_REF] Antoncev | Three-dimensional problems of transient two-phase filtration in inhomogeneous anisotropic porous media[END_REF] v i • n = 0 on ∂Ω × (0, T ), ∀i ∈ {0, . . . , N }, and by the initial content profile s 0 = s 0 0 , . . . , s 0 N ∈ X : [START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF] s i (•, 0) = s 0 i ∀i ∈ {0, . . . , N }, with N i=0 s 0 i = ω a.e. in Ω.

Since we did not consider sources, and since we imposed no-flux boundary conditions, the volume of each phase is conserved along time [START_REF] Blanchet | A gradient flow approach to the Keller-Segel systems[END_REF] Ω s i (x, t)dx = Ω s 0 i (x)dx =: m i > 0, ∀i ∈ {0, . . . , N }.

We can now give a proper definition of what we call a weak solution to the problem (1)-( 2), ( 4)- [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], and ( 9)- [START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF]. Definition 1.1 (Weak solution). A measurable function s : Q → (R + ) N +1 is said to be a weak solution if s ∈ ∆ a.e. in Q, if there exists p = (p 0 , . . . , p N ) ∈ L 2 ((0, T ); H 1 (Ω)) N +1 such that the relations [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] hold, and such that, for all φ ∈ C ∞ c (Ω × [0, T )) and all i ∈ {0, . . . , N }, one has

(12) Q s i ∂ t φdxdt + Ω s 0 i φ(•, 0)dx - Q s i µ i K (∇p i -ρ i g) • ∇φdxdt = 0.
1.2. Wasserstein gradient flow of the energy. σ being defined by [START_REF] Ambrosio | A user's guide to optimal transport[END_REF]. The extension of Π by +∞ where σ > ω is natural because of the incompressibility of the fluid mixture. The extension to {σ < ω} ∪ R N +1 + is designed so that the energy density only depends on the relative composition of the fluid mixture. However, this extension is somehow arbitrary, and, as it will appear in the sequel, it has no influence on the flow since the solution s remains in X (i-e N i=0 s i = ω). In our previous note [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF] the appearance of void σ < ω was directly prohibited by a penalization in the energy.

The second part in the energy comes from the gravity. In order to lighten the notations, we introduce the functions

Ψ i : Ω → R + , x → -ρ i g • x, ∀i ∈ {0, . . . , N }, and 
Ψ : Ω → R N +1 + , x → (Ψ 0 (x), . . . , Ψ N (x)) .
The fact that Ψ i can be supposed to be positive come from the fact that Ω is bounded. Even though the physically relevant potentials are indeed the gravitational Ψ i (x) = -ρ i g • x, the subsequent analysis allows for a broader class of external potentials and for the sake of generality we shall therefore consider arbitrary Ψ i ∈ C 1 (Ω) in the sequel.

We can now define the convex energy functional E : L 1 (Ω, R N +1 ) → R ∪ {+∞} by adding the capillary energy to the gravitational one:

(13) E(s) = Ω (Π(s, x) + s • Ψ) dx ≥ 0, ∀s ∈ L 1 (Ω; R N +1 ).
Note moreover that E(s) < ∞ iff s ≥ 0 and σ ≤ ω a.e. in Ω. It follows from the mass conservation [START_REF] Blanchet | A gradient flow approach to the Keller-Segel systems[END_REF] that

Ω σ(x)dx = N i=0 m i = Ω ω(x)dx.
Assume that there exists a non-negligible subset A of Ω such that σ < ω on A, then necessarily, there must be a non-negligible subset B of Ω such that σ > ω so that the above equation holds, hence E(s) = +∞. Therefore,

(14) E(s) < ∞ ⇔ s ∈ X .
Let p = (p 0 , . . . , p N ) : Ω → R N +1 be such that p ∈ ∂ s Π(s, x) for a.e. x in Ω, then, defining

h i = p i + Ψ i (x) for all i ∈ {0, . . . , N } and h = (h i ) 0≤i≤N , h belongs to the subdifferential ∂ s E(s) of E at s, i.e., E( s) ≥ E(s) + N i=0 Ω h i ( s i -s i )dx, ∀ s ∈ L 1 (Ω; R N +1 ).
The reverse inclusion also holds, hence

(15) ∂ s E(s) = h : Ω → R N +1 h i -Ψ i (x) ∈ ∂ s Π(s, x) for a.e. x ∈ Ω .
Thanks to [START_REF] Cancès | On the time continuity of entropy solutions[END_REF], we know that a configuration s has finite energy iff s ∈ X . Since we are interested in finite energy configurations, it is relevant to consider the restriction of E to X . Then using the one-to-one mapping between X and X * , we define the energy of a configuration s * ∈ X * , that we denote by E(s * ) by setting E(s * ) = E(s) where s is the unique element of X corresponding to s * ∈ X * . 1.2.2. Geometry of Ω and Wasserstein distance. Inspired by the paper of Lisini [START_REF] Lisini | Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces[END_REF], where heterogeneous anisotropic degenerate parabolic equations are studied from a variational point of view, we introduce (N + 1) distances on Ω that take into account the permeability of the porous medium and the phase viscosities. Given two points x, y in Ω, we denote by

P (x, y) = γ ∈ C 1 ([0, 1]; Ω) γ(0) = x and γ(1) = y
the set of the smooth paths joining x to y, and we introduce distances d i , i ∈ {0, . . . , N } between elements on Ω by setting [START_REF] Carlier | On systems of continuity equations with nonlinear diffusion and nonlocal drifts[END_REF] 

d i (x, y) = inf γ∈P (x,y) 1 0 µ i K -1 (γ(τ ))γ ′ (τ ) • γ ′ (τ )dτ 1/2 , ∀(x, y) ∈ Ω.
It follows from ( 3) that ( 17)

µ i κ ⋆ |x -y| ≤ d i (x, y) ≤ µ i κ ⋆ |x -y|, ∀(x, y) ∈ Ω 2 .
For i ∈ {0, . . . , N } we define

A i = s i ∈ L 1 (Ω; R + ) Ω s i dx = m i .
Given s i , s i ∈ A i , the set of admissible transport plans between s i and s i is given by

Γ i (s i , s i ) = θ i ∈ M + (Ω × Ω) θ i (Ω × Ω) = m i , θ (1) i 
= s i and θ

(2) i = s i ,
where M + (Ω × Ω) stands for the set of Borel measures on Ω × Ω and θ

(k) i
is the k th marginal of the measure θ i . We define the quadratic Wasserstein distance W i on A i by setting

(18) W i (s i , s i ) = inf θi∈Γ(si, si) Ω×Ω d i (x, y) 2 dθ i (x, y) 1/2 .
Due to the permeability tensor K(x), the porous medium Ω might be heterogeneous and anisotropic. Therefore, some directions and areas might me privileged by the fluid motions. This is encoded in the distances d i we put on Ω. Moreover, the more viscous the phase is, the more costly are its displacements, hence the µ i in the definition (16) of d i . But it follows from ( 17) that ( 19)

µ i κ ⋆ W ref (s i , s i ) ≤ W i (s i , s i ) ≤ µ i κ ⋆ W ref (s i , s i )., ∀s i , s i ∈ A i ,
where W ref denotes the classical quadratic Wasserstein distance defined by

(20) W ref (s i , s i ) = inf θi∈Γ(si, si) Ω×Ω |x -y| 2 dθ i (x, y) 1/2
.

With the phase Wasserstein distances (W i ) 0≤i≤N at hand, we can define the global Wasserstein distance

W on A := A 0 × • • • × A N by setting W (s, s) = N i=0 W i (s i , s i ) 2 1/2 , ∀s, s ∈ A.
Finally for technical reasons we also assume that there exist smooth extensions K and ω to R d of the tensor and the porosity, respectively, such that (3) holds on R d for K, and such that ω is strictly bounded from below. This allows to define distances d i on the whole R d by [START_REF] Chavent | Un algorithme pour la détermination de perméabilités relatives triphasiques satisfaisant une condition de différentielle totale[END_REF] 

d i (x, y) = inf γ∈ P (x,y) 1 0 µ i K -1 (γ(τ ))γ ′ (τ ) • γ ′ (τ )dτ 1/2 , ∀x, y ∈ R d where P (x, y) = γ ∈ C 1 ([0, 1]; R d ) γ(0) = x and γ(1) = y .
In the sequel, we assume that the extension

K of K is such that (22) Ω is geodesically convex in M i = (R d , d i ) for all i.
In particular

d i = d i on Ω × Ω. Since K -1 is smooth, at least C 2 b (R d )
, the Ricci curvature of the smooth complete Riemannian manifold M i is uniformly bounded, i.e., there exists C depending only on (µ i ) 0≤i≤N and K such that [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF] |Ric

Mi,x (v)| ≤ Cµ i K -1 v • v, ∀x ∈ R d , ∀v ∈ R d .
Combined with the assumptions on ω we deduce that H ω is λ i displacement convex on P ac 2 (M i ) for some λ i ∈ R. Then [START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF] and mass scaling implies that H ω is λ i displacement convex on (A i , W i ) for some λ i ∈ R. We refer to [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Chap. 14 & 17] for further details on the Ricci curvature and its links with optimal transportation.

In the homogeneous and isotropic case K(x) = Id, Condition [START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF] simply amounts to assuming that Ω is convex. A simple sufficient condition implying [START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF] is given in Appendix A in the isotropic but heterogeneous case K(x) = κ(x)I d . 1.2.3. Gradient flow of the energy. The content of this section is formal. Our aim is to write the problem as a gradient flow, i.e. [START_REF] Giorgi | Boundary value problems for partial differential equations and applications[END_REF] ds dt

∈ -grad W E(s) = -grad W0 E(s), . . . , grad WN E(s)
where grad W E(s) denotes the full Wasserstein gradient of E(s), and grad Wi E(s) stands for the partial gradient of s i → E(s) with respect to the Wasserstein distance W i . The Wasserstein distance W i was built so that ṡ = ( ṡi ) i ∈ grad W E(s) iff there exists h ∈ ∂ s E(s) such that

∂ t s i = -∇ • s i K µ i ∇h i , ∀i ∈ {0, . . . , N }.
Such a construction was already performed by Lisini in the case of a single equation.

Owing to the definitions ( 13) and ( 15) of the energy E(s) and its subdifferential ∂ s E(s), the partial differential equations can be (at least formally) recovered. This was roughly speaking to purpose of our note [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF].

In order to define rigorously the gradient grad W E in [START_REF] Giorgi | Boundary value problems for partial differential equations and applications[END_REF], A has to be a Riemannian manifold. The so-called Otto's calculus (see [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] and [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Chapter 15]) allows to put a formal Riemannian structure on A. But as far as we know, this structure cannot be made rigorous and A is a mere metric space. This leads us to consider generalized gradient flows in metric spaces (cf. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]). We won't go deep into details in this direction, but we will prove that weak solutions can be obtained as limits of a minimizing movement scheme presented in the next section. This characterizes the gradient flow structure of the problem.

1.3. Minimizing movement scheme and main result.

1.3.1. The scheme and existence of a solution. For a fixed time-step τ > 0, the so-called minimizing movement scheme [START_REF] Giorgi | Boundary value problems for partial differential equations and applications[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] or JKO scheme [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] consists in computing recursively (s n ) n≥1 as the solution to the minimization problem [START_REF] Dolbeault | A new class of transport distances between measures[END_REF] s n = Argmin s∈A W (s, s n-1 ) 2 2τ + E(s) , the initial data s 0 being given [START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF].

1.3.2. Approximate solution and main result. Anticipating that the JKO scheme ( 25) is well posed (this is the purpose of Proposition 2.1 below), we can now define the piecewise constant interpolation s τ ∈ L ∞ ((0, T ); X ∩ A) by ( 26)

s τ (0, •) = s 0 , and s τ (t, •) = s n ∀t ∈ ((n -1)τ, nτ ], ∀n ≥ 1.
The main result of our paper is the following.

Theorem 1.2. Let (τ k ) k≥1 be a sequence of time steps tending to 0, then there exists one weak solution s in the sense of Definition 1.1 such that, up to an unlabeled subsequence, (s τ k ) k≥1 converges a.e. in Q towards s as k tends to ∞.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least) one solution in the sense of Definition 1.1. As far as we know, this existence result is new.

Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori ∂ t s i ∈ L 2 ((0, T ); H 1 (Ω) ′ ), s i ∈ L 2 ((0, T ); H 1 (Ω)), and thus s i ∈ C([0, T ]; L 2 (Ω)). This regularity is enough to retrieve the so-called Energy-Dissipation-Equality

d dt E(s(t)) = - N i=0 Ω K s i (t) µ i ∇(p i (t)+Ψ i )•∇(p i (t)+Ψ i )dx ≤ 0 for a.e. t ∈ (0, T ),
which is another admissible formulation of gradient flows in metric spaces [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

1.4. Goal and positioning of the paper. The aims of the paper are twofolds. First, we aim to provide rigorous foundations to the formal variational approach exposed in the authors' recent note [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF]. This gives new insights into the modeling of complex porous media flows and their numerical approximation. Our approach appears to be very natural since only physically motivated quantities appear in the study. Indeed, we manage to avoid the introduction of the so-called Kirchhoff transform and global pressure, which classically appear in the mathematical study of multiphase flows in porous media (see for instance [START_REF] Chavent | A new formulation of diphasic incompressible flows in porous media[END_REF][START_REF] Antoncev | Three-dimensional problems of transient two-phase filtration in inhomogeneous anisotropic porous media[END_REF][START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Fabrie | Existence de solutions faibles pour un modèle d'écoulement triphasique en milieu poreux[END_REF][START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF][START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF][START_REF] Chavent | A fully equivalent global pressure formulation for three-phases compressible flows[END_REF][START_REF] Amaziane | Existence for a global pressure formulation of watergas flow in porous media[END_REF][START_REF] Amaziane | Modeling compositional compressible two-phase flow in porous media by the concept of the global pressure[END_REF]).

Second, the existence result that we deduce from the convergence of the variational scheme is new as soon as there are at least three phases (N ≥ 2). Indeed, since our study does not require the introduction of any global pressure, we get rid of many structural assumptions on the data among which the so-called total differentiability condition, see for instance Assumption (H3) in the paper by Fabrie and Saad [START_REF] Fabrie | Existence de solutions faibles pour un modèle d'écoulement triphasique en milieu poreux[END_REF]. This structural condition is not naturally satisfied by the models, and suitable algorithms have to be employed in order to adapt the data to this constraint [START_REF] Chavent | Un algorithme pour la détermination de perméabilités relatives triphasiques satisfaisant une condition de différentielle totale[END_REF]. However, our approach suffers from another technical difficulty: we are stuck to the case of linear relative permeabilities. The extension to the case of nonlinear concave relative permeabilities, i.e., where (1) is replaced by

∂ t s i + ∇ • (k i (s i )v i ) = 0,
may be reachable thanks to the contributions of Dolbeault, Nazaret, and Savaré [START_REF] Dolbeault | A new class of transport distances between measures[END_REF] (see also [START_REF] Zinsl | Transport distances and geodesic convexity for systems of degenerate diffusion equations Calc[END_REF]), but we did not push in this direction since the relative permeabilities k i are in general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], gradient flows in metric spaces (and particularly in the space of probability measures endowed with the quadratic Wasserstein distance) were the object of many studies. Let us for instance refer to the monograph of Ambrosio, Gigli, and Savaré [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] and to Villani's book [46, Part II] for a complete overview. Applications are numerous. We refer for instance to [START_REF] Otto | Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory[END_REF] for an application to magnetic fluids, to [START_REF] Sandier | Gamma-convergence of gradient flows with applications to Ginzburg-Landau[END_REF][START_REF] Ambrosio | A gradient flow approach to an evolution problem arising in superconductivity[END_REF][START_REF] Ambrosio | Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices[END_REF] for applications to supra-conductivity, to [START_REF] Blanchet | Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model[END_REF][START_REF] Blanchet | A gradient flow approach to the Keller-Segel systems[END_REF][START_REF] Zinsl | Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis[END_REF] for applications to chemotaxis, to [START_REF] Lisini | Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics[END_REF] for phase field models, to [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] for a macroscopic model of crowd motion, to [START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF] for an application to granular media, to [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF] for aggregation equations, or to [START_REF] Kinderlehrer | A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations[END_REF] for a model of ionic transport that applies in semi-conductors. In the context of porous media flows, this framework has been used by Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] to study the asymptotic behavior of the porous medium equation, that is a simplified model for the filtration of a gas in a porous medium. The gradient flow approach in Wasserstein metric spaces was used more recently by Laurençot and Matioc [START_REF] Laurençot | A gradient flow approach to a thin film approximation of the muskat problem[END_REF] on a thin film approximation model for two-phase flows in porous media. Finally, let us mention that similar ideas were successfully applied for multicomponent systems, see e.g. [START_REF] Carlier | On systems of continuity equations with nonlinear diffusion and nonlocal drifts[END_REF][START_REF] Laborde | Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein[END_REF][START_REF] Zinsl | Transport distances and geodesic convexity for systems of degenerate diffusion equations Calc[END_REF][START_REF] Zinsl | Existence of solutions for a nonlinear system of parabolic equations with gradient flow structure Monatsh[END_REF].

The variational structure of the system governing incompressible immiscible twophase flows in porous media was recently depicted by the authors in their note [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF]. Whereas the purpose of [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF] is formal, our goal is here to give a rigorous foundation to the variational approach for complex flows in porous media. Finally, let us mention the work of Gigli and Otto [START_REF] Gigli | Entropic Burgersd5 equation via a minimizing movement scheme based on the Wasserstein metric[END_REF] where it was noticed that multiphase linear transportation with saturation constraint (as we have here thanks to (1) and ( 4)) yields nonlinear transport with mobilities that appear naturally in the two-phase flow context.

The paper is organized as follows. In Section 2, we derive estimates on the solution s τ for a fixed τ . Beyond the classical energy and distance estimates detailed in §2.1, we obtain enhanced regularity estimates thanks to an adaptation of the so-called flow interchange technique of Matthes,McCann,and Savaré [38] to our inhomogeneous context in §2.2. Because of the constraint on the pore volume (4), the auxiliary flow we use is no longer the heat flow, and a drift term has to be added. An important effort is then done in §3 to derive the Euler-Lagrange equations that follow from the optimality of s n . Our proof is inspired from the work of Maury, Roudneff-Chupin, and Santambrogio [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]. It relies on an intensive use of the dual characterization of the optimal transportation problem and the corresponding Kantorovitch potentials. However, additional difficulties arise from the multiphase aspect of our problem, in particular when there are at least three phases (i.e., N ≥ 2). These are overpassed using a generalized multicomponent bathtub principle (Theorem B.1 in Appendix) and computing the associated Lagrange multipliers in §3.1. This key step then allows to define the notion of discrete phase and capillary pressures in §3.2. Then Section 4 is devoted to the convergence of the approximate solutions (s τ k ) k towards a weak solution s as τ k tends to 0. The estimates we obtained in Section 2 are integrated w.r.t. time in §4.1. In §4.2, we show that these estimates are sufficient to enforce the relative compactness of (s

τ k ) k in the strong L 1 (Q) N +1 topology.
Finally, it is shown in §4.3 that any limit s of (s τ k ) k is a weak solution in the sense of Definition 1.1.

One-step regularity estimates

The first thing to do is to show that the JKO scheme ( 25) is well-posed. This is the purpose of the following Proposition.

Proposition 2.1. Let n ≥ 1 and s n-1 ∈ X ∩A, then there exists a unique solution s n to the scheme [START_REF] Dolbeault | A new class of transport distances between measures[END_REF]. Moreover, one has s n ∈ X ∩ A.

Proof. Any s n-1 ∈ X ∩ A has finite energy thanks to [START_REF] Cancès | On the time continuity of entropy solutions[END_REF]. Let (s n,k ) k ⊂ A be a minimizing sequence in [START_REF] Dolbeault | A new class of transport distances between measures[END_REF]. Testing s n-1 in (25) it is easy to see that [START_REF] Cancès | On the time continuity of entropy solutions[END_REF]. Hence, one has 0 ≤ s n,k i (x) ≤ ω(x) for all k. By Dunford-Pettis theorem, we can therefore assume that s n,k i ⇀ s n i weakly in L 1 (Ω). It is then easy to check that the limit s n of s n,k belongs to X ∩ A. The lower semi-continuity of the Wasserstein distance with respect to weak L 1 convergence is well known (see, e.g., [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Prop. 7.4]), and since the energy functional is convex thus l.s.c., we conclude that s n is indeed a minimizer. Uniqueness follows from the strict convexity of the energy as well as from the convexity of the Wasserstein distances (w.r.t. linear interpolation s θ = (1 -θ)s 0 + θs 1 ). The rest of this section is devoted to improving the regularity of the successive minimizers.

E(s n,k ) ≤ E(s n-1 ) < ∞ for large k, thus (s n,k ) k ⊂ X ∩ A thanks to

Energy and distance estimates. Testing

s = s n-1 in (25) we obtain (27) W (s n , s n-1 ) 2 2τ + E(s n ) ≤ E(s n-1 ),
As a consequence we have the monotonicity

. . . ≤ E(s n ) ≤ E(s n-1 ) ≤ . . . ≤ E(s 0 ) < ∞
at the discrete level, thus s n ∈ X for all n ≥ 0 thanks to [START_REF] Cancès | On the time continuity of entropy solutions[END_REF]. Summing [START_REF] Gagneux | Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière[END_REF] over n we also obtain the classical total square distance estimate

(28) 1 τ n≥0 W 2 (s n+1 , s n ) ≤ 2E(s 0 ) ≤ C (Ω, Π, Ψ) ,
the last inequality coming from the fact that s 0 is uniformly bounded since it belongs to X , thus so is E(s 0 ). This readily gives the approximate 1/2-Hölder estimate

(29) W (s n1 , s n2 ) ≤ C |n 2 -n 1 |τ .
2.2. Flow interchange, entropy estimate and enhanced regularity. The goal of this section is to obtain some additional Sobolev regularity on the capillary pressure field π(s n * , x), where s n * = (s n 1 , . . . , s n N ) is the unique element of X * corresponding to the minimizer s n of [START_REF] Dolbeault | A new class of transport distances between measures[END_REF]. In what follows, we denote by

π n i : Ω → R, x → π i (s n * (x), x), ∀i ∈ {1, . . . , N } and π n = (π n 1 , . . . , π n N ).
Bearing in mind that ω(x) ≥ ω ⋆ > 0 in Ω, we can define the relative Boltzmann entropy H ω with respect to ω by

H ω (s) := Ω s(x) log s(x) ω(x)
dx, for all measurable s : Ω → R + .

Lemma 2.2. There exists C depending only on Ω, Π, ω, K, (µ i ) i , and Ψ such that, for all n ≥ 1 and all τ > 0, one has

(30) N i=0 ∇π n i 2 L 2 (Ω) ≤ C 1 + W 2 (s n , s n-1 ) τ + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ .
Proof. The argument relies on the flow interchange technique introduced by Matthes, McCann, and Savaré in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF]. Throughout the proof, C denotes a fluctuating constant that depends on the prescribed data Ω, Π, ω, K, (µ i ) i , and Ψ, but neither on t, τ , nor on n. For i = 0 . . . N consider the auxiliary flows (31)

   ∂ t ši = div(K∇š i -ši K∇ log ω), t > 0, x ∈ Ω, K(∇š i -ši ∇ log ω) • ν = 0, t > 0, x ∈ ∂Ω, ši | t=0 = s n i , x ∈ Ω
for each i ∈ {0, . . . , N }. By standard parabolic theory (see for instance [33, Chapter III, Theorem 12.2]), these Initial-Boundary value problems are well-posed, and their solutions ši (x) belong to

C 1,2 ((0, 1] × Ω) ∩ C([0, 1]; L p (Ω)) for all p ∈ (1, ∞) if ω ∈ C 2,α (Ω) and K ∈ C 1,α (Ω) for some α > 0. Therefore, t → ši (•, t) is absolutely continuous in L 1 (Ω)
, thus in A i endowed with the usual quadratic distance W ref [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF] thanks to [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Prop. 7.4]. Because of ( 19), the curve t → ši (•, t) is also absolutely continuous in A i endowed with W i . From Lisini's results [START_REF] Lisini | Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces[END_REF], we know that the evolution t → ši (•, t) can be interpreted as the gradient flow of the relative Boltzmann functional 1 µi H ω with respect to the metric W i , the scaling factor 1 µi appearing due to the definition (18) of the distance W i . As a consequence of [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF], The Ricci curvature of (Ω, d i ) is bounded, hence bounded from below. Since ω ∈ C 2 (Ω) and with our assumption [START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF] we also have that 1 µi H ω is λ i -displacement convex with respect to W i for some λ i ∈ R depending on ω and the geometry of (Ω, d i ), see [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Chapter 14]. Therefore, we can use the so-called Evolution Variational Inequality characterization of gradient flows (see for instance [4, Definition 4.5]) centered at s n-1 i , namely

1 2 d dt W 2 i (š i (t), s n-1 i ) + λ i 2 W 2 i (š i (t), s n-1 i ) ≤ 1 µ i H ω (s n-1 i ) - 1 µ i H ω (š i (t)).
Denote by š = (š 0 , . . . , šN ), and by š * = (š 1 , . . . , šN ). Summing the previous inequality over i ∈ {0, . . . , N } leads to [START_REF] Laborde | Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein[END_REF] d dt

1 2τ W 2 (š(t), s n-1 ) ≤ C W 2 (š(t), s n-1 ) τ + N i=0 H ω (s n-1 i ) -H ω (š i (t)) τ .
In order to estimate the internal energy contribution in [START_REF] Dolbeault | A new class of transport distances between measures[END_REF], we first note that s n i (x) = ω(x) for all x ∈ Ω, thus by linearity of ( 31) and since ω is a stationary solution we have ši (x, t) = ω(x) as well. Moreover, the problem ( 31) is monotone, thus order preserving, and admits 0 as a subsolution. Hence ši (x, t) ≥ 0, so that š(t) ∈ A ∩ X is an admissible competitor in [START_REF] Dolbeault | A new class of transport distances between measures[END_REF] for all t > 0. The smoothness of š for t > 0 allows to write [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] d dt

Ω Π(š * (x, t), x)dx = N i=1 Ω πi (x, t)∂ t ši (x, t)dx = I 1 (t) + I 2 (t),
where πi := π i (š * , •), and where, for all t > 0, we have set

I 1 (t) = - N i=1 Ω ∇π i (t) • K∇š i (t)dx, I 2 (t) = - N i=1 Ω ši (t) ω ∇π i (t) • K∇ωdx.
To estimate I 1 , we first use the invertibility of π to write

š(x, t) = φ( π(x, t), x) =: φ(x, t), yielding (34) ∇š(x, t) = J z φ( π(x, t), x)∇ π(x, t) + ∇ x φ( π(x, t), x).
Combining (3), ( 7), [START_REF] Andreianov | A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF] and the elementary inequality

(35) ab ≤ δ a 2 2 + b 2 2δ
with δ > 0 arbitrary, we get that for all t > 0, there holds

I 1 (t) ≤ - κ ⋆ ̟ ⋆ Ω |∇ π(t)| 2 dx + κ ⋆ δ Ω |∇ π(t)| 2 dx + 1 δ Ω |∇ x φ( π(t))| 2 dx . Choosing δ = κ⋆ 4κ ⋆ ̟ ⋆ , we get that (36) I 1 (t) ≤ - 3κ ⋆ 4̟ ⋆ Ω |∇ π(t)| 2 dx + C, ∀t > 0.
In order to estimate I 2 , we use that š(t) ∈ X for all t > 0, so that 0 ≤ ši (x, t) ≤ ω(x), hence we deduce that N i=1 ši ω 2 ≤ 1. Therefore, using (35) again, we get

I 2 (t) ≤ δκ ⋆ Ω |∇ π(t)| 2 dx + κ ⋆ δ Ω |∇ω| 2 dx. Choosing again δ = κ⋆ 4κ ⋆ ̟ ⋆ yields (37) I 2 (t) ≤ κ ⋆ 4̟ ⋆ Ω |∇ π(t)| 2 dx + C.
Taking ( 36)- [START_REF] Lisini | Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics[END_REF] into account in [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] provides

(38) d dt Ω Π(š * (x, t), x)dx ≤ - κ ⋆ 2̟ ⋆ Ω |∇ π(t)| 2 dx + C, ∀t > 0.
Let us now focus on the potential (gravitational) energy. Since š(t) belongs to X ∩ A for all t > 0, we can make use of the relation

š0 (x, t) = ω(x) - N i=1 ši (x, t), for all (x, t) ∈ Ω × R + ,
to write: for all t > 0,

N i=0 Ω ši (x, t)Ψ i (x)dx = N i=1 Ω ši (x, t)(Ψ i -Ψ 0 )(x)dx + Ω ω(x)Ψ 0 (x)dx.
This leads to

(39) d dt N i=0 Ω ši (t)Ψ i dx = N i=1 Ω (Ψ i (x)-Ψ 0 (x))∂ t s i (x, t)dx = J 1 (t)+ J 2 (t),
where, using the equations (31), we have set

J 1 (t) = - N i=1 Ω ∇(Ψ i -Ψ 0 ) • K∇š i (t)dx, J 2 (t) = N i=1 Ω ši (t) ω ∇(Ψ i -Ψ 0 ) • K∇ωdx.
The term J 1 can be estimated using [START_REF] Lieb | Analysis[END_REF]. More precisely, for all δ > 0, we have

(40) J 1 (t) ≤ κ ⋆ δ ∇š * (t) 2 L 2 + 1 δ N i=1 ∇(Ψ i -Ψ 0 ) 2 L 2
.

Using [START_REF] Laurençot | A gradient flow approach to a thin film approximation of the muskat problem[END_REF] together with ( 7)-( 8), we get that

∇š * 2 L 2 ≤ 1 ̟ ⋆ ∇ π L 2 + |Ω|M φ 2 ≤ 2 (̟ ⋆ ) 2 ∇ π 2 L 2 + 2 (|Ω|M φ ) 2 .
Therefore, choosing δ = (̟⋆) 2 κ⋆ 8κ ⋆ ̟ ⋆ in (40), we infer from the regularity of Ψ that (41)

J 1 (t) ≤ κ ⋆ 4̟ ⋆ Ω |∇ π(t)| 2 dx + C, ∀t > 0.
Finally, it follows from the fact that N i=1 ši ≤ ω, from the Cauchy-Schwarz inequality, and from the regularity of Ψ, ω that

(42) J 2 (t) ≥ -κ ⋆ N i=1 ∇Ψ i -∇Ψ 0 L 2 ∇ω L 2 = C.
Combining [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF], [START_REF] Otto | Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory[END_REF], and ( 42) with [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF], we get that

(43) d dt E(š(t)) ≤ - κ ⋆ 4̟ ⋆ Ω |∇ π(t)| 2 dx + C, ∀t > 0.
Denote by ( 44)

F n τ (s) := 1 2τ W 2 (s, s n-1 ) + E(s)
the functional to be minimized in [START_REF] Dolbeault | A new class of transport distances between measures[END_REF], then gathering [START_REF] Laborde | Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein[END_REF] and [START_REF] Sandier | Gamma-convergence of gradient flows with applications to Ginzburg-Landau[END_REF] provides

d dt F n τ (š(t)) + κ ⋆ 4̟ ⋆ ∇ π 2 L 2 ≤ C 1 + W 2 (š(t), s n-1 ) τ + N i=0 H ω (s n-1 i ) -H ω (š i (t)) τ ∀t > 0.
Since š(0) = s n is a minimizer of (25) we must have

0 ≤ lim sup t→0 + d dt F n τ (š(t)) ,
otherwise š(t) would be a strictly better competitor than s n for small t > 0. As a consequence, we get lim inf

t→0 + ∇ π(t) 2 L 2 ≤ C lim sup t→0 + 1 + W 2 (š(t), s n-1 ) τ + N i=0 H ω (s n-1 i ) -H ω (š i (t)) τ .
Since ši belongs to C([0, 1]; L p (Ω)) for all p ∈ [1, ∞) (see for instance [START_REF] Cancès | On the time continuity of entropy solutions[END_REF]), the continuity of the Wasserstein distance and of the Boltzmann entropy with respect to strong L p -convergence imply that

W 2 (š(t), s n-1 ) -→ t→0 + W 2 (s n , s n-1 ) and H ω (š i (t)) -→ t→0 + H ω (s n i ).
Therefore, we obtain that (45) lim inf

t→0 + ∇ π(t) 2 L 2 ≤ C 1 + W 2 (s n , s n-1 ) τ + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ .
It follows from the regularity of π that π(š * (t), x) = π(t) -→ t→0 + π n = π(s n * , x) in L p (Ω). Finally, let (t ℓ ) ℓ≥1 be a decreasing sequence tending to 0 realizing the lim inf in [START_REF] Simons | Minimax and monotonicity[END_REF], then the sequence (∇ π(t ℓ )) ℓ≥1 converges weakly in L 2 (Ω) N ×d towards ∇π n . The lower semi-continuity of the norm w.r.t. the weak convergence leads to

N i=1 ∇π n i 2 L 2 ≤ lim ℓ→∞ ∇ π(t ℓ ) 2 L 2 = lim inf t→0 + ∇ π(t) 2 L 2 ≤ C 1 + W 2 (s n , s n-1 ) τ + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ
and the proof is complete.

The Euler-Lagrange equations and pressure bounds

The goal of this section is to extract informations coming from the optimality of s n in the JKO minimization [START_REF] Dolbeault | A new class of transport distances between measures[END_REF]. The main difficulty consists in constructing the phase and capillary pressures from this optimality condition. Our proof is inspired from [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] and makes an extensive use of the Kantorovich potentials. Therefore, we first recall their definition and some useful properties. We refer to [44, §1.2] or [46, Chapter 5] for details.

Let (ν 1 , ν 2 ) ∈ M + (Ω) 2 be two nonnegative measures with same total mass. A pair of Kantorovich potentials (ϕ i , ψ i ) ∈ L 1 (ν 1 )×L 1 (ν 2 ) associated to the measures ν 1 and ν 2 and to the cost function 1 2 d 2 i defined by ( 16), i ∈ {0, . . . , N }, is a solution of the Kantorovich dual problem

DP i (ν 1 , ν 2 ) = max (ϕi,ψi)∈L 1 (ν1)×L 1 (ν2) ϕi(x)+ψi(y)≤ 1 2 d 2 i (x,y) Ω ϕ i (x)ν 1 (x)dx + Ω ψ i (y)ν 2 (y)dy.
We will use the three following important properties of the Kantorovich potentials:

(a) There is always duality

DP i (ν 1 , ν 2 ) = 1 2 W 2 i (ν 1 , ν 2 ), ∀i ∈ {0, . . . , N }.
(b) A pair of Kantorovich potentials (ϕ i , ψ i ) is dν 1 ⊗ dν 2 unique, up to additive constants. (c) The Kantorovich potentials ϕ i and ψ i are 1 2 d 2 i -conjugate, that is

ϕ i (x) = inf y∈Ω 1 2 d 2 i (x, y) -ψ i (y), ∀ x ∈ Ω, ψ i (y) = inf x∈Ω 1 2 d 2 i (x, y) -ϕ i (x), ∀ y ∈ Ω. Remark 3.1.
Since Ω is bounded, the cost functions (x, y) → 1 2 d 2 i (x, y), i ∈ {1, . . . , N }, are globally Lipschitz continuous, see [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF]. Thus item (c) shows that ϕ i and ψ i are also Lipschitz continuous.

3.1.

A decomposition result. The next lemma is an adaptation of [39, Lemma 3.1] to our framework. It essentially states that, since s n is a minimizer of [START_REF] Dolbeault | A new class of transport distances between measures[END_REF], it is also a minimizer of the linearized problem. Lemma 3.2. For n ≥ 1 and i = 0, . . . , N there exist some (backward, optimal) Kantorovich potentials ϕ n i from s n i to s n-1 i such that, using the convention

π n 0 = ∂Π ∂s0 (s n 1 , . . . , s n N , x) = 0, setting (46) 
F n i :=

ϕ n i τ + π n i + Ψ i , ∀i ∈ {0, . . . , N } ,
and denoting F n = (F n i ) 0≤i≤N , there holds

(47) s n ∈ Argmin s∈X ∩A Ω F n (x) • s(x)dx.
Moreover,

F n i ∈ L ∞ ∩ H 1 (Ω) for all i ∈ {0, . . . , N }.
Proof. We assume first that s n-1 i (x) > 0 everywhere in Ω for all i ∈ {1, . . . , N }, so that the Kantorovich potentials (ϕ n i , ψ n i ) from s n i to s n-1 i are uniquely determined after normalizing ϕ n i (x ref ) = 0 for some arbitrary point x ref ∈ Ω (cf. [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Proposition 7.18]). Given any s = (s i ) 1≤0≤N ∈ X ∩ A and ε ∈ (0, 1) we define the perturbation

s ε := (1 -ε)s n + εs.
Note that X ∩A is convex, thus s ε is an admissible competitor for all ε ∈ (0, 1). Let (ϕ ε i , ψ ε i ) be the unique Kantorovich potentials from s ε i to s n-1 i , similarly normalized as ϕ ε i (x ref ) = 0. Then by characterization of the squared Wasserstein distance in terms of the dual Kantorovich problem we have

       1 2 W 2 i (s ε i , s n-1 i ) = Ω ϕ ε i (x)s ε i (x)dx + Ω ψ ε i (y)s n-1 i (y)dy, 1 2 W 2 i (s n i , s n-1 i ) ≥ Ω ϕ ε i (x)s n i (x)dx + Ω ψ ε i (y)s n-1 i (y)dy.
By definition of the perturbation s ε it is easy to check that s ε i -s n i = ε(s i -s n i ). Subtracting the previous inequalities we get [START_REF] Zinsl | Transport distances and geodesic convexity for systems of degenerate diffusion equations Calc[END_REF])

W 2 i (s ε i , s n-1 i ) -W 2 i (s n i , s n-1 i ) 2τ ≤ ε τ Ω ϕ ε i (s i -s n i )dx.
Denote by s ε * = (s ε 1 , . . . , s ε N ), π ε = π(s ε * , •), and extend to the zero-th component π ε = (0, π ε ). The convexity of Π as a function of s 1 , . . . , s N implies that ( 49)

Ω (Π(s n * , x) -Π(s ε * , x)) dx ≥ Ω π ε • (s n * -s ε * ) dx = Ω π ε • (s n -s ε ) dx = -ε Ω π ε • (s -s n ) dx.
For the potential energy, we obtain by linearity that (50)

Ω (s ε -s n ) • Ψ dx = ε Ω (s -s n ) • Ψdx.
Summing ( 48)-(50), dividing by ε, and recalling that s n minimizes the functional F n τ defined by [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF], we obtain

(51) 0 ≤ F n τ (s ε ) -F n τ (s n ) ε ≤ N i=0 Ω ϕ ε i τ + π ε i + Ψ i (s i -s n i )dx
for all s ∈ X ∩ A and all ε ∈ (0, 1). Because Ω is bounded, any Kantorovich potential is globally Lipschitz with bounds uniform in ε (see for instance the proof of [44, Theorem 1.17]). Since s ε converges uniformly towards s n when ε tends to 0, we infer from [44, Theorem 1.52] that ϕ ε i converges uniformly towards ϕ n i as ε tends to 0, where ϕ n i is a Kantorovich potential form s n i to s n-1 i . Moreover, since π is uniformly continuous in s, we also know that π ε converges uniformly towards π n and thus the extension to the zero-th component π ε → π n = (0, π n ) as well. Then we can pass to the limit in (51) and infer that

(52) 0 ≤ Ω F n • (s -s n )dx, ∀s ∈ X ∩ A
and (47) holds. If s n-1 i > 0 does not hold everywhere we argue by approximation. Running the flow (31) for a short time δ > 0 starting from s n-1 , we construct an approximation s n-1,δ = (s n-1,δ 0 , . . . , s n-1,δ N ) converging to s n-1 = (s n-1 0 , . . . , s n-1 N ) in L 1 (Ω) as δ tends to 0. By construction s n-1,δ ∈ X ∩ A, and it follows from the strong maximum principle that s n-1,δ i > 0 in Ω for all δ > 0. By Proposition 2.1 there exists a unique minimizer s n,δ to the functional

F n,δ τ : X ∩ A → R + s → 1 2τ W 2 (s, s n-1,δ ) + E(s)
Since s n-1,δ > 0, there exist unique Kantorovich potentials (ϕ n,δ i , ψ n,δ i ) from s n,δ i to s n-1,δ i . This allows to construct F n,δ using ( 46) where ϕ n i (resp. π n i ) has been replaced by ϕ n,δ i (resp. π n,δ i ). Thanks to the above discussion,

(53) 0 ≤ Ω F n,δ * • (s * -s n,δ * )dx, ∀s * ∈ X * ∩ A * .
We can now let δ tend to 0. Because of the time continuity of the solutions to [START_REF] Kinderlehrer | A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations[END_REF], we know that s n-1,δ converges towards s n-1 in L 1 (Ω). On the other hand, from the definition of s n,δ and Lemma 2.2 (in particular [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] with s n-1,δ , s n,δ , π n,δ instead of s n-1 , s n , π n ) we see that π n,δ is bounded in H 1 (Ω) N +1 uniformly in δ > 0. Using next the Lipschitz continuous ( 8) of φ, one deduces that s n,δ is uniformly bounded in H 1 (Ω) N +1 . Then, thanks to Rellich's compactness theorem, we can assume that s n,δ converges strongly in L 2 (Ω) N +1 as δ tends to 0. By the strong convergence s n-1,δ → s n-1 and standard properties of the squared Wasserstein distance, one readily checks that F n,δ τ Γ-converges towards F n τ , and we can therefore identify the limit of s n,δ as the unique minimizer s n of F n τ . Thanks to Lebesgue's dominated convergence theorem, we also infer that π n,δ i converges in L 2 (Ω) towards π n i . Using once again the stability of the Kantorovich potentials [44, Theorem 1.52], we know that ϕ n,δ i converges uniformly towards some Kantorovich potential ϕ n i . Then we can pass to the limit in (53) and claim that (52) is satisfied even when some coordinates of s n-1 vanish on some parts of Ω.

Finally, note that since the Kantorovich potentials ϕ n i are Lipschitz continuous and because π n i ∈ H 1 (cf. Lemma 2.2) and Ψ is smooth, we have F n i ∈ H 1 . Since the phases are bounded 0 ≤ s n i (x) ≤ ω(x) and π is continuous we have π n ∈ L ∞ , thus F n i ∈ L ∞ as well and the proof is complete. We can now suitably decompose the vector field F n = (F n i ) 0≤i≤N defined by [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. Corollary 3.3. Let F n = (F n 0 , . . . , F n N ) be as in Lemma 3.2. There exists α n ∈ R N +1 such that, setting λ n (x) := min j (F n j (x) + α n j ), there holds λ n ∈ H 1 (Ω) and

F n i + α n i = λ n ds n i -a.e. in Ω, ∀i ∈ {0, . . . , N }, (54) 
∇F n i = ∇λ n ds n ia.e. in Ω, ∀i ∈ {0, . . . , N }. (55) Proof. By Lemma 3.2 we know that s n minimizes s → F n •s among all admissible s ∈ X ∩ A. Applying the multicomponent bathtub principle, Theorem B.1 in appendix, we infer that there exists

α n = (α n 0 , . . . , α n N ) ∈ R N +1 such that F n i +α n i = λ n for ds n i -a.e.
x ∈ Ω and λ n = min j (F n j + α n j ) as in our statement. Note first that λ n ∈ H 1 (Ω) as the minimum of finitely many H 1 functions F 0 , . . . , F N ∈ H 1 (Ω). From the usual Serrin's chain rule we have moreover that

∇λ n = ∇ min j (F n j + α n j ) = ∇F i .χ [F n i +α n i =λ n ] , and since s n i = 0 inside [F n i + α n i = λ n ] the proof is complete. 3.2.
The discrete capillary pressure law and pressure estimates. In this section, some calculations in the Riemannian settings (Ω, d i ) will be carried out. In order to make them as readable as possible, we have to introduce a few basics. We refer to [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Chapter 14] for a more detail presentation.

Let i ∈ {0, . . . , N }, then consider the Riemannian geometry (Ω, d i ), and let x ∈ Ω, then we denote by g i,x : R d × R d → R the local metric tensor defined by

g i,x (v, v) = µ i K -1 (x)v • v = G i (x)v • v, ∀v ∈ R d .
In this framework, the gradient ∇ gi ϕ of a function ϕ ∈ C 1 (Ω) is defined by

ϕ(x + hv) = ϕ(x) + hg i,x ∇ gi,x ϕ(x), v + o(h), ∀v ∈ S d-1 , ∀x ∈ Ω.
It is easy to check that this leads to the formula (56)

∇ gi ϕ = 1 µ i K∇ϕ,
where ∇ϕ stands for the usual (euclidean) gradient. The formula (56) can be extended to Lipschitz continuous functions ϕ thanks to Rademacher's theorem. For ϕ belonging to C 2 , we can also define the Hessian D 2 gi ϕ of ϕ in the Riemannian setting by

g i,x D 2 gi ϕ(x) • v, v = d 2 dt 2 ϕ(γ t ) t=0
for any geodesic γ t = exp i,x (tv) starting from x with initial speed v ∈ T i,x Ω.

Denote by ϕ n i the backward Kantorovich potential sending s n i to s n-1 i associated to the cost 1 2 d 2 i . By the usual definition of the Wasserstein distance through the Monge problem, one has

W 2 i (s n i , s n-1 i ) = Ω d 2 i (x, t n i (x))s n i (x)dx,
where t n i denotes the optimal map sending s n i on s n-1 i . It follows from [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Theorem 10.41] that (57)

t n i (x) = exp i,x (-∇ gi ϕ n i (x)) , ∀x ∈ Ω.
Moreover, using the definition of the exponential and the relation (56), one gets that

d 2 i (x, exp i,x (-∇ gi ϕ n i (x)) = g i,x (∇ gi ϕ n i (x), ∇ gi ϕ n i (x)) = 1 µ i K(x)∇ϕ n i (x)•∇ϕ n i (x).
This yields the formula (58)

W 2 i (s n i , s n-1 i ) = Ω s n i µ i K∇ϕ n i • ∇ϕ n i dx, ∀i ∈ {0, . . . , N }.
We have now introduced the necessary material in order to reconstruct the phase and capillary pressures. This is the purpose of the following Proposition 3.4 and of then Corollary 3.5

Proposition 3.4. For n ≥ 1 let ϕ n i : s n i → s n-1 i

be the (backward) Kantorovich potentials from Lemma 3.2. There exists h

= (h n 0 , . . . , h n N ) ∈ H 1 (Ω) N +1 such that (i) ∇h n i = - ∇ϕ n i τ for ds n i -a.e. x ∈ Ω (ii) h n i (x) -h n 0 (x) = π n i (x) + Ψ i (x) -Ψ 0 (x)
for dx-a.e. x ∈ Ω, i ∈ {1, . . . , N } (iii) there exists C depending only on Ω, Π, ω, K, (µ i ) i , and Ψ such that, for all n ≥ 1 and all τ > 0, one has

h n 2 H 1 (Ω) N +1 ≤ C 1 + W 2 (s n , s n-1 ) τ 2 + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ .
Proof. Let ϕ n i be the Kantorovich potentials from Lemma 3.2 and F n i ∈ L ∞ ∩H 1 (Ω) as in [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], as well as α n ∈ R N +1 and λ n = min

j (F n j + α n j ) ∈ L ∞ ∩ H 1 (Ω) as in Corollary 3.3. Setting h n i := - ϕ n i τ + F n i -λ n , ∀i ∈ {0, . . . , N },
we have h n i ∈ H 1 (Ω) as the sum of Lipschitz functions (the Kantorovich potentials ϕ n i ) and H 1 functions F n i , λ n . Recalling that we use the notation π 0 = ∂Π ∂s0 = 0, we see from the definition (46) of F n i that (59)

h n i -h n 0 = F n i - ϕ n i τ -F n 0 - ϕ n 0 τ = (π n i + Ψ i ) -(π n 0 + Ψ 0 ) = π n i + Ψ i -Ψ 0
for all i ∈ {1, . . . , N } and dx-a.e. x, which is exactly our statement (ii). For (i), we simply use (55) to compute (60)

∇h n i = - ∇ϕ n i τ + ∇(F n i -λ n i ) = - ∇ϕ n i τ for ds n i -a.e. x ∈ Ω, ∀i ∈ {0, . . . , N }.
In order to establish now the H 1 estimate (iii), let us denote

U i = x ∈ Ω s n i (x) ≥ ω ⋆ N + 1 .
Then since s n i (x) = ω(x) ≥ ω ⋆ > 0, one gets that, up to a negligible set, (61)

N i=0 U i = Ω, hence (U i ) c ⊂ j =i U j .
We first estimate ∇h n 0 . To this end, we write

(62) ∇h n 0 2 L 2 ≤ 1 κ ⋆ Ω K∇h n 0 • ∇h n 0 dx ≤ A + B,
where we have set

A = 1 κ ⋆ U0 K∇h n 0 • ∇h n 0 dx, B = 1 κ ⋆ (U0) c K∇h n 0 • ∇h n 0 dx.
Owing to (60) one has

∇h n 0 = -∇ϕ0 τ on U 0 ⊂ Ω, where s n 0 ≥ ω⋆ N +1 . Therefore, A ≤ (N + 1)µ 0 ω ⋆ κ ⋆ U0 s n 0 µ 0 K∇h n 0 • ∇h n 0 dx ≤ (N + 1)µ 0 τ 2 ω ⋆ κ ⋆ Ω s n 0 µ 0 K∇ϕ n 0 • ∇ϕ n 0 dx.
Then it results from formula (58) that

(63) A ≤ C τ 2 W 2 0 (s n 0 , s n-1 0 )
where C depends neither on n nor on τ . Combining (61) and (59), we infer

B ≤ 1 κ ⋆ N i=1 Ui K∇[h n i -(π n i + Ψ i -Ψ 0 )] • ∇[h n i -(π n i + Ψ i -Ψ 0 )]dx. Using (a + b + c) 2 ≤ 3(a 2 + b 2 + c 2
) and ( 3), we get that

(64) B ≤ 3 κ ⋆ N i=1 Ui K∇h i • ∇h i dx + 3κ ⋆ κ ⋆ N i=1 ∇π n i 2 L 2 + ∇(Ψ i -Ψ 0 ) 2 L 2 .
Similar calculations to those carried out to estimate A yield

Ui K∇h i • ∇h i dx ≤ C τ 2 W 2 i (s n i , s n-1 i )
for some C depending neither on n, i nor on τ . Combining this inequality with Lemma 2.2 and the regularity of Ψ, we get from (64) that

(65) B ≤ C 1 + W 2 (s n , s n-1 ) τ 2 + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ
for some C not depending on n and τ (here we also used 1/τ ≤ 1/τ 2 for small τ in the W 2 terms). Gathering (63) and ( 65) in (62) provides

∇h n 0 2 L 2 ≤ C 1 + W 2 (s n , s n-1 ) τ 2 + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ .
Note that (i)(ii) remain invariant under subtraction of the same constant h n 0 , h n i h n 0 -C, h n i -C, as the gradients remain unchanged in (i) and only the differences

h n i -h n 0 appear in (ii) for i ∈ {1 . . . N }.
We can therefore assume without loss of generality that Ω h n 0 dx = 0. Hence by the Poincaré-Wirtinger inequality, we get that

h n 0 2 H 1 ≤ C ∇h n 0 2 L 2 ≤ C 1 + W 2 (s n , s n-1 ) τ 2 + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ .
Finally, from (ii) h n i = h n 0 + π n i + Ψ i -Ψ 0 , the smoothness of Ψ, and using again the estimate (30) for ∇π n 2 L 2 we finally get that for all i ∈ {1, . . . , N }, one has

h n i 2 H 1 ≤ C( h n 0 2 H 1 + π n i 2 H 1 + Ψ i 2 H 1 + Ψ 0 2 H 1 ) ≤ C 1 + W 2 (s n , s n-1 ) τ 2 + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ ,
and the proof of Proposition 3.4 is complete.

We can now define the phase pressures (p n i ) i=0,...,N by setting (66)

p n i := h n i -Ψ i , ∀i ∈ {0, . . . , N }.
The following corollary is a straightforward consequence of Proposition 3.4 and of the regularity of Ψ i .

Corollary 3.5. The phase pressures

p n = (p n i ) 0≤i≤N ∈ H 1 (Ω) N +1 satisfy (67) p n 2 H 1 (Ω) ≤ C 1 + W 2 (s n , s n-1 ) τ 2 + N i=0 H ω (s n-1 i ) -H ω (s n i ) τ
for some C depending only on Ω, Π, ω, K, (µ i ) i , and Ψ (but neither on n nor on τ ), and the capillary pressure relations are fulfilled:

(68) p n i -p n 0 = π n i , ∀i ∈ {1, . . . , N }.
Our next result is a first step towards the recovery of the PDEs.

Lemma 3.6. There exists C depending depending only on Ω, Π, ω, K, (µ i ) i , and Ψ (but neither on n nor on τ ) such that, for all i ∈ {0, . . . , N } and all ξ ∈ C 2 (Ω), one has

(69) Ω s n i -s n-1 i ξdx + τ Ω s n i K µ i ∇ (p n i + Ψ i ) • ∇ξdx ≤ CW 2 i (s n i , s n-1 i ) D 2 gi ξ ∞ . This is of course a discrete approximation to the continuity equation ∂ t s i = ∇ • (s i K µi ∇ (p i + Ψ i )). Proof. Let ϕ n
i denote the (backward) optimal Kantorovich potential from Lemma 3.2 sending s n i to s n-1 i , and let t n i be the corresponding optimal map as in (57). For fixed ξ ∈ C 2 (Ω) let us first Taylor expand (in the g i Riemannian framework)

ξ(t n i (x)) -ξ(x) + 1 µ i K(x)∇ξ(x) • ∇ϕ n i (x) ≤ 1 2 D 2 gi ξ ∞ d 2 i (x, t n i (x)).
Using the definition of the pushforward s n-

1 i = t n i #s n i , we then compute Ω (s n i (x) -s n-1 i (x))ξ(x)dx - Ω K(x) µ i ∇ξ(x) • ∇ϕ n i (x)s n i (x)dx = Ω (ξ(x) -ξ(t n i (x))s n i (x)dx - Ω K(x) µ i ∇ξ(x) • ∇ϕ n i (x)s n i (x)dx ≤ Ω 1 2 D 2 gi ξ ∞ d 2 i (x, t n i (x))s n i (x)dx = 1 2 D 2 gi ξ ∞ W 2 i (s n i , s n-1 i ).
From Proposition 3.4(i) we have ∇ϕ n i = -τ ∇h n i for ds n i a.e. x ∈ Ω, thus by the definition (66) of p n i , we get ∇ϕ n = -τ ∇(p n i + Ψ i ). Substituting in the second integral of the left-hand side gives exactly (69) and the proof is complete.

Convergence towards a weak solution

The goal is now to prove the convergence of the piecewise constant inteprolated solutions s τ , defined by [START_REF] Fabrie | Existence de solutions faibles pour un modèle d'écoulement triphasique en milieu poreux[END_REF], towards a weak solution s as τ → 0. Similarly, the τ superscript denotes the piecewise constant interpolation of any previous discrete quantity (e.g. p τ i (t) stands for the piecewise constant time interpolation of the discrete pressures p n i ). In what follows, we will also use the notations

s τ * = (s τ 1 , . . . , s τ N ) ∈ L ∞ ((0, T ); X *
) and π τ = π(s τ * , x). 4.1. Time integrated estimates. We immediately deduce from ( 29) that

(70) W (s τ (t 2 ), s τ (t 1 )) ≤ C|t 2 -t 1 + τ | 1 2 , ∀ 0 ≤ t 1 ≤ t 2 ≤ T.
From the total saturation

N i=0 s n i (x) = ω(x) ≤ ω ⋆ and s τ i ≥ 0, we have the L ∞ estimates (71) 0 ≤ s τ i (x, t) ≤ ω ⋆ a.e.
in Q for all i ∈ {0, . . . , N }. Lemma 4.1. There exists C depending only on Ω, T, Π, ω, K, (µ i ) i , and Ψ such that

(72) p τ 2 L 2 ((0,T );H 1 (Ω) N +1 ) + π τ 2 L 2 ((0,T );H 1 (Ω) N ) ≤ C.
Proof. Summing (67) from n = 1 to n = N τ := ⌈T /τ ⌉, we get

p τ 2 L 2 (H 1 ) = Nτ n=1 τ p n 2 H 1 ≤ C Nτ n=1 τ 1 + W 2 (s n , s n-1 ) τ 2 + Nτ i=0 H ω (s n-1 i ) -H ω (s n i ) τ ≤ C (T + 1) + Nτ n=1 W 2 (s n , s n-1 ) τ + N i=0 H ω (s 0 i ) -H ω (s Nτ i ) .
We use that

0 ≥ H ω (s) ≥ - 1 e ω L 1 ≥ - |Ω| e , ∀s ∈ L ∞ (Ω) with 0 ≤ s ≤ ω
together with the total square distance estimate [START_REF] Gigli | Entropic Burgersd5 equation via a minimizing movement scheme based on the Wasserstein metric[END_REF] to infer that p 2 L 2 (H 1 ) ≤ C. The proof is identical for the capillary pressure π τ (simply summing the one-step estimate from Lemma 2.2).

Compactness of approximate solutions. We denote by H

′ = H 1 (Ω) ′ .
Lemma 4.2. For each i ∈ {0, . . . , N }, there exists C depending only on Ω, Π, Ψ, K, and µ i (but not on τ ) such that

s τ i (t 2 ) -s τ i (t 1 ) H ′ ≤ C|t 2 -t 1 + τ | 1 2 , ∀ 0 ≤ t 1 ≤ t 2 ≤ T.
Proof. Thanks to (71), we can apply [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]Lemma 3.4] to get

Ω f {s τ i (t 2 ) -s τ i (t 1 )}dx ≤ ∇f L 2 (Ω) W ref (s τ i (t 1 ), s τ i (t 2 )), ∀f ∈ H 1 (Ω).
Thus by duality and thanks to the distance estimate (70) and to the lower bound in [START_REF] Chavent | A fully equivalent global pressure formulation for three-phases compressible flows[END_REF], we obtain that

s τ i (t 2 ) -s τ i (t 1 ) H ′ ≤ W ref (s τ i (t 1 ), s τ i (t 2 )) ≤ CW i (s τ i (t 1 ), s τ i (t 2 )) ≤ C|t 2 -t 1 + τ | 1 2
for some C depending only on Ω, Π, (ρ i ) i , g, (µ i ) i , K.

From the previous equi-continuity in time, we deduce full compactness of the capillary pressure:

Lemma 4.3. The family (π τ ) τ >0 is sequentially relatively compact in L 2 (Q) N .
Proof. We use Alt & Luckhaus' trick [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF] (an alternate solution would consist in slightly adapting the nonlinear time compactness results [START_REF] Moussa | Some variants of the classical Aubin-Lions Lemma[END_REF][START_REF] Andreianov | A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF] to our context). Let h > 0 be a small time shift, then by monotonicity and Lipschitz continuity of the capillary pressure function π(., x)

π τ (• + h) -π τ (•) 2 L 2 ((0,T -h);L 2 (Ω) N ) ≤ 1 κ ⋆ T -h 0 Ω (π τ (t + h, x) -π τ (t, x)) • (s τ * (t + h, x) -s τ * (t, x))dxdt ≤ 2 √ T κ ⋆ π τ L 2 ((0,T );H 1 (Ω) N ) s τ * (• + h, •) -s τ * L ∞ ((0,T -h);H ′ ) N .
Then it follows from Lemmas 4.1 and 4.2 that there exists C > 0, depending neither on h nor on τ , such that

π τ (• + h, •) -π τ L 2 ((0,T -h);L 2 (Ω) N ) ≤ C|h + τ | 1/2 .
On the other hand, the (uniform w.r.t. τ ) L 2 ((0, T ); H 1 (Ω) N )-and L ∞ (Q) Nestimates on π τ ensure that

π τ (•, • + y)) -π τ L 2 (0,T ;L 2 ) ≤ C |y|(1 + |y|), ∀ y ∈ R d ,
where π τ is extended by 0 outside Ω. This allows to apply Kolmogorov's compactness theorem (see, for instance, [START_REF] Hance-Olsen | The Kolmogorov-Riesz compactness theorem[END_REF]) and entails the desired relative compactness.

4.3. Identification of the limit. In this section we prove our main Theorem 1.2, and the proof goes in two steps: we first retrieve strong convergence of the phase contents s τ → s and weak convergence of the pressures p τ ⇀ p, and then use the strong-weak limit of products to show that the limit is a weak solution. All along this section, (τ k ) k≥1 denotes a sequence of times steps tending to 0 as k → ∞.

Lemma 4.4. There exist s ∈ L ∞ (Q) N +1 with s(•, t) ∈ X ∩ A for a.e. t ∈ (0, T ), and p ∈ L 2 ((0, T ); H 1 (Ω) N +1 ) such that, up to an unlabeled subsequence, the following convergence properties hold:

s τ k -→ k→∞ s a.e. in Q, (73) 
π τ k -⇀ k→∞ π(s * , •) weakly in L 2 ((0, T ); H 1 (Ω) N ), ( 74 
)
p τ k -⇀ k→∞ p weakly in L 2 ((0, T ); H 1 (Ω) N +1 ). (75)
Moreover, the capillary pressure relations (5) hold.

Proof. From Lemma 4.3, we can assume that π τ k → z strongly in L 2 (Q) N for some limit z, thus a.e. up to the extraction of an additional subsequence. Since z → φ(z, x) = π -1 (z, x) is continuous, we have that

s τ k * = φ(π τ k , x) -→ k→∞ φ(π, x) =: s * a.e. in Q.
In particular, this yields π τ k -→ k→∞ π(s * , •) a.e. in Q. Since we had the total saturation N i=0 s τ k i (t, x) = ω(x), we conclude that the first component i = 0 converges pointwise as well. Therefore, (73) holds. Thanks to Lebesgue's dominated convergence theorem, it is easy to check that s(•, t) ∈ X ∩ A for a.e. t ∈ (0, T ). The convergences (74) and (75) are straightforward consequences of Lemma 4.1. Lastly, it follows from (68) that

p τ k i -p τ k 0 = π i (s τ k * , •), ∀i ∈ {1, . . . , N }, ∀k ≥ 1.
We can finally pass to the limit k → ∞ in the above relation thanks to (74)-(75) and infer

p i -p 0 = π i (s * , x) in L 2 ((0, T ); H 1 (Ω)), ∀i ∈ {1, . . . , N }.
which immediately implies (5) as claimed.

Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of (s τ k ) k≥1 belongs to C([0, T ]; A) where A is equipped with the metric W . Moreover, W (s τ k (t), s(t)) -→ k→∞ 0 for all t ∈ [0, T ].

Proof. It follows from the bounds (71) on s i that for all t ∈ [0, T ], the sequence (s τ k i ) k is weakly compact in L 1 (Ω). It is also compact in A i equipped with the metric W i due to the continuity of W i with respect to the weak convergence in L 1 (Ω) (this is for instance a consequence of [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Theorem 5.10] together with the equivalence of W i with W ref stated in [START_REF] Chavent | A fully equivalent global pressure formulation for three-phases compressible flows[END_REF]). Thanks to (70), one has lim sup

k→∞ W i (s τ k i (t 2 ), s τ k i (t 1 )) ≤ |t 2 -t 1 | 1/2 , ∀t 1 , t 2 ∈ [0, T ].
Applying a refined version of the Arzelà-Ascoli theorem [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Prop. 3.3.1] then provides the desired result.

In order to conclude the proof of Theorem 1.2, it only remains to show that s = lim s τ k and p = lim p τ k satisfy the weak formulation (12): Proposition 4.6. Let (τ k ) k≥1 be a sequence such that the convergences in Lemmas 4.4 and 4.5 hold. Then the limit s of (s τ k ) k≥1 is a weak solution in the sense of Definition 1.1 (with -ρ i g replaced by +∇Ψ i in the general case).

Proof. Let 0 ≤ t 1 ≤ t 2 ≤ T , and denote n j,k = tj τ k and tj = n j,k τ k for j ∈ {1, 2}. Fixing an arbitrary ξ ∈ C 2 (Ω) and summing (69

) from n = n 1,k + 1 to n = n 2,k yields (76) Ω (s τ k i (t 2 ) -s τ k i (t 1 ))ξdx = n 2,k n=n 1,k +1 Ω (s n i -s n-1 i )ξdx = - t2 t1 Ω s τ k i µ i K∇ (p τ k i + Ψ i ) • ∇ξdxdt + O   n 2,k n=n 1,k +1 W 2 i (s n i , s n-1 i )   .
Since 0 ≤ tj -t j ≤ τ k and

s τ k i µi K∇ (p τ k i + Ψ i ) • ∇ξ is uniformly bounded in L 2 (Q), one has t2 t1 Ω s τ k i µ i K∇ (p τ k i + Ψ i ) • ∇ξdxdt = t2 t1 Ω s τ k i µ i K∇ (p τ k i + Ψ i ) • ∇ξdxdt + O( √ τ k ).
Combining the above estimate with the total square distance estimate (28) in (76), we obtain (77)

Ω (s τ k i (t 2 ) -s τ k i (t 1 ))ξdx + t2 t1 Ω s τ k i µ i K∇ (p τ k i + Ψ i ) • ∇ξdxdt = O ( √ τ k ) .
Thanks to Lemma 4.5, and since the convergence in (A i , W i ) is equivalent to the narrow convergence of measures (i.e., the convergence in C(Ω) ′ , see for instance [44, Theorem 5.10]), we get that (78)

Ω (s τ k i (t 2 ) -s τ k i (t 1 ))ξdx -→ k→∞ Ω (s i (t 2 ) -s i (t 1 ))ξdx.
Moreover, thanks to Lemma 4.4, one has (79)

t2 t1 Ω s τ k i µ i K∇ (p τ k i + Ψ i ) • ∇ξdxdt -→ k→∞ t2 t1 Ω s i µ i K∇ (p i + Ψ i ) • ∇ξdxdt.
Gathering (77)-(79) yields, for all ξ ∈ C 2 (Ω) and all 0 ≤ t 1 ≤ t 2 ≤ T ,

Ω (s i (t 2 ) -s i (t 1 ))ξdx + t2 t1 Ω s i µ i K∇ (p i + Ψ i ) • ∇ξdxdt = 0. (80) 
In order to conclude the proof, it remains to check that the formulation (80) is stronger the formulation [START_REF] Blanchet | Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model[END_REF]. Let ε > 0 be a time step (unrelated to that appearing in the minimization scheme (25)), and set

L ε = T ε . Let φ ∈ C ∞ c (Ω × [0, T )), one sets φ ℓ = φ(•, ℓε) for ℓ ∈ {0, . . . , L ε }. Since t → φ(•, t) is compactly supported in [0, T ), then there exists ε ⋆ > 0 such that φ Lε ≡ 0 for all ε ∈ (0, ε ⋆ ]. Then define by φ ε : Ω × [0, T ] → R (x, t) → φ ℓ (x) if t ∈ [ℓε, (ℓ + 1)ε).
Choose t 1 = ℓε, t 2 = (ℓ + 1)ε, ξ = φ ℓ in (80) and sum over ℓ ∈ {0, . . . , L ε -1}. This provides (81)

A(ε) + B(ε) = 0, ∀ε > 0.
where

A(ε) = Lε-1 ℓ=0 Ω (s i ((ℓ + 1)ε) -s i (ℓε)) φ ℓ dx, B(ε) = Q s i µ i K∇ (p i + Ψ i ) • ∇φ ε dxdt.
Due to the regularity of φ, ∇φ ε converges uniformly towards φ as ε tends to 0, so that

(82) B(ε) -→ ε→0 Q s i µ i K∇ (p i + Ψ i ) • ∇φdxdt.
Reorganizing the first term and using that φ Lε ≡ 0, we get that

A(ε) = - Lε ℓ=1 ε Ω s i (ℓε) φ ℓ -φ ℓ-1 ε dx - Ω s 0 i φ(•, 0)dx.
It follows from the continuity of t → s i (•, t) in A i equipped with W i and from the uniform convergence of

(x, t) → φ ℓ (x) -φ ℓ-1 (x) ε if t ∈ [(ℓ -1)ε, ℓε) towards ∂ t φ that (83) A(ε) -→ ε→0 - Q s i ∂ t φdxdt - Ω s 0 i φ(•, 0)dx.
Combining (81)-(83) shows that the weak formulation ( 12) is fulfilled.

Let x, y ∈ Ω, then there exists ε > 0 such that dist(x, ∂Ω) ≥ ε, dist(y, ∂Ω) ≥ ε, and κ is normally nonincreasing on ∂Ω ε := {x ∈ Ω | dist(x, ∂Ω) < ε}. A sufficient condition for (Ω, δ) to be geodesic is that the geodesic γ opt

x,y from x to y is such that (86) dist γ opt x,y (t), ∂Ω ≥ ε, ∀t ∈ [0, 1]. In order to ease the reading, we denote by γ = γ opt x,y any geodesic such that (87)

δ 2 (x, y) = 1 0 1 κ(γ(τ )) |γ ′ (τ )| 2 dτ.
We define the continuous and piecewise C 1 path γ ε from x to y by setting

(88) γ ε (t) = proj Ω ε (γ(t)), ∀t ∈ [0, 1],
where 

Ω ε := {x ∈ Ω | dist(x,
δ 2 (x, y) ≤ 1 0 1 κ(γ ε (τ )) |γ ′ ε (τ )| 2 dτ.
Since κ is normally non-increasing, one has

δ 2 (x, y) ≤ 1 0 1 κ(γ(τ )) |γ ′ ε (τ )| 2 dτ.
Thanks to (89), one obtains that

δ 2 (x, y) < 1 0 1 κ(γ(τ )) |γ ′ (τ )| 2 dτ,
providing a contradiction with the optimality (87) of γ. Thus Condition (86) holds, hence (Ω, δ) is a geodesic space.

Appendix B. A multicomponent bathtub principle

The following theorem can be seen as a generalization of the classical scalar bathtub principle (see for instance [START_REF] Lieb | Analysis[END_REF]Theorem 1.14]). In what follows, N is a positive integer and Ω denotes an arbitrary measurable subset of R d . Then for any F = (F 0 , . . . , F N ) ∈ (L ∞ (Ω)) N +1 , the functional

F : s → Ω F • s dx has a minimizer in X ∩ A. Moreover, there exists α = (α 0 , . . . , α N ) ∈ R N +1 such that, denoting λ(x) := min 0≤j≤N {F j (x) + α i }, x ∈ Ω,
any minimizer s = (s 0 , . . . , s N ) satisfies

F i + α i = λ ds i -a.e. in Ω, ∀i ∈ {0, . . . , N }.
One can think of this as: s i = 0 in {F i +α i > λ} and F i +α i ≥ λ everywhere, i.e., s i > 0 can only occur in the "contact set" x F i (x) + α i = min j (F j (x) + α j ) .

Proof. For the existence part, note that F is continuous for the weak L 1 convergence, and that X ∩ A is weakly closed. Since s i = ω and s i ≥ 0 we have in particular 0 ≤ s i ≤ ω ∈ L 1 for all i and s ∈ X ∩ A. This implies that X ∩ A is uniformly integrable, and since the mass s i L 1 = s i = m i is prescribed, the Dunford-Pettis theorem shows that X ∩ A is L 1 -weakly relatively compact. Hence from any minimizing sequence we can extract a weakly-L 1 converging subsequence, and by weak L 1 continuity the weak limit is a minimizer.

Let us now introduce a dual problem: for fixed α = (α 0 , . . . , α N ) ∈ R N +1 we denote We shall prove below that (i) sup J(α).

The desired decomposition will then follow from equality conditions in (ii), and λ(x) = λ α (x) will be retrieved from any maximizer α ∈ Argmax J.

Remark B.2. The above dual problem can be guessed by introducing suitable Lagrange multipliers λ(x), α for the total saturation and mass constraints, respectively, and writing the convex indicator of the constraints as a supremum over these multipliers. Formally exchanging inf sup = sup inf and computing the optimality conditions in the right-most infimum relates λ to α as in (90), which in turn yields exactly the duality inf Since ωdx = m i , the function J is invariant under diagonal shifts, i.e., J(α + c1) = J(α) for any constant c ∈ R. As a consequence we can choose a maximizing sequence {α k } k≥1 such that min j α k j = 0 for all k ≥ 0. Let j(k) be an index such that α k j(k) = min j α k j = 0. Then, since α k is maximizing and ω(x) ≥ 0, we get, for k large enough, sup J -1 ≤ J(α k ) = Ω min j {F j (x) + α k j }ω(x)dx -

α k i m i ≤ Ω F j(k) (x) + α k j(k) =0 ω(x)dx - α k i m i ≤ F L ∞ ω L 1 - α k i m i .

Thus

α k i m i ≤ C, and since α k i ≥ 0 and m i > 0 we deduce that α k k is bounded. Hence, up to extraction of an unlabelled subsequence, we can assume that α k converges towards some α ∈ R N +1 + . The map J is continuous, hence α is a maximizer.

Let us now focus on property (ii). Note from (91) and (i) it suffices to prove the reverse inequality max We show below that, for any maximizer α of J, we can always construct a suitable s ∈ X ∩A such that F (s) = J(α). This will immediately imply the reverse inequality and thus our claim (ii). In order to do so, we first observe that J is concave, thus the optimality condition at α can be written in terms of superdifferentials as 0 we have by construction that s i ≥ 0, s i = m i , and s i = ( i θ i )ω = ω a.e, thus s ∈ X ∩ A. Exploiting again s i = ω as well as the crucial property that θ i = 0 a.e. in {x | F i + α i > λ α }, or in other words that F i + α i = λ α for ds i -a.e x ∈ Ω, we get

J(α) = Ω λ α ωdx - N i=0 α i m i = N i=0 Ω λ α s i dx - N i=0 α i m i = N i=0 Ω (F i + α i )s i dx - N i=0 α i m i = F (s)
as claimed. Therefore s constructed by (94) is a minimizer of F and (95) J(α) = F (s).

In order to finally retrieve the desired decomposition, choose any minimizer s ∈ X ∩ A of F and any maximizer α ∈ R N +1 of J. Then it follows from (95) that 0 = F (s) -J(α)

= N i=0 Ω F i s i dx - Ω λ α ωdx + N i=0 α i m i .
Using once again that s i = m i and i s i = ω, we get that

N i=0 Ω (F i + α i -λ α ) s i dx = 0.
By definition of λ α the above integrand is nonnegative, hence F i + α i = λ α a.e. in {s i > 0}.

Remark B.3. To understand the dual problem one chan think the function F i as N + 1 bathub that can be translated vertically. The translation of each bathtub is given by α i . Once these translations are given one just wants to fill the bathubs starting from the bottom (that is λ α ), while satisfying the global saturation and mass constraints. For an optimal translation vector α, each phase i contributes at x with a ratio θ i (x) as in (94).

  ω(x) a.e. in Q,

  a.e. in Ω . In what follows, we denote by Υ = x∈Ω ∆ * (x) × {x}.

1. 2 . 1 .

 21 Energy of a configuration. First, we extend the convex function Π : Υ → [0, +∞], called capillary energy density, to a convex function (still denoted by) Π : R N +1 × Ω → [0, +∞] by setting Π(s, x) = Π ω s * σ , x = Π ω s1 σ , . . . , ω sN σ , x if s ∈ R N +1 + and σ ≤ ω(x), +∞ otherwise,

Theorem B. 1 .

 1 Let ω ∈ L 1 + (Ω), and let m = (m 0 , . . . , m N ) ∈ (R * + ) N +1 be such that N i=0 m i = Ω ω dx. We denote by X ∩A = s = (s 0 , . . . , s N ) ∈ L 1 + (Ω) N +1 Ω s i dx = m i and N i=0 s i = ω a.e. in Ω .

  (90)λ α (x) := min i {F i (x) + α i }and defineJ(α) := Ω λ α (x)ω(x)dx -N i=0 α i m i .

sFj

  = max α J. See alsoRemark B.3 Let us first establish property (i). For all α ∈ R N +1 and all s ∈ X ∩ A, we first observe thatJ(α) = Ω min j {F j (x) + α j }ω(x)dx -{F j (x) + α j } -α i s i (x)dx ≤ Ω F • s dx = F (s).In particular J is bounded from above and (91) sup α∈R N +1 J(α) ≤ min s∈X ∩A F (s).

  R N +1 ∈ ∂J(α). Denoting by Λ(α) = Ω λ α ωdx = Ω min j {F j (x) + α j }ω(x)dx the first contribution in J, this optimality can be recast as (92) m ∈ ∂Λ(α).

For

  fixed x ∈ Ω and by usual properties of the min function, the superdifferential ∂λ α (x) of the concave map α → λ α (x) at α ∈ R N +1 is characterized by∂λ α (x) = θ ∈ R N +1 + N i=0 θ i = 1, and θ i = 0 if F i (x) + α i > λ α (x) .Therefore, it follows from the extension of the formula of differentiation under the integral to the non-smooth case (cf. [23, Theorem 2.7.2]) that (93)∂Λ(α) = w ∈ R N +1 + w = Ω θ(x)ω(x)dx with θ(x) ∈ ∂λ α (x) a.e. in Ω .The optimality criterion (92) at any maximizer α gives the existence of some function θ as in (93) such thatm i = Ω θ i (x)ω(x)dx, ∀i ∈ {0, . . . , N }.Defining (94) s i (x) := θ i (x)ω(x), ∀i ∈ {0, . . . , N },

  ∂Ω) ≥ ε} is convex, and the orthogonal (w.r.t. the euclidian distance dist) projection proj Ωε onto Ω ε is therefore uniquely defined.

	Assume that Condition (86) is violated. Then by continuity there exists a non-
	empty interval [a, b] ⊂ [0, 1] such that dist(γ(t), ∂Ω) < ε,	∀t ∈ (a, b),
			loss
	of generality that		
	It is easy to verify that	dist(γ(t), ∂Ω) < ε,	∀t ∈ (0, 1).
	(89) for some non-empty interval (a, b) ⊂ [0, 1]. It follows from (85) that |γ ′ ε (t)| ≤ |γ ′ (t)|, ∀t ∈ [0, 1], and |γ ′ ε (t)| < |γ ′ (t)| on (a, b)

the geodesic between γ(a) and γ(b) coincides with the part of the geodesics between x and y. Then, changing x into γ(a) and y into γ(b), we can assume without
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Appendix A. A simple condition for the geodesic convexity of (Ω, d i )

The goal of this appendix is to provide a simple condition on the permeability tensor in order to ensure that Condition [START_REF] Chen | Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF] is fulfilled. For the sake of simplicity, we only consider here the case of isotropic permeability tensors (84)

Let us stress that the condition we provide is not optimal.

As in the core of the paper, Ω denotes a convex open subset of R d with C 2 boundary ∂Ω. For x ∈ ∂Ω, we denote by n(x) the outward-pointing normal. Since ∂Ω is smooth, then there exists ℓ 0 > 0 such that, for all x ∈ Ω such that dist(x, ∂Ω) < ℓ 0 , there exists a unique x ∈ ∂Ω such that dist(x, ∂Ω) = |x-x| (here dist denotes the usual Euclidian distance between sets in R d ). As a consequence, one can rewrite x = x -ℓn(x) for some ℓ ∈ (0, ℓ 0 ).

In what follows, a function f : Ω → R is said to be normally nondecreasing (resp. nonincreasing) on a neighborhood of ∂Ω if there exists

Then there exists a C 2 extension κ : R d → [ κ⋆ 2 , κ ⋆ ] of κ and a Riemannian metric

Proof. Since Ω is convex, then for all x ∈ R d \ Ω, there exists a unique x ∈ ∂Ω such that dist(x, Ω) = |x -x|. Then one can extend κ in a C 2 way into the whole R d by defining

Thanks to Assumptions (i) and (ii), the function ℓ → κ(x-ℓn(x)) is non-decreasing on (-∞, ℓ 1 ] for all x ∈ ∂Ω. Since ∂Ω is compact, there exists ℓ 2 > 0 such that

Let ρ : R + → R be a non-decreasing C 2 function such that ρ(0) = 1, ρ ′ (0) = ρ ′′ (0) = 0 and ρ(ℓ) = 0 for all ℓ ≥ ℓ 2 . Then define κ(x) = ρ(dist(x, Ω))κ(x) + (1 -ρ(dist(x, Ω))) κ ⋆ 2 , ∀x ∈ R d , so that the function ℓ → κ(x -ℓn(x)) is non-increasing on (-∞, ℓ 1 ) and bounded from below by κ⋆ 2 .