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INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN

POROUS MEDIA: A VARIATIONAL APPROACH

CLÉMENT CANCÈS, THOMAS O. GALLOUËT, AND LÉONARD MONSAINGEON

Abstract. We describe the competitive motion of (N + 1) incompressible
immiscible phases within a porous medium as the gradient flow of a singular

energy in the space of non-negative measures with prescribed mass endowed
with some tensorial Wasserstein distance. We show the convergence of the
approximation obtained by a minimization scheme à la [R. Jordan, D. Kinder-
lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow to obtain
a new existence result for a physically well-established system of PDEs con-
sisting in the Darcy-Muskat law for each phase, N capillary pressure relations,
and a constraint on the volume occupied by the fluid. Our study does not
require the introduction of any global or complementary pressure.

Keywords. Multiphase porous media flows, Wasserstein gradient flows, constrained par-

abolic system, minimizing movement scheme

AMS subjects classification. 35K65, 35A15, 49K20, 76S05

1. Introduction

1.1. Equations for multiphase flows in porous media. We consider a con-
nected open bounded set Ω ⊂ Rd representing a porous medium. N + 1 incom-
pressible and immiscible phases, labeled by subscripts i ∈ {0, . . . , N} are supposed
to flow within the pores. Let us present now some classical equations that describe
the motion of such a mixture. The physical justification of these equations can be
found for instance in [10, Chapter 5]. We denote by si : Ω × (0, T ) =: Q → [0, 1]
the content of the phase i, i.e., the volume ratio of the phase i compared to all the
phases and the solid matrix, and by vi the filtration speed of the phase i, then the
conservation of the volume of each phase writes

(1) ∂tsi +∇ · (sivi) = 0 in Q, ∀i ∈ {0, . . . , N},

where T > 0 is an arbitrary finite time horizon. The filtration speed of each phase
is supposed to be given by the Darcy law

(2) vi = − 1

µi
K (∇pi − ρig) in Q, ∀i ∈ {0, . . . , N}.

In the above relation, g is the gravity vector, µi denotes the viscosity of the phase i,
pi its pressure, and ρi its density. The intrinsic permeability tensor K : Ω → Rd×d

is supposed to be smooth, symmetric K = KT , and uniformly positive definite:
there exist κ⋆, κ

⋆ > 0 such that:

(3) κ⋆|ξ|2 ≤ K(x)ξ · ξ ≤ κ⋆|ξ|2, ∀ξ ∈ R
d, ∀x ∈ Ω.
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The pore volume is supposed to be saturated by the fluid mixture, i.e.,

(4) σ :=
N∑

i=0

si = ω(x) a.e. in Q,

where the porosity ω : Ω → (0, 1) of the porous medium is assumed to be smooth.
In particular, there exists 0 < ω⋆ ≤ ω⋆ such that ω⋆ ≤ ω(x) ≤ ω⋆ for all x ∈ Ω. In
what follows, we denote by s = (s0, . . . , sN), by

∆(x) =

{
s ∈ (R+)

N+1

∣∣∣∣∣

N∑

i=0

si = ω(x)

}
,

and by
X =

{
s ∈ L1(Ω;RN+1

+ )
∣∣ s(x) ∈ ∆(x) a.e. in Ω

}
.

There is an obvious one-to-one mapping between the sets ∆(x) and

∆∗(x) =

{
s∗ = (s1, . . . , sN ) ∈ (R+)

N

∣∣∣∣∣

N∑

i=1

si ≤ ω(x)

}
,

and consequently also between X and

X
∗ =

{
s∗ ∈ L1(Ω;RN+ )

∣∣ s∗(x) ∈ ∆∗(x) a.e. in Ω
}
.

In what follows, we denote by Υ =
⋃

x∈Ω∆∗(x)× {x}.
In order to close the system, we impose N capillary pressure relations

(5) pi − p0 = πi(s
∗,x) a.e in Q, ∀i ∈ {1, . . . , N},

where the capillary pressure functions πi : Υ → R are assumed to be continuously
differentiable and to derive from a strictly convex potential Π : Υ → R+:

(6) πi(s
∗,x) =

∂Π

∂si
(s∗,x) ∀i ∈ {1, . . . , N}.

We assume that Π is uniformly convex w.r.t. its first variable. More precisely, we
assume that there exist two positive constants ̟⋆ and ̟⋆ such that, for all x ∈ Ω
and all s∗, ŝ∗ ∈ ∆∗(x), one has

(7)
̟⋆

2
|ŝ∗ − s∗|2 ≥ Π(ŝ∗,x)−Π(s∗,x)− π(s∗,x) · (ŝ∗ − s∗) ≥ ̟⋆

2
|ŝ∗ − s∗|2,

where we introduced the notation

π :

{
Υ → RN

(s∗,x) 7→ π(s∗,x) = (π1(s
∗,x), . . . , πN (s∗,x)) .

The relation (7) implies that π is monotone and injective w.r.t. its first variable.
Denoting by

z 7→ φ(z,x) = (φ1(z,x), . . . , φN (z,x)) ∈ ∆∗(x)

the inverse of π(·,x), it follows from (7) that

(8) 0 <
1

̟⋆
≤ Jzφ(z,x) ≤

1

̟⋆
for all x ∈ Ω and all z ∈ π(∆∗(x),x),

where Jz stands for the Jacobian with respect to z, and where the above inequality
has to be understood in the sense of positive definite matrices. Moreover, due to
the regularity of π w.r.t. the space variable, there exists Mφ > 0 such that

(9) |∇xφ(z,x)| ≤Mφ for all x ∈ Ω and all z ∈ π(∆∗(x),x),
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where ∇x denote the gradient w.r.t. to the second variable only.

The problem is complemented with no-flux boundary conditions

(10) vi · n = 0 on ∂Ω× (0, T ), ∀i ∈ {0, . . . , N},

and by the initial content profile s0 =
(
s00, . . . , s

0
N

)
∈ X :

(11) si(·, 0) = s0i ∀i ∈ {0, . . . , N}, with

N∑

i=0

s0i = ω a.e. in Ω.

Since we did not consider sources, and since we imposed no-flux boundary con-
ditions, the volume of each phase is conserved along time

(12)

∫

Ω

si(x, t)dx =

∫

Ω

s0i (x)dx =: mi > 0, ∀i ∈ {0, . . . , N}.

We can now give a proper definition of what we call a weak solution to the
problem (1)–(2), (4)–(5), and (10)–(11).

Definition 1.1 (Weak solution). A measurable function s : Q → (R+)
N+1 is

said to be a weak solution if s ∈ ∆ a.e. in Q, if there exists p = (p0, . . . , pN ) ∈
L2((0, T );H1(Ω))N+1 such that the relations (5) hold, and such that, for all φ ∈
C∞
c (Ω× [0, T )) and all i ∈ {0, . . . , N}, one has

(13)

∫∫

Q

si∂tφdxdt+

∫

Ω

s0iφ(·, 0)dx−
∫∫

Q

si
µi

K (∇pi − ρig) ·∇φdxdt = 0.

1.2. Wasserstein gradient flow of the energy.

1.2.1. Energy of a configuration. First, we extend the convex function Π : Υ →
[0,+∞], called capillary energy density, into a convex function (still denoted by)
Π : RN+1 × Ω → [0,+∞] by setting

Π(s,x) =

{
Π
(
ω s∗

σ ,x
)
= Π

(
ω s1σ , . . . , ω

sN
σ ,x

)
if s ∈ R

N+1
+ and σ ≤ ω(x),

+∞ otherwise,

σ being defined by (4). The extension of Π by +∞ where σ > 1 is natural because

of the incompressibility of the fluid mixture. The extension on {σ < 1}∪R
N+1
+ has

been designed so that the energy density only depends on the composition of the
fluid mixture. However, this extension is somehow arbitrary, and, as it will appear
in what follows, it has no influence on the flow since the solution s remains in X .
In our previous note [17], the appearance of void σ < 1 was directly prohibited by
a penalization in the energy.

The second part in the energy comes from the gravity. In order to lighten the
notations, we introduce the functions

(14) Ψi :

{
Ω → R+,
x 7→ −ρig · x, ∀i ∈ {0, . . . , N},

and

Ψ :

{
Ω → R

N+1
+ ,

x 7→ (Ψ0(x), . . . ,ΨN (x)) .
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The fact that Ψi can be supposed to be positive come from the fact that Ω is
bounded. Even though the physically relevant potentials are indeed the gravita-
tional Ψi(x) = −ρig · x, the subsequent analysis allows for a broader class of ex-
ternal potentials and for the sake of generality we shall therefore consider arbitrary
Ψi ∈ C1(Ω) in the sequel.

We can now define the convex energy functional E : L1(Ω,RN+1) → R ∪ {+∞}
by adding the capillary energy to the gravitational one:

(15) E(s) =
∫

Ω

(Π(s,x) + s ·Ψ) dx ≥ 0, ∀s ∈ L1(Ω;RN+1).

Note moreover that E(s) < ∞ iff s ≥ 0 and σ ≤ ω a.e. in Ω. It follows from the
conservation of the total mass (12) that

∫

Ω

σ(x)dx =
N∑

i=0

mi =

∫

Ω

ω(x)dx.

Assume that there exists a non-negligible subset A of Ω such that σ < ω on A, then
necessarily, there must be a non-negligible subset B of Ω such that σ > ω so that
the above equation holds, hence E(s) = +∞. Therefore,

(16) E(s) <∞ ⇔ s ∈ X .

Let p = (p0, . . . , pN ) : Ω → RN+1 be such that p ∈ ∂sΠ(s,x) for a.e. x in Ω,
then, defining hi = pi +Ψi(x) for all i ∈ {0, . . . , N} and h = (hi)0≤i≤N , h belongs

to the subdifferential ∂sE(s) of E at s, i.e.,

E(ŝ) ≥ E(s) +
N∑

i=0

∫

Ω

hi(ŝi − si)dx, ∀ŝ ∈ L1(Ω;RN+1).

The reverse inclusion also holds, hence

(17) ∂sE(s) =
{
h : Ω → R

N+1
∣∣ hi −Ψi(x) ∈ ∂sΠ(s,x) for a.e. x ∈ Ω

}
.

Thanks to (16), we know that a configuration s has a finite energy iff s ∈ X .
Since we are interested in finite energy configurations, it is relevant to consider the
restriction of E to X . Then using the one-to-one mapping between X and X

∗, we
define the energy of a configuration s∗ ∈ X

∗, that we denote by E(s∗) by setting
E(s∗) = E(s) where s is the unique element of X corresponding to s∗ ∈ X

∗.

1.2.2. Geometry of Ω and Wasserstein distance. Inspired by the paper of Lisini [34],
where heterogeneous anisotropic degenerate parabolic equations are studied from
a variational point of view, we introduce (N + 1) distances on Ω that takes the
permeability of the porous medium and the phase viscosities into account. Given
two points x,y in Ω, we denote by

P (x,y) =
{
γ ∈ C1([0, 1]; Ω)

∣∣γ(0) = x and γ(1) = y
}

the set of the smooth paths joining x to y, and we introduce distances di, i ∈
{0, . . . , N} between elements on Ω by setting

(18) di(x,y) = inf
γ∈P (x,y)

(∫ 1

0

µiK
−1(γ(τ))γ ′(τ) · γ′(τ)dτ

)1/2

, ∀(x,y) ∈ Ω
2
.
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It follows from (3) that

(19)

√
µi
κ⋆

|x− y| ≤ di(x,y) ≤
√
µi
κ⋆

|x− y|, ∀(x,y) ∈ Ω
2
.

Since K−1 is smooth, at least C2(Ω), the Ricci curvature of (Ω, di) is uniformly
bounded, i.e., there exists C depending only on (µi)0≤i≤N and K such that

(20) |Ricx(v)| ≤ CµiK
−1v · v, ∀x ∈ Ω, ∀v ∈ R

d.

We refer to [44, Chap. 14] for further details on the Ricci curvature and its links
with optimal transportation.

Let i ∈ {0, . . . , N}, then define

Ai =

{
si ∈ L1(Ω;R+)

∣∣∣∣
∫

Ω

sidx = mi

}
.

Let si, ŝi be two elements of Ai, the set of the transport plans between si and ŝi is
given by

Γi(si, ŝi) =
{
θi ∈ M+(Ω× Ω)

∣∣∣ θi(Ω× Ω) = mi, θ
(1)
i = si and θ

(2)
i = ŝi

}
,

where M+(Ω×Ω) stands for the set of Borel measures on Ω×Ω, and where θ
(k)
i is

the kth marginal of the measure θi. We define the quadratic Wasserstein distance
Wi of Ai by setting

(21) Wi(si, ŝi) =

(
inf

θi∈Γ(si,ŝi)

∫∫

Ω×Ω

di(x,y)
2dθi(x,y)

)1/2

.

Due to the permeability tensor K(x), the porous medium Ω might be heterogeneous
and anisotropic. Therefore, some directions and areas might me privileged by the
fluid motions. This is encoded in the distances di we put on Ω. Moreover, the
more the phase is viscous, the more costly are its displacements, hence the µi in
the definition (18) of di. But it follows from (19) that

(22)

√
µi
κ⋆
Wref(si, ŝi) ≤Wi(si, ŝi) ≤

√
µi
κ⋆
Wref(si, ŝi)., ∀si, ŝi ∈ Ai,

where Wref denotes the classical quadratic Wasserstein distance defined by

(23) Wref(si, ŝi) =

(
inf

θi∈Γ(si,ŝi)

∫∫

Ω×Ω

|x− y|2dθi(x,y)
)1/2

.

Once the phase Wasserstein distances (Wi)0≤i≤N at hand, we can define the
global Wasserstein distance W on A := A0 × · · · × AN by setting

W (s, ŝ) =

(
N∑

i=0

Wi(si, ŝi)
2

)1/2

, ∀s, ŝ ∈ A.
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1.2.3. Gradient flow of the energy. The content of this section is formal. Our aim
is to write the problem as a gradient flow, i.e.

(24)
ds

dt
∈ −gradW E(s) = −

(
gradW0

E(s), . . . , gradWN
E(s)

)

where gradW E(s) denotes the Wasserstein gradient of E(s), and where gradWi

denote the gradient of si 7→ E(s) for the Wasserstein distance Wi. The Wasserstein
distance Wi was built so that ṡ = (ṡi)i ∈ gradW E(s) iff there exists h ∈ ∂sE(s)
such that

∂tsi = −∇ ·
(
si
K

µi
∇hi

)
, ∀i ∈ {0, . . . , N}.

Such a construction was already performed by Lisini in the case of a single equation.
Owing to the definitions (15) and (17) of the energy E(s) and its subdifferential
∂sE(s), the partial differential equations can be (at least formally) recovered. This
was roughly speaking to purpose of our note [17].

In order to define rigorously the gradient gradW E in (24), A has to be a Rie-
mannian manifold. The so-called Otto’s calculus (see [40] and [44, Chapter 15])
allows to put a formal Riemannian structure on A. But as far as we know, this
structure cannot be made rigorous and A is a mere metric space. This leads us
to consider generalized gradient flows in metric spaces (cf. [5]). We won’t go deep
into details in this direction, but we will prove that weak solutions can be obtained
as limits of a minimizing movement scheme presented in the next section. This
characterizes the gradient flow structure of the problem.

1.3. Minimizing movement scheme and main result.

1.3.1. The scheme and existence of a solution. For a fixed time-step τ > 0, the
so-called minimizing movement scheme [24, 5] or JKO scheme [30] consists in com-
puting recursively (sn)n≥1 as the solution to the minimization problem

(25) sn = argmin
s∈A

(
W (s, sn−1)2

2τ
+ E(s)

)
,

the initial data s0 being given (11).

1.3.2. Approximate solution and main result. Anticipating that the JKO scheme
(25) is well posed (this is the purpose of Proposition 2.1 below), we can now define
the piecewise constant w.r.t. time approximate solution sτ ∈ L∞((0, T );X ∩A) by

(26) sτ (0, ·) = s0, and sτ (t, ·) = sn ∀t ∈ ((n− 1)τ, nτ ], ∀n ≥ 1.

The main theorem of our paper is the following.

Theorem 1.2. Let (τk)k≥1 be a sequence of time steps tending to 0, then there
exists one weak solution s in the sense of Definition 1.1 such that, up to an unlabeled
subsequence, (sτk)k≥1 converges a.e. in Q towards s as k tends to ∞.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least)
one solution in the sense of Definition 1.1. As far as we know, this existence result
is new.
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Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori
∂tsi ∈ L2((0, T );H1(Ω)′), si ∈ L2((0, T );H1(Ω)), and thus si ∈ C([0, T ];L2(Ω)).
This regularity is enough to retrieve the so-called Energy-Dissipation-Equality

d

dt
E(s(t)) = −

N∑

i=0

∫

Ω

K
si(t)

µi
∇(pi(t)+Ψi)·∇(pi(t)+Ψi)dx ≤ 0 for a.e. t ∈ (0, T ),

which is another admissible formulation of gradient flows in metric spaces [5].

1.4. Goal and positioning of the paper. The aims of the paper are twofolds.
First, we aim to provide rigorous foundations to the formal variational approach
exposed in the authors’ recent note [17]. It gives new insights for the modeling of
complex porous media flows and their numerical approximation. It appears to be
very natural since only physically motivated quantities appear in the study. Indeed,
we manage to avoid the introduction of the so-called Kirchhoff transform and global
pressure that classically appear in the mathematical study of multiphase flows in
porous media (see for instance [19, 9, 21, 26, 27, 23, 20, 2, 3]).

Second, the existence result that we deduce from the convergence of the varia-
tional scheme is new as soon as there are at least three phases (N ≥ 2). Indeed,
since our study does not require the introduction of a global pressure, we get rid
of many structural assumptions on the data among which the so-called total dif-
ferentiability condition, see for instance Assumption (H3) in the paper by Fabrie
and Saad [26]. This structural condition is not naturally satisfied by the models,
and suitable algorithms have to be employed in order to adapt the data to this
constraint [22]. However, our approach suffers from another technical difficulty: we
are stuck to the case of linear relative permeabilities. The extension to the case of
nonlinear concave relative permeabilities, i.e., where (1) is replaced by

∂tsi +∇ · (ki(si)vi) = 0,

may be reachable thanks to the contribution of Dolbeault, Nazaret, and Savaré [25],
but we did not push into this direction since the relative permeabilities ki are in
general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [30], gradient flows
in metric spaces (and particularly in the space of probability measures endowed
with the quadratic Wasserstein distance) were the object of many studies. Let
us for instance refer to the monograph of Ambrosio, Gigli, and Savaré [5] and to
Villani’s book [44, Part II] for a complete overview. Applications are numerous.
We refer for instance to [39] for an application to magnetic fluids, to [41, 7, 6] for
applications to supra-conductivity, to [12, 11, 45] for applications to chemotaxis,
to [35] for phase field models, to [37] for a macroscopic model of crowd motion,
to [13] for an application to granular media, to [18] for aggregation equations,
or to [31] for a model of ionic transport that applies in semi-conductors. In the
context of porous media flows, this framework has been used by Otto [40] to study
the asymptotic behavior of the porous medium equation, that is a simplified model
for the filtration of a gaz in a porous medium. The gradient flow approach in
Wasserstein metric spaces was used more recently by Laurençot and Matioc [33]
on a thin film approximation model for two-phase flows in porous media. The
variational structure of the system governing incompressible immiscible two-phase
flows in porous media was recently depicted by the authors in their note [17].
Whereas the purpose of [17] is formal, our goal is here to give a rigorous foundation
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to the variational approach for complex flows in porous media. Finally, let us
mention the work of Gigli and Otto [28] where it was noticed that multiphase linear
transportation with saturation constraint (as we have here thanks to (1) and (4))
yields nonlinear transport with mobilities that appear naturally in the two-phase
flow context.

The paper is organized as follows. In Section 2, we derive estimates on the solu-
tion sτ for a fixed τ . Beyond the classical energy and distance estimates explicited
in §2.1, we obtain enhanced estimates thanks to an adaptation of the so-called flow
interchange technique of Matthes, McCann, and Savaré [36] to our inhomogeneous
context in §2.2. Because of the constraint on the pore volume (4), the auxiliary flow
we use is no longer the heat flow, and a drift term has to be added. An important
effort is then done in §3 to derive the Euler-Lagrange equations that follow from the
optimality of sn. Our proof is inspired from the work of Maury, Roudneff-Chupin,
and Santambrogio [37]. It relies on an intensive use of the dual characterization of
the optimal transportation problem and the corresponding Kantorovitch potentials.
However, additional difficulties come from the multiphase aspect of our problem, in
particular when there are at least three phases (i.e., N ≥ 2). These are overpassed
using a minimax theorem and computing the associated Lagrange multipliers in
§3.1. This key step then allows to define the notion of discrete phase and capillary
pressures in §3.2. Then Section 4 is devoted to the convergence of the approximate
solutions (sτk)k towards a weak solution s as τk tends to 0. The estimates we
obtained in Section 2 are integrated w.r.t. time in §4.1. In §4.2, we show that these
estimates are sufficient to enforce the relative compactness of (sτk)k in the strong
L1(Q)N+1 topology. Finally, it is shown in §4.3 that any limit s of (sτk)k is a weak
solution in the sense of Definition 1.1.

2. One-step regularity estimates

The first thing to do is to show that the JKO scheme (25) is well-posed. This is
the purpose of the following Proposition.

Proposition 2.1. Let n ≥ 1 and sn−1 ∈ X ∩A, then there exists a unique solution
sn to the scheme (25). Moreover, one has sn ∈ X ∩A.

Proof. Any sn−1 ∈ X ∩ A has finite energy thanks to (16). Let (sn,k)k ⊂ A

be a minimizing sequence in (25). Testing sn−1 in (25) it is easy to see that
E(sn,k) ≤ E(sn−1) < ∞ for large k, thus (sn,k)k ⊂ X ∩A thanks to (16). Hence,

one has 0 ≤ sn,ki (x) ≤ ω(x) for all k. By Dunford-Pettis’ theorem, we can therefore

assume that sn,ki ⇀ sni weakly in L1(Ω). It is then easy to check that the limit sn

of sn,k belongs to X ∩A. The lower semi-continuity of the Wasserstein distance
with respect to weak L1 convergence is well known (see, e.g., [42, Prop. 7.4]), and
since the energy functional is convex thus l.s.c., we conclude that sn is indeed a
minimizer. Uniqueness follows from the strict convexity of the energy as well as
from the convexity of the Wasserstein distances (w.r.t. linear interpolation sθ =
(1− θ)s0 + θs1). �

The rest of this section is devoted to improving the regularity of the successive
minimizers.
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2.1. Energy and distance estimates. Testing s = sn−1 in (25) we obtain

(27)
W (sn, sn−1)2

2τ
+ E(sn) ≤ E(sn−1),

As a consequence we have the monotonicity

. . . ≤ E(sn) ≤ E(sn−1) ≤ . . . ≤ E(s0) <∞
at the discrete level, thus sn ∈ X for all n ≥ 0 thanks to (16). Summing (27) over
n we also obtain the classical total square distance estimate

(28)
1

τ

∑

n≥0

W 2(sn+1, sn) ≤ 2E(s0) ≤ C (Ω,Π,Ψ) ,

the last inequality coming from the fact that s0 is uniformly bounded since it
belongs to X , thus so is E(s0). By the Cauchy-Schwartz inequality, this readily
gives the approximate 1/2-Hölder estimate

(29) W (sn1 , sn2) ≤ C
√
|n2 − n1|τ + 1)τ .

2.2. Flow interchange, entropy estimate and enhanced regularity. The
goal of this section is to obtain some additional Sobolev regularity on the capillary
pressure field π(sn∗,x), where sn∗ is the unique element of X ∗ corresponding to
the minimizer sn of (25). In what follows, we denote by

πni :

{
Ω → R,
x 7→ πi(s

n∗(x),x),
∀i ∈ {1, . . . , N}

and πn = (πn1 , . . . , π
n
N ). Bearing in mind that ω(x) ≥ ω⋆ > 0 in Ω, we can define

the relative Boltzmann entropy Hω with respect to ω by

Hω(s) :=

∫

Ω

s(x) log

(
s(x)

ω(x)

)
dx, for all measurable s : Ω → R+.

Lemma 2.2. There exists C depending only on Ω,Π, ω,K, (µi)i, and Ψ such that,
for all n ≥ 1 and all τ > 0, one has

(30)
N∑

i=0

‖∇πni ‖2L2(Ω) ≤ C

(
1 +

W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

Proof. The argument relies on the flow interchange technique introduced by Matthes,
McCann, and Savaré in [36]. Throughout the proof, C denotes a fluctuating quan-
tity that depends on the prescribed data Ω,Π, ω,K, (µi)i, and Ψ, but neither on t,
τ , nor on n. For i = 0 . . .N consider the auxiliary flows

(31)





∂tši = div(K∇ši − šiK∇ logω), t > 0, x ∈ Ω,
K(∇ši − ši∇ logω) · ν = 0, t > 0, x ∈ ∂Ω,
ši|t=0 = sni , x ∈ Ω.

By standard parabolic theory (see for instance [32, Chapter III, Theorem 12.2]),
these Initial-Boundary value problems are well-posed, and their solutions ši(x)
belong to C1,2((0, 1] × Ω) ∩ C([0, 1];Lp(Ω)) for all p ∈ (1,∞) if ω ∈ C2,α(Ω) and
K ∈ C1,α(Ω) for some α > 0. Therefore, t 7→ ši(·, t) is absolutely continuous in
L1(Ω), thus in Ai endowed with the usual quadratic distance Wref (23) thanks to
[42, Prop. 7.4]. Because of (22), the curve t 7→ ši(·, t) is also absolutely continuous
in Ai endowed with Wi.
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From Lisini’s results [34], we know that the evolution t 7→ ši(·, t) can be in-
terpreted as the gradient flow of the relative Boltzmann functional 1

µi
Hω with

respect to the metric Wi, the scaling factor 1
µi

appearing due to the definition (21)

of the distance Wi. As a consequence of (20), The Ricci curvature of (Ω, di) is
bounded, hence bounded from below. Since ω ∈ C2(Ω) we also have that 1

µi
Hω is

λi-displacement convex with respect to Wi for some λi ∈ R depending on ω and
the geometry of (Ω, di), see [44, Chapter 14]. Therefore, we can use the so-called
Evolution Variational Inequality characterization of gradient flows (see for instance
[4, Definition 4.5]) centered at sn−1

i , namely

(32)
1

2

d

dt
W 2
i (ši(t), s

n−1
i ) +

λi
2
W 2
i (ši(t), s

n−1
i ) ≤ 1

µi
Hω(s

n−1
i )− 1

µi
Hω(ši(t)).

Denote by š = (š0, . . . , šN), and by š∗ = (š1, . . . , šN ). Summing (32) over i ∈
{0, . . . , N} leads, for all t > 0, to
(33)

d

dt

(
1

2τ
W 2(š(t), sn−1)

)
≤ C

(
W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(ši(t))

τ

)
.

In order to estimate the internal energy contribution in (25), we first note that
N∑
i=0

sni (x) = ω(x) for all x ∈ Ω, thus by the linearity of the system (31), we have

N∑
i=0

ši(x, t) = ω(x) as well for all x ∈ Ω and all t > 0. Moreover, the problem (31) is

monotone, thus order preserving, and admits 0 as a subsolution. Hence ši(x, t) ≥ 0,
so that š(t) ∈ A ∩ X is an admissible competitor in (25) for all t > 0. The
smoothness of š for t > 0 allows to write

(34)
d

dt

(∫

Ω

Π(š∗(x, t),x)dx

)
=

N∑

i=1

∫

Ω

π̌i(x, t)∂tši(x, t)dx = I1(t) + I2(t),

where π̌i := πi(š
∗, ·), and where, for all t > 0, we have set

I1(t) = −
N∑

i=1

∫

Ω

∇π̌i(t) ·K∇ši(t)dx, I2(t) = −
N∑

i=1

∫

Ω

ši(t)

ω
∇π̌i(t) ·K∇ωdx.

To estimate I1, we first use the inversibility of π to write

š(x, t) = φ(π̌(x, t),x) =: φ̌(x, t),

yielding

(35) ∇š(x, t) = Jzφ(π̌(x, t),x)∇π̌(x, t) +∇xφ(π̌(x, t),x).

Combining (3), (8), (9) and the elementary inequality

(36) ab ≤ δ
a2

2
+
b2

2δ
with δ > 0 arbitrary,

we get that for all t > 0, there holds

I1(t) ≤ − κ⋆
̟⋆

∫

Ω

|∇π̌(t)|2dx+ κ⋆
(
δ

∫

Ω

|∇π̌(t)|2dx+
1

δ

∫

Ω

|∇xφ(π̌(t))|2dx
)
.
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Choosing δ = κ⋆

4κ⋆̟⋆ , we get that

(37) I1(t) ≤ − 3κ⋆
4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

In order to estimate I2, we use that š(t) ∈ X for all t > 0, so that 0 ≤ ši(x, t) ≤
ω(x), hence we deduce that

∑N
i=1

(
ši
ω

)2 ≤ 1. Therefore, using (36) again, we get

I2(t) ≤ δκ⋆
∫

Ω

|∇π̌(t)|2dx+
κ⋆

δ

∫

Ω

|∇ω|2dx.

Choosing again δ = κ⋆

4κ⋆̟⋆ yields

(38) I2(t) ≤
κ⋆
4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C.

Taking (37)–(38) into account in (34) provides

(39)
d

dt

(∫

Ω

Π(š∗(x, t),x)dx

)
≤ − κ⋆

2̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Let us now focus on the potential (gravitational) energy. Since š(t) belongs to
X ∩A for all t > 0, we can make use of the relation

š0(x, t) = ω(x)−
N∑

i=1

ši(x, t), for all (x, t) ∈ Ω× R+,

to write: for all t > 0,

N∑

i=0

∫

Ω

ši(x, t)Ψi(x)dx =
N∑

i=1

∫

Ω

ši(x, t)(Ψi −Ψ0)(x)dx+

∫

Ω

ω(x)Ψ0(x)dx.

This leads to

(40)
d

dt

(
N∑

i=0

∫

Ω

ši(t)Ψidx

)
=

N∑

i=1

∫

Ω

(Ψi(x)−Ψ0(x))∂tsi(x, t)dx = J1(t)+J2(t),

where, using the equations (31), we have set

J1(t) =−
N∑

i=1

∫

Ω

∇(Ψi −Ψ0) ·K∇ši(t)dx,

J2(t) =

N∑

i=1

∫

Ω

ši(t)

ω
∇(Ψi −Ψ0) ·K∇ωdx.

The term J1 can be overestimated using (36). More precisely, for all δ > 0, we have

(41) J1(t) ≤ κ⋆

(
δ‖∇š∗(t)‖2L2 +

1

δ

N∑

i=1

‖∇(Ψi −Ψ0)‖2L2

)
.

Using (35) together with (8)–(9), we get that

‖∇š∗‖2L2 ≤
(

1

̟⋆
‖∇π̌‖L2 + |Ω|Mφ

)2

≤ 2

(̟⋆)2
‖∇π̌‖2L2 + 2 (|Ω|Mφ)

2
.
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Therefore, choosing δ = (̟⋆)
2κ⋆

8κ⋆̟⋆ in (41), we infer from the regularity of Ψ that

(42) J1(t) ≤
κ⋆
4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Finally, it follows from the fact that
∑N
i=1 ši ≤ ω, from Cauchy-Schwarz inequality,

and from the definition (14) of Ψi that

(43) J2(t) ≥ −κ⋆
N∑

i=1

‖∇Ψi −∇Ψ0‖L2‖∇ω‖L2 = C.

Combining (40), (42), and (43) with (39), we get that

(44)
d

dt
E(š(t)) ≤ − κ⋆

4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Denote by

(45) Fn
τ (s) =

1

2τ
W 2(s, sn−1) + E(s)

the functional to be minimized in (25), then gathering (33) and (44) provides

d

dt
Fn
τ (š(t)) +

κ⋆
4̟⋆

‖∇π̌‖2L2

≤ C

(
1 +

W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(ši(t))

τ

)
∀t > 0.

Since š(0) = sn is a minimizer of (25) we must have

0 ≤ lim sup
t→0+

(
d

dt
Fn
τ (š(t))

)
,

otherwise š(t) would be a strictly better competitor than sn for small strictly
positive t. As a consequence, we get

lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C lim sup
t→0+

(
1 +

W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(ši(t))

τ

)
.

Since ši belongs to C([0, 1];Lp(Ω)) for all p ∈ [1,∞) (see for instance [16]) for all
i ∈ {0, . . . , N}, then thanks to the continuity of the Wasserstein distance and of
the Boltzmann entropy with respect to the Lp-convergence, we get that

W 2(š(t), sn−1) −→
t→0+

W 2(sn, sn−1) and Hω(ši(t)) −→
t→0+

Hω(s
n
i ).

Therefore, we obtain that

(46) lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C

(
1 +

W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

It follows from the regularity of π that

π̌(t) −→
t→0+

πn = π(sn∗,x) in Lp(Ω).
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Finally, let (tℓ)ℓ≥1 be a decreasing sequence tending to 0 realizing the lim inf in (46),

then the sequence (∇π̌(tℓ))ℓ≥1 converges weakly in L2(Ω)N×d towards ∇πn. The
lower semi-continuity of the norm w.r.t. the weak convergence leads to

N∑

i=1

‖∇πni ‖2L2 ≤ lim
ℓ→∞

‖∇π̌(tℓ)‖2L2 = lim inf
t→0+

‖∇π̌(t)‖2L2

≤ C

(
1 +

W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

and the proof is complete. �

3. The Euler-Lagrange equations and pressure bounds

The goal of this section is to extract informations coming from the optimality
of sn in the minimization (25). The main difficulty consists in constructing the
phase and capillary pressures from this optimality condition. Our proof is inspired
from [37] and makes an extensive use of the Kantorovich potentials. Therefore, we
first recall their definition and some useful properties. We refer to [42, §1.2] or [44,
Chapter 5] for details.

Let (ν1, ν2) ∈ M+(Ω)
2 be two nonnegative measures with same total mass. A

pair of Kantorovich potentials (ϕi, ψi) ∈ L1(ν1)×L1(ν2) associated to the measures
ν1 and ν2 and to the cost function 1

2d
2
i defined by (18), i ∈ {0, . . . , N}, is a solution

of the Kantorovich dual problem

DPi(ν1, ν2) = max
(ϕi,ψi)∈L

1(ν1)×L
1(ν2)

ϕi(x)+ψi(y)≤
1
2
d2i (x,y)

∫

Ω

ϕi(x)ν1(x)dx+

∫

Ω

ψi(y)ν2(y)dy.

We will use the three following important properties of the Kantorovich potentials:

(a) There is always duality

DPi(ν1, ν2) =
1

2
W 2
i (ν1, ν2), ∀i ∈ {0, . . . , N}.

(b) A pair of Kantorovich potentials (ϕi, ψi) is dν1 ⊗ dν2 unique, up to additive
constants.

(c) The Kantorovich potentials ϕi and ψi are
1
2d

2
i -conjugate, that is

ϕi(x) = inf
y∈Ω

1

2
d2i (x,y)− ψi(y), ∀x ∈ Ω,

ψi(y) = inf
x∈Ω

1

2
d2i (x,y)− ϕi(x), ∀y ∈ Ω.

Remark 3.1. Since Ω is bounded, the cost functions (x,y) 7→ 1
2d

2
i (x,y), i ∈

{1, . . . , N}, are globally Lipschitz continuous, see (19). Thus item (c) shows that
ϕi and ψi are also Lipschitz continuous.

3.1. A decomposition result. Our next result essentially states that, since sn is a
minimizer of (25), it is also a minimizer of the linearized problem. This linearization
will be useful later on to deduce the aforementioned structural decomposition, and
leverages the Kantorovich potentials in order to linearize the squared Wasserstein
distances.
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Lemma 3.2. For n ≥ 1 and i = 0, . . . , N there exist some (backwards, optimal)
Kantorovich potentials ϕni from sni to sn−1

i such that, setting

(47)

{
Fn0 = 0,

Fni =
ϕn

i

τ − ϕn
0

τ + πni +Ψi −Ψ0, ∀i ∈ {1, . . . , N} ,

and Fn = (Fni )0≤i≤N , there holds

(48) sn = Argmin
s∈X∩A

∫

Ω

Fn(x) · s(x)dx.

Moreover, Fni ∈ L∞ ∩H1(Ω) for all i ∈ {0, . . . , N}.

Proof. The proof is inspired from that of [37, Lemma 3.1]. We assume first that
sn−1
i (x) > 0 everywhere in Ω for all i ∈ {1, . . . , N}, so that the Kantorovich

potentials (ϕni , ψ
n
i ) from sni to sn−1

i are uniquely determined after normalizing
ϕni (xref) = 0 for some arbitrary point xref ∈ Ω (cf. [42, Proposition 7.18]). Given
any s∗ = (si)1≤i≤N ∈ X

∗ ∩A
∗ we define

sεi := (1− ε)sni + εsi for i ∈ {1, . . . , N}, and sε0 := ω −
N∑

i=1

sεi .

Note that for ε ∈ (0, 1) this ε-perturbation sε = (sε0, s
ε
1, . . . , s

ε
N ) sums to ω(x) and

is admissible in the sense that sε ∈ X ∩A. Let (ϕεi , ψ
ε
i ) be the unique Kantorovich

potentials from sεi to sn−1
i , similarly normalized as ϕεi (x0) = 0. Then by char-

acterization of the squared Wasserstein distance in terms of the dual Kantorovich
problem we have





1

2
W 2
i (s

ε
i , s

n−1
i ) =

∫

Ω

ϕεi (x)s
ε
i (x)dx+

∫

Ω

ψεi (y)s
n−1
i (y)dy,

1

2
W 2
i (s

n
i , s

n−1
i ) ≥

∫

Ω

ϕεi (x)s
n
i (x)dx+

∫

Ω

ψεi (y)s
n−1
i (y)dy.

By definition of the perturbation sε it is easy to check that sεi − sni = ε(si− sni ) for

i ∈ {1, . . . , N}, while sε0−sn0 = −ε
N∑
i=1

(si−sni ). Subtracting the previous inequalities
we get, respectively,

(49)
1

2τ

(
W 2
i (s

ε
i , s

n−1
i )−W 2

i (s
n
i , s

n−1
i )

)
≤ ε

τ

∫

Ω

ϕεi (si − sni )dx

for all i ∈ {1, . . . , N}, and

(50)
1

2τ

(
W 2

0 (s
ε
0, s

n−1
0 )−W 2

0 (s
n
0 , s

n−1
0 )

)
≤ − ε

τ

N∑

i=1

∫

Ω

ϕε0(si − sni )dx.

Denote by sε∗ = (sε1, . . . , s
ε
N ) and by πε = π(sε∗, ·). The convexity of Π implies

that

(51)∫

Ω

(Π(sn∗,x)−Π(sε∗,x)) dx ≥
∫

Ω

πε·(sn∗ − sε∗) dx = −ε
∫

Ω

πε·(s∗ − sn∗) dx.
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As for the potential energy, we substitute sε0 = ω −
N∑
i=1

sεi and immediately obtain

by linearity

(52)

∫

Ω

(sε − sn) ·Ψdx = ε

N∑

i=1

∫

Ω

(Ψi −Ψ0)(si − sni )dx.

Summing (49)–(52), dividing by ε, and recalling that sn minimizes the functional
Fn
τ defined by (45), we obtain

(53) 0 ≤ Fn
τ (s

ε)−Fn
τ (s

n)

ε
≤

N∑

i=1

∫

Ω

(
ϕεi
τ

− ϕε0
τ

+ πεi +Ψi −Ψ0

)
(si − sni )dx

for all s ∈ X ∩ A and all ε ∈ (0, 1). Because Ω is bounded, any Kantorovich
potential is globally Lipschitz with bounds uniform in ε (see for instance the proof
of [42, Theorem 1.17]). Since sε converges uniformly towards sn when ε tends to
0, we infer from [42, Theorem 1.52] that ϕεi converges uniformly towards ϕni as ε
tends to 0, where ϕni is a Kantorovich potential form sni to sn−1

i . Moreover, since
π is uniformly continuous, we also know that πε converges uniformly towards πn.
Then we can pass to the limit in (53) and infer that

(54) 0 ≤
∫

Ω

Fn∗ · (s∗ − sn∗)dx =

∫

Ω

Fn · (s− sn)dx, ∀s ∈ X ∩A

thanks to the choice Fn0 = 0. As a consequence, (48) holds.
If sn−1

i > 0 does not hold everywhere we argue by approximation. Running the
flow (31) for short times δ > 0 starting from sn−1, we construct an approximation

sn−1,δ = (sn−1,δ
0 , . . . , sn−1,δ

N ) converging to sn−1 = (sn−1
0 , . . . , sn−1

N ) at least in
L1(Ω) when δ tends to 0. By construction sn,δ ∈ X ∩ A, and it follows from

the strong maximum principle that sn−1,δ
i > 0 in Ω for all δ > 0. We denote by

sn,δ∗ =
(
sn,δ1 , . . . , sn,δN

)
∈ X

∗ ∩A
∗. There exists a unique minimizer sn,δ to the

functional

Fn,δ
τ :

{
X ∩A → R+

s 7→ 1
2τW

2(s, sn−1,δ) + E(s)
Thanks to the positivity of sn,δ, there exist unique Kantorovich potentials (ϕn,δi , ψn,δi )

from sn,δi to sn−1,δ
i . This allows to construct Fn,δ using (47) where ϕni (resp. πni )

has been replaced by ϕn,δi (resp. πn,δi := πi(s
n,δ∗, · · · )). Thanks to the above

discussion,

(55) 0 ≤
∫

Ω

Fn,δ∗ · (s∗ − sn,δ∗)dx, ∀s∗ ∈ X
∗ ∩A

∗.

We can now let δ tend to 0. Because of the time continuity of the solutions to (31),
we know that sn−1,δ converges towards sn−1 in L1(Ω). On the other hand, from the
definition of sn,δ and Lemma 2.2 (in particular (30) with sn−1,δ, sn,δ,πn,δ instead of
sn−1, sn,πn) it is not difficult to check that πn,δ is bounded in H1(Ω)N+1 uniformly
in δ > 0. Using next sn,δ(x) = φ(πn,δ(x),x) and (8)–(9), one gets that sn,δ is
uniformly bounded in H1(Ω)N+1. Then, thanks to Rellich’s compactness theorem,
we can assume that sn,δ converges strongly in L2(Ω)N+1 as δ tends to 0. By
the strong convergence sn−1,δ → sn−1 and standard properties of the squared
Wasserstein distance, one readily checks that Fn,δ

τ Γ-converges towards Fn
τ , and we
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can therefore identify the limit of sn,δ as the unique minimizer sn of Fn
τ . Thanks

to Lebesgue’s dominated convergence theorem, we also infer that πn,δi converges
in L2(Ω) towards πni . Finally, using once again the stability of the Kantorovich

potentials [42, Theorem 1.52], we know that ϕn,δi converges uniformly towards some
Kantorovich potential ϕni . Then we can pass to the limit in (55) and claim that (54)
is satisfied even when some coordinates of sn−1 vanish on some parts of Ω.

Finally, note that since the Kantorovich potentials ϕni are Lipschitz continuous
and because πni ∈ H1 (cf. Lemma 2.2) and Ψi,Ψ0 are smooth, we have Fni ∈ H1.
Since the phases are bounded 0 ≤ sni (x) ≤ ω(x) ≤ 1 and π is continuous we have
πn ∈ L∞, thus Fni ∈ L∞ as well and the proof is complete. �

The purpose of the following Lemma is to suitably decompose the vector field
Fn = (Fni )0≤i≤N defined by (47).

Lemma 3.3. There exists αn ∈ RN+1 and λn ∈ L∞ ∩H1(Ω;RN+1) such that

Fni = λni − λn0 − αni a.e. in Ω, ∀i ∈ {0, . . . , N},(56)

∇λni = 0 in {si > 0} , ∀i ∈ {0, . . . , N}.(57)

Proof. The proof is based on a duality formula for the minimization problem (48).
The quantities αn ∈ RN+1, λn ∈ L∞(Ω,RN+1) will be related to some Lagrange
multipliers for the constraints of total saturation (

∑
si = ω), individual masses

(
∫
si = mi), and non-negativity (si ≥ 0). We start with some notations.

Notations. Let E = L∞(Ω) and EN+1 = L∞(Ω)N+1. The norms are

‖µ‖E = ‖µ‖L∞(Ω), ‖λ‖EN+1 =

(
N∑

i=0

‖λi‖2L∞(Ω)

)1/2

.

We denote by E′ ⊂ M(Ω) and (E′)N+1 ⊂ (M(Ω))N+1 their respective topological
dual spaces equipped with usual dual norms. We also define the positive dual cone

E′
+ =

{
s ∈ E′

∣∣∣ 〈µ, s〉E,E′ ≥ 0 for all µ ∈ L∞(Ω;R+)
}

and the set

X =

{
s ∈ (E′

+)
N+1

∣∣∣∣∣

N∑

i=0

si = ω

}
.

It is easy to verify that X = X since, for all measurable subset B of Ω, and all
s ∈ X , one has

0 ≤ si[B] ≤
N∑

i=0

si[B] = ω[B] ≤ |B|, ∀i ∈ {0, . . . , N},

where we used the notation s[B] = 〈χB, s〉E,E′ . We also define the set

A =
{
s ∈ (E′

+)
N+1

∣∣ si[Ω] = mi, i ∈ {0, . . . , N}
}

as well as the functional

I(s) =
∫

Ω

Fn · sdx, ∀s ∈ X ∩A,
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where Fn was defined in (47). The characterization (48) of sn and the choice
Fn0 = 0 implies that

(58) I = min
s∈X∩A

I(s) = min
s∗∈X∗∩A∗

∫

Ω

Fn∗ · s∗dx = I(sn).

Since Fn ∈ L∞(Ω)N+1 (cf. Lemma 3.2), the functional I(s) can be naturally
extended to s ∈ (E′)N+1 by setting

I(s) =
N∑

i=0

〈Fni , si〉E,E′ , ∀s ∈ (E′)N+1.

However, since X = X , we know that

(59) I = inf
s∈X∩A

I(s) = min
s∈X∩A

I(s).

To construct the dual problem, we consider α ∈ RN+1 and define µα ∈ E by

µα = sup
i∈{0,...,N}

(−Fni − αi) .(60)

Finally let us define the functional J : RN+1 → R by

J (α) = −
∫

Ω

µαωdx−
N∑

i=0

αimi, ∀α ∈ R
N+1,

and its supremum

J = sup
α∈RN+1

J (α).

Remark 3.4. The condition
N∑
i=0

mi =
∫
Ω
ω implies that J is invariant under

translation, that is J (α) = J (α + δ.1) for any δ ∈ R. Therefore one can either
set α := mini∈{0,...,N} αi = 0 or α0 = 0. Both normalizations will be used in the
following.

In order to make the link between I and J we compute (58), rewriting the
constraint with Lagrange multipliers. The Lagrange multiplier corresponding to
the total saturation constraint (

∑
si = ω) will be µ ∈ L∞(Ω), while those for the

mass of each phase (si[Ω] = mi) will be α ∈ RN+1. More precisely,

I = min
s∈X∩A

N∑

i=0

〈Fni · si〉E,E′

= min
s∈(E′

+
)N+1

sup
(µ,α)∈E×RN+1

[
N∑

i=0

〈Fni , si〉E,E′

−
〈
µ, ω −

N∑

i=0

si

〉

E,E′

−
N∑

i=0

αi (mi − si[Ω])

]

= min
s∈(E′

+
)N+1

sup
(µ,α)∈E×RN+1

N∑

i=0

〈Fni + µ+ αi, si〉E,E′ − 〈µ, ω〉E,E′ −
N∑

i=0

αimi.
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As both ω and µ belong to L∞(Ω), we have 〈µ, ω〉E,E′ =
∫
Ω
µωdx. Hence we proved

(61) I = min
s∈(E′

+
)N+1

sup
(µ,α)∈E×RN+1

N∑

i=0

〈Fni + µ+ αi, si〉E,E′ −
∫

Ω

µωdx−
N∑

i=0

αimi.

Let us now focus on J . Since ω ≥ 0, one can relax the problem on E ×RN+1:

J = sup
(µ,α)∈E×R

N+1

µ≥µα

−
∫

Ω

µω dx−
N∑

i=0

αimi.

The constraint µ ≥ µα a.e. in Ω rewrites Fni (x) + µ(x) + αi ≥ 0 for a.e. x ∈ Ω
and all i ∈ {0, . . . , N}. Thus by definition of (E′

+)
N+1, one has

(62) J = sup
(µ,α)∈E×RN+1

inf
s∈(E′

+
)N+1

N∑

i=0

〈Fni + µ+ αi, si〉E,E′−
∫

Ω

µαωdx−
N∑

i=0

αimi.

Remark that I and J are equal, provided we can swap the inf and the sup. In order
to establish our statement, we shall prove three things:

• We can swap the inf and the sup, that is I = J .
• The sup in J is achieved.
• The optimality conditions in I = J leads to (56)-(57).

We consider each item one by one.

Step 1: Inf-Sup duality. We will use the following min-max theorem, whose proof
can be found in [43, Thm. 3.1] (see also [14, Chapter 1, Prop. 1.1]):

Theorem 3.5. Let A, B be nonempty convex sets of some vector spaces and let
us suppose that A is endowed with an Hausdorff topology. Let L : A×B → R be a
function such that

a 7→ L(a, b) is convex and lower semicontinuous in A for every b ∈ B,

b 7→ L(a, b) is concave in B for every a ∈ A.

If there exists b⋆ ∈ B and M > sup inf
b∈B a∈A

L(a, b) such that

(63) S = {a ∈ A : L(a, b⋆) ≤M} is compact in A

then

sup inf
b∈B a∈A

L(a, b) = inf sup
b∈B a∈A

L(a, b).

In order to apply this duality result to our specific problem, we define the primal
space as

B =
{
(µ,α) ∈ E × R

N+1
}

and the dual space by

A = (E′
+)

N+1.

Notice that A is a convex subset of (E′)N+1 and B is also convex. We endow
(E′)N+1 with the weak-∗ topology, denoted σ((E′)N+1, EN+1). Because E is a
Banach space the topology σ((E′)N+1, EN+1) is Hausdorff, [15, Prop III. 11]. The
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weak-∗ topology on (E′)N+1 induces a topology on A, denoted σ+((E
′)N+1, EN+1),

which is also Hausdorff. We define the functional L : A×B → R by

L (s, (µ,α)) =

N∑

i=0

〈Fni + µ+ αi, si〉E,E′ −
∫

Ω

µω dx−
N∑

i=0

αimi.

Given (µ,α) ∈ B, the partial map s 7→ L(s, (µ,α)) is affine thus convex. Because
Fn ∈ EN+1 and given (µ,α) ∈ B, this map is moreover continuous on (E′)N+1 for
the weak-∗ topology, thus in particular lower semi-continuous on A for the induced
weak-∗ topology σ+((E

′)N+1, EN+1). Given s ∈ A, the partial map (µ,α) 7→
L (s, (µ,α)) is affine hence concave. It is always true that sup inf ≤ inf sup, which
together with (59) and (61) gives

sup inf
(µ,α)∈B s∈A

L (s, (µ,α)) ≤ inf sup
s∈A (µ,α)∈B

L (s, (µ,α)) = I < +∞.

To check the compactness assumption (63) in Theorem 3.5, fix

S =
{
s ∈ A

∣∣ L
(
s, (‖Fn‖EN+1,1)

)
≤M = 1 + I

}
.

For any s ∈ S we have

N∑

i=0

〈Fni + µ+ αi, si〉E,E′ ≤ 1 + I + ‖Fn‖EN+1‖ω‖L1 +
N∑

i=0

mi.

Therefore, using
∑N

i=0mi = ‖ω‖L1, we obtain that

N∑

i=0

〈Fni + ‖Fn‖∞ + 1, si〉E,E′ ≤ 1 + I + (1 + ‖Fn‖EN+1) ‖ω‖L1.

Since Fni + ‖Fn‖∞ ≥ 0 and si ≥ 0 we get

(64) 0 ≤ 〈1, si〉E,E′ ≤
N∑

i=0

〈1, si〉E,E′ ≤ 1 + I + (1 + ‖Fn‖∞) ‖ω‖L1 = C.

Since si ≥ 0 one readily checks that 〈1, si〉E,E′ = ‖si‖E′ , hence (64) gives the

bounds ‖si‖E′ ≤ C. By the Banach-Alaoglu-Bourbaki Theorem, the ball BC ={
s ∈ (E′)N+1

∣∣ ‖s‖(E′)N+1 ≤ C
}
is compact in (E′)N+1 for the weak-∗ topology

σ((E′)N+1, EN+1). Observe now that (E′
+)

N+1 =
{
s ∈ (E′)N+1

∣∣ s ≥ 0
}
is closed

for the weak-∗ topology, as an intersection of pre-images of closed sets by continuous
applications. Thus BC ∩ (E′

+)
N+1 is compact in A for the induced weak-∗ topology

σ+((E
′)N+1, EN+1). Since L(., (µ⋆,α⋆)) is weakly-∗ continuous, the sublevelset

S is moreover closed in A as the preimage of (−∞, C]. Thus we conclude that
S = S ∩ (E′

+)
N+1 ∩BC is compact in A as the intersection of the closed set S with

the compact set BC ∩ (E′
+)

N+1. As a conclusion, the min-max Theorem 3.5 gives

sup inf
(µ,α)∈B s∈A

L (s, (µ,α)) = inf sup
s∈A (µ,α)∈B

L (s, (µ,α)) .

Combining with (61) and (62) yields I = J .
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Step 2: J is achieved. Let (αk)k∈N be a maximizing sequence for J , there exists k⋆
such that for any k ≥ k⋆, one has

−
∫

Ω

µαk(x)ω(x)dx−
N∑

i=0

αkimi ≥ J − 1

2
,

where −µαk(x) = min
i∈{0,...,N}

{Fni (x) + αki }. Choosing jk ∈ {0, . . . , N} such that

αkjk = min
i
αki = αk, there holds

−µαk ≤ Fnjk + αk ≤ ‖Fn‖EN+1 + αk.

Therefore

N∑

i=0

αkimi ≤
1

2
− J + ‖Fn‖EN+1

∫

Ω

ω(x)dx+

∫

Ω

αkω(x)dx.(65)

According to Remark 3.4, we can set αk = 0 without lost of generality, which
implies in particular αki ≥ 0 for any i ∈ {0, . . . , N}. Combining with (65) and since
mi > 0 for all i ∈ {0, . . . , N}, it ensures that (αk)k∈N is bounded in Rn. We can
thus extract a convergent subsequence and denote its limit by α∞. The continuity
of J yields J (α∞) = J , hence J reaches its supremum.

Step 3: optimality conditions. Thanks to Remark 3.4 we shift (µ∞,α∞) (µ∞ +

δ,α∞+δ.1) into (µn,αn) such that αn0 = 0 and J (αn) = J . Then we use
∑N

i=0 s
n
i =

ω,
∫
Ω
sni = mi, and I = J to infer

I = I(sn) =
∫

Ω

Fn · sndx = J = J (αn)

= −
∫

Ω

µnωdx−
N∑

i=0

αni mi = −
N∑

i=0

∫

Ω

(µn + αni ) sidx

which leads to

(66)

N∑

i=0

∫

Ω

(Fni (x) + µn(x) + αni ) si(x)dx = 0.

Setting

λni (x) := Fni (x) + µn(x) + αni , i ∈ {0, . . . , N},
equation (66) rewrites

(67)

N∑

i=0

∫

Ω

λni si(x)dx = 0.

The definition of λn = (λni )0≤i≤N proves (56). Remark that (60) implies

λni ≥ 0, a.e. in Ω.

In particular for i = 0, this provides that λn0 = Fn0 + µn + αn0 = µn ≥ 0, since we
normalized αn0 = 0 and by definition Fn0 ≡ 0. Notice that, since Fni ∈ H1(Ω) (cf.
Lemma 3.2), we have µn = −min

i
{Fni + αni } ∈ H1(Ω) with

(68) ∇µn = −χ{µn=−Fn
i
−αn

i
}∇(Fni + αni ).
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Therefore, λi = Fni + µn +αni belongs to H1(Ω) as well. We deduce from (67) and
the non-negativity of λni and sni that for all i ∈ {0, . . . , N} (and up to negligible
sets), there holds

sni (x) > 0 ⇒ λni (x) = 0 ⇒ µn(x) = −Fni (x)− αni .

Together with (68) and the definition of λn, this yields

in {sni > 0} : ∇λni = ∇ (Fni + µn + αni ) = ∇Fni +∇µn

= ∇Fni − χ{µn=−Fn
i
−αn

i
}∇(Fni + αni ) = ∇Fni −∇Fni = 0,

for all i ∈ {0, . . . , N} and the proof is complete. �

Remark 3.6. Remark that αn is the Lagrange multiplier for the mass of each phase
(si[Ω] = mi), µ

n is the Lagrange multiplier corresponding to the total saturation
constraint (

∑
si = ω) and λ

n is the Lagrange multiplier associated to the non-
negativity of each phase (si ≥ 0). The choice αn0 = 0 leads λn0 = µn.

3.2. The discrete capillary pressure law and pressure estimates. In this
section, some calculations in the Riemannian settings (Ω, di) will be carried out. In
order to make them as readable as possible, we have to introduce a few basics. We
refer to [44, Chapter 14] for a more detail presentation.

Let i ∈ {0, . . . , N}, then consider the Riemannian geometry (Ω, di), and let
x ∈ Ω, then we denote by gi,x : Rd × Rd → R the local metric tensor defined by

(69) gi,x(v,v) = µiK
−1(x)v · v = Gi(x)v · v, ∀v ∈ R

d.

In this framework, the gradient ∇giϕ of a function ϕ ∈ C1(Ω) is defined by

ϕ(x+ hv) = ϕ(x) + hgi,x
(
∇gi,xϕ(x),v

)
+ o(h), ∀v ∈ S

d−1, ∀x ∈ Ω.

It is easy to check that this leads to the formula

(70) ∇giϕ =
1

µi
K∇ϕ,

where ∇ϕ stands for the usual (euclidean) gradient. The formula (70) can be
extended to Lipschitz continuous functions ϕ thanks to Rademacher theorem.

For ϕ belonging to C2, we can also define the Hessian D2
giϕ of ϕ in the Riemann-

ian setting by

gi,x
(
D2
giϕ(x) · v,v

)
=

d2

dt2
ϕ(γt)

∣∣∣∣
t=0

for any geodesic γt = expx(tv) starting from x with initial speed v.

Denote by ϕni the backward Kantorovich potential sending sni to sn−1
i associated

to the cost 1
2d

2
i , i ∈ {0, . . . , N}. By the usual definition of the Wasserstein distance

through the Monge problem, one has

W 2
i (s

n
i , s

n−1
i ) =

∫

Ω

d2i (x, t
n
i (x))s

n
i (x)dx,

where tni denotes the optimal map sending sni on sn−1
i . It follows from [44, Theorem

10.41] that

(71) tni (x) = expi,x (−∇giϕ
n
i (x)) , ∀x ∈ Ω.
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Moreover, using the definition of the exponential and the relation (70), one gets
that

d2i (x, expi,x (−∇giϕ
n
i (x)) = gi,x (∇giϕ

n
i (x),∇giϕ

n
i (x)) =

1

µi
K(x)∇ϕni (x)·∇ϕni (x),

we obtain the formula

(72) W 2
i (s

n
i , s

n−1
i ) =

∫

Ω

sni
µi

K∇ϕni ·∇ϕni dx, ∀i ∈ {0, . . . , N}.

We have now introduced the necessary material in order to reconstruct the phase
and capillary pressures. This is the purpose of the following Proposition 3.7 and of
Corollary 3.8

Proposition 3.7. For n ≥ 1 let ϕni : sni → sn−1
i be the (backward) Kantorovich

potentials from the previous Lemma 3.2, then there exists h = (hn0 , . . . , h
n
N ) ∈

H1(Ω)N+1 such that

(i) ∇hni = −∇ϕn
i

τ for dsni -a.e. x ∈ Ω
(ii) hni (x)− hn0 (x) = πni (x) + Ψi(x)−Ψ0(x) for dx-a.e. x ∈ Ω, i ∈ {0, . . . , N}
(iii) there exists C depending only on Ω,Π, ω,K, (µi)i, and Ψ such that, for all

n ≥ 1 and all τ > 0, one has

‖hn‖2H1(Ω)N+1 ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

Proof. Let ϕni be the Kantorovich potentials from Lemma 3.2, andαn ∈ RN+1,λn ∈(
L∞ ∩H1(Ω)

)N+1
as in Lemma 3.3. Note from Fn0 ≡ 0 and (56) that we implicitly

normalized αn0 = 0. Setting

(73) hni := −ϕ
n
i

τ
+ λni − αni , ∀i ∈ {0, . . . , N},

we have hni ∈ H1(Ω) as the sum of Lipschitz functions (the Kantorovich potentials
ϕni ) and H1 functions (the corrector λni , see Lemma 3.3). We deduce next from
(47) and (56) that

(74) hni − hn0 = (λni − λn0 − αni + 0)−
(
ϕni
τ

− ϕn0
τ

)

= Fni −
(
ϕni
τ

− ϕn0
τ

)
= πni +Ψi −Ψ0

for all i ∈ {1, . . . , N}, which is exactly our statement (ii).
For (i), we simply use (57) and the definition (73) of hni to compute

(75) ∇hni = −∇ϕni
τ

+∇λni = −∇ϕni
τ

for dsni a.e. x ∈ Ω, ∀i ∈ {0, . . . , N}.

Denote by

Ui =
{
x ∈ Ω

∣∣∣∣ s
n
i ≥ ω⋆

N + 1

}
,

then since
∑N

i=0 s
n
i = ω ≥ ω⋆, one gets that, up to a negligible set,

(76)
N⋃

i=0

Ui = Ω, hence (Ui)c ⊂
⋃

j 6=i

Uj.
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In order to establish (iii), we first estimate ∇hn0 . To this end, we write

(77) ‖∇hn0‖2L2 ≤ 1

κ⋆

∫

Ω

K∇hn0 ·∇hn0dx ≤ A+B,

where we have set

A =
1

κ⋆

∫

U0

K∇hn0 ·∇hn0dx, B =
1

κ⋆

∫

(U0)
c

K∇hn0 ·∇hn0dx.

Thanks to (75), one has ∇hn0 = −∇ϕ0

τ on U0 ⊂ Ω. Therefore,

A ≤ (N + 1)µ0

ω⋆κ⋆

∫

U0

sn0
µ0

K∇hn0 ·∇hn0dx ≤ (N + 1)µ0

τ2ω⋆κ⋆

∫

Ω

sn0
µ0

K∇ϕn0 ·∇ϕn0dx.

Then it results from formula (72) that

(78) A ≤ C

τ2
W 2

0 (s
n
0 , s

n−1
0 )

where C depends neither on n nor on τ . Combining (76) and (74), we infer

B ≤ 1

κ⋆

N∑

i=1

∫

Ui

K∇[hni − (πni +Ψi −Ψ0)] ·∇[hni − (πni +Ψi −Ψ0)]dx.

Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and (3), we get that

(79) B ≤ 3

κ⋆

N∑

i=1

∫

Ui

K∇hi ·∇hidx+
3κ⋆

κ⋆

N∑

i=1

(
‖∇πni ‖2L2 + ‖∇(Ψi −Ψ0)‖2L2

)
.

Similar calculations to those carried out to estimate A yield
∫

Ui

K∇hi ·∇hidx ≤ C

τ2
W 2
i (s

n
i , s

n−1
i )

for some C depending neither on n, i nor on τ . Combining this inequality with
Lemma 2.2 and the regularity of Ψ, we get from (79) that

(80) B ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

for some C not depending on n and τ (here we also used 1/τ ≤ 1/τ2 for small τ in
the W 2 terms). Gathering (78) and (80) in (77) provides

‖∇hn0‖2L2 ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

Note that (i)(ii) remain invariant under subtraction of the same constant hn0 , h
n
i  

hn0 − C, hni − C, as the gradients remain unchanged in (i) and only the differences
hni − hn0 appear in (ii) for i ∈ {1 . . .N}. We can therefore assume without loss of
generality that

∫
Ω h

n
0dx = 0. Hence by Poincaré-Wirtinger inequality, we get that

‖hn0‖2H1 ≤ C‖∇hn0‖2L2 ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.
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Finally, from (ii) hni = hn0 + πni + Ψi − Ψ0, the smoothness of Ψi,Ψ0, and using
again the estimate (30) for ‖πn‖2 we finally get that for all i ∈ {1, . . . , N}, one has

‖hni ‖2H1 ≤ C(‖hn0‖2H1 + ‖πni ‖2H1 + ‖Ψi −Ψ0‖2H1)

≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
,

and the proof of Proposition 3.7 is complete. �

We can now define the phase pressures (pni )i=0N by setting

(81) pni := hni −Ψi, ∀i ∈ {0, . . . , N}.
The following corollary is a straightforward consequence of Proposition 3.7 and of
the regularity of Ψi.

Corollary 3.8. The phase pressures pn = (pni )0≤i≤N ∈ H1(Ω)N+1 satisfy

(82) ‖pn‖2H1(Ω) ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

for some C depending only on Ω,Π, ω,K, (µi)i, and Ψ (but neither on n nor on τ),
and the capillary pressure relations are fulfilled:

(83) pni − pn0 = πni , ∀i ∈ {1, . . . , N}.
The following Lemma is a first step towards the recovery of the PDEs.

Lemma 3.9. There exists C depending depending only on Ω,Π, ω,K, (µi)i, and Ψ

(but neither on n nor on τ) such that, for all i ∈ {0, . . . , N} and all ξ ∈ C2(Ω), one
has

(84)

∣∣∣∣
∫

Ω

(
sni − sn−1

i

)
ξdx+ τ

∫

Ω

K
sni
µi

∇ (pni +Ψi) ·∇ξdx

∣∣∣∣

≤ CW 2
i (s

n
i , s

n−1
i )‖D2

giξ‖∞.

Proof. Let ϕni denote the (backward) optimal Kantorovich potential from Lemma 3.2
sending sni to sn−1

i , and let tni be the optimal transportation map as in (71). For

fixed ξ ∈ C2(Ω) let us first Taylor expand (in the gi Riemaniann framework)
∣∣∣∣ξ(t

n
i (x))− ξ(x) +

1

µi
K(x)∇ξ(x) ·∇ϕni (x)

∣∣∣∣ ≤
1

2
‖D2

giξ‖∞d
2
i (x, t

n
i (x)).

Using the definition of the pushforward sn−1
i = tni #s

n
i , we then compute

∣∣∣∣
∫

Ω

(sni (x)− sn−1
i (x))ξ(x)dx−

∫

Ω

K(x)

µi
∇ξ(x) ·∇ϕni (x)s

n
i (x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

(ξ(x)− ξ(tni (x))s
n
i (x)dx−

∫

Ω

K(x)

µi
∇ξ(x) ·∇ϕni (x)s

n
i (x)dx

∣∣∣∣

≤
∫

Ω

1

2
‖D2

giξ‖∞d
2
i (x, t

n
i (x))s

n
i (x)dx =

1

2
‖D2

giξ‖∞W
2
i (s

n
i , s

n−1
i ).

From Proposition 3.7(i) we have ∇ϕni = −τ∇hni for dsni a.e. x ∈ Ω, thus by the
definition (81) of pni , we get ∇ϕn = −τ∇(pni + Ψi). Substituting in the previous
inequality gives exactly (84) and the proof is complete. �
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4. Convergence towards a weak solution

The goal is now to prove the convergence of the piecewise constant w.r.t. time
approximate solutions sτ defined by (26) towards a weak solution s as τ tends
to 0. Similarly, the τ superscript denotes the piecewise constant interpolation of
any previous discrete quantity (e.g. pτi (t) stands for the piecewise constant time
interpolation of the discrete pressures pni ). In what follows, we will also use the
notations sτ∗ = (sτ1 , . . . , s

τ
N ) ∈ L∞((0, T );X ∗) and πτ = π(sτ∗,x).

4.1. Time integrated estimates. We immediately deduce from (29) that

(85) W (sτ (t2), s
τ (t1)) ≤ C|t2 − t1 + τ | 12 , ∀t2 ≥ 0, ∀t1 ∈ [0, t2].

From the total saturation
N∑
i=0

sni (x) = ω(x) < 1 and sτi ≥ 0, we have the L∞

estimates

(86) 0 ≤ sτi ≤ ω ≤ 1 a.e. in Q for all i ∈ {0, . . . , N}.

Lemma 4.1. There exists C depending only on Ω, T,Π, ω,K, (µi)i, and Ψ such
that

(87) ‖pτ‖2L2((0,T );H1(Ω)N+1) + ‖πτ‖2L2((0,T );H1(Ω)N ) ≤ C.

Proof. Summing (82) from n = 1 to n = Nτ := ⌈T/τ⌉, we get

‖pτ‖2L2(H1) =

Nτ∑

n=1

τ‖pn‖2H1

≤ C

Nτ∑

n=1

τ

(
1 +

W 2(sn, sn−1)

τ2
+

Nτ∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

≤ C

(
(T + 1) +

Nτ∑

n=1

W 2(sn, sn−1)

τ
+

N∑

i=0

(
Hω(s

0
i )−Hω(s

Nτ

i )
))

.

We use that

0 ≥ Hω(s) ≥ −1

e
‖ω‖L1 ≥ −|Ω|

e
, ∀s ∈ L∞(Ω) with 0 ≤ s ≤ ω

together with the total square distance estimate (28) to infer that ‖p‖2L2(H1) ≤ C.

The proof is identical for the capillary pressure πτ (simply summing the one-step
estimate from Lemma 2.2). �

4.2. Compactness of approximate solutions. We denote by H ′ = H1(Ω)′.

Lemma 4.2. For each i ∈ {0, . . . , N}, there exists C depending only on Ω, Π, Ψ,
K, and µi (but not on τ) such that

‖sτi (t2)− sτi (t1)‖H′ ≤ C|t2 − t1 + τ | 12 , ∀t2 ∈ [0, T ], ∀t1 ∈ [0, t2].

Proof. Thanks to (86), we can apply [37, Lemma 3.4] to get
∣∣∣∣
∫

Ω

f(x)d(sτi (t)− sτi (s))(x)

∣∣∣∣ ≤ ‖∇f‖L2(Ω)Wref(s
τ
i (t), s

τ
i (s)), ∀f ∈ H1(Ω).
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Thus by duality and thanks to the distance estimate (85) and to the lower bound
in (22), we obtain that

‖sτi (t)− sτi (s)‖′ ≤Wref(s
τ
i (t), s

τ
i (s)) ≤ CWi(s

τ
i (t), s

τ
i (s)) ≤ C|t− s+ τ | 12

for some fluctuating quantity C depending only on Ω, Π, (ρi)i, g, (µi)i, K. �

From the previous equi-continuity in time, we deduce full compactness of the
capillary pressure:

Lemma 4.3. The family (πτ )τ>0 is sequentially relatively compact in L2(Q)N .

Proof. We use Alt & Luckhaus’ trick [1] (an alternate solution would consist in
slightly adapting the nonlinear time compactness results [38, 8] to our context).
Let h > 0 be a small time shift, then the Lipschitz continuity of the capillary
pressure function π yields

‖πτ (.+ h)− πτ (.)‖2L2((0,T−h);L2(Ω)N )

≤ 1

κ⋆

∫ T−h

0

∫

Ω

(πτ (t+ h,x)− πτ (t,x)) · (sτ∗(t+ h,x)− sτ∗(t,x))dxdt

≤ 2
√
T

κ⋆
‖πτ‖L2((0,T );H1(Ω)N )‖sτ∗(·+ h, ·)− sτ∗‖L∞((0,T−h);H′)N .

Then it follows from Lemmas 4.1 and 4.2 that there exists C > 0, depending neither
on h nor on τ , such that

‖πτ (·+ h, ·)− πτ‖L2((0,T−h);L2(Ω)N ) ≤ C|h+ τ |1/2.
On the other hand, the (uniform w.r.t. τ) L2((0, T );H1(Ω)N )- and L∞(Q)N -
estimates on πτ ensure that

‖πτ (·, ·+ y))− πτ‖L2(0,T ;L2) ≤ C
√

|y|(1 +
√
|y|), ∀y ∈ R

d,

where πτ is extended by 0 outside Ω. This allows to apply Kolmogorov’s com-
pactness theorem (see, for instance, [29]) and entails the desired relative compact-
ness. �

4.3. Identification of the limit. In this section we prove our main Theorem 1.2,
and the proof goes in two steps: we first retrieve strong convergence of the phase
contents sτ → s and weak convergence of the pressures pτ ⇀ p, and then use the
strong-weak limit of products to show that the limit is a weak solution. All along
this section, (τk)k≥1 denotes a sequence of times steps tending to 0 as k tends to
∞.

Lemma 4.4. There exist s = (si)0≤i≤N belonging to L∞(Q)N+1 with s(·, t) ∈
X ∩A for a.e. t ∈ (0, T ), and p belonging to L2((0, T );H1(Ω)N+1) such that, up
to an unlabeled subsequence, the following convergence properties hold:

sτk −→
k→∞

s a.e. in Q,(88)

πτk −⇀
k→∞

π(s∗, ·) weakly in L2((0, T );H1(Ω)N ),(89)

pτk −⇀
k→∞

p weakly in L2((0, T );H1(Ω)N+1).(90)

Moreover, the capillary pressure relations (5) hold.
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Proof. From Lemma 4.3, we can assume that πτk → z strongly in L2(Q)N for
some limit z, thus a.e. up to the extraction of an additional subsequence. Since
z 7→ φ(z,x) = π−1(z,x) is continuous, we have that

sτk∗ = φ(πτk ,x) −→
k→∞

φ(π,x) =: s∗ a.e. in Q.

In particular, this yields πτk −→
k→∞

π(s∗, ·) a.e. in Q. Since we had the total satu-

ration
N∑
i=0

sτki (t,x) = ω(x), we conclude that the first component i = 0 converges

pointwise as well. Therefore, (88) holds. Thanks to Lebesgue’s dominated conver-
gence theorem, it is easy to check that s(·, t) ∈ X ∩ A for a.e. t ∈ (0, T ). The
convergences (89) and (90) are straightforward consequences of Lemma 4.1. Lastly,
it follows from (83) that

pτki − pτk0 = πi(s
τk∗, ·), ∀i ∈ {1, . . . , N}, ∀k ≥ 1.

We can pass to the limit k → ∞ in the above relation thanks to (89)–(90) and infer

pi − p0 = πi(s
∗,x) in L2((0, T );H1(Ω)), ∀i ∈ {1, . . . , N}.

This immediately implies (5) as claimed. �

Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of
(sτk)k≥1 can be supposed to belong to C([0, T ];A) where A is equipped with the

metric W . Moreover, W (sτk(t), s(t)) −→
k→∞

0 for all t ∈ [0, T ].

Proof. Let i ∈ {0, . . . , N}, then it follows from the uniform boundedness of si
(cf. (86)) that for all t ∈ [0, T ], the sequence (sτki )k is weakly compact in L1(Ω).
It is also compact in Ai equipped with the metric Wi due to the continuity of Wi

with respect to the weak convergence in L1(Ω) (this is for instance a consequence
of [42, Theorem 5.10] together with the equivalence ofWi withWref stated at (22)).
Thanks to (85), one has

lim sup
k→∞

Wi (s
τk
i (t2), s

τk
i (t1)) ≤ |t2 − t1|1/2, ∀t1, t2 ∈ [0, T ].

Applying a refined version of the Arzelà-Ascoli theorem [5, Prop. 3.3.1] then pro-
vides the desired result. �

In order to conclude the proof of Theorem 1.2, it only remains to show that
s = lim sτk and p = limpτk satisfy the weak formulation (13). This is the purpose
of the last statement of the paper.

Proposition 4.6. Let (τk)k≥1 be a sequence such that the convergences in Lem-

mas 4.4 and 4.5 hold, then the limit s of (sτk)k≥1 is a weak solution in the sense

of Definition 1.1 (with −ρig replaced by +∇Ψi in the general case).

Proof. Let (t1, t2) ∈ [0, T ]2 with t1 ≤ t2, and denote nj,k =
⌈
tj
τk

⌉
and t̃j = nj,kτk

for j ∈ {1, 2}. Let ξ ∈ C2(Ω) be arbitrary, then summing (84) from n = n1,k + 1 to
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n = n2,k yields, for all i ∈ {0, . . . , N},

(91)

∫

Ω

(sτki (t2)− sτki (t1))ξdx =

n2,k∑

n=n1,k+1

∫

Ω

(sni − sn−1
i )ξdx

= −
∫ t̃2

t̃1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt+O




n2,k∑

n=n1,k+1

W 2
i (s

n
i , s

n−1
i )


 .

Since 0 ≤ t̃j − tj ≤ τk, and since
s
τk
i

µi
K∇ (pτki +Ψi) · ∇ξ is uniformly bounded in

L2(Q), one has

∫ t̃2

t̃1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt

=

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt+O(τk).

Combining the above estimate with the total square distance estimate (28) in (91),
we obtain that for all t1, t2 ∈ [0, T ] with t1 ≤ t2,

(92)

∫

Ω

(sτki (t2) − sτki (t1))ξdx +

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki + Ψi) ·∇ξdxdt = O (τk) .

Thanks to Lemma 4.5, and since the convergence in (Ai,Wi) is equivalent to the
narrow convergence of measures (i.e., the convergence in C(Ω)′, see for instance [42,
Theorem 5.10]), we get that

(93)

∫

Ω

(sτki (t2)− sτki (t1))ξdx −→
k→∞

∫

Ω

(si(t2)− si(t1))ξdx.

Moreover, thanks to Lemma 4.4, one has

(94)

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt −→
k→∞

∫ t2

t1

∫

Ω

si
µi

K∇ (pi +Ψi) ·∇ξdxdt.

Gathering (92)–(94) yields, for all ξ ∈ C2(Ω) and all t1, t2 ∈ [0, T ] with t1 ≤ t2,

(95)

∫

Ω

(si(t2)− si(t1))ξdx+

∫ t2

t1

∫

Ω

si
µi

K∇ (pi +Ψi) ·∇ξdxdt = 0.

In order to conclude the proof, it remains to check that the formulation (95)
is stronger the formulation (13). Let ε > 0 be a time step (not related to the
one appearing in the minimization scheme (25)), and set Lε =

⌊
T
ε

⌋
. Let φ ∈

C∞
c (Ω × [0, T )), one sets φℓ = φ(·, ℓε) for ℓ ∈ {0, . . . , Lε}. Since t 7→ φ(·, t) is

compactly supported in [0, T ), then there exists ε⋆ > 0 such that φLε
≡ 0 for all

ε ∈ (0, ε⋆]. Then define by

φε :

{
Ω× [0, T ] → R

(x, t) 7→ φℓ(x) if t ∈ [ℓε, (ℓ+ 1)ε).

Choose t1 = ℓε, t2 = (ℓ+1)ε, ξ = φℓ in (95) and sum over ℓ ∈ {0, . . . , Lε−1}. This
provides

(96) A(ε) +B(ε) = 0, ∀ε > 0.
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where

A(ε) =

Lε−1∑

ℓ=0

∫

Ω

(si((ℓ + 1)ε)− si(ℓε))φ
ℓdx,

B(ε) =

∫∫

Q

si
µi

K∇ (pi +Ψi) ·∇φεdxdt.

Due to the regularity of φ, ∇φε converges uniformly towards φ as ε tends to 0, so
that

(97) B(ε) −→
ε→0

∫∫

Q

si
µi

K∇ (pi +Ψi) ·∇φdxdt.

Reorganizing the first term and using that φLε
≡ 0, we get that

A(ε) = −
Lε∑

ℓ=1

ε

∫

Ω

si(ℓε)
φℓ − φℓ−1

ε
dx−

∫

Ω

s0iφ(·, 0)dx.

It follows from the continuity of t 7→ si(·, t) in Ai equipped with Wi and from the
uniform convergence of

(x, t) 7→ φℓ(x)− φℓ−1(x)

ε
if t ∈ [(ℓ − 1)ε, ℓε)

towards ∂tφ that

(98) A(ε) −→
ε→0

−
∫∫

Q

si∂tφdxdt−
∫

Ω

s0iφ(·, 0)dx.

Combining (96)–(98) shows that the weak formulation (13) is fulfilled. �
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thank Quentin Mérigot for the numerous fruitful discussion they shared.

References

[1] H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z.,
183(3):311–341, 1983.
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triphasiques satisfaisant une condition de différentielle totale. Technical Report 355, INRIA,
1985.

[23] Z. Chen. Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity
of a weak solution. J. Differential Equations, 171(2):203–232, 2001.

[24] E. De Giorgi. New problems on minimizing movements. In Boundary value problems for
partial differential equations and applications, volume 29 of RMA Res. Notes Appl. Math.,
pages 81–98. Masson, Paris, 1993.
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