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Abstract. We describe the competitive motion of (N + 1) incompressible
immiscible phases within a porous medium as the gradient flow of a singu-

lar energy in the space of non-negative measures with prescribed masses, en-
dowed with some tensorial Wasserstein distance. We show the convergence
of the approximation obtained by a minimization scheme à la [R. Jordan, D.
Kinderlehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow
to obtain a new existence result for a physically well-established system of
PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure
relations, and a constraint on the volume occupied by the fluid. Our study
does not require the introduction of any global or complementary pressure.
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1. Introduction

1.1. Equations for multiphase flows in porous media. We consider a convex
open bounded set Ω ⊂ Rd representing a porous medium. N+1 incompressible and
immiscible phases, labeled by subscripts i ∈ {0, . . . , N} are supposed to flow within
the pores. Let us present now some classical equations that describe the motion
of such a mixture. The physical justification of these equations can be found for
instance in [10, Chapter 5]. We denote by si : Ω×(0, T ) =: Q→ [0, 1] the content of
the phase i, i.e., the volume ratio of the phase i compared to all the phases and the
solid matrix, and by vi the filtration speed of the phase i. Then the conservation
of the volume of each phase writes

(1) ∂tsi +∇ · (sivi) = 0 in Q, ∀i ∈ {0, . . . , N},
where T > 0 is an arbitrary finite time horizon. The filtration speed of each phase
is assumed to be given by Darcy’s law

(2) vi = − 1

µi
K (∇pi − ρig) in Q, ∀i ∈ {0, . . . , N}.

In the above relation, g is the gravity vector, µi denotes the constant viscosity of
the phase i, pi its pressure, and ρi its density. The intrinsic permeability tensor
K : Ω → Rd×d is supposed to be smooth, symmetric K = KT , and uniformly
positive definite: there exist κ⋆, κ

⋆ > 0 such that:

(3) κ⋆|ξ|2 ≤ K(x)ξ · ξ ≤ κ⋆|ξ|2, ∀ξ ∈ R
d, ∀x ∈ Ω.

The pore volume is supposed to be saturated by the fluid mixture

(4) σ :=

N∑

i=0

si = ω(x) a.e. in Q,

where the porosity ω : Ω → (0, 1) of the surrounding porous matrix is assumed to
be smooth. In particular, there exists 0 < ω⋆ ≤ ω⋆ such that ω⋆ ≤ ω(x) ≤ ω⋆ for
all x ∈ Ω. In what follows, we denote by s = (s0, . . . , sN ), by

∆(x) =

{
s ∈ (R+)

N+1

∣∣∣∣∣

N∑

i=0

si = ω(x)

}
,

and by

X =
{
s ∈ L1(Ω;RN+1

+ )
∣∣ s(x) ∈ ∆(x) a.e. in Ω

}
.

There is an obvious one-to-one mapping between the sets ∆(x) and

∆∗(x) =

{
s∗ = (s1, . . . , sN ) ∈ (R+)

N

∣∣∣∣∣

N∑

i=1

si ≤ ω(x)

}
,

and consequently also between X and

X
∗ =

{
s∗ ∈ L1(Ω;RN+ )

∣∣ s∗(x) ∈ ∆∗(x) a.e. in Ω
}
.

In what follows, we denote by Υ =
⋃

x∈Ω

∆∗(x)× {x}.

In order to close the system, we impose N capillary pressure relations

(5) pi − p0 = πi(s
∗,x) a.e in Q, ∀i ∈ {1, . . . , N},
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where the capillary pressure functions πi : Υ → R are assumed to be continuously
differentiable and to derive from a strictly convex potential Π : Υ → R+:

πi(s
∗,x) =

∂Π

∂si
(s∗,x) ∀i ∈ {1, . . . , N}.

We assume that Π is uniformly convex w.r.t. its first variable. More precisely, we
assume that there exist two positive constants ̟⋆ and ̟⋆ such that, for all x ∈ Ω
and all s∗, ŝ∗ ∈ ∆∗(x), one has

(6)
̟⋆

2
|ŝ∗ − s∗|2 ≥ Π(ŝ∗,x)−Π(s∗,x)− π(s∗,x) · (ŝ∗ − s∗) ≥ ̟⋆

2
|ŝ∗ − s∗|2,

where we introduced the notation

π :

{
Υ → RN

(s∗,x) 7→ π(s∗,x) = (π1(s
∗,x), . . . , πN (s∗,x)) .

The relation (6) implies that π is monotone and injective w.r.t. its first variable.
Denoting by

z 7→ φ(z,x) = (φ1(z,x), . . . , φN (z,x)) ∈ ∆∗(x)

the inverse of π(·,x), it follows from (6) that

(7) 0 <
1

̟⋆
≤ Jzφ(z,x) ≤

1

̟⋆
for all x ∈ Ω and all z ∈ π(∆∗(x),x),

where Jz stands for the Jacobian with respect to z and the above inequality should
be understood in the sense of positive definite matrices. Moreover, due to the
regularity of π w.r.t. the space variable, there exists Mφ > 0 such that

(8) |∇xφ(z,x)| ≤Mφ for all x ∈ Ω and all z ∈ π(∆∗(x),x),

where ∇x denote the gradient w.r.t. to the second variable only.

The problem is complemented with no-flux boundary conditions

(9) vi · n = 0 on ∂Ω× (0, T ), ∀i ∈ {0, . . . , N},
and by the initial content profile s0 =

(
s00, . . . , s

0
N

)
∈ X :

(10) si(·, 0) = s0i ∀i ∈ {0, . . . , N}, with
N∑

i=0

s0i = ω a.e. in Ω.

Since we did not consider sources, and since we imposed no-flux boundary con-
ditions, the volume of each phase is conserved along time

(11)

∫

Ω

si(x, t)dx =

∫

Ω

s0i (x)dx =: mi > 0, ∀i ∈ {0, . . . , N}.

We can now give a proper definition of what we call a weak solution to the
problem (1)–(2), (4)–(5), and (9)–(10).

Definition 1.1 (Weak solution). A measurable function s : Q → (R+)
N+1 is

said to be a weak solution if s ∈ ∆ a.e. in Q, if there exists p = (p0, . . . , pN ) ∈
L2((0, T );H1(Ω))N+1 such that the relations (5) hold, and such that, for all φ ∈
C∞
c (Ω× [0, T )) and all i ∈ {0, . . . , N}, one has

(12)

∫∫

Q

si∂tφdxdt+

∫

Ω

s0iφ(·, 0)dx−
∫∫

Q

si
µi

K (∇pi − ρig) ·∇φdxdt = 0.

1.2. Wasserstein gradient flow of the energy.
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1.2.1. Energy of a configuration. First, we extend the convex function Π : Υ →
[0,+∞], called capillary energy density, to a convex function (still denoted by)
Π : RN+1 × Ω → [0,+∞] by setting

Π(s,x) =

{
Π
(
ω s∗

σ ,x
)
= Π

(
ω s1σ , . . . , ω

sN
σ ,x

)
if s ∈ R

N+1
+ and σ ≤ ω(x),

+∞ otherwise,

σ being defined by (4). The extension of Π by +∞ where σ > ω is natural because

of the incompressibility of the fluid mixture. The extension to {σ < ω} ∪ R
N+1
+ is

designed so that the energy density only depends on the relative composition of the
fluid mixture. However, this extension is somehow arbitrary, and, as it will appear
in the sequel, it has no influence on the flow since the solution s remains in X (i-e∑N
i=0 si = ω). In our previous note [15] the appearance of void σ < ω was directly

prohibited by a penalization in the energy.

The second part in the energy comes from the gravity. In order to lighten the
notations, we introduce the functions

Ψi :

{
Ω → R+,
x 7→ −ρig · x, ∀i ∈ {0, . . . , N},

and

Ψ :

{
Ω → R

N+1
+ ,

x 7→ (Ψ0(x), . . . ,ΨN (x)) .

The fact that Ψi can be supposed to be positive come from the fact that Ω is
bounded. Even though the physically relevant potentials are indeed the gravita-
tional Ψi(x) = −ρig · x, the subsequent analysis allows for a broader class of ex-
ternal potentials and for the sake of generality we shall therefore consider arbitrary
Ψi ∈ C1(Ω) in the sequel.

We can now define the convex energy functional E : L1(Ω,RN+1) → R ∪ {+∞}
by adding the capillary energy to the gravitational one:

(13) E(s) =
∫

Ω

(Π(s,x) + s ·Ψ) dx ≥ 0, ∀s ∈ L1(Ω;RN+1).

Note moreover that E(s) < ∞ iff s ≥ 0 and σ ≤ ω a.e. in Ω. It follows from the
mass conservation (11) that

∫

Ω

σ(x)dx =

N∑

i=0

mi =

∫

Ω

ω(x)dx.

Assume that there exists a non-negligible subset A of Ω such that σ < ω on A, then
necessarily, there must be a non-negligible subset B of Ω such that σ > ω so that
the above equation holds, hence E(s) = +∞. Therefore,

(14) E(s) <∞ ⇔ s ∈ X .

Let p = (p0, . . . , pN ) : Ω → RN+1 be such that p ∈ ∂sΠ(s,x) for a.e. x in Ω,
then, defining hi = pi +Ψi(x) for all i ∈ {0, . . . , N} and h = (hi)0≤i≤N , h belongs

to the subdifferential ∂sE(s) of E at s, i.e.,

E(ŝ) ≥ E(s) +
N∑

i=0

∫

Ω

hi(ŝi − si)dx, ∀ŝ ∈ L1(Ω;RN+1).
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The reverse inclusion also holds, hence

(15) ∂sE(s) =
{
h : Ω → R

N+1
∣∣ hi −Ψi(x) ∈ ∂sΠ(s,x) for a.e. x ∈ Ω

}
.

Thanks to (14), we know that a configuration s has finite energy iff s ∈ X .
Since we are interested in finite energy configurations, it is relevant to consider the
restriction of E to X . Then using the one-to-one mapping between X and X

∗, we
define the energy of a configuration s∗ ∈ X

∗, that we denote by E(s∗) by setting
E(s∗) = E(s) where s is the unique element of X corresponding to s∗ ∈ X

∗.

1.2.2. Geometry of Ω and Wasserstein distance. Inspired by the paper of Lisini [36],
where heterogeneous anisotropic degenerate parabolic equations are studied from
a variational point of view, we introduce (N + 1) distances on Ω that take into
account the permeability of the porous medium and the phase viscosities. Given
two points x,y in Ω, we denote by

P (x,y) =
{
γ ∈ C1([0, 1]; Ω)

∣∣γ(0) = x and γ(1) = y
}

the set of the smooth paths joining x to y, and we introduce distances di, i ∈
{0, . . . , N} between elements on Ω by setting

(16) di(x,y) = inf
γ∈P (x,y)

(∫ 1

0

µiK
−1(γ(τ))γ ′(τ) · γ ′(τ)dτ

)1/2

, ∀(x,y) ∈ Ω.

It follows from (3) that

(17)

√
µi
κ⋆

|x− y| ≤ di(x,y) ≤
√
µi
κ⋆

|x− y|, ∀(x,y) ∈ Ω
2
.

For i ∈ {0, . . . , N} we define

Ai =

{
si ∈ L1(Ω;R+)

∣∣∣∣
∫

Ω

sidx = mi

}
.

Given si, ŝi ∈ Ai, the set of admissible transport plans between si and ŝi is given
by

Γi(si, ŝi) =
{
θi ∈ M+(Ω× Ω)

∣∣∣ θi(Ω× Ω) = mi, θ
(1)
i = si and θ

(2)
i = ŝi

}
,

where M+(Ω × Ω) stands for the set of Borel measures on Ω × Ω and θ
(k)
i is the

kth marginal of the measure θi. We define the quadratic Wasserstein distance Wi

on Ai by setting

(18) Wi(si, ŝi) =

(
inf

θi∈Γ(si,ŝi)

∫∫

Ω×Ω

di(x,y)
2dθi(x,y)

)1/2

.

Due to the permeability tensor K(x), the porous medium Ω might be heterogeneous
and anisotropic. Therefore, some directions and areas might me privileged by the
fluid motions. This is encoded in the distances di we put on Ω. Moreover, the
more viscous the phase is, the more costly are its displacements, hence the µi in
the definition (16) of di. But it follows from (17) that

(19)

√
µi
κ⋆
Wref(si, ŝi) ≤Wi(si, ŝi) ≤

√
µi
κ⋆
Wref(si, ŝi)., ∀si, ŝi ∈ Ai,
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where Wref denotes the classical quadratic Wasserstein distance defined by

(20) Wref(si, ŝi) =

(
inf

θi∈Γ(si,ŝi)

∫∫

Ω×Ω

|x− y|2dθi(x,y)
)1/2

.

With the phase Wasserstein distances (Wi)0≤i≤N at hand, we can define the
global Wasserstein distance W on A := A0 × · · · × AN by setting

W (s, ŝ) =

(
N∑

i=0

Wi(si, ŝi)
2

)1/2

, ∀s, ŝ ∈ A.

Finally for technical reasons we also assume that there exist smooth extensions

K̃ and ω̃ to Rd of the tensor and the porosity, respectively, such that (3) holds on

Rd for K̃, and such that ω̃ is strictly bounded from below. This allows to define

distances d̃i on the whole Rdby

(21) d̃i(x,y) = inf
γ∈P̃ (x,y)

(∫ 1

0

µiK̃
−1(γ(τ))γ ′(τ) · γ′(τ)dτ

)1/2

, ∀x,y ∈ R
d

where P̃ (x,y) =
{
γ ∈ C1([0, 1];Rd)

∣∣γ(0) = x and γ(1) = y
}
. In the sequel, we

assume that the extension K̃ of K is such that

(22) Ω is geodesically convex in Mi = (Rd, d̃i) for all i.

In particular d̃i = di on Ω × Ω. Since K̃−1 is smooth, at least C2
b (R

d), the Ricci
curvature of the smooth complete Riemannian manifold Mi is uniformly bounded,

i.e., there exists C depending only on (µi)0≤i≤N and K̃ such that

(23) |RicMi,x(v)| ≤ CµiK
−1v · v, ∀x ∈ R

d, ∀v ∈ R
d.

Combined with the assumptions on ω̃ we deduce that Hω̃ is λ̃i displacement convex

on Pac2 (Mi) for some λ̃i ∈ R. Then (22) and mass scaling implies that Hω is λi
displacement convex on (Ai,Wi) for some λi ∈ R. We refer to [46, Chap. 14 & 17]
for further details on the Ricci curvature and its links with optimal transportation.

In the homogeneous and isotropic caseK(x) = Id, Condition (22) simply amounts
to assuming that Ω is convex. A simple sufficient condition implying (22) is given
in Appendix A in the isotropic but heterogeneous case K(x) = κ(x)Id.

1.2.3. Gradient flow of the energy. The content of this section is formal. Our aim
is to write the problem as a gradient flow, i.e.

(24)
ds

dt
∈ −gradW E(s) = −

(
gradW0

E(s), . . . , gradWN
E(s)

)

where gradW E(s) denotes the full Wasserstein gradient of E(s), and gradWi
E(s)

stands for the partial gradient of si 7→ E(s) with respect to the Wasserstein distance
Wi. The Wasserstein distanceWi was built so that ṡ = (ṡi)i ∈ gradW E(s) iff there
exists h ∈ ∂sE(s) such that

∂tsi = −∇ ·
(
si
K

µi
∇hi

)
, ∀i ∈ {0, . . . , N}.

Such a construction was already performed by Lisini in the case of a single equation.
Owing to the definitions (13) and (15) of the energy E(s) and its subdifferential
∂sE(s), the partial differential equations can be (at least formally) recovered. This
was roughly speaking to purpose of our note [15].
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In order to define rigorously the gradient gradW E in (24), A has to be a Rie-
mannian manifold. The so-called Otto’s calculus (see [42] and [46, Chapter 15])
allows to put a formal Riemannian structure on A. But as far as we know, this
structure cannot be made rigorous and A is a mere metric space. This leads us
to consider generalized gradient flows in metric spaces (cf. [5]). We won’t go deep
into details in this direction, but we will prove that weak solutions can be obtained
as limits of a minimizing movement scheme presented in the next section. This
characterizes the gradient flow structure of the problem.

1.3. Minimizing movement scheme and main result.

1.3.1. The scheme and existence of a solution. For a fixed time-step τ > 0, the
so-called minimizing movement scheme [24, 5] or JKO scheme [30] consists in com-
puting recursively (sn)n≥1 as the solution to the minimization problem

(25) sn = Argmin
s∈A

(
W (s, sn−1)2

2τ
+ E(s)

)
,

the initial data s0 being given (10).

1.3.2. Approximate solution and main result. Anticipating that the JKO scheme
(25) is well posed (this is the purpose of Proposition 2.1 below), we can now define
the piecewise constant interpolation sτ ∈ L∞((0, T );X ∩A) by

(26) sτ (0, ·) = s0, and sτ (t, ·) = sn ∀t ∈ ((n− 1)τ, nτ ], ∀n ≥ 1.

The main result of our paper is the following.

Theorem 1.2. Let (τk)k≥1 be a sequence of time steps tending to 0, then there
exists one weak solution s in the sense of Definition 1.1 such that, up to an unlabeled
subsequence, (sτk)k≥1 converges a.e. in Q towards s as k tends to ∞.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least)
one solution in the sense of Definition 1.1. As far as we know, this existence result
is new.

Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori
∂tsi ∈ L2((0, T );H1(Ω)′), si ∈ L2((0, T );H1(Ω)), and thus si ∈ C([0, T ];L2(Ω)).
This regularity is enough to retrieve the so-called Energy-Dissipation-Equality

d

dt
E(s(t)) = −

N∑

i=0

∫

Ω

K
si(t)

µi
∇(pi(t)+Ψi)·∇(pi(t)+Ψi)dx ≤ 0 for a.e. t ∈ (0, T ),

which is another admissible formulation of gradient flows in metric spaces [5].

1.4. Goal and positioning of the paper. The aims of the paper are twofolds.
First, we aim to provide rigorous foundations to the formal variational approach
exposed in the authors’ recent note [15]. This gives new insights into the modeling
of complex porous media flows and their numerical approximation. Our approach
appears to be very natural since only physically motivated quantities appear in
the study. Indeed, we manage to avoid the introduction of the so-called Kirchhoff
transform and global pressure, which classically appear in the mathematical study
of multiphase flows in porous media (see for instance [18, 9, 20, 26, 27, 22, 19, 2, 3]).
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Second, the existence result that we deduce from the convergence of the varia-
tional scheme is new as soon as there are at least three phases (N ≥ 2). Indeed,
since our study does not require the introduction of any global pressure, we get rid
of many structural assumptions on the data among which the so-called total dif-
ferentiability condition, see for instance Assumption (H3) in the paper by Fabrie
and Saad [26]. This structural condition is not naturally satisfied by the models,
and suitable algorithms have to be employed in order to adapt the data to this
constraint [21]. However, our approach suffers from another technical difficulty: we
are stuck to the case of linear relative permeabilities. The extension to the case of
nonlinear concave relative permeabilities, i.e., where (1) is replaced by

∂tsi +∇ · (ki(si)vi) = 0,

may be reachable thanks to the contributions of Dolbeault, Nazaret, and Savaré [25]
(see also [48]), but we did not push in this direction since the relative permeabilities
ki are in general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [30], gradient flows
in metric spaces (and particularly in the space of probability measures endowed
with the quadratic Wasserstein distance) were the object of many studies. Let
us for instance refer to the monograph of Ambrosio, Gigli, and Savaré [5] and to
Villani’s book [46, Part II] for a complete overview. Applications are numerous.
We refer for instance to [41] for an application to magnetic fluids, to [43, 7, 6] for
applications to supra-conductivity, to [12, 11, 47] for applications to chemotaxis,
to [37] for phase field models, to [39] for a macroscopic model of crowd motion,
to [13] for an application to granular media, to [17] for aggregation equations,
or to [31] for a model of ionic transport that applies in semi-conductors. In the
context of porous media flows, this framework has been used by Otto [42] to study
the asymptotic behavior of the porous medium equation, that is a simplified model
for the filtration of a gas in a porous medium. The gradient flow approach in
Wasserstein metric spaces was used more recently by Laurençot and Matioc [34] on
a thin film approximation model for two-phase flows in porous media. Finally, let us
mention that similar ideas were successfully applied for multicomponent systems,
see e.g. [16, 32, 48, 49].

The variational structure of the system governing incompressible immiscible two-
phase flows in porous media was recently depicted by the authors in their note [15].
Whereas the purpose of [15] is formal, our goal is here to give a rigorous foundation
to the variational approach for complex flows in porous media. Finally, let us
mention the work of Gigli and Otto [28] where it was noticed that multiphase linear
transportation with saturation constraint (as we have here thanks to (1) and (4))
yields nonlinear transport with mobilities that appear naturally in the two-phase
flow context.

The paper is organized as follows. In Section 2, we derive estimates on the
solution sτ for a fixed τ . Beyond the classical energy and distance estimates detailed
in §2.1, we obtain enhanced regularity estimates thanks to an adaptation of the
so-called flow interchange technique of Matthes, McCann, and Savaré [38] to our
inhomogeneous context in §2.2. Because of the constraint on the pore volume (4),
the auxiliary flow we use is no longer the heat flow, and a drift term has to be added.
An important effort is then done in §3 to derive the Euler-Lagrange equations
that follow from the optimality of sn. Our proof is inspired from the work of
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Maury, Roudneff-Chupin, and Santambrogio [39]. It relies on an intensive use of the
dual characterization of the optimal transportation problem and the corresponding
Kantorovitch potentials. However, additional difficulties arise from the multiphase
aspect of our problem, in particular when there are at least three phases (i.e., N ≥
2). These are overpassed using a generalized multicomponent bathtub principle
(Theorem B.1 in Appendix) and computing the associated Lagrange multipliers in
§3.1. This key step then allows to define the notion of discrete phase and capillary
pressures in §3.2. Then Section 4 is devoted to the convergence of the approximate
solutions (sτk)k towards a weak solution s as τk tends to 0. The estimates we
obtained in Section 2 are integrated w.r.t. time in §4.1. In §4.2, we show that these
estimates are sufficient to enforce the relative compactness of (sτk)k in the strong
L1(Q)N+1 topology. Finally, it is shown in §4.3 that any limit s of (sτk)k is a weak
solution in the sense of Definition 1.1.

2. One-step regularity estimates

The first thing to do is to show that the JKO scheme (25) is well-posed. This is
the purpose of the following Proposition.

Proposition 2.1. Let n ≥ 1 and sn−1 ∈ X ∩A, then there exists a unique solution
sn to the scheme (25). Moreover, one has sn ∈ X ∩A.

Proof. Any sn−1 ∈ X ∩ A has finite energy thanks to (14). Let (sn,k)k ⊂ A

be a minimizing sequence in (25). Testing sn−1 in (25) it is easy to see that
E(sn,k) ≤ E(sn−1) < ∞ for large k, thus (sn,k)k ⊂ X ∩A thanks to (14). Hence,

one has 0 ≤ sn,ki (x) ≤ ω(x) for all k. By Dunford-Pettis theorem, we can therefore

assume that sn,ki ⇀ sni weakly in L1(Ω). It is then easy to check that the limit sn

of sn,k belongs to X ∩A. The lower semi-continuity of the Wasserstein distance
with respect to weak L1 convergence is well known (see, e.g., [44, Prop. 7.4]), and
since the energy functional is convex thus l.s.c., we conclude that sn is indeed a
minimizer. Uniqueness follows from the strict convexity of the energy as well as
from the convexity of the Wasserstein distances (w.r.t. linear interpolation sθ =
(1− θ)s0 + θs1). �

The rest of this section is devoted to improving the regularity of the successive
minimizers.

2.1. Energy and distance estimates. Testing s = sn−1 in (25) we obtain

(27)
W (sn, sn−1)2

2τ
+ E(sn) ≤ E(sn−1),

As a consequence we have the monotonicity

. . . ≤ E(sn) ≤ E(sn−1) ≤ . . . ≤ E(s0) <∞
at the discrete level, thus sn ∈ X for all n ≥ 0 thanks to (14). Summing (27) over
n we also obtain the classical total square distance estimate

(28)
1

τ

∑

n≥0

W 2(sn+1, sn) ≤ 2E(s0) ≤ C (Ω,Π,Ψ) ,

the last inequality coming from the fact that s0 is uniformly bounded since it
belongs to X , thus so is E(s0). This readily gives the approximate 1/2-Hölder
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estimate

(29) W (sn1 , sn2) ≤ C
√

|n2 − n1|τ .

2.2. Flow interchange, entropy estimate and enhanced regularity. The
goal of this section is to obtain some additional Sobolev regularity on the capillary
pressure field π(sn∗,x), where sn∗ = (sn1 , . . . , s

n
N ) is the unique element of X

∗

corresponding to the minimizer sn of (25). In what follows, we denote by

πni :

{
Ω → R,
x 7→ πi(s

n∗(x),x),
∀i ∈ {1, . . . , N}

and πn = (πn1 , . . . , π
n
N ). Bearing in mind that ω(x) ≥ ω⋆ > 0 in Ω, we can define

the relative Boltzmann entropy Hω with respect to ω by

Hω(s) :=

∫

Ω

s(x) log

(
s(x)

ω(x)

)
dx, for all measurable s : Ω → R+.

Lemma 2.2. There exists C depending only on Ω,Π, ω,K, (µi)i, and Ψ such that,
for all n ≥ 1 and all τ > 0, one has

(30)

N∑

i=0

‖∇πni ‖2L2(Ω) ≤ C

(
1 +

W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

Proof. The argument relies on the flow interchange technique introduced by Matthes,
McCann, and Savaré in [38]. Throughout the proof, C denotes a fluctuating con-
stant that depends on the prescribed data Ω,Π, ω,K, (µi)i, and Ψ, but neither on
t, τ , nor on n. For i = 0 . . .N consider the auxiliary flows

(31)





∂tši = div(K∇ši − šiK∇ logω), t > 0, x ∈ Ω,
K(∇ši − ši∇ logω) · ν = 0, t > 0, x ∈ ∂Ω,
ši|t=0 = sni , x ∈ Ω

for each i ∈ {0, . . . , N}. By standard parabolic theory (see for instance [33, Chapter
III, Theorem 12.2]), these Initial-Boundary value problems are well-posed, and
their solutions ši(x) belong to C1,2((0, 1]×Ω) ∩ C([0, 1];Lp(Ω)) for all p ∈ (1,∞) if
ω ∈ C2,α(Ω) and K ∈ C1,α(Ω) for some α > 0. Therefore, t 7→ ši(·, t) is absolutely
continuous in L1(Ω), thus inAi endowed with the usual quadratic distanceWref (20)
thanks to [44, Prop. 7.4]. Because of (19), the curve t 7→ ši(·, t) is also absolutely
continuous in Ai endowed with Wi.

From Lisini’s results [36], we know that the evolution t 7→ ši(·, t) can be inter-
preted as the gradient flow of the relative Boltzmann functional 1

µi
Hω with respect

to the metric Wi, the scaling factor 1
µi

appearing due to the definition (18) of the

distance Wi. As a consequence of (23), The Ricci curvature of (Ω, di) is bounded,
hence bounded from below. Since ω ∈ C2(Ω) and with our assumption (22) we
also have that 1

µi
Hω is λi-displacement convex with respect to Wi for some λi ∈ R

depending on ω and the geometry of (Ω, di), see [46, Chapter 14]. Therefore, we
can use the so-called Evolution Variational Inequality characterization of gradient
flows (see for instance [4, Definition 4.5]) centered at sn−1

i , namely

1

2

d

dt
W 2
i (ši(t), s

n−1
i ) +

λi
2
W 2
i (ši(t), s

n−1
i ) ≤ 1

µi
Hω(s

n−1
i )− 1

µi
Hω(ši(t)).
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Denote by š = (š0, . . . , šN ), and by š∗ = (š1, . . . , šN ). Summing the previous
inequality over i ∈ {0, . . . , N} leads to
(32)

d

dt

(
1

2τ
W 2(š(t), sn−1)

)
≤ C

(
W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(ši(t))

τ

)
.

In order to estimate the internal energy contribution in (25), we first note that∑
sni (x) = ω(x) for all x ∈ Ω, thus by linearity of (31) and since ω is a stationary

solution we have
∑
ši(x, t) = ω(x) as well. Moreover, the problem (31) is mono-

tone, thus order preserving, and admits 0 as a subsolution. Hence ši(x, t) ≥ 0, so
that š(t) ∈ A∩X is an admissible competitor in (25) for all t > 0. The smoothness
of š for t > 0 allows to write

(33)
d

dt

(∫

Ω

Π(š∗(x, t),x)dx

)
=

N∑

i=1

∫

Ω

π̌i(x, t)∂tši(x, t)dx = I1(t) + I2(t),

where π̌i := πi(š
∗, ·), and where, for all t > 0, we have set

I1(t) = −
N∑

i=1

∫

Ω

∇π̌i(t) ·K∇ši(t)dx, I2(t) = −
N∑

i=1

∫

Ω

ši(t)

ω
∇π̌i(t) ·K∇ωdx.

To estimate I1, we first use the invertibility of π to write

š(x, t) = φ(π̌(x, t),x) =: φ̌(x, t),

yielding

(34) ∇š(x, t) = Jzφ(π̌(x, t),x)∇π̌(x, t) +∇xφ(π̌(x, t),x).

Combining (3), (7), (8) and the elementary inequality

(35) ab ≤ δ
a2

2
+
b2

2δ
with δ > 0 arbitrary,

we get that for all t > 0, there holds

I1(t) ≤ − κ⋆
̟⋆

∫

Ω

|∇π̌(t)|2dx+ κ⋆
(
δ

∫

Ω

|∇π̌(t)|2dx+
1

δ

∫

Ω

|∇xφ(π̌(t))|2dx
)
.

Choosing δ = κ⋆

4κ⋆̟⋆ , we get that

(36) I1(t) ≤ − 3κ⋆
4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

In order to estimate I2, we use that š(t) ∈ X for all t > 0, so that 0 ≤ ši(x, t) ≤
ω(x), hence we deduce that

∑N
i=1

(
ši
ω

)2 ≤ 1. Therefore, using (35) again, we get

I2(t) ≤ δκ⋆
∫

Ω

|∇π̌(t)|2dx+
κ⋆

δ

∫

Ω

|∇ω|2dx.

Choosing again δ = κ⋆

4κ⋆̟⋆ yields

(37) I2(t) ≤
κ⋆
4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C.

Taking (36)–(37) into account in (33) provides

(38)
d

dt

(∫

Ω

Π(š∗(x, t),x)dx

)
≤ − κ⋆

2̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.
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Let us now focus on the potential (gravitational) energy. Since š(t) belongs to
X ∩A for all t > 0, we can make use of the relation

š0(x, t) = ω(x)−
N∑

i=1

ši(x, t), for all (x, t) ∈ Ω× R+,

to write: for all t > 0,

N∑

i=0

∫

Ω

ši(x, t)Ψi(x)dx =

N∑

i=1

∫

Ω

ši(x, t)(Ψi −Ψ0)(x)dx+

∫

Ω

ω(x)Ψ0(x)dx.

This leads to

(39)
d

dt

(
N∑

i=0

∫

Ω

ši(t)Ψidx

)
=

N∑

i=1

∫

Ω

(Ψi(x)−Ψ0(x))∂tsi(x, t)dx = J1(t)+J2(t),

where, using the equations (31), we have set

J1(t) =−
N∑

i=1

∫

Ω

∇(Ψi −Ψ0) ·K∇ši(t)dx,

J2(t) =

N∑

i=1

∫

Ω

ši(t)

ω
∇(Ψi −Ψ0) ·K∇ωdx.

The term J1 can be estimated using (35). More precisely, for all δ > 0, we have

(40) J1(t) ≤ κ⋆

(
δ‖∇š∗(t)‖2L2 +

1

δ

N∑

i=1

‖∇(Ψi −Ψ0)‖2L2

)
.

Using (34) together with (7)–(8), we get that

‖∇š∗‖2L2 ≤
(

1

̟⋆
‖∇π̌‖L2 + |Ω|Mφ

)2

≤ 2

(̟⋆)2
‖∇π̌‖2L2 + 2 (|Ω|Mφ)

2
.

Therefore, choosing δ = (̟⋆)
2κ⋆

8κ⋆̟⋆ in (40), we infer from the regularity of Ψ that

(41) J1(t) ≤
κ⋆
4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Finally, it follows from the fact that
∑N

i=1 ši ≤ ω, from the Cauchy-Schwarz in-
equality, and from the regularity of Ψ, ω that

(42) J2(t) ≥ −κ⋆
N∑

i=1

‖∇Ψi −∇Ψ0‖L2‖∇ω‖L2 = C.

Combining (39), (41), and (42) with (38), we get that

(43)
d

dt
E(š(t)) ≤ − κ⋆

4̟⋆

∫

Ω

|∇π̌(t)|2dx+ C, ∀t > 0.

Denote by

(44) Fn
τ (s) :=

1

2τ
W 2(s, sn−1) + E(s)
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the functional to be minimized in (25), then gathering (32) and (43) provides

d

dt
Fn
τ (š(t)) +

κ⋆
4̟⋆

‖∇π̌‖2L2

≤ C

(
1 +

W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(ši(t))

τ

)
∀t > 0.

Since š(0) = sn is a minimizer of (25) we must have

0 ≤ lim sup
t→0+

(
d

dt
Fn
τ (š(t))

)
,

otherwise š(t) would be a strictly better competitor than sn for small t > 0. As a
consequence, we get

lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C lim sup
t→0+

(
1 +

W 2(š(t), sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(ši(t))

τ

)
.

Since ši belongs to C([0, 1];Lp(Ω)) for all p ∈ [1,∞) (see for instance [14]), the
continuity of the Wasserstein distance and of the Boltzmann entropy with respect
to strong Lp-convergence imply that

W 2(š(t), sn−1) −→
t→0+

W 2(sn, sn−1) and Hω(ši(t)) −→
t→0+

Hω(s
n
i ).

Therefore, we obtain that

(45) lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C

(
1 +

W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

It follows from the regularity of π that

π(š∗(t),x) = π̌(t) −→
t→0+

πn = π(sn∗,x) in Lp(Ω).

Finally, let (tℓ)ℓ≥1 be a decreasing sequence tending to 0 realizing the lim inf in (45),

then the sequence (∇π̌(tℓ))ℓ≥1 converges weakly in L2(Ω)N×d towards ∇πn. The
lower semi-continuity of the norm w.r.t. the weak convergence leads to

N∑

i=1

‖∇πni ‖2L2 ≤ lim
ℓ→∞

‖∇π̌(tℓ)‖2L2 = lim inf
t→0+

‖∇π̌(t)‖2L2

≤ C

(
1 +

W 2(sn, sn−1)

τ
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

and the proof is complete. �

3. The Euler-Lagrange equations and pressure bounds

The goal of this section is to extract informations coming from the optimality of
sn in the JKO minimization (25). The main difficulty consists in constructing the
phase and capillary pressures from this optimality condition. Our proof is inspired
from [39] and makes an extensive use of the Kantorovich potentials. Therefore, we
first recall their definition and some useful properties. We refer to [44, §1.2] or [46,
Chapter 5] for details.

Let (ν1, ν2) ∈ M+(Ω)
2 be two nonnegative measures with same total mass. A

pair of Kantorovich potentials (ϕi, ψi) ∈ L1(ν1)×L1(ν2) associated to the measures
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ν1 and ν2 and to the cost function 1
2d

2
i defined by (16), i ∈ {0, . . . , N}, is a solution

of the Kantorovich dual problem

DPi(ν1, ν2) = max
(ϕi,ψi)∈L

1(ν1)×L
1(ν2)

ϕi(x)+ψi(y)≤
1
2
d2i (x,y)

∫

Ω

ϕi(x)ν1(x)dx+

∫

Ω

ψi(y)ν2(y)dy.

We will use the three following important properties of the Kantorovich potentials:

(a) There is always duality

DPi(ν1, ν2) =
1

2
W 2
i (ν1, ν2), ∀i ∈ {0, . . . , N}.

(b) A pair of Kantorovich potentials (ϕi, ψi) is dν1 ⊗ dν2 unique, up to additive
constants.

(c) The Kantorovich potentials ϕi and ψi are
1
2d

2
i -conjugate, that is

ϕi(x) = inf
y∈Ω

1

2
d2i (x,y)− ψi(y), ∀x ∈ Ω,

ψi(y) = inf
x∈Ω

1

2
d2i (x,y)− ϕi(x), ∀y ∈ Ω.

Remark 3.1. Since Ω is bounded, the cost functions (x,y) 7→ 1
2d

2
i (x,y), i ∈

{1, . . . , N}, are globally Lipschitz continuous, see (17). Thus item (c) shows that
ϕi and ψi are also Lipschitz continuous.

3.1. A decomposition result. The next lemma is an adaptation of [39, Lemma
3.1] to our framework. It essentially states that, since sn is a minimizer of (25), it
is also a minimizer of the linearized problem.

Lemma 3.2. For n ≥ 1 and i = 0, . . . , N there exist some (backward, optimal)
Kantorovich potentials ϕni from sni to sn−1

i such that, using the convention πn0 =
∂Π
∂s0

(sn1 , . . . , s
n
N ,x) = 0, setting

(46) Fni :=
ϕni
τ

+ πni +Ψi, ∀i ∈ {0, . . . , N} ,

and denoting Fn = (Fni )0≤i≤N , there holds

(47) sn ∈ Argmin
s∈X∩A

∫

Ω

Fn(x) · s(x)dx.

Moreover, Fni ∈ L∞ ∩H1(Ω) for all i ∈ {0, . . . , N}.

Proof. We assume first that sn−1
i (x) > 0 everywhere in Ω for all i ∈ {1, . . . , N},

so that the Kantorovich potentials (ϕni , ψ
n
i ) from sni to sn−1

i are uniquely deter-
mined after normalizing ϕni (xref) = 0 for some arbitrary point xref ∈ Ω (cf. [44,
Proposition 7.18]). Given any s = (si)1≤0≤N ∈ X ∩A and ε ∈ (0, 1) we define the
perturbation

sε := (1− ε)sn + εs.

Note that X ∩A is convex, thus sε is an admissible competitor for all ε ∈ (0, 1). Let
(ϕεi , ψ

ε
i ) be the unique Kantorovich potentials from sεi to s

n−1
i , similarly normalized
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as ϕεi (xref) = 0. Then by characterization of the squared Wasserstein distance in
terms of the dual Kantorovich problem we have





1

2
W 2
i (s

ε
i , s

n−1
i ) =

∫

Ω

ϕεi (x)s
ε
i (x)dx+

∫

Ω

ψεi (y)s
n−1
i (y)dy,

1

2
W 2
i (s

n
i , s

n−1
i ) ≥

∫

Ω

ϕεi (x)s
n
i (x)dx+

∫

Ω

ψεi (y)s
n−1
i (y)dy.

By definition of the perturbation sε it is easy to check that sεi − sni = ε(si − sni ).
Subtracting the previous inequalities we get

(48)
W 2
i (s

ε
i , s

n−1
i )−W 2

i (s
n
i , s

n−1
i )

2τ
≤ ε

τ

∫

Ω

ϕεi (si − sni )dx.

Denote by sε∗ = (sε1, . . . , s
ε
N ), πε = π(sε∗, ·), and extend to the zero-th component

πε = (0,πε). The convexity of Π as a function of s1, . . . , sN implies that

(49)

∫

Ω

(Π(sn∗,x)−Π(sε∗,x)) dx ≥
∫

Ω

πε · (sn∗ − sε∗) dx

=

∫

Ω

πε · (sn − sε) dx = −ε
∫

Ω

πε · (s− sn) dx.

For the potential energy, we obtain by linearity that

(50)

∫

Ω

(sε − sn) ·Ψ dx = ε

∫

Ω

(s− sn) ·Ψdx.

Summing (48)–(50), dividing by ε, and recalling that sn minimizes the functional
Fn
τ defined by (44), we obtain

(51) 0 ≤ Fn
τ (s

ε)−Fn
τ (s

n)

ε
≤

N∑

i=0

∫

Ω

(
ϕεi
τ

+ πεi +Ψi

)
(si − sni )dx

for all s ∈ X ∩ A and all ε ∈ (0, 1). Because Ω is bounded, any Kantorovich
potential is globally Lipschitz with bounds uniform in ε (see for instance the proof
of [44, Theorem 1.17]). Since sε converges uniformly towards sn when ε tends to
0, we infer from [44, Theorem 1.52] that ϕεi converges uniformly towards ϕni as ε
tends to 0, where ϕni is a Kantorovich potential form sni to sn−1

i . Moreover, since
π is uniformly continuous in s, we also know that πε converges uniformly towards
πn and thus the extension to the zero-th component πε → πn = (0,πn) as well.
Then we can pass to the limit in (51) and infer that

(52) 0 ≤
∫

Ω

Fn · (s− sn)dx, ∀s ∈ X ∩A

and (47) holds.
If sn−1

i > 0 does not hold everywhere we argue by approximation. Running the
flow (31) for a short time δ > 0 starting from sn−1, we construct an approximation

sn−1,δ = (sn−1,δ
0 , . . . , sn−1,δ

N ) converging to sn−1 = (sn−1
0 , . . . , sn−1

N ) in L1(Ω) as

δ tends to 0. By construction sn−1,δ ∈ X ∩ A, and it follows from the strong

maximum principle that sn−1,δ
i > 0 in Ω for all δ > 0. By Proposition 2.1 there

exists a unique minimizer sn,δ to the functional

Fn,δ
τ :

{
X ∩A → R+

s 7→ 1
2τW

2(s, sn−1,δ) + E(s)
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Since sn−1,δ > 0, there exist unique Kantorovich potentials (ϕn,δi , ψn,δi ) from sn,δi
to sn−1,δ

i . This allows to construct Fn,δ using (46) where ϕni (resp. πni ) has been

replaced by ϕn,δi (resp. πn,δi ). Thanks to the above discussion,

(53) 0 ≤
∫

Ω

Fn,δ∗ · (s∗ − sn,δ∗)dx, ∀s∗ ∈ X
∗ ∩A

∗.

We can now let δ tend to 0. Because of the time continuity of the solutions to (31),
we know that sn−1,δ converges towards sn−1 in L1(Ω). On the other hand, from the
definition of sn,δ and Lemma 2.2 (in particular (30) with sn−1,δ, sn,δ,πn,δ instead
of sn−1, sn,πn) we see that πn,δ is bounded in H1(Ω)N+1 uniformly in δ > 0. Using
next the Lipschitz continuous (8) of φ, one deduces that sn,δ is uniformly bounded
in H1(Ω)N+1. Then, thanks to Rellich’s compactness theorem, we can assume that
sn,δ converges strongly in L2(Ω)N+1 as δ tends to 0. By the strong convergence
sn−1,δ → sn−1 and standard properties of the squared Wasserstein distance, one
readily checks that Fn,δ

τ Γ-converges towards Fn
τ , and we can therefore identify the

limit of sn,δ as the unique minimizer sn of Fn
τ . Thanks to Lebesgue’s dominated

convergence theorem, we also infer that πn,δi converges in L2(Ω) towards πni . Using
once again the stability of the Kantorovich potentials [44, Theorem 1.52], we know

that ϕn,δi converges uniformly towards some Kantorovich potential ϕni . Then we can
pass to the limit in (53) and claim that (52) is satisfied even when some coordinates
of sn−1 vanish on some parts of Ω.

Finally, note that since the Kantorovich potentials ϕni are Lipschitz continuous
and because πni ∈ H1 (cf. Lemma 2.2) and Ψ is smooth, we have Fni ∈ H1. Since
the phases are bounded 0 ≤ sni (x) ≤ ω(x) and π is continuous we have πn ∈ L∞,
thus Fni ∈ L∞ as well and the proof is complete. �

We can now suitably decompose the vector field Fn = (Fni )0≤i≤N defined by

(46).

Corollary 3.3. Let F n = (Fn0 , . . . , F
n
N ) be as in Lemma 3.2. There exists αn ∈

RN+1 such that, setting λn(x) := min
j

(Fnj (x) + αnj ), there holds λn ∈ H1(Ω) and

Fni + αni = λn dsni − a.e. in Ω, ∀i ∈ {0, . . . , N},(54)

∇Fni = ∇λn dsni − a.e. in Ω, ∀i ∈ {0, . . . , N}.(55)

Proof. By Lemma 3.2 we know that sn minimizes s 7→
∫
F n ·s among all admissible

s ∈ X ∩ A. Applying the multicomponent bathtub principle, Theorem B.1 in
appendix, we infer that there existsαn = (αn0 , . . . , α

n
N ) ∈ RN+1 such that Fni +α

n
i =

λn for dsni -a.e. x ∈ Ω and λn = min
j

(Fnj + αnj ) as in our statement. Note first that

λn ∈ H1(Ω) as the minimum of finitely many H1 functions F0, . . . , FN ∈ H1(Ω).
From the usual Serrin’s chain rule we have moreover that

∇λn = ∇min
j

(Fnj + αnj ) = ∇Fi.χ[Fn
i
+αn

i
=λn],

and since sni = 0 inside [Fni + αni 6= λn] the proof is complete. �

3.2. The discrete capillary pressure law and pressure estimates. In this
section, some calculations in the Riemannian settings (Ω, di) will be carried out. In
order to make them as readable as possible, we have to introduce a few basics. We
refer to [46, Chapter 14] for a more detail presentation.
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Let i ∈ {0, . . . , N}, then consider the Riemannian geometry (Ω, di), and let
x ∈ Ω, then we denote by gi,x : Rd × Rd → R the local metric tensor defined by

gi,x(v,v) = µiK
−1(x)v · v = Gi(x)v · v, ∀v ∈ R

d.

In this framework, the gradient ∇giϕ of a function ϕ ∈ C1(Ω) is defined by

ϕ(x+ hv) = ϕ(x) + hgi,x
(
∇gi,xϕ(x),v

)
+ o(h), ∀v ∈ S

d−1, ∀x ∈ Ω.

It is easy to check that this leads to the formula

(56) ∇giϕ =
1

µi
K∇ϕ,

where ∇ϕ stands for the usual (euclidean) gradient. The formula (56) can be
extended to Lipschitz continuous functions ϕ thanks to Rademacher’s theorem.

For ϕ belonging to C2, we can also define the Hessian D2
giϕ of ϕ in the Riemann-

ian setting by

gi,x
(
D2
giϕ(x) · v,v

)
=

d2

dt2
ϕ(γt)

∣∣∣∣
t=0

for any geodesic γt = expi,x(tv) starting from x with initial speed v ∈ Ti,xΩ.

Denote by ϕni the backward Kantorovich potential sending sni to sn−1
i associated

to the cost 1
2d

2
i . By the usual definition of the Wasserstein distance through the

Monge problem, one has

W 2
i (s

n
i , s

n−1
i ) =

∫

Ω

d2i (x, t
n
i (x))s

n
i (x)dx,

where tni denotes the optimal map sending sni on sn−1
i . It follows from [46, Theorem

10.41] that

(57) tni (x) = expi,x (−∇giϕ
n
i (x)) , ∀x ∈ Ω.

Moreover, using the definition of the exponential and the relation (56), one gets
that

d2i (x, expi,x (−∇giϕ
n
i (x)) = gi,x (∇giϕ

n
i (x),∇giϕ

n
i (x)) =

1

µi
K(x)∇ϕni (x)·∇ϕni (x).

This yields the formula

(58) W 2
i (s

n
i , s

n−1
i ) =

∫

Ω

sni
µi

K∇ϕni ·∇ϕni dx, ∀i ∈ {0, . . . , N}.

We have now introduced the necessary material in order to reconstruct the phase
and capillary pressures. This is the purpose of the following Proposition 3.4 and of
then Corollary 3.5

Proposition 3.4. For n ≥ 1 let ϕni : sni → sn−1
i be the (backward) Kantorovich

potentials from Lemma 3.2. There exists h = (hn0 , . . . , h
n
N ) ∈ H1(Ω)N+1 such that

(i) ∇hni = −∇ϕn
i

τ for dsni -a.e. x ∈ Ω
(ii) hni (x)− hn0 (x) = πni (x) + Ψi(x)−Ψ0(x) for dx-a.e. x ∈ Ω, i ∈ {1, . . . , N}
(iii) there exists C depending only on Ω,Π, ω,K, (µi)i, and Ψ such that, for all

n ≥ 1 and all τ > 0, one has

‖hn‖2H1(Ω)N+1 ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.
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Proof. Let ϕni be the Kantorovich potentials from Lemma 3.2 and Fni ∈ L∞∩H1(Ω)
as in (46), as well as αn ∈ RN+1 and λn = min

j
(Fnj + αnj ) ∈ L∞ ∩ H1(Ω) as in

Corollary 3.3. Setting

hni := −ϕ
n
i

τ
+ Fni − λn, ∀i ∈ {0, . . . , N},

we have hni ∈ H1(Ω) as the sum of Lipschitz functions (the Kantorovich potentials
ϕni ) and H

1 functions Fni , λ
n. Recalling that we use the notation π0 = ∂Π

∂s0
= 0, we

see from the definition (46) of Fni that

(59)

hni −hn0 =

(
Fni − ϕni

τ

)
−
(
Fn0 − ϕn0

τ

)
= (πni +Ψi)− (πn0 +Ψ0) = πni +Ψi−Ψ0

for all i ∈ {1, . . . , N} and dx-a.e. x, which is exactly our statement (ii).
For (i), we simply use (55) to compute

(60)

∇hni = −∇ϕni
τ

+∇(Fni −λni ) = −∇ϕni
τ

for dsni -a.e. x ∈ Ω, ∀i ∈ {0, . . . , N}.

In order to establish now the H1 estimate (iii), let us denote

Ui =
{
x ∈ Ω

∣∣∣∣ s
n
i (x) ≥

ω⋆
N + 1

}
.

Then since
∑
sni (x) = ω(x) ≥ ω⋆ > 0, one gets that, up to a negligible set,

(61)
N⋃

i=0

Ui = Ω, hence (Ui)c ⊂
⋃

j 6=i

Uj.

We first estimate ∇hn0 . To this end, we write

(62) ‖∇hn0‖2L2 ≤ 1

κ⋆

∫

Ω

K∇hn0 ·∇hn0dx ≤ A+B,

where we have set

A =
1

κ⋆

∫

U0

K∇hn0 ·∇hn0dx, B =
1

κ⋆

∫

(U0)
c

K∇hn0 ·∇hn0dx.

Owing to (60) one has ∇hn0 = −∇ϕ0

τ on U0 ⊂ Ω, where sn0 ≥ ω⋆

N+1 . Therefore,

A ≤ (N + 1)µ0

ω⋆κ⋆

∫

U0

sn0
µ0

K∇hn0 ·∇hn0dx ≤ (N + 1)µ0

τ2ω⋆κ⋆

∫

Ω

sn0
µ0

K∇ϕn0 ·∇ϕn0dx.

Then it results from formula (58) that

(63) A ≤ C

τ2
W 2

0 (s
n
0 , s

n−1
0 )

where C depends neither on n nor on τ . Combining (61) and (59), we infer

B ≤ 1

κ⋆

N∑

i=1

∫

Ui

K∇[hni − (πni +Ψi −Ψ0)] ·∇[hni − (πni +Ψi −Ψ0)]dx.



MULTIPHASE FLOWS IN POROUS MEDIA: A VARIATIONAL APPROACH 19

Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and (3), we get that

(64) B ≤ 3

κ⋆

N∑

i=1

∫

Ui

K∇hi ·∇hidx+
3κ⋆

κ⋆

N∑

i=1

(
‖∇πni ‖2L2 + ‖∇(Ψi −Ψ0)‖2L2

)
.

Similar calculations to those carried out to estimate A yield
∫

Ui

K∇hi ·∇hidx ≤ C

τ2
W 2
i (s

n
i , s

n−1
i )

for some C depending neither on n, i nor on τ . Combining this inequality with
Lemma 2.2 and the regularity of Ψ, we get from (64) that

(65) B ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

for some C not depending on n and τ (here we also used 1/τ ≤ 1/τ2 for small τ in
the W 2 terms). Gathering (63) and (65) in (62) provides

‖∇hn0‖2L2 ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

Note that (i)(ii) remain invariant under subtraction of the same constant hn0 , h
n
i  

hn0 − C, hni − C, as the gradients remain unchanged in (i) and only the differences
hni − hn0 appear in (ii) for i ∈ {1 . . .N}. We can therefore assume without loss of
generality that

∫
Ω
hn0dx = 0. Hence by the Poincaré-Wirtinger inequality, we get

that

‖hn0‖2H1 ≤ C‖∇hn0‖2L2 ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
.

Finally, from (ii) hni = hn0 + πni + Ψi − Ψ0, the smoothness of Ψ, and using again
the estimate (30) for ‖∇πn‖2L2 we finally get that for all i ∈ {1, . . . , N}, one has

‖hni ‖2H1 ≤ C(‖hn0‖2H1 + ‖πni ‖2H1 + ‖Ψi‖2H1 + ‖Ψ0‖2H1)

≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)
,

and the proof of Proposition 3.4 is complete. �

We can now define the phase pressures (pni )i=0,...,N by setting

(66) pni := hni −Ψi, ∀i ∈ {0, . . . , N}.
The following corollary is a straightforward consequence of Proposition 3.4 and of
the regularity of Ψi.

Corollary 3.5. The phase pressures pn = (pni )0≤i≤N ∈ H1(Ω)N+1 satisfy

(67) ‖pn‖2H1(Ω) ≤ C

(
1 +

W 2(sn, sn−1)

τ2
+

N∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

for some C depending only on Ω,Π, ω,K, (µi)i, and Ψ (but neither on n nor on τ),
and the capillary pressure relations are fulfilled:

(68) pni − pn0 = πni , ∀i ∈ {1, . . . , N}.
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Our next result is a first step towards the recovery of the PDEs.

Lemma 3.6. There exists C depending depending only on Ω,Π, ω,K, (µi)i, and Ψ

(but neither on n nor on τ) such that, for all i ∈ {0, . . . , N} and all ξ ∈ C2(Ω), one
has

(69)

∣∣∣∣
∫

Ω

(
sni − sn−1

i

)
ξdx+ τ

∫

Ω

sni
K

µi
∇ (pni +Ψi) ·∇ξdx

∣∣∣∣

≤ CW 2
i (s

n
i , s

n−1
i )‖D2

giξ‖∞.
This is of course a discrete approximation to the continuity equation ∂tsi =

∇ · (si K

µi
∇ (pi +Ψi)).

Proof. Let ϕni denote the (backward) optimal Kantorovich potential from Lemma 3.2
sending sni to sn−1

i , and let tni be the corresponding optimal map as in (57). For

fixed ξ ∈ C2(Ω) let us first Taylor expand (in the gi Riemannian framework)
∣∣∣∣ξ(t

n
i (x))− ξ(x) +

1

µi
K(x)∇ξ(x) ·∇ϕni (x)

∣∣∣∣ ≤
1

2
‖D2

giξ‖∞d
2
i (x, t

n
i (x)).

Using the definition of the pushforward sn−1
i = tni #s

n
i , we then compute

∣∣∣∣
∫

Ω

(sni (x)− sn−1
i (x))ξ(x)dx−

∫

Ω

K(x)

µi
∇ξ(x) ·∇ϕni (x)s

n
i (x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

(ξ(x)− ξ(tni (x))s
n
i (x)dx−

∫

Ω

K(x)

µi
∇ξ(x) ·∇ϕni (x)s

n
i (x)dx

∣∣∣∣

≤
∫

Ω

1

2
‖D2

giξ‖∞d
2
i (x, t

n
i (x))s

n
i (x)dx =

1

2
‖D2

giξ‖∞W
2
i (s

n
i , s

n−1
i ).

From Proposition 3.4(i) we have ∇ϕni = −τ∇hni for dsni a.e. x ∈ Ω, thus by the
definition (66) of pni , we get ∇ϕn = −τ∇(pni + Ψi). Substituting in the second
integral of the left-hand side gives exactly (69) and the proof is complete. �

4. Convergence towards a weak solution

The goal is now to prove the convergence of the piecewise constant intepro-
lated solutions sτ , defined by (26), towards a weak solution s as τ → 0. Simi-
larly, the τ superscript denotes the piecewise constant interpolation of any previ-
ous discrete quantity (e.g. pτi (t) stands for the piecewise constant time interpola-
tion of the discrete pressures pni ). In what follows, we will also use the notations
sτ∗ = (sτ1 , . . . , s

τ
N ) ∈ L∞((0, T );X ∗) and πτ = π(sτ∗,x).

4.1. Time integrated estimates. We immediately deduce from (29) that

(70) W (sτ (t2), s
τ (t1)) ≤ C|t2 − t1 + τ | 12 , ∀ 0 ≤ t1 ≤ t2 ≤ T.

From the total saturation
N∑
i=0

sni (x) = ω(x) ≤ ω⋆ and sτi ≥ 0, we have the L∞

estimates

(71) 0 ≤ sτi (x, t) ≤ ω⋆ a.e. in Q for all i ∈ {0, . . . , N}.
Lemma 4.1. There exists C depending only on Ω, T,Π, ω,K, (µi)i, and Ψ such
that

(72) ‖pτ‖2L2((0,T );H1(Ω)N+1) + ‖πτ‖2L2((0,T );H1(Ω)N ) ≤ C.
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Proof. Summing (67) from n = 1 to n = Nτ := ⌈T/τ⌉, we get

‖pτ‖2L2(H1) =

Nτ∑

n=1

τ‖pn‖2H1

≤ C

Nτ∑

n=1

τ

(
1 +

W 2(sn, sn−1)

τ2
+

Nτ∑

i=0

Hω(s
n−1
i )−Hω(s

n
i )

τ

)

≤ C

(
(T + 1) +

Nτ∑

n=1

W 2(sn, sn−1)

τ
+

N∑

i=0

(
Hω(s

0
i )−Hω(s

Nτ

i )
))

.

We use that

0 ≥ Hω(s) ≥ −1

e
‖ω‖L1 ≥ −|Ω|

e
, ∀s ∈ L∞(Ω) with 0 ≤ s ≤ ω

together with the total square distance estimate (28) to infer that ‖p‖2L2(H1) ≤ C.

The proof is identical for the capillary pressure πτ (simply summing the one-step
estimate from Lemma 2.2). �

4.2. Compactness of approximate solutions. We denote by H ′ = H1(Ω)′.

Lemma 4.2. For each i ∈ {0, . . . , N}, there exists C depending only on Ω, Π, Ψ,
K, and µi (but not on τ) such that

‖sτi (t2)− sτi (t1)‖H′ ≤ C|t2 − t1 + τ | 12 , ∀ 0 ≤ t1 ≤ t2 ≤ T.

Proof. Thanks to (71), we can apply [39, Lemma 3.4] to get
∣∣∣∣
∫

Ω

f{sτi (t2)− sτi (t1)}dx
∣∣∣∣ ≤ ‖∇f‖L2(Ω)Wref(s

τ
i (t1), s

τ
i (t2)), ∀f ∈ H1(Ω).

Thus by duality and thanks to the distance estimate (70) and to the lower bound
in (19), we obtain that

‖sτi (t2)− sτi (t1)‖H′ ≤Wref(s
τ
i (t1), s

τ
i (t2)) ≤ CWi(s

τ
i (t1), s

τ
i (t2)) ≤ C|t2 − t1 + τ | 12

for some C depending only on Ω, Π, (ρi)i, g, (µi)i, K. �

From the previous equi-continuity in time, we deduce full compactness of the
capillary pressure:

Lemma 4.3. The family (πτ )τ>0 is sequentially relatively compact in L2(Q)N .

Proof. We use Alt & Luckhaus’ trick [1] (an alternate solution would consist in
slightly adapting the nonlinear time compactness results [40, 8] to our context).
Let h > 0 be a small time shift, then by monotonicity and Lipschitz continuity of
the capillary pressure function π(.,x)

‖πτ (·+ h)− πτ (·)‖2L2((0,T−h);L2(Ω)N )

≤ 1

κ⋆

∫ T−h

0

∫

Ω

(πτ (t+ h,x)− πτ (t,x)) · (sτ∗(t+ h,x)− sτ∗(t,x))dxdt

≤ 2
√
T

κ⋆
‖πτ‖L2((0,T );H1(Ω)N )‖sτ∗(·+ h, ·)− sτ∗‖L∞((0,T−h);H′)N .
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Then it follows from Lemmas 4.1 and 4.2 that there exists C > 0, depending neither
on h nor on τ , such that

‖πτ (·+ h, ·)− πτ‖L2((0,T−h);L2(Ω)N ) ≤ C|h+ τ |1/2.

On the other hand, the (uniform w.r.t. τ) L2((0, T );H1(Ω)N )- and L∞(Q)N -
estimates on πτ ensure that

‖πτ (·, ·+ y))− πτ‖L2(0,T ;L2) ≤ C
√
|y|(1 +

√
|y|), ∀y ∈ R

d,

where πτ is extended by 0 outside Ω. This allows to apply Kolmogorov’s com-
pactness theorem (see, for instance, [29]) and entails the desired relative compact-
ness. �

4.3. Identification of the limit. In this section we prove our main Theorem 1.2,
and the proof goes in two steps: we first retrieve strong convergence of the phase
contents sτ → s and weak convergence of the pressures pτ ⇀ p, and then use the
strong-weak limit of products to show that the limit is a weak solution. All along
this section, (τk)k≥1 denotes a sequence of times steps tending to 0 as k → ∞.

Lemma 4.4. There exist s ∈ L∞(Q)N+1 with s(·, t) ∈ X ∩A for a.e. t ∈ (0, T ),
and p ∈ L2((0, T );H1(Ω)N+1) such that, up to an unlabeled subsequence, the fol-
lowing convergence properties hold:

sτk −→
k→∞

s a.e. in Q,(73)

πτk −⇀
k→∞

π(s∗, ·) weakly in L2((0, T );H1(Ω)N ),(74)

pτk −⇀
k→∞

p weakly in L2((0, T );H1(Ω)N+1).(75)

Moreover, the capillary pressure relations (5) hold.

Proof. From Lemma 4.3, we can assume that πτk → z strongly in L2(Q)N for
some limit z, thus a.e. up to the extraction of an additional subsequence. Since
z 7→ φ(z,x) = π−1(z,x) is continuous, we have that

sτk∗ = φ(πτk ,x) −→
k→∞

φ(π,x) =: s∗ a.e. in Q.

In particular, this yields πτk −→
k→∞

π(s∗, ·) a.e. in Q. Since we had the total satu-

ration
N∑
i=0

sτki (t,x) = ω(x), we conclude that the first component i = 0 converges

pointwise as well. Therefore, (73) holds. Thanks to Lebesgue’s dominated conver-
gence theorem, it is easy to check that s(·, t) ∈ X ∩ A for a.e. t ∈ (0, T ). The
convergences (74) and (75) are straightforward consequences of Lemma 4.1. Lastly,
it follows from (68) that

pτki − pτk0 = πi(s
τk∗, ·), ∀i ∈ {1, . . . , N}, ∀k ≥ 1.

We can finally pass to the limit k → ∞ in the above relation thanks to (74)–(75)
and infer

pi − p0 = πi(s
∗,x) in L2((0, T );H1(Ω)), ∀i ∈ {1, . . . , N}.

which immediately implies (5) as claimed. �
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Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of
(sτk)k≥1 belongs to C([0, T ];A) where A is equipped with the metric W . Moreover,

W (sτk(t), s(t)) −→
k→∞

0 for all t ∈ [0, T ].

Proof. It follows from the bounds (71) on si that for all t ∈ [0, T ], the sequence
(sτki )k is weakly compact in L1(Ω). It is also compact in Ai equipped with the
metric Wi due to the continuity of Wi with respect to the weak convergence in
L1(Ω) (this is for instance a consequence of [44, Theorem 5.10] together with the
equivalence of Wi with Wref stated in (19)). Thanks to (70), one has

lim sup
k→∞

Wi (s
τk
i (t2), s

τk
i (t1)) ≤ |t2 − t1|1/2, ∀t1, t2 ∈ [0, T ].

Applying a refined version of the Arzelà-Ascoli theorem [5, Prop. 3.3.1] then pro-
vides the desired result. �

In order to conclude the proof of Theorem 1.2, it only remains to show that
s = lim sτk and p = limpτk satisfy the weak formulation (12):

Proposition 4.6. Let (τk)k≥1 be a sequence such that the convergences in Lem-

mas 4.4 and 4.5 hold. Then the limit s of (sτk)k≥1 is a weak solution in the sense

of Definition 1.1 (with −ρig replaced by +∇Ψi in the general case).

Proof. Let 0 ≤ t1 ≤ t2 ≤ T , and denote nj,k =
⌈
tj
τk

⌉
and t̃j = nj,kτk for j ∈ {1, 2}.

Fixing an arbitrary ξ ∈ C2(Ω) and summing (69) from n = n1,k + 1 to n = n2,k

yields

(76)

∫

Ω

(sτki (t2)− sτki (t1))ξdx =

n2,k∑

n=n1,k+1

∫

Ω

(sni − sn−1
i )ξdx

= −
∫ t̃2

t̃1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt+O




n2,k∑

n=n1,k+1

W 2
i (s

n
i , s

n−1
i )


 .

Since 0 ≤ t̃j − tj ≤ τk and
s
τk
i

µi
K∇ (pτki +Ψi) ·∇ξ is uniformly bounded in L2(Q),

one has
∫ t̃2

t̃1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt

=

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt+O(
√
τk).

Combining the above estimate with the total square distance estimate (28) in (76),
we obtain

(77)

∫

Ω

(sτki (t2)−sτki (t1))ξdx+

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt = O (
√
τk) .

Thanks to Lemma 4.5, and since the convergence in (Ai,Wi) is equivalent to the
narrow convergence of measures (i.e., the convergence in C(Ω)′, see for instance [44,
Theorem 5.10]), we get that

(78)

∫

Ω

(sτki (t2)− sτki (t1))ξdx −→
k→∞

∫

Ω

(si(t2)− si(t1))ξdx.
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Moreover, thanks to Lemma 4.4, one has

(79)

∫ t2

t1

∫

Ω

sτki
µi

K∇ (pτki +Ψi) ·∇ξdxdt −→
k→∞

∫ t2

t1

∫

Ω

si
µi

K∇ (pi +Ψi) ·∇ξdxdt.

Gathering (77)–(79) yields, for all ξ ∈ C2(Ω) and all 0 ≤ t1 ≤ t2 ≤ T ,

(80)

∫

Ω

(si(t2)− si(t1))ξdx+

∫ t2

t1

∫

Ω

si
µi

K∇ (pi +Ψi) ·∇ξdxdt = 0.

In order to conclude the proof, it remains to check that the formulation (80) is
stronger the formulation (12). Let ε > 0 be a time step (unrelated to that appearing
in the minimization scheme (25)), and set Lε =

⌊
T
ε

⌋
. Let φ ∈ C∞

c (Ω× [0, T )), one
sets φℓ = φ(·, ℓε) for ℓ ∈ {0, . . . , Lε}. Since t 7→ φ(·, t) is compactly supported in
[0, T ), then there exists ε⋆ > 0 such that φLε

≡ 0 for all ε ∈ (0, ε⋆]. Then define by

φε :

{
Ω× [0, T ] → R

(x, t) 7→ φℓ(x) if t ∈ [ℓε, (ℓ+ 1)ε).

Choose t1 = ℓε, t2 = (ℓ+1)ε, ξ = φℓ in (80) and sum over ℓ ∈ {0, . . . , Lε−1}. This
provides

(81) A(ε) +B(ε) = 0, ∀ε > 0.

where

A(ε) =

Lε−1∑

ℓ=0

∫

Ω

(si((ℓ + 1)ε)− si(ℓε))φ
ℓdx,

B(ε) =

∫∫

Q

si
µi

K∇ (pi +Ψi) ·∇φεdxdt.

Due to the regularity of φ, ∇φε converges uniformly towards φ as ε tends to 0, so
that

(82) B(ε) −→
ε→0

∫∫

Q

si
µi

K∇ (pi +Ψi) ·∇φdxdt.

Reorganizing the first term and using that φLε
≡ 0, we get that

A(ε) = −
Lε∑

ℓ=1

ε

∫

Ω

si(ℓε)
φℓ − φℓ−1

ε
dx−

∫

Ω

s0iφ(·, 0)dx.

It follows from the continuity of t 7→ si(·, t) in Ai equipped with Wi and from the
uniform convergence of

(x, t) 7→ φℓ(x)− φℓ−1(x)

ε
if t ∈ [(ℓ − 1)ε, ℓε)

towards ∂tφ that

(83) A(ε) −→
ε→0

−
∫∫

Q

si∂tφdxdt−
∫

Ω

s0iφ(·, 0)dx.

Combining (81)–(83) shows that the weak formulation (12) is fulfilled. �
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Appendix A. A simple condition for the geodesic convexity of (Ω, di)

The goal of this appendix is to provide a simple condition on the permeability
tensor in order to ensure that Condition (22) is fulfilled. For the sake of simplicity,
we only consider here the case of isotropic permeability tensors

(84) K(x) = κ(x)Id, ∀x ∈ Ω

with κ⋆ ≤ κ(x) ≤ κ⋆ for all x ∈ Ω. Let us stress that the condition we provide is
not optimal.

As in the core of the paper, Ω denotes a convex open subset of Rd with C2

boundary ∂Ω. For x ∈ ∂Ω, we denote by n(x) the outward-pointing normal.
Since ∂Ω is smooth, then there exists ℓ0 > 0 such that, for all x ∈ Ω such that
dist(x, ∂Ω) < ℓ0, there exists a unique x ∈ ∂Ω such that dist(x, ∂Ω) = |x−x| (here
dist denotes the usual Euclidian distance between sets in Rd). As a consequence,
one can rewrite x = x− ℓn(x) for some ℓ ∈ (0, ℓ0).

In what follows, a function f : Ω → R is said to be normally nondecreasing
(resp. nonincreasing) on a neighborhood of ∂Ω if there exists ℓ1 ∈ (0, ℓ0] such that
ℓ 7→ f(x− ℓn(x)) is nonincreasing (resp. nondecreasing) on [0, ℓ1].

Proposition A.1. Assume that:

(i) the permeability field x 7→ κ(x) is normally non-increasing in a neighborhood
of ∂Ω;

(ii) for all x ∈ ∂Ω, either ∇κ(x)·n(x) < 0, or ∇κ(x)·n(x) = 0 and D2κ(x)n(x)·
n(x) = 0.

Then there exists a C2 extension κ̃ : Rd → [κ⋆

2 , κ
⋆] of κ and a Riemannian metric

(85) δ̃(x,y) = inf
γ∈P̃(x,y)

(∫ 1

0

1

κ̃(γ(τ))
|γ ′(τ)|2dτ

)1/2

, ∀x,y ∈ R
d

with P̃ (x,y) =
{
γ ∈ C1([0, 1];Rd)

∣∣γ(0) = x and γ(1) = y
}
, such that (Ω, δ̃i) is

geodesically convex.

Proof. Since Ω is convex, then for all x ∈ Rd \Ω, there exists a unique x ∈ ∂Ω such
that dist(x,Ω) = |x − x|. Then one can extend κ in a C2 way into the whole Rd

by defining

κ(x) = κ(x) + |x− x|∇κ(x) · n(x) + |x− x|2
2

D2κ(x)n(x) · n(x), ∀x ∈ R
d \ Ω.

Thanks to Assumptions (i) and (ii), the function ℓ 7→ κ(x−ℓn(x)) is non-decreasing
on (−∞, ℓ1] for all x ∈ ∂Ω. Since ∂Ω is compact, there exists ℓ2 > 0 such that

κ(x− ℓn(x) ≥ κ⋆
2
, ∀ℓ ∈ (−ℓ2, 0].

Let ρ : R+ → R be a non-decreasing C2 function such that ρ(0) = 1, ρ′(0) =
ρ′′(0) = 0 and ρ(ℓ) = 0 for all ℓ ≥ ℓ2. Then define

κ̃(x) = ρ(dist(x,Ω))κ(x) + (1− ρ(dist(x,Ω)))
κ⋆
2
, ∀x ∈ R

d,

so that the function ℓ 7→ κ̃(x− ℓn(x)) is non-increasing on (−∞, ℓ1) and bounded
from below by κ⋆

2 .
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Let x,y ∈ Ω, then there exists ε > 0 such that dist(x, ∂Ω) ≥ ε, dist(y, ∂Ω) ≥ ε,
and κ is normally nonincreasing on ∂Ωε := {x ∈ Ω | dist(x, ∂Ω) < ε}. A sufficient

condition for (Ω, δ̃) to be geodesic is that the geodesic γopt
x,y from x to y is such that

(86) dist
(
γopt
x,y(t), ∂Ω

)
≥ ε, ∀t ∈ [0, 1].

In order to ease the reading, we denote by γ = γopt
x,y any geodesic such that

(87) δ̃2(x,y) =

∫ 1

0

1

κ̃(γ(τ))
|γ′(τ)|2dτ.

We define the continuous and piecewise C1 path γε from x to y by setting

(88) γε(t) = projΩε
(γ(t)), ∀t ∈ [0, 1],

where Ωε := {x ∈ Ω | dist(x, ∂Ω) ≥ ε} is convex, and the orthogonal (w.r.t. the
euclidian distance dist) projection projΩε

onto Ωε is therefore uniquely defined.

Assume that Condition (86) is violated. Then by continuity there exists a non-
empty interval [a, b] ⊂ [0, 1] such that

dist(γ(t), ∂Ω) < ε, ∀t ∈ (a, b),

the geodesic between γ(a) and γ(b) coincides with the part of the geodesics between
x and y. Then, changing x into γ(a) and y into γ(b), we can assume without loss
of generality that

dist(γ(t), ∂Ω) < ε, ∀t ∈ (0, 1).

It is easy to verify that

(89) |γ′
ε(t)| ≤ |γ′(t)|, ∀t ∈ [0, 1], and |γ ′

ε(t)| < |γ ′(t)| on (a, b)

for some non-empty interval (a, b) ⊂ [0, 1]. It follows from (85) that

δ̃2(x,y) ≤
∫ 1

0

1

κ̃(γε(τ))
|γ′
ε(τ)|2dτ.

Since κ is normally non-increasing, one has

δ̃2(x,y) ≤
∫ 1

0

1

κ̃(γ(τ))
|γ′
ε(τ)|2dτ.

Thanks to (89), one obtains that

δ̃2(x,y) <

∫ 1

0

1

κ̃(γ(τ))
|γ′(τ)|2dτ,

providing a contradiction with the optimality (87) of γ. Thus Condition (86) holds,
hence (Ω, δ) is a geodesic space. �

Appendix B. A multicomponent bathtub principle

The following theorem can be seen as a generalization of the classical scalar
bathtub principle (see for instance [35, Theorem 1.14]). In what follows, N is a
positive integer and Ω denotes an arbitrary measurable subset of Rd.

Theorem B.1. Let ω ∈ L1
+(Ω), and let m = (m0, . . . ,mN) ∈ (R∗

+)
N+1 be such

that
∑N

i=0mi =
∫
Ω ω dx. We denote by

X∩A =

{
s = (s0, . . . , sN ) ∈ L1

+(Ω)
N+1

∣∣∣∣∣

∫

Ω

sidx = mi and

N∑

i=0

si = ω a.e. in Ω

}
.
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Then for any F = (F0, . . . , FN ) ∈ (L∞(Ω))N+1, the functional

F : s 7→
∫

Ω

F · s dx

has a minimizer in X ∩A. Moreover, there exists α = (α0, . . . , αN ) ∈ RN+1 such
that, denoting

λ(x) := min
0≤j≤N

{Fj(x) + αi}, x ∈ Ω,

any minimizer s = (s0, . . . , sN ) satisfies

Fi + αi = λ dsi-a.e. in Ω, ∀i ∈ {0, . . . , N}.

One can think of this as: si = 0 in {Fi+αi > λ} and Fi+αi ≥ λ everywhere, i.e.,

si > 0 can only occur in the “contact set”

{
x

∣∣∣∣ Fi(x) + αi = min
j

(Fj(x) + αj)

}
.

Proof. For the existence part, note that F is continuous for the weak L1 conver-
gence, and that X ∩ A is weakly closed. Since

∑
si = ω and si ≥ 0 we have in

particular 0 ≤ si ≤ ω ∈ L1 for all i and s ∈ X ∩ A. This implies that X ∩ A

is uniformly integrable, and since the mass ‖si‖L1 =
∫
si = mi is prescribed, the

Dunford-Pettis theorem shows that X ∩A is L1-weakly relatively compact. Hence
from any minimizing sequence we can extract a weakly-L1 converging subsequence,
and by weak L1 continuity the weak limit is a minimizer.

Let us now introduce a dual problem: for fixed α = (α0, . . . , αN ) ∈ RN+1 we
denote

(90) λα(x) := min
i
{Fi(x) + αi}

and define

J(α) :=

∫

Ω

λα(x)ω(x)dx−
N∑

i=0

αimi.

We shall prove below that

(i) sup
α∈RN+1

J(α) = max
α∈RN+1

J(α) is achieved,

(ii) min
s∈X∩A

F(s) = max
α∈RN+1

J(α).

The desired decomposition will then follow from equality conditions in (ii), and
λ(x) = λα(x) will be retrieved from any maximizer α ∈ ArgmaxJ .

Remark B.2. The above dual problem can be guessed by introducing suitable La-
grange multipliers λ(x),α for the total saturation and mass constraints, respec-
tively, and writing the convex indicator of the constraints as a supremum over
these multipliers. Formally exchanging inf sup = sup inf and computing the opti-
mality conditions in the right-most infimum relates λ to α as in (90), which in turn
yields exactly the duality inf

s
F = max

α
J . See also Remark B.3
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Let us first establish property (i). For all α ∈ RN+1 and all s ∈ X ∩A, we first
observe that

J(α) =

∫

Ω

min
j

{Fj(x) + αj}ω(x)dx−
N∑

i=0

αimi

=

∫

Ω

min
j

{Fj(x) + αj}
N∑

i=0

si(x)dx−
N∑

i=0

αi

∫

Ω

si(x)dx

=

N∑

i=0

∫

Ω

(
min
j

{Fj(x) + αj} − αi

)
si(x)dx ≤

∫

Ω

F · s dx = F(s).

In particular J is bounded from above and

(91) sup
α∈RN+1

J(α) ≤ min
s∈X∩A

F(s).

Since
∫
ωdx =

∑
mi, the function J is invariant under diagonal shifts, i.e., J(α+

c1) = J(α) for any constant c ∈ R. As a consequence we can choose a maximizing
sequence {αk}k≥1 such that min

j
αkj = 0 for all k ≥ 0. Let j(k) be an index such

that αkj(k) = min
j
αkj = 0. Then, since αk is maximizing and ω(x) ≥ 0, we get, for

k large enough,

sup J − 1 ≤ J(αk) =

∫

Ω

min
j

{Fj(x) + αkj }ω(x)dx−
∑

αkimi

≤
∫

Ω

(
Fj(k)(x) + αkj(k)︸ ︷︷ ︸

=0

)
ω(x)dx−

∑
αkimi ≤ ‖F ‖L∞‖ω‖L1 −

∑
αkimi.

Thus
∑
αkimi ≤ C, and since αki ≥ 0 and mi > 0 we deduce that

(
αk
)
k
is

bounded. Hence, up to extraction of an unlabelled subsequence, we can assume
that αk converges towards some α ∈ R

N+1
+ . The map J is continuous, hence α is

a maximizer.

Let us now focus on property (ii). Note from (91) and (i) it suffices to prove the
reverse inequality

max
α∈RN+1

J(α) ≥ min
s∈X∩A

F(s).

We show below that, for any maximizer α of J , we can always construct a suitable
s ∈ X ∩A such that F(s) = J(α). This will immediately imply the reverse inequal-
ity and thus our claim (ii). In order to do so, we first observe that J is concave,
thus the optimality condition at α can be written in terms of superdifferentials as
0RN+1 ∈ ∂J(α). Denoting by

Λ(α) =

∫

Ω

λαωdx =

∫

Ω

min
j

{Fj(x) + αj}ω(x)dx

the first contribution in J , this optimality can be recast as

(92) m ∈ ∂Λ(α).

For fixed x ∈ Ω and by usual properties of the min function, the superdifferential
∂λα(x) of the concave map α 7→ λα(x) at α ∈ RN+1 is characterized by

∂λα(x) =

{
θ ∈ R

N+1
+

∣∣∣∣∣

N∑

i=0

θi = 1, and θi = 0 if Fi(x) + αi > λα(x)

}
.



MULTIPHASE FLOWS IN POROUS MEDIA: A VARIATIONAL APPROACH 29

Therefore, it follows from the extension of the formula of differentiation under the
integral to the non-smooth case (cf. [23, Theorem 2.7.2]) that
(93)

∂Λ(α) =

{
w ∈ R

N+1
+

∣∣∣∣ w =

∫

Ω

θ(x)ω(x)dx with θ(x) ∈ ∂λα(x) a.e. in Ω

}
.

The optimality criterion (92) at any maximizer α gives the existence of some func-
tion θ as in (93) such that

mi =

∫

Ω

θi(x)ω(x)dx, ∀i ∈ {0, . . . , N}.

Defining

(94) si(x) := θi(x)ω(x), ∀i ∈ {0, . . . , N},

we have by construction that si ≥ 0,
∫
si = mi, and

∑
si = (

∑
i θi)ω = ω a.e, thus

s ∈ X ∩A. Exploiting again
∑
si = ω as well as the crucial property that θi = 0

a.e. in {x | Fi + αi > λα}, or in other words that Fi + αi = λα for dsi-a.e x ∈ Ω,
we get

J(α) =

∫

Ω

λαωdx−
N∑

i=0

αimi =

N∑

i=0

∫

Ω

λαsidx−
N∑

i=0

αimi

=

N∑

i=0

∫

Ω

(Fi + αi)sidx−
N∑

i=0

αimi = F(s)

as claimed. Therefore s constructed by (94) is a minimizer of F and

(95) J(α) = F(s).

In order to finally retrieve the desired decomposition, choose any minimizer
s ∈ X ∩A of F and any maximizer α ∈ RN+1 of J . Then it follows from (95) that

0 = F(s)− J(α) =

N∑

i=0

∫

Ω

Fisidx−
∫

Ω

λαωdx+

N∑

i=0

αimi.

Using once again that
∫
si = mi and

∑
i si = ω, we get that

N∑

i=0

∫

Ω

(Fi + αi − λα) sidx = 0.

By definition of λα the above integrand is nonnegative, hence Fi +αi = λα a.e. in
{si > 0}. �

Remark B.3. To understand the dual problem one chan think the function Fi as
N + 1 bathub that can be translated vertically. The translation of each bathtub is
given by αi. Once these translations are given one just wants to fill the bathubs
starting from the bottom (that is λα), while satisfying the global saturation and
mass constraints. For an optimal translation vector α, each phase i contributes at
x with a ratio θi(x) as in (94).
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