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1. Introduction

We are aware of just three1 models of directed polymer in a random environment for which the free

energy at finite inverse temperature is well known:

1. The discrete polymer in dimension d = 1 with simple random walk paths and a log-gamma envi-

ronment and boundary conditions: see Seppäläinen (2012).

2. The continuous time directed polymer with Poisson process paths and a Brownian environment :

see O’Connell and Yor (2001).

3. The continuum random polymer with brownian paths and a white noise environment : see Amir,

Corwin and Quastel (2011).

The origin of this note is to find the simplest possible model where some direct computations can be

performed. Of course, this model is much less interesting than the three models above. Note also that

we are even unable to generalize it to a three points state space !

Let us consider the simplest model of continuous time directed polymer in a random environment. Let

ω = (ω(t))t≥0 be the continuous time Markov chain on {1,2} with generator:

L f (1) = f (2)− f (1) , L f (2) = f (1)− f (2) , (1.1)

that is the chain that spends an exponential time on 1 (resp 2) and the jumps on 2 (resp. 1). We let Pi

denote the law of the Markov chain starting from i, Ei the associated expectation, and (W,W ) the path

space of piecewise constant cadlag functions from [0,+∞[ to {1,2}. We set P = P1 and E = E1.

The random environment consists of two independent standard Brownian motions (Bi(t), t ≥ 0) defined

on another probability space (Ω,F ,P).

For any t > 0 the (random) polymer measure µt is the probability defined on the path space (W,W ) by

µt (dω) =
1

Zt

eβHt (ω)−tβ2/2
P(dω)

where β ≥ 0 is the inverse temperature, the Hamiltonian is

Ht(ω) =

∫ t

0

dBω(s)(s)

1If some interested reader finds another example where an exact computation of the free energy occurs, we are more than

willing to incorporate it in this list
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and the partition function is

Zt = Zt(β) = E
�

eβHt (ω)−tβ2/2
�

,

It is well known, and for example established in (Carmona and Hu, 2006, Proposition 2.4) that the point

to point partition function

Zt (x , y) := Ex

�

eβHt (ω)−tβ2/2 1(ω(t)=y)

�

(1.2)

satisfy the Discrete Stochastic Heat Equation:

dZt (x , y) = LZt(x , .)(y) d t + βZt(x , y)dBy (t) , (1.3)

in the Itô sense with inital conditions Z0(x , y) = δx(y) (from now on we shall fix as a starting point

x = 1). Furthermore, the free energy is well defined

p(β) := lim
t→+∞

1

t
log Zt (β) (a.s. and in L1(P)) , (1.4)

and is given by the limit (see (Carmona and Hu, 2006, Formula (15)))

p(β) = −
β2

2
lim

t→+∞

1

t

∫ t

0

E [Is] ds , (1.5)

with It the overlap

It = µ
⊗2
t
(ω1(t) =ω2(t)) =

1

Z2
t

2
∑

y=1

Zt (1, y)2 .

Theorem 1.1. For this model of DPRE the mean ovelap converges:

lim
t→+∞
E [It] = α−(β) (1.6)

with α−(β) ∈ (0,1) the smallest root of the polynomial

Pβ (X ) = 3β2X 2 − (5β2 + 4)X + 2(1+ β2) .

Consequently the free energy is

p(β) = −
β2

2
α−(β) .

Observe that as β → 0+, α−(β)→
1
2 as expected.

2. Proof of Theorem 1.1

To simplify notations we let X i(t) = Zt (1, i) and set Z0 = 1 so that we have X1(0) = 1, X2(0) = 0, I0 = 1

and (X1, X2) is solution of the following simple system of stochastic differential equations:

�

dX1(t) = (X2 − X1) d t + βX1dB1(t)

dX2(t) = −(X2 − X1) d t + βX2dB2(t)
(2.1)

It is easy to check that Zt = X1(t) + X2(t) is a martingale

dZt = β(X1dB1(t) + X2dB2(t))

with quadratic variation

d〈Z〉t = β
2(X 2

1
+ X 2

2
) d t = β2Nt d t = β2Z2

t
It d t ,
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where we have set

Nt = X1(t)
2 + X2(t)

2 so that It =
Nt

Z2
t

.

Without having to read Carmona and Hu (2006), one can infer directly that

log Zt =

∫ t

0

dZs

Zs

−
1

2

∫ t

0

d〈Z〉s
Z2

s

=

∫ t

0

dZs

Zs

−
β2

2

∫ t

0

Is ds

so that
1

t
E [log Zt] = −

β2

2

1

t

∫ t

0

E [Is] ds .

Let us do now some straightforward computations using Ito’s formula

dX 2
1
(t) = ((β2 − 2)X 2

1
+ 2X1X2) d t + 2βX 2

1
dB1

dNt = (4X1X2 + (β
2 − 2)Nt )d t + 2β(X 2

1
dB1 + X 2

2
dB2) = (2Z2

t
+ (β2 − 4)Nt ) d t + 2β(X 2

1
dB1 + X 2

2
dB2)

d〈N , Z〉t = 2β2(X 3
1
+ X 3

2
)d t = β2(3Zt Nt − Z3

t
) d t = β2Z3

t
(3It − 1) d t .

In the last equation, we use the identity 2(a3 + b3) = 3(a + b)(a2 + b2)− (a + b)3. It is the only place

where we really use the fact that the state space has only two points.

Let use the notation Ut ∼ Vt if Ut − Vt is a martingale. We have:

d It =
dNt

Z2
t

−
2Nt dZt

Z3
t

− 2
d〈N , Z〉t

Z3
t

+ 3Nt

d〈Z〉t

Z4
t

∼ ((β2 − 4)It + 2− 2β2(3It − 1) + 3β2 I2
t
) d t

∼ (3β2 I2
t
− (5β2 + 4)It + 2(1+ β2))d t = P(It ) d t (2.2)

with a =
5β2+4

6β2 =
5
6
+ 2

3β2 and

P(X ) = 3β2(X 2 − 2aX + a−
1

6
) = 3β2(X −α+)(X −α−)

with α± := a±
q

a2 − a+ 1
6 . Since P(1) = 3β2(1− a− 1

6 ) = −2 we have α− < 1< α+.

We now take expectations in (2.2) and get

dE [It]

d t
= E [P(It )] . (2.3)

Since I0 = 1, and P(1) < 0, at least on a non empty interval [0,δ[, the function u(t) := E [It] is non

increasing (something we expected since 0≤ It ≤ 1 donc 0≤ u(t) ≤ 1).

Assume that there exists t0 > 0 such that u(t0) < α−. Since E
�

I2
t

�

≥ E [It]
2 we have

u′(t) = E [P(It )]≥ P(u(t)) .

Let T = sup {t < t0 : u(t) = α−}. On ]T, t0[we have u′(t) ≥ P(u(t)) > 0 so u strictly increases on ]T, t0[,

which is absurd since u(T ) = α− and u(t0) < α−.

Therefore, we have:

∀t > 0,u(t) ≥ α− .

Observe that:

u′(t) = E [P(It )] = E [P(It)− P(α−)] = E
�

3β2(I2
t
− α2
−)− (5β

2 + 4)(It −α−)
�

= 3β2
E [(It +α−)(It −α−)]− (5β

2 + 4)E [It − α−]

≤
�

3β2(1+α−)− (5β
2 + 4)
�

E [It −α−] = −λE [It −α−] .
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We shall check that λ > 0, and this implies, by Gronwall’s Lemma,

(u(t)− α−) ≤ (u(0)−α−)e
−λt → 0 when t → +∞ .

It remains to prove that λ= −3β2(1+α−)+(5β
2+4) > 0 that is 1+α− < 2a, i.e.

q

a2 − a+ 1
6 > 1− a.

Either β ≤ 2 and then a ≥ 1 and we are done, or β > 2, a < 1, and we have to show that a2 − a+ 1
6 >

(1− a)2 i.e. a > 5/6 which is true.


