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Extruded Poly(ethylene–co–vinyl alcohol) Composite Films
Containing Biopolymers Isolated from Municipal Biowaste

Roberto Nisticò,[a] Philippe Evon ,[b, c] Laurent Labonne ,[b, c] Guadalupe Vaca-Medina ,[b, c]

Enzo Montoneri,*[d] Matteo Francavilla,[e] Carlos Vaca-Garcia ,[b, c] Giuliana Magnacca,[a]

Flavia Franzoso,[a] and Michèle Negre[f]

Single-screw extrusion allows obtaining composite films con-

taining poly(ethylene-co-vinyl alcohol), hereinafter EVOH, and

water-soluble lignin-like biopolymers (SLP) isolated from the al-

kaline hydrolysate of two materials sampled from an urban

waste treatment plant. During extrusion, a condensation re-

action occurs between the EVOH and SLP. The products are

heterogeneous. They contain a mix of EVOH-SLP copolymers

with different composition and solubility properties. The films

were characterized for tensile strength and water sorption

properties. Young modulus and strain at break, respectively,

were 2.8 GPa and 14% for neat EVOH vs. 2.1-0.9 GPa and

17–4% for the blends containing 2–15% SLP, with values de-

creasing upon increasing the % SLP. The blends were more hy-

drophilic than neat EVOH; their water sorption capacity was

found to increase upon increasing the SLP content. Compared

to previously reported similar blends obtained by twin-screw

extrusion and solvent casting, the data for the single-screw ex-

truded films allows discussing several aspects connected to the

valorisation of blends obtained from fossil and biowaste

sourced polymers.

Introduction

The experimental work reported here was undertaken with

three intents: i. e. (i) to manufacture new composite bio-based

films by extruding biopolymers isolated from municipal bio-

wastes and poly(ethylene-co-vinyl alcohol); (ii) to compare the

properties of the extruded films with those previously pub-

lished for films obtained by solvent casting the same blend

components; (iii) to evaluate the neat effect of the different

manufacturing technologies on the products properties. More

than this, for the nature of reported products and sourcing ma-

terials, the work addresses two current important issues: (iv)

the management of biowastes and (v) the substitution of syn-

thetic polymers with biopolymers.

Bio-waste management has become a major technical and

social issue. Solid bio-waste originates from industrial, agri-

culture and urban activities. It has two opposite faces. On one

hand, it represents an economic and environmental burden. On

the other hand, it contains valuable chemical exploitable en-

ergy. Thus, waste recycling and utilization is considered an es-

sential element in efforts to make countries more resource effi-

cient.[1] In principle, technology is available to recover and

utilize the chemical energy contained in biowaste from any

source. However, any technical approach has to account for

process/product sustainability. In this respect, municipal bio-

waste are favored compared to all other biowaste sources. The

environmental impact of municipal biowaste has grown dra-

matically, due to the increase of population urbanization and

consumption habits. This has generated higher costs for society

due to the need to dispose higher amounts of wastes. On the

other hand, the population urbanization has resulted in the

creation of a low entropy source of chemical energy by con-

centrating the bio-wastes in confined spaces. As taxpayers have

already paid collection costs, municipal bio-wastes are a neg-

ative cost source of chemical energy.[2]

Recently, municipal biowastes have been demonstrated a

cost effective source of water-soluble biobased lignin-like poly-

mers (SLP).[3] The SLP are obtained by low temperature alkaline

hydrolysis of the recalcitrant lignin fraction of urban bio-

wastes.[4] They have been shown to perform as ecofriendly

chemical auxiliaries in diversified fields; e.g. in the formulation

of flocculants, dispersants and binding agents for ceramics

manufacture,[3] detergents,[5] textile dyeing baths,[6] as emulsi-

fiers,[7] auxiliaries for soil/water remediation[8–10] and enhanced

oil recovery,[11] nanostructured materials for chemical[12, 13] and

biochemical catalysis,[14] plastic materials,[15–18] soil fertilizers and
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plant biostimulants for agriculture,[19–21] and animal feed sup-

plements.[22, 23] The wide range of applications arises from the

fact that SLP are a mix of polymeric molecules containing or-

ganic C and N distributed over a variety of aliphatic and ar-

omatic C moieties substituted by acid and basic functional

groups which are bonded to several mineral elements.[3, 4] These

chemical features represent the memories of the protein, fats,

polysaccharide, and lignin proximates constituting the pristine

biowaste. They are associated to the SLP properties as surfac-

tants, agents for sequestering or carrying small molecules and

mineral ions in solution, photosensitizers and reactive bio-

polymers.

Biopolymers have also become a major matter of research.

Biopolymers are investigated mainly in the attempt to replace

synthetic polymers, in order to reduce fossil sources depletion

and CO2 emission.[24] Biopolymers are macromolecular sub-

stances derived from renewable resources. They can be divided

in three categories, i. e. polymers directly extracted/removed

from biomass, polymers made by classical chemical synthesis

using monomers from renewable resources, polymers obtained

with the help of microorganisms or genetically modified bac-

teria. The use of biopolymers is not the only way to reduce the

environmental impact caused by the increasing consumption

of synthetic polymers. For most popular synthetic polymers,

such as polyolefins, poly(vinyl chloride), polyurethane, poly(eth-

ylene terephthalate), recycling is pursued. However, this prac-

tice still remains a major challenge. There are both techno-

logical and economic issues, which restrain the progress in this

field.[25] The biopolymers alternative faces several criticalities

too. So far, bio-based polymers have not found extensive appli-

cations in industries to replace conventional plastic materials,

reasons being their high production costs and sometimes their

underperformed properties. Compared to traditional resins

costs, which run below 2 E kgÿ1,[26] current biopolymers are

from about 2.0 to 7.0 times more expensive.[27] The difference

depends on the fluctuation of oil prices and on the type of bio-

plastics, whether they are from dedicated crops, such as starch,

or from fermentation, such as polyhydroxylalkanoates. In the

case of biopolymers extracted from dedicated crops, the use of

land to cultivate plants for energy or chemicals production rais-

es much socio-environmental and moral concern.[28] Negative

impacts on land, water and biodiversity, and food production

count among the most discussed side effects of this prac-

tice.[29–30] Using corn as non-food feedstock may cause food

price increase and thus can be controversial.

Bio-wastes, as sources of bio-based polymers, have not

been much investigated so far. Yet, their valorization for this

scope can potentially overcome some of the critical drawbacks

faced by biopolymers extracted from dedicated crops or ob-

tained by fermentation and/or chemical polymerization of

monomers from renewable sources. In this context, inves-

tigation on SLP as potential candidates for the manufacture of

bio-based consumer articles is undoubtedly a praiseworthy ap-

proach. The SLP production cost has been estimated 0.1-0.5 E

kgÿ1, depending on the nature of the biowaste.[3] Contrary to

the case of dedicated crops, the exploitation of biowastes to

obtain the SLP falls within the newest waste management

technologies, which are expected to yield economic and envi-

ronmental benefits, and at the same time to encounter social

acceptance.[31–33]

A major technological draw back of SLP is the fact that they

decompose without melting and do not have film forming

properties.[3, 4] They are complex mixtures of molecules with

weight-average molar masses (Mw’s) of 67–463 kDa. As ob-

tained by low temperature alkaline hydrolysis of the recalci-

trant lignin fraction of urban biowastes, the SLP save the mem-

ory of the aromatic rigid chemical structure of the parent

lignin, a though not ductile material. Thus, neat SLP cannot be

processed to obtain useable objects by the available conven-

tional technologies, such as solvent casting or melt extrusion.

Under these circumstances, the only possibility is compound-

ing them with other polymeric materials to obtain processable

blends. Franzoso et al. have indeed obtained blend films made

from SLP and synthetic polyethylene copolymers,[15–17] such as

poly(ethylene-co-vinyl alcohol) (EVOH) and polyethylene-co-

acrylic acid (PEEA). These commercial polymers derived from

fossil sources are used for the manufacture of a great variety of

articles of every day life. Blends of synthetic polymers and bio-

polymers of agricultural sources are well known. Several blends

of poly(vinyl alcohol), ethylene-vinyl alcohol copolymers, and

polysaccharides, such as starch[34–36] or lignocellulosic materials

including corn fiber[37] and sugar cane bagasse[38–41] have been

reported. These products have been proposed for the manu-

facturing of mulch films for use in agriculture. In these films,

the synthetic polymer provides the required mechanical prop-

erties and is compatible with the lignocellulosic fillers by virtue

of its hydroxyl and carboxyl groups. In the case of the SLP com-

posites, considering the SLP properties as biostimulants for

plant cultivation,[19–21] the manufacturing of blended SLP mulch

films offers the intriguing perspective to perform a dual func-

tion with the same material, i. e. assure protection of the culti-

vation soil and, during and/or at the end of its service life, to

promote soil fertilization.

Franzoso et al. work demonstrated that the EVOH-SLP[15]

and PEAA-SLP[16] blends, which contain not more than 10% SLP,

have similar or higher mechanical strength as the pristine syn-

thetic polymer. Blends with higher biopolymers content were

found to have poor unacceptable mechanical properties. The

results indicated that it is possible to enhance the mechanical

strength of the tested synthetic polymers. However, this occurs

with some loss of the elongation capacity. Most recent work[18]

has demonstrated that the mixtures of EVOH and SLP could be

processed by twin-screw extrusion to obtain articles in rod

form. The results encouraged the present work reporting the

manufacture of EVOH-SLP blends in film form by single-screw

extrusion.

The reason for undertaking the present work on the ex-

truded EVOH-SLP blends in film form was that, although re-

cently solvent casting has gained much industrial im-

portance,[42] extrusion is still a more industrially relevant

technique, particularly for the manufacture of articles in film

form. Being carried out in the absence of solvents,[43] extrusion

is a potentially greener process alternative. Moreover, extrusion

occurs with the blend constituents in the melt state, resulting



in large differences in temperature but also in residence time

and applied shear rate compared to the solvent cast technique.

To the authors of the present work, these facts pointed out

that, to acquire further knowledge on the full potential and

process/product sustainability of the EVOH-SLP blends, it was

necessary to compare the blends with the same formulation,

but obtained by the two different manufacturing technologies.

Indeed, the data reported here in after demonstrate that the

different fabrication processes do affect differently the films

mechanical properties. Moreover, for the extruded films the wa-

ter sorption properties were investigated in order to assess per-

spectives for potential uses of these materials in a wider range

of applications than the fabrication of mulch films only.

Results and Discussion

Preparation, and chemical and physical characterization of

neat SLPs

The SLPs used in this work were available from previous

work.[15–18] These materials, hereinafter named with the acro-

nym D SLP and CP SLP were sourced from municipal biowastes

sampled from two different streams of a waste treatment plant

located in Pinerolo (TO), Italy. The sourcing biowastes were the

digestate (D) recovered from the plant biogas production re-

actor fed with the organic humid fraction from a separate

source collection of urban refuse, and the compost (CP) ob-

tained from home gardening and park trimming residues aged

for 230 days under aerobic conditions. The two SLPs were iso-

lated from the alkaline hydrolysates of the digestate and com-

post, and were characterized as previously reported.[44] Accord-

ing to Table 1 data, they contain either organic and mineral

matter, the latter constituted mainly by silicates containing Ca,

Mg, Al, Fe, Na and K cations present in 15–28 wt.% concen-

tration relatively to the dry matter content. The organic matter

is polymeric. The weight ( �Mw) and number ( �Mn) average molec-

ular weights are 66 ( �Mw) and 14 ( �Mn) kDa for the compost (CP)

SLP, and 188 ( �Mw) and 134 ( �Mn) for the digestate (D) SLP, with

polydispersity indexes ( �Mw/ �Mn) of 4.7 for the compost (CP) SLP

and 1.4 for the digestate (D) SLP. Table 1 reports also relative

concentration data for aliphatic and aromatic C types, and acid

and basic functional groups, which were identified and meas-

ured by using 13CNMR spectroscopy, potentiometric titration,

and C and N microanalysis. The C types and functional groups

are likely to constitute C moieties, which are reminiscent of the

pristine polysaccharide, protein and lignin matter present in

the starting biowastes as collected, before anaerobic and/or

aerobic fermentation. Due to their biological origin, the mole-

cules constituting the SLPs are most likely not homogeneous.

The �Mw/ �Mn index shows that a mix of molecules with different

weight is present. Moreover, these molecules have probably

different chemical nature. They do not necessarily contain the

same C types and functional groups, and the same mineral ele-

ments bonded to the functional groups. Under these circum-

stances, the body of analytes reported in Table 1 does not al-

low to assess a definite chemical structure for SLP as for single

synthetic molecules. Nevertheless, it gives valuable information

on differences in the chemical nature of the two SLPs. The data

shows that, compared to the digestate (D), the compost (CP)

SLP contains more aromatic lignin-like matter, acid functional

groups, and ash content. This is the likely reflection of the dif-

ferent nature (the organic humid fraction versus gardening

waste) and biological processes (anaerobic versus aerobic fer-

mentation) of the D and CP pristine biowastes. The data points

out the higher oxidation degree of the compost SLP. Evidence

for this is obtained from the following two parameters calcu-

lated from Table 3 data for the D and CP SLP, respectively: i. e.

(i) the VS/(C + N) values resulting 1.59 and 1.71, and (ii) the

total O content, calculated from the C types and functional

groups concentration values, resulting 17.5 and 21.5 mmol per

g of product. The 1.71 VS/(C + N) points out a higher amount

of H and O in the CP SLP than in the D SLP. The 21.5 C mmol

Table 1. Analytical dataa for mineral elements, organic c and n, functional groups, and weight ( �Mw ) and number ( �Mn) average molecular weights for digestate

(D) and compost (CP) SLPs.

SLP pH Volatile Solids, w/w %b C, w/w %b N, w/w %b C/N

D 6.4 84.6 45.07 � 0.12 7.87 � 0.12 5.73

CP 8.2 72.1 38.25 � 0.09 4.01 � 0.03 9.54

Mineral elements: Si, Fe, Al, Mg, Ca, K, Na as % w/w;b Cu, Ni, Zn, Cr, Pb, Hg as ppmb

Si Fe Al Mg Ca K Na Cu Ni Zn Cr Pb Hg

D 0.36

�0.03

0.16

�0.00

0.78

�0.04

0.18

�0.01

1.32

�0.05

9.15

�0.06

0.39

�0.01

100

�1

27

�1

185

�4

11

�0

44

�2

0.23

�0.01

CP 2.55

�0.01

0.77

�0.04

0.49

�0.04

1.13

�0.06

6.07

�0.38

3.59

�0.21

0.16

�0.01

202

�4

92

�1

256

�1

19

�1

85

�1

0.15

�0.02

C types and functional groupsc concentration as C mmol per g of product ( �Mw ) ( �Mw/ �Mn)

Af NR OMe OR OCO Ph PhOH PhOY COOH CON C=O

D 16.1 3.7 1.5 3.7 1.1 3.7 0.75 0.37 2.6 3.4 0.37 188 1.4

CP 11.8 2.2 0.0 4.4 1.3 4.1 1.6 0.64 3.8 0.32 1.5 66 4.7

aData obtained according to previously reported analytical methods:[44] volatile solids calculated from the sample weight losses after heating to 105 and

650 8C, organic C and N by microanalysis, mineral elements by atomic absorption spectroscopy, C types and functional groups by potentiometric titration and

solid-state 13CNMR spectroscopy, molecular weights by multi-angle light scattering detector online to size exclusion chromatography system. bConcentration

values referred to dry matter: averages and standard deviation calculated over triplicates. cAliphatic (Af), aromatic (Ph), methoxy (OMe), amide (CON), ammine

(NR), alkoxy (RO), phenoxy (PhOY) and anomeric (OCO), carboxylic acid (COOH), phenol (PhOH), and ketone (C=O) C atoms.



per g of product confirms that the CP SLP organic matter has

higher oxygen content that the D SLP.

Before use, the neat SLPs were ground and sieved (see Sup-

porting Information). Figure 1 reports the overall D and CP par-

ticle size distribution for the entire grinding process. The

125mm>x>63mm fraction was kept and used for the blend

film preparation.

Preparation, and chemical and physical characterization of

SLP blend films

The composition of the blend films, produced in this work by

single-screw extrusion was chosen based on previous work re-

porting the fabrication of the EVOH blends containing the di-

gestate (D) and the compost (CP) SLP produced in film form by

solvent casting.[15] The digestate (D) SLP at 5.9% content in the

EVOH blend was found[15] to enhance the blend film Young

modulus, compared to the neat EVOH film. At SLP concen-

tration > 15%, the blend films exhibited poorer mechanical

properties than neat EVOH. In all cases, the D filler performed

better than the CP one, either for its higher compatibility with

EVOH and for its effects on the blend mechanical properties.

Based on the above findings, the films listed in Table 2 were

produced according to the experimental details reported in the

Supplementary Information. In

essence, sheet film production

was carried out in a Scamex

(France) 30–26 single-screw ex-

truder with a 26 length/diame-

ter ratio and a 30 mm screw di-

ameter, operated under the

following conditions: 25 rpm

screw speed, 10 m minÿ1 calen-

dar speed and 0.84�0.05 mm

lip height, in essence cancel (B)

ambient temperature at the in-

let, 165 8C in the conveying

zone, 195 8C in the melting

zone, 185 8C in the kneading

zone and 175 8C at the outlet die. These conditions were much

different from those used for the production of the solvent cast

films,[15] were the operating temperature was never above

120 8C. The extruded products were the films of neat EVOH

(E0), EVOH containing 2, 5, 10, 15% D SLP (ED2, ED5, ED10 and

ED15, respectively), EVOH containing 5% CP SLP (EC5), and

EVOH containing both D and CP SLP at 2% D and 3% CP (ED/

C2/3), and 5% D and 5% CP (ED/C5/5). For the most promising

D filler, the four films containing 2, 5, 10 and 15% D SLP were

fabricated to investigate the effect of the D content on the film

thermal and mechanical behaviour. The other films in Table 2

were fabricated to assess if the lower performance of the CP

SLP filler previously observed for the solvent cast films[15] was

still confirmed or not under single-screw extrusion conditions,

and to discover eventual synergism from the presence of both

D and CP SLPs in the same blend.

The chemical nature of the blends was assessed, based on

the solubility properties of the starting reagents. Neat EVOH is

insoluble in water. The SLPs are soluble in water at pH > 4, but

precipitate at lower pH. As in previous work,[15] selective ex-

traction (see Supplementary Information) of the blends was

carried out with 1 M aqueous NaOH at room temperature and

at 60 8C. This procedure allows identifying the following three

types of SLP in the blend: (i) SLP not bonded to EVOH, soluble

Figure 1. Overall particle size distribution for the entire grinding process of neat digestate (a) and compost (b) SLP.

Table 2. Blend sheet filmsa dimensional data, and recorded pressure and temperature of the extruded material

during single-screw extrusion.

Sample Length (m) Width (cm) Thickness (mm) Weight (kg) Pressure (bar) Temperature (8C)

E0 9.07 2.9 130�44 0.040 104�1 198�1

ED2 8.44 3.2 223�25 0.066 116�1 202�1

ED5 8.55 3.5 250�17 0.082 128�6 203�1

ED10 8.35 4.5 450�35 0.078 116�3 203�1

ED15 8.58 4.4 330�35 0.078 112�3 202�1

EC5 8.30 2.8 200�32 0.036 104�2 199�1

ED/C2/3 8.78 3.4 304�36 0.068 116�4 203�1

ED/C5/5 9.07 4.0 508�61 0.076 131�1 201�1

aNeat EVOH (E0), EVOH containing 2, 5, 10, 15% digestate (D) SLP (ED2, ED5, ED10 and ED15, respectively), EVOH

containing 5% compost (CP) SLP (EC5), and EVOH containing both digestate (D) and compost (CP) SLP in the same

sample at 2% D and 3% CP (ED/C2/3), and at 5% D and 5% CP (ED/C5/5).



in aqueous NaOH at room temperature; (ii) SLP bonded to

EVOH by hydrolysable ester bonds, becoming soluble only

upon hydrolysis of the EVOH-SLP copolymer carried out in

60 8C NaOH, and (iii) SLP bonded to EVOH by not hydrolysable

covalent bonds, not released into the alkaline solution even af-

ter treatment at 60 8C. The results of the above NaOH treat-

ments showed average 34 � 5% weight loss of the starting SLP

amount in the blends containing 5 and 15% SLPs, respectively,

either at room temperature or 60 8C. The recovered precipitate

from the acidified water phase accounted well for the weight

loss of the blend sample. This indicated that most of the SLP

contained in the blend was bonded to EVOH with not hydro-

lysable covalent bonds.

The amount of SLP in the films recovered from the NaOH

treatment was estimated from the amount of N. This element

was present only in the SLP filler (Table 1). Thus, assuming that

the N containing molecules were representative of the entire

SLP filler, in principle one could calculate the % SLP in the

blend from its N content. For example, the ED5 pristine film

contained 0.31% N, which corresponded to 3.96% D in the

blend, based on the N content in neat D (Table 1). The ED5

films recovered from the NaOH treatment at 30 and 60 8C were

0.31 and 0.28% respectively. The data allows calculating that

90% of the total D amount present in the blend was bonded to

EVOH with not hydrolysable covalent bonds forming a new

EVOHÿD copolymer. By comparison, the ED15 pristine film con-

tained 0.83% N, which corresponded to 10.6% D in the blend.

The ED15 films recovered from the NaOH treatment at 30 and

60 8C were 0.55 and 0.59% respectively. The data allows calcu-

lating that 71% of the total D amount present in the blend was

bonded to EVOH with not hydrolysable covalent bonds. The re-

maining D was not bonded to EVOH, but simply present as a

separate phase mixed with the EVOHÿD copolymer.

The above results of the films NaOH treatments suggest

that the blend chemical composition was heterogeneous over

the entire sample, and that the degree of heterogeneity in-

creased upon increasing the filler content. The presence of dif-

ferent phases in the blends was also demonstrated by scanning

electron microscopy. Figure 2 shows that the surface and cross

section of the neat EVOH are homogeneous and/or not porous.

The ED5 film is also non-porous. However, it shows some heter-

ogeneity. The ED15 film has also non-porous surface. However,

the surface is more heterogeneous than that of the ED5 film. In

addition, the cross section exhibits several internal cracks. The

films were also analysed by BET and BJH measurements (see

Supplementary Information). The results showed that the ED

films had surface areas decreasing from ca. 2.01 to ca. 1.37 m2

gÿ1 upon increasing the filler content, and that the pore vol-

ume ranged from 0.006 to 0.010 cm3 gÿ1. The measured low

surface area does not allow applying correctly the BET method,

since the measured values are below the instrumental limit.[45]

The data only suggests that the films were not porous, in ac-

cordance with the scanning electron microscopy images in Fig-

ure 2. The results of NaOH treatments are well consistent with

those obtained in previous work for the solvent cast EVOH

films[15] containing the same SLPs. The presence of different

EVOH-SLP copolymers with different composition and solubility

properties had been reported for the solvent cast films.[15] The

data reported in the present work confirms that, also during

the blend production using single-screw extrusion, a chemical

condensation reaction occurs between the EVOH hydroxyl

functional groups and the SLP phenol functional OH groups

(Table 1) with formation of aralkyl ether bonds.

Figure 2. Scanning electron microscopy images of surface (left) and

cross section (right) of neat EVOH (a) and its blend films containing 5

(b) and 15 (c) % digestate (D) SLP: samples E0, ED 5 and ED10, re-

spectively, in Table 2.



No other techniques or procedures were found suitable for

supporting the formation of the above covalent bonds. The fill-

er content was too low for its presence to be appreciated by IR

or 13CNMR spectroscopy. In addition, as shown in Table 1, ether

bonds are already present in the neat SLP. This adds difficulty

to the selective identification of new ether bonds formed

through the reaction of SLP with EVOH. The reaction might in-

volve also participation of the mineral fraction present in the

SLP. Assessing the effect of the

mineral fraction on the SLP re-

activity implies demineraliza-

tion of SLP and comparing the

reactivity of the demineralized

SLP with that of the pristine

SLP. Attempts to demineralize

SLP by HCl and HF metal ion

stripping were found to cause

important changes in the re-

sidual organic fraction compo-

sition relatively to that in the

pristine SLP. This pointed out

that new biopolymers could

potentially be obtained by fur-

ther acid treatment of SLP. Un-

der these circumstances, fur-

ther testing of the reactivity of

the demineralized SLP with EVOH was planned for being carry-

ing out in future work in order to comprise the full character-

ization of both the new acid treated SLP biopolymers and the

corresponding blends.

Blend film physico–chemical characterization

Figure 3 shows the aspect of the investigated films. Table 2 re-

ports the dimensional data and the recorded pressure and tem-

perature of the extruded materials during single-screw ex-

trusion. The data shows that upon increasing the filler content

up to 15%, the film becomes increasingly dark colored (Fig-

ure 3), and the film thickness (Table 2) tends to gradually in-

crease. All films could be bent at 180 degrees angle or rolled

over. However, they tended to become more and more rigid

upon increasing the filler content. The blends containing both

the digestate (D) and the compost (CP) SLPs in the same sam-

ple (ED/C 2/3 and ED/C 5/5 in Table 2) are always thicker than

the blends made with one filler, i. e. only D or CP (as in ED2-15

and EC5 Table 2 samples, respectively). Electron microscopy

scans (images not shown) demonstrated that the blends con-

taining both the digestate (D) and the compost (CP) SLPs in the

same sample (ED/C 2/3 and ED/C 5/5 in Table 2) were more

heterogeneous than the blends containing the single SLPs at

equal total SLP content. It is important to notice that the blend

containing the compost SLP (EC5) and the blends containing

the mix of digestate (D) and compost (CP) SLP (ED/C 2/3 and

ED/C 5/5 in Table 2) presented many friction problems during

the extrusion process. The problem was probably due to the

high ash content contributed by the compost (CP) SLP. It may

lead to wear phenomena by abrasion of the metal parts of the

single-screw extrusion line (i. e. the plasticizing cylinder, the

screw and the die) on the long term. Samples made with dem-

ineralized SLPs might be more easily flexible for industrial ap-

plications (see above subsection).

Table 3 reports the data obtained from the DSC scans and

X-ray diffraction of neat EVOH and the EVOH-SLP blend films.

These samples gave measurable values for all reported parame-

ters. On the contrary no values could be measured for the neat

Figure 3. Blend sheet films at different filler contents. Sample abbreviations

as in Table 2.

Table 3. Films* DSC and crystallinity data: glass transition (Tg), melting (Tm) and recrystallization (Tc) temperatures,

melting (DHm) and recrystallization (DHc) enthalpies, Xc and CrI crystallinity degrees calculated according to Eq (1)

and Eq (2), respectively.

Sample Tg (8C)
+ Tc (8C)

+ Tm (8C)+ DHc (J/g)
+ DHm (J/g)+ Xc (%) CrI (%)

E0 46.7�0.0a 145.3�0.8a 170.8�1.1a,b 58.5�0.4a 62.6�0.0a,b 37 68

ED2 50.5�3.4a 145.4�1.3a 170.5�0.3a,b 56.9�1.0a,b 63.8�0.2a 38 60

ED5 42.5�5.2a 141.5�2.2a 167.7�3.5a,b 52.4�1.8a,b 59.6�1.8a,b 37 59

ED10 50.7�7.2a 145.1�3.1a 170.4�0.6a,b 50.9�2.3a,b 59.0�0.3a,b 39 61

ED15 47.6�0.8a 145.1�2.1a 169.8�0.0a,b 48.1�0.8b 50.1�1.3b 35 58

EC5 43.1�2.2a 141.5�1.6a 167.3�2.3b 53.7�0.9a,b 52.1�0.5b 32 68

ED/C2/3 50.0�0.1a 145.6�1.0a 171.9�0.3a 55.5�2.1a,b 59.5�3.2a,b 37 63

ED/C5/5 49.6�1.0a 146.7�0.8a 171.4�0.2a,b 53.6�0.0a,b 59.7�0.1a,b 39 58

*Neat EVOH (E0), EVOH containing 2, 5, 10, 15% digestate (D) SLP (ED2, ED5, ED10 and ED15, respectively), EVOH

containing 5% compost (CP) SLP (EC5), and EVOH containing both digestate (D) and compost (CP) SLP in the same

sample at 2% D and 3% CP (ED/C2/3), and at 5% D and 5% CP (ED/C5/5). +Values are means of two measurements

� standard deviation; values followed by the same letters in each column are not significantly different (P�0.05;

Tukey tests).



SLPs. For the latter ones, no glass transition or melting up to

220 8C was evidenced by DSC. At this temperature, both CP

and D SLP started to decompose. XRD analysis showed that the

neat SLPs are mostly amorphous. For the blends, the data in

Table 3 shows no significant difference or trend of the reported

phase transition temperatures and Xc crystallinity degrees, by

increasing the filler contents in the blend. However, the values

for melting (DHm) and cold crystallization (DHc) enthalpies of

the blends are lower than the values for neat EVOH. This be-

havior is different from that reported for the twin-screw ex-

truded blends.[18] Relatively to neat EVOH, the twin-screw ex-

truded blends containing 2–14% SLP exhibited significantly

lower Tm, Tc and Tg values, while DHm and DHc showed oppo-

site trend. In addition, the enthalpy and crystallinity values for

the single-screw extrudates are remarkably lower than the ones

calculated for the twin-screw extrudates. For example, the

melting and cold crystallization enthalpies of single-screw neat

EVOH and blend films containing 2–15% D (ED2-15 in Table 3)

range from 62.6 to 50.1 J gÿ1, and from 58.5 to 48.1 J gÿ1, re-

spectively. By comparison, the enthalpy values for the twin-

screw extrudates[18] with the same composition range from

100 J gÿ1 for neat EVOH to 125 J gÿ1 for the blend containing

5% D.

The crystallinity degree % Xc and CrI % values in Table 3

were calculated, respectively, from the enthalpy data in Table 3

according to eq. (1) and from the X-ray diffraction patterns

shown in Figure 4 according to eq. (2):

%Xc ¼ 100 DHm=ðw DH�
mÞ ð1Þ

%CrI ¼ 100 ðIf - IsÞ=If ð2Þ

In eq. (1), DHm is the melting enthalpy of the blend sample

(J/g), DH8m is the melting enthalpy (169.2 J/g) of the EVOH

sample assuming 100% crystallinity as in pure polyvinyl alcohol

(PVOH),[46] and w is the EVOH mass fraction in the composite. In

eq. (2),[47] If is the peak intensity of the fundamental band at

2q=20.18, and Is is the peak intensity of the secondary band at

2q=22.18, both bands present in the X-ray diffraction patterns

represented in Figure 4. The raw Is and If measured values are

reported in the Supporting Information file. The calculated val-

ues for the crystallinity degree of the single-screw blends (Ta-

ble 3) are in the 39–35% Xc and 68–58% CrI ranges. The corre-

sponding values for the twin-screw extrudates[18] are comprised

in the 60–80% range. These differences can be explained. Be-

fore opening the twin-screw extruder to recover the test speci-

mens, samples were cooled slowly (ca. 9 min). Thus, the EVOH

macromolecules had enough time to organize themselves in an

orderly manner. Conversely, the single-screw extrusion proce-

dure adopted in this work resulted in remarkably lower cooling

time scale as for industrial level (order of seconds). Thus, mac-

romolecules were still in the disordered state and the resulting

extruded films were more amorphous.

The crystallinity of the single-screw extruded sheet films

may be appreciated better from the X-ray diffraction patterns

represented in Figure 4. Poly(ethylene-vinyl alcohol) copoly-

mers[48] are known to be crystalline irrespectively of composi-

tion. They show a polymorphic behaviour depending on com-

position and thermal treatment. The copolymers with relatively

high vinyl alcohol content (68-71%), such as the Soarnol co-

polymer used in the present and in the previous[15,17–18] works,

crystallize from the melt into a monoclinic or orthorhombic lat-

tice, depending on the cooling rate. The two lattices give sim-

ilar patterns, i. e. a fundamental high intensity band at 2q = 208

and a smaller band at 2q = 21-228. However for the monoclinic

lattice the fundamental band is split into two well distinct sig-

nals, falling at 2q = 19-208 and at 2q = 20-218, respectively. For

the orthorhombic lattice these signals collapse into one broad

band. These copolymers crystallize in the monoclinic lattice

upon slow cooling, and in the orthorhombic lattice upon

quenching. For the semi crystalline EVOH co-polymer used in

the present work, Figure 4 shows sharp well-defined and broad

peaks due to small crystallites. In agreement with literature

data,[49] the peaks are centred at 2q = 10.88, 20.18 and 22.18.

The broad fundamental band at 2q = 20.18 resembles that re-

ported for the copolymer crystallized in the orthorhombic lat-

tice.[49] In contrast, the patterns for the SLPs (not reported),

have very broad features consistent with incoherent scatter

from an amorphous solid. Figure 4 also shows that, in all ana-

lysed blends, the characteristic EVOH peaks are in the same po-

sition as those for the neat EVOH extruded sample. Moreover,

upon increasing the SLP content in the blend, one can observe

a slight decrease of the EVOH signals intensity, no change in

the relative ratios between the peaks and no new signal arising

from a new crystalline phase. This behaviour is reflected in the

% CrI values (Table 3), showing the trend for crystallinity to

slightly decrease upon increasing the filler content in the

blend.

Figure 4. X-ray diffraction patterns relative to extruded blend sheet films.

Comparison between neat EVOH (E0), and its blends containing the diges-

tate (D) and the compost (CP) SLP. Samples abbreviations as in Table 2.



Blend film mechanical characterization

Table 4 reports data relative to the mechanical properties of the

films. For the blends containing the digestate (D) SLP (ED2-15

in Table 4), the Young modulus of the neat EVOH film decreases

significantly already at only 2% filler content. The Young mod-

ulus for the blend containing the compost (CP) SLP (EC5) and

the mix of digestate (D) and compost (CP) SLP (ED/C 2/3 and

ED/C 5/5) is even lower than that of the EVOH blends contain-

ing the digestate (D) SLP only. The other mechanical indicators

of the neat EVOH films are not significantly affected at 2% filler

content. Significant decreases appear at higher filler content.

Similar trends are reported for the flexural strength at break

and bending modulus of the twin-screw extruded EVOH-SLP

blends, upon increasing the SLP content.[18] It is particularly in-

teresting however to observe that the Young modulus values

for the single-screw extruded films from this work are much

higher than those reported for the solvent cast films containing

the same components,[15] while the strain at break values are

much lower. For the solvent cast films, the strain at break and

Young modulus values of the neat EVOH film were 86.2%, and

352 MPa, respectively. By comparison, the film containing 5.9%

digestate (D) SLP exhibited 42.3% strain at break and 1082 MPa

Young modulus. Several factors may cause the above differ-

ences between the solvent cast and the single-screw extruded

films. These may be the higher processing temperature and

higher applied shear rate of the extruded films, and the pres-

ence of residual dimethylsulfoxide solvent in the solvent cast

films. The higher processing temperature and higher applied

shear rate of the extrudates may be responsible of higher crys-

tallinity. On the other hand, the residual solvent in the cast

films may act as compatibilizer, and thus modify the blend

morphology-property connections.

Blend film water sorption

An important property, which

was not addressed in the pre-

vious work by Franzoso

et al.[15–18] is the blend vapor

and liquid water sorption. This

property, coupled to the ther-

mal and mechanical properties

of the films, might disclose in-

teresting perspectives for use

of the EVOH-SLP blends in the

separation of gases,[50,51] in the

textile industry,[52] in reverse os-

mosis,[53] in ion exchange[54] or

proton conduction[55] technol-

ogy. Other uses may be envis-

aged in cases requiring water

insoluble materials which can

work in humid and aqueous

environment, and be mechan-

ically, chemically and dimensionally stable in water, and at the

same time exhibit water permeability. The chemical features of

the SLP fillers (Table 1) encourage these expectations. By virtue

of the presence of lipophilic and hydrophilic C moieties, these

products exhibit interesting surfactant properties.[56] For the

same features, they can interact in different ways with mole-

cules of different polarity. In principle, water sorption may oc-

cur due to physical entrapment of water into porous structure

or to chemical interactions between water and the solid phase.

The latter are more favored as the hydrophilicity of the solid

phase increases. In the case of the non-porous EVOH-SLP

blends listed in Table 2, the physical entrapment of water by

the blends may be reasonable excluded.

Water vapor sensitivity of the neat SLPs was estimated by

DVS analysis. For both the neat digestate (D) and the neat com-

post (CP) SLP samples, water vapor uptake increased upon in-

creasing relative humidity (Figure 5). For high relative humidity

Table 4. Mechanical properties for neat EVOH and EVOH-SLP extruded films,* and for starch based (MB) and low

density polyethylene (MP) mulch films.

Samples Young modulus G

(MPa) +

Stress at yield

(MPa) +

Max stress

(MPa) +

Stress at break

(MPa) +

Strain at break

(%) +

E0 2823�479a 41.2�5.0a 54.2�4.5a 46.8�5.1a 14.1�1.8a,b

ED2 2067�180b,c 41.7�2.5a 53.7�2.9a 44.3�2.6a,b 17.0�5.2a

ED5 2112�169b 34.8�0.1b 42.1�1-0b 30.1�8.8c 7.2�2.8b

ED10 970�148e 15.3�0.6c,d 16.1�0.7d,e 13.9�1.8d 4.9�0.1b

ED15 1005�129e 11.2�1.0d 13.4�1.5e 12.7�1.2d 5.9�0.2b

EC5 1730�99b,c 38.8�2.0a,b 39.5�1.7b,c 35.0�1.1b,c 9.1�0.6b,c

ED/C2/3 1058�121d,e 20.1�1.4c 20.2�1.5d 18.6�1.7d 5.7�0.7c

ED/C5/5 906�53d 14.1�0.9cd 14.5�1.2d,e 14.1�1.2d 4.2�1.0c

MB 247�70 15�1 413�200

MP 160�25 15�1 230�70

*Neat EVOH (E0), EVOH containing 2, 5, 10, 15% digestate (D) SLP (ED2, ED5, ED10 and ED15, respectively), EVOH

containing 5% compost (CP) SLP (EC5), and EVOH containing both digestate (D) and compost (CP) SLP in the same

sample at 2% D and 3% CP (ED/C2/3), and at 5% D and 5% CP (ED/C5/5). +Values are means of three

measurements � standard deviation; values followed by the same letters (a-e) in each column are not significantly

different (P�0.05; Tukey tests). Data for MB and MP taken from literature (see Relevance of Results section below)

are not included in the statistical comparison of EVOH and EVOH-SP extruded films.

Figure 5. Water vapour sensitivity evaluation by DVS analysis for the neat di-

gestate (D; black solid line, black circles) and the neat compost (CP, black

dotted line, white circles) SLP.



levels � 75%, the compost (CP) SLP was less water vapor sensi-

tive, and this could be correlated to its chemical composition

revealing more aromatic lignin-like matter than the digestate

(D) SLP (Table 1). The EVOH-SLP blends (Figure 6 and 7) exhibit

the following behavior. For ED and EC blends with no more

than 5% filler content (ED2, ED5 and EC5 samples), the water

vapor uptake is roughly comparable to that of neat EVOH (E0

sample), with uptakes all situated between 0.5 and 0.9% at

90% RH. For the blends containing the digestate (D) SLP (ED2-

15 samples), the water vapor uptake increases progressively

upon increasing the D content in the film. As an example, at

90% RH conditioning, it increases from 0.6% with only 2% D

filler content to 11.5% with 15% D filler content. Thus, the

more the D filler content in the blend, the more the water va-

por sensitivity of the EVOHÿD blend.

The water uptake depends also on the filler type. As an ex-

ample, for a 5% filler content, water vapor uptake at 90% RH is

only 0.5% for the EC5 blend containing 5% of compost (CP)

SLP, 0.9% for the ED5 blend containing 5% of digestate (D) SLP,

and it reaches 4.1% for the ED/C2/3 blend containing 2 and

3% of D and CP SLP, respectively, in the same sample. The per-

formance of the blends containing the single SLP (ED5 and

EC5) are consistent with the data obtained for the neat D and

CP SLP (Figure 5), which indicates that the D SLP is more water

vapor sensitive than the CP SLP. Moreover, it may observed that

the presence of both fillers in the blend at total 5% filler con-

tent leads to synergic water vapor absorption. In essence, the

water vapor sorption by the ED/C2/3 film sample is from 4.5 to

8 times higher than that by the ED5 and EC5 blend samples,

respectively (see Figure 7). On the contrary, this synergic effect

is no more observed from the ED/C5/5 blend sample, its water

vapor uptake at 90% RH (6.3%) being significantly lower than

that of the ED10 blend (8.0%). Both samples contain the same

10% amount of total filler. However, the ED10 sample contains

10% of digestate (D) SLP only, while the ED/C5/5 sample con-

tains 10% of a mix of equal quantities of digestate (D) and

compost (CP) SLP.

Figure 8 reports the liquid water absorption by the films

listed in Table 2. The water uptake (y) values for all films, except

the EVOH blend containing both 2% D and 3% CP SLP in the

same sample (ED/C2/3), well correlate with the total % filler (x)

in the blend according to eq. (3):

y ¼ A2 þ ðA1 þ A2Þ=½1þ 10 logxoÿxð Þp� ð3Þ

The data regression gives the following values for the con-

stants, their standard error, and the correlation coefficient (R):

Figure 6. Water vapour sensitivity evaluation by DVS analysis for neat EVOH

and blend films. Legends: E0 (black solid line, white circles),ED2 (black dotted

line, black squares), ED5 (black short-dashed line, black squares), ED10 (black

long-dashed line, black squares), ED15 (black solid line, black squares), EC5

(dark-grey short-dashed line, dark-grey triangles), ED/C2/3 (light-grey short-

dashed line, light-grey diamonds), ED/C5/5(light-grey long-dashed line, white

diamonds). Samples abbreviations as in Table 2.

Figure 7. Same as Figure 6 but with a 0–5% zoom along the ordinate-axis

(i. e. � 5%). Legends: E0 (black solid line, white circles),ED2 (black dotted line,

black squares), ED5 (black short-dashed line, black squares), EC5 (dark-grey

short-dashed line, dark-grey triangles), ED/C2/3 (light-grey short-dashed line,

light-grey diamonds). Samples abbreviations as in Table 2.

Figure 8. Liquid water uptake as a function of the filler content for neat

EVOH (E0, white circle*), and its blends containing 2–15% digestate (D) SLP

(black circles *), 5% compost (CP) SLP (EC5, grey triangle ~), and the

blends containing both D and CP SLP in the same sample at total SLP con-

centration of 5% (ED/C2/3, white square &) and 10% (ED/C5/5, grey square

&). Samples abbreviations as in Table 2.



A1=9.28 � 1.76, A2=91.2 � 2.4, log xo =7.93 � 0.28, p=0.37

� 0.04, R=0.9982. For x=5, eq. (3) allows calculating the max-

imum and minimum y values at 99% confidence level 21.2 and

15.3, respectively. The experimental y value for the ED/C2/3

sample, as average of duplicates, was found 35.0 � 1.7. The re-

sults indicate that the film water uptake depends both on the

total content and on the composition of the filler. Indeed, at

5% total filler content, a remarkable synergic effect by the

presence of both the digestate (D) and the compost (CP) SLP in

the blend is evident. The ED/C2/3 sample exhibits almost 2 x

higher water uptake than the ED5 and EC5 samples at equal

5% total filler content. The same does not occur at 10% total

filler content. The blend containing 10% digestate SLP (ED10)

and the blend containing 5% digestate and 5% compost SLP

in the same sample (ED/C5/5) exhibit nearly the same water

uptake. The effects observed by the DVS and liquid water sorp-

tion measurement are well consistent with each other. The data

offers interesting scope for investigating further blend for-

mulations containing both SLPs with variable relative and total

fillers’ contents, and their performance in the above[13-18] tech-

nologies.

Relevance of the results

This work addresses well-known issues, such as the manage-

ment of waste management and bio-based material develop-

ment, and deals with well-known technologies, such as fermen-

tation, hydrolysis, solvent casting and extrusion, and readily

available materials, such as the commercial EVOH copolymer

and municipal biowastes. Nevertheless, it proposes process/

product innovation by properly integrating the above tech-

nologies and sourcing materials. For biobased polymers, two

important facts are assessed in the present work: (i) the possi-

bility of processing the EVOH-SLP blends for obtaining sheet

films by single-screw extrusion, and (ii) for lower amount of SLP

(2-5 wt.%) in the blend mix, the absence of significant or great

deterioration of the mechanical properties of the blend com-

pared to the neat EVOH film. The possibility to substitute part

of the synthetic polymer with a low cost waste derived bio-

polymer, while still maintaining the same mechanical proper-

ties of the neat synthetic polymer, is a step forward in the re-

search of new bio-based materials. This would allow reducing

material production costs. The EVOH copolymer is a special

high cost polymer, with a 2016 market price[57] of about 5.80

and 8.00 E kgÿ1 for standard and special grade, respectively.

The production cost of SLP is estimated 0.1-0.5 E kgÿ1.[3] It

would also allow reducing the exploitation of chemicals from

fossil sources, and of dedicated crops as source of biobased

materials.

For the attainment of the above perspectives, the data re-

ported in the present work propose wide research potential for

obtaining the EVOH-SLP in a variety of physical forms. The pos-

sible effect of DMSO determining the different mechanical

properties of the solvent cast films[15] suggests that a variety of

formulations should be tested for the EVOH-SLP blends, includ-

ing plasticizers for EVOH polymer but also additives to improve

the compatibility of the interface between the synthetic co-

polymer and the biopolymer. This would optimize their per-

formance in the intended application. The possibility to process

the EVOH-SLP composites with different technologies and with

different formulations offers several alternatives for further

product development. A wide range of municipal biowastes is

potentially available. A wide range of SLPs may be obtained by

integrating biochemical and chemical technologies for the

treatment of municipal wastes, as well as agricultural and agro-

industrial wastes. A wide range of synthetic polymers is also

available. Thus, a wide range of formulations comprising syn-

thetic polymers blended with waste sourced biopolymers may

be obtained. The valorisation of municipal[3,4] and agricul-

tural[16,58] biowastes as sources of SLP has been reported in

many previous papers. A green process has been developed

comprising hydrolysis of the sourcing biowaste in water and

complete recycling of solvent and reagents.[4, 19] The process

does not require secondary waste treatment. The performance

of the above SLP has been studied in diversified fields[3–23] of

the chemical industry, agriculture and animal husbandry.

With specific reference to the performance of SLP in the

blend EVOH-SLP films, the results obtained in this work pros-

pect a number of possible applications. The data in Table 4

have shown that at 2–5% D SLP the blends have significantly

lower Young modulus than neat EVOH. Moreover, the Young

Modulus tends to decrease upon increasing the SLP content. To

predict the impact of these findings on applications of these

blends, it should be taken in consideration that all blend films

listed in Table 4 exhibit Young modulus values in the range of

the values published for many multipurpose polymers,[59] which

are used for manufacturing a wide range of consumer prod-

ucts, and for most commercial plastic bags.[60] Moreover, for use

in specific application requiring higher strength, the SPP blends

exhibiting lower modulus could be fabricated with higher

thickness to achieve the same strength and assure the same

performance as the higher modulus materials during service. In

this context, taking in consideration the properties of the SLP

as biostimulant for plant growth,[19–21] the most intriguing appli-

cation and potentially most feasible application of the SLP

blends appears the manufacture of mulch films.

Table 4 reports the vis-à-vis comparison of the mechanical

data for the SLP blend film and for some typical commercial

starch based (MB) and low density polyethylene (MP) mulch

films.[61] It may be observed that, compared to the MB and MP

films, all SLP blend films listed in Table 4 have higher Young

modulus, and lower strain at break. It is obvious that each ap-

plication has specific material property requirements. Rarely,

one polymer has all needed properties. Specific formulations

are necessary for each intended applications. In the case of the

SLP blends, the film elongation property may need improve-

ment, depending on the application. Nevertheless, considering

the SLP source availability, low process cost, plant growth bio-

stimulant properties, and processability through solvent casting

and melt extrusion, further development of blended SLP mulch

films is a worthwhile scope to pursuit. More generally, the de-

velopment of new biobased polymers, as proposed in this

work, widens the perspectives to realize a cost-effective bio-



refinery processing municipal biowastes to obtain value-added

marketable products.

Conclusions

Amorphous lignin-like soluble biopolymers (SLP) obtained from

fermented municipal biowastes mixed with EVOH can be proc-

essed by single-screw extrusion to obtain sheet films for in-

dustrial applications. For SLP amount no more than 5 wt.% in

the blend, the physico-chemical characteristics of the blend

films seem to be not critically influenced by the filler content.

Thus, their behaviour is similar to that of the neat EVOH film.

Increasing the filler content in the blend deteriorates its me-

chanical properties, but increases its hydrophilicity. Improve-

ment of mechanical properties, while still maintaining the wa-

ter sorption property, would allow widening the range of

applications of the blends. This might be achieved by working

out formulations to include some other auxiliaries like plasti-

cizers or compatibilizers, which should improve the interaction

between the blend components. The data indicate potential for

new worthwhile research aiming to the development of materi-

als that contain biopolymers isolated from different wastes, in

different physical forms, through different manufacture tech-

nologies, and using different formulations.

Supporting Information

The experimental section is provided.
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Toulouse, France) for the precious help in the EVOH grinding

procedure. Extrusion experiments and mechanical character-

izations were conducted in AGROMAT platform (Tarbes, France),

the technological transfer hall of LCA laboratory dedicated to

agromaterial production. For the collection of part of the ana-

lytical and product characterization, evaluation of experimental

results and writing this paper, the authors acknowledge the

contribution of the funds obtained within the BIORG project

given by Regione Piemonte within Programma Operativo Re-
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