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Abstract—In smart homes, prediction and decision are often
defined a priori and require tuning from the user, which can
be tedious, and complex. However, these smart homes have
the ability to analyze the user behavior and to modify their
decisions automatically. We present a preliminary study that tests
a decision system from voice command and the user’s context,
which is modified by reinforcement learning. The system ran on
a realistic corpus, which shows the interest of such an adaptation.

I. INTRODUCTION

The smart home aims to improve the user control and
experience. To provide this enhanced control, these systems
perceive their environment and make decisions about it. This
decision can take place reactively – after a user command – or
proactively – to alert about a risky situation. This perception
is useful not only to make a decision but also to adapt the
decision to the context, characterized by the current conditions.

Last years, the community has shown a new keen interest
in voice controlled smart homes [1]. This kind of control
is based on a vocal user interface, which allows a ‘natural’
communication with the system and, which is well adapted for
disabled people or emergency situation (hands-free and distant
interaction) [2]. In this framework, vocal commands may be
‘turn on the light’, ‘check the door’, ‘call my daughter’, etc.
and the context must be used to remove the ambiguity of the
command. If the command ‘turn on the light’ is pronounced in
a bedroom with many lamps, the user doesn’t precise which
lamp(s) to turn on because he expects that his counterpart
would guess it. Moreover, it would not be natural to ask the
user to specify any details of a command; it is up to the system
to check the context to take the most relevant decision.

The state of the art shows some approaches deploying a
decision-making system in a smart home. For example Moore
et al. [3] has developed a system which uses a set of fuzzy
rules to find the best decision based on the context. Kofler et
al. [4] use description logic to define the behavior of a context-
aware system while Leong et al. [5] model the behavior
of a perceptive system with ECA rules (Event-Condition-
Action). Other approaches based on Bayesian networks have
been implemented [6] to reflect the uncertainty of the data.
However, in these proposals, the system adapts to the current
situation and does not take into account changes that may
occur. Indeed, depending on the season, time of day, the

arrival of a guest or a disability, patterns and contexts of
use may change. In addition, to reflect the preferences of the
user, these systems need to be configured, which can be very
complex [7]. Moreover, some misinterpretations of a vocal
command or of the context may be identified by the system
that could automatically correct it to avoid the call for a fine
and tedious parameterization. These constraints militate for
a flexible, scalable system that can adapt to the changing
behavior of individuals.

This was the case in the ACHE project (Adaptive Control
of Home Environment) [8] in which a home automation
control system was learned, observing how the user deals
with the system decisions. Actions were predicted by a neural
network and the usefulness of the action was modified using
reinforcement learning techniques. However, this project does
not seem to have been brought to completion and did not
explicitly uses the context to make its decision.

The aim of the study presented in this article is to develop a
system which adapts itself to the user and the environment in
the long term. The article presents in section II the Q-learning
method and how it is particularly well suited to the problem
of decision-making following a voice command. Section III
describes the testing of this method on a corpus acquired in
realistic condition. The article ends with a discussion of the
results and the perspectives for improvement.

II. METHOD

We make a brief introduction to Q-learning and how it was
implemented for decision-making system in a smart home.

A. Reinforcement Learning & Q-Learning

Reinforcement learning is a machine learning technique that
allows an agent to learn its behavior through a feedback from
its environment. Thus, a reinforcement learning problem is
based on three main components [9]: (1) the environment
on which agent acts; (2) the reinforcement function which
defines the objective of the agent, assigning a reward for
each state-action pair; (3) the value function associating the
expected reward until final state (where the system succeeds
or fails), to each state of the agent.

The goal of the agent is to determine a strategy, based on the
value function, by a series of trial-and-error interactions. The
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first approaches were based on the principles of dynamic pro-
gramming to modify the value function (usually represented
as an association table) until convergence.

In 1989, Watkins published an extension to the dynamic
programming approach called the Q-Learning [10]. He in-
troduced the notion of Q-Value not associated with a system
state but with a state-action pair. Similarly, the notion of value
function was replaced by the Q-function. It also defined the
equation for updating the values of the Q-function, according
to the Bellman equation used for dynamic programming.

Qn+1
st,at

= Qn
st,at

+ α

(
r(st, at) + γmax

at+1

Qn
st+1,at+1

)
(1)

where Qn denotes the Q-function at step n, st the state of the
environment at time t, at an action at time t, α the learning
factor used to vary the learning speed of the agent, r(st, at)
the reward received for action at, γ the discount factor and
maxat+1 Q(st+1, at+1) the value of Q for the best action at+1

in the next state st+1.
This new approach limited the computing cost of reinforce-

ment learning for non-deterministic environments. While the
use of dynamic programming implies the computation of a
sum of a theoretically infinite number of interactions, the Q-
Learning only requires the values of the current state and of
the next one to update the Q-function. However, the Q-value
associated with a state is provided to converge to the optimal
value after enough interactions, as in previous approaches.

B. Voice Controlled Smart Home

A smart home is a place that integrates sensors and actuators
(from home automation) and is capable of perceiving the
environment to act on it reactively or proactively [11].

A voice control application illustrates this need for per-
ception and action. For example, if a user in a smart home
pronounces ‘Turn on the light’, another person will easily
interpret this request and take action. A computer system must
infer alone the lamp that is implicit in the statement (if there
are several lamps) and its intensity (in the case where it would
be adjustable). This missing information must be retrieved
from the knowledge of the context: the system must infer
the user’s location to turn on the light in the right room and
must also deduct, from his activity, the location and the light
intensity.

In our study, we consider that possible actions are: turn
on/off the light/radio, open/close the blinds/curtains, tell the
temperature/time, request a video/phone/emergency call.

These actions are a subset of possible actions defined after a
user study [12]. Of course, this set of actions should be tailored
to each user and housing, but this predefined list was useful for
the evaluation of the system. This study also identified voice
commands using a simple grammar as shown in Figure 1. Each
command begins with a unique keyword, ‘Nestor’.

This kind of environment seems particularly suited for Q-
learning as the sets of states and actions, though potentially
great, are finite and discrete.

basicCmd = key initiateCommand object | key emergencyCommand
key = "Nestor"
initiateCommand = "ouvre" | "ferme" | "teins" | "allume" | "appelle" " | "donne"
emergencyCommand = "au secours" | " l’aide"
object = [determiner] ( device | person | organisation)
determiner = "mon" | "ma" | "le" | "la" | "les" | "un" | "des" | "du"
device = "lumire" | "store" | "rideau" | "radio" | "heure" | "temprature"
person = "fille" | "fils" | "femme" | "mari" | "mdecin"
organisation = "samu" | "secours" | "pompiers" | "suprette" | "supermarch"

Figure 1. Vocal commands grammar sample (in French).

III. EXPERIMENT

This section presents the realized scenarios and realistic data
from a previous study, details how learning has been done and
the evaluation of the experiment.

A. Scenario of the use of a voice controlled smart home

We consider in this study the DOMUS smart home de-
signed by Grenoble Informatics Laboratory (LIG) [13]. This
30 square meters home, includes a bathroom, a kitchen, a
bedroom, and a study. All these rooms are equipped with
sensors and actuators such as infrared motion sensors, touch
sensors, video cameras (only used for annotation purposes),
etc. In addition, seven microphones were placed in the ceiling
for audio capture. The apartment is fully usable and can ac-
commodate a resident for several days. More than 150 sensors
are managed in the apartment to provide different services (e.g.
light, opening/closing shutters, media management, etc.).

To collect decision data in context, several participants
were recruited to play scenarios of the daily life in the
apartment. Participants were asked to issue voice commands to
activate the actuators in the smart home. The objective of this
experiment was to test a smart controller [14] in real situations
corresponding to voice commands spoken by the user. The
situations that we considered in the study were: (1) to clean
up the apartment, (2) prepare and eat a meal, (3) converse
via video conference (4) do leisure activities (reading), (5)
take a nap. To guide the participants in the realization of the
experiment, the grammar voice command was provided (see
Figure 1) with a scenario of everyday scenes (Figure 2). This
scenario was designed to last about 45 minutes, however, there
was no constraint on the execution time. The first four parts
put the user in situations of daily activities while speaking
a voice command. Each participant received a list of actions
to make and voice commands to pronounce. Each participant
had to use a voice command, repeating up to 3 times in case

Go to the kitchen, ask for the temperature:

Nestor donne la température
Take a snack, put the dish in the sink, ask for the time:

Nestor donne moi l’heure
You realized it’s late, you need to go shopping
Before leaving, you want to turn off the lights:

Nestor éteins la lumière
You also want to close the blinds:

Nestor baisse les stores

Figure 2. A sample of an example scenario that a participant had to do.



of system failure. A Wizard of Oz was used in the case of
persistent failure.

A total of 15 people (9 women, 6 men) participated in
the experiment to record 11 hours of data. The average age
of participants was 38 ± 13.6 (19–62). All experiments were
video recorded but only for annotation purposes. In the study
presented in this article, the home automation control corpus
is composed of a set of situations (human activity, location,
condition of the apartment), voice control statements and the
corresponding home automation commands. This data set is
extracted from the Sweet-Home corpus [15].

B. Learning

Our model is learned on a first corpus, called train, before to
be evaluated using cross-validation technique on a test corpus.

1) Corpus description: Each of the data sets is one or more
text files following this scheme:
usr_cmd usr_loc usr_act -> expctd_cmd expctd_loc

Examples:
blind - open kitchen none

->blind - open kitchen
light - on kitchen cook

->light - on kitchen - sink

The focus is on taking a decision when the user calls the
system through a vocal command. Thus, each file entries
necessarily contains a valid usr cmd field as the usr loc field
which corresponds to the user location when he interacts with
the system. However, the usr act field, which symbolizes the
activity of the user, can take a null value that means that we
do not know what activity is being performed.

Each state of the system (which here corresponds to the
current context) is then associated with an expected output
consisting of two pieces of information: the desired command
– turn on the lights – and the place of the action – the ceiling
or bedside lamp. This information is defined, for the train
corpus, by a set of rules and in the case of the test corpus by
a domain expert.

The train corpus is a corpus which should enable us to learn
a first model of our environment. For this, it must be relatively
large. As there is little decision data corpus, the training corpus
was generated automatically by following the method used
in [14]. For this, we used a script that runs through all possible
states of our system and deducts the expected decision from a
set of logical rules. From the 300 states of our system, about
400 samples are generated.

The test corpus is based on real data extracted and an-
notated from experiments performed during the Sweet-Home
project [15]. During cross-validation, we leave data from one
subject for evaluation, tuning our model using data from fifteen
subjects. Each subject did 25 interactions on average leading
to a total of 407 interactions covering 37 states.

2) Experiment: The experiment is conducted in 2 phases:
training, and cross-validation. Cross-validation is executed on
a sixteen folds corpus. Each phase is broken down into 10
steps at the end of which the awards received are integrated
for learning. This allow us to track the performances all along
the experiment.

For the training phase, we use the train corpus to simulate
many interactions. We try to ensure that all states have been
met several times allowing the system to explore different
actions outcomes. Then, we get a Q-values table representing
a first model of the environment.

We use this model as a base for the evaluation phase. For
each fold of the test corpus, the system adapts itself using
data from fifteen subjects before being evaluated on the left
out one. The results of the experiment are saved to extract
metrics to evaluate the performance of our system.

In both cases, learning process in the same. We provide a
state to the system which returns an action. If expected and
returned actions are the same, the system is rewarded and we
provide a new state. Else, the system is punished and it stays
in the same state. With the train corpus, the system can try
infinitely to find the right action whereas with the test corpus,
to simulate the user giving up, it has only three tries. For the
moment, we use a Minimum time to goal [9] reward function,
but more custom functions will be used to take into account
the apartment layout or to severely punish the system if it is
too long to find the right action.

3) Evaluation and metrics: During the experiment, we save
data allowing us to compute different metrics like the F1-score
and the mean reward.

The first one is a classical classification metrics. Each
decision making is seen as a classification of the state. We
can then compute the precision and the recall to compute the
F1-score. This reflects the ability of the system to choose the
right decision based on the current state.

The mean reward is a more custom metrics which gives
the mean reward obtained between two reward integrations
for learning (the 10 steps explained above). Depending on the
reward function used, this metric, with the F1-score, allow us
to determine if the system fails often but with a small mistake
(it lights the ceiling instead of the bedside lamp) or rarely but
with a big one (it turns on the radio instead of closing the
store).

C. Results

We ran the protocol explained above, and summarized the
classification results in the confusion matrix shown in Figure 3.
The fact that the matrix diagonal is well identified, as well as
the good overall accuracy of about 70%, show that the learning
process associate the right actions to the right state.

Nevertheless, you can see two erroneous behaviors. The first
one is a confusion between actions 19 and 20, ‘turning on
the kitchen ceiling light’ and ‘turning on the kitchen sink
light’. This is an understandable confusion as some states
are very ambiguous even for a human annotator. The second
error appears on actions 11 and 12, ‘turn off all the lights of
the kitchen’ and ‘turn off the kitchen ceiling light’, classified
as ‘tell time in the kitchen’. We are still investigating to
understand what is going on, but this seems to be cause by
the lack of representative samples for both actions.



Figure 3. Confusion matrix for the decision-making system

IV. DISCUSSION AND OUTLOOK

The experiment reported in this article shows that adapting a
system to a user are possible even with a simple reinforcement
approach as the Q-learning. However, a number of points have
not been taken into account. The information generated by the
home automation system is often used by decision systems.
But in this work the decision is based on the information of
location and activity that are the result of an inference. So, it
is necessary to work on the transfer of negative reward that
can either be due to a bad decision or a wrong inference. For
this, we have to check whether the theoretical frameworks
taking uncertainty into account can be applied to this double
problem of uncertainty and reinforcement, as in the work of
Hagras et. al. [16] in which a fuzzy reasoning based system
adapts to the person while taking into account the uncertainty.
The Partially Observable Markov Decision Process (POMDP)
also seems particularly suited to this type of problem [17].
Finally, it is worth checking whether an MLN-based system
[14] or a DNN-based [18] one can be adapted to include a
strengthening mechanism.

Another important point not considered in the study is the
identification of persons in the home. Indeed, a behavior is
associated with a user and so rewards may be different. This
problem can be included in the previous problem, characteriz-
ing a limited range of users that should be identified together
with the rest of the environment.

Finally, we would like to validate our approach. A long-term
adaptation requires a large amount of data that is extremely
expensive to implement and raises verification problems (e.g.
differentiate essential versus minor adjustments). Our strategy
first is to test the system against radical adaptations like a
person or habitat change that will provide information on
system ease of ‘installation’ in a new environment. Moreover,
we will test a long-term adaptation in less expensive envi-
ronments, potentially less intrusive than the habitat, and with
little identification problem, through smartphone applications
and actions in an intelligent office.
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